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Spring 2024

Exercises for Lecture 11

Exercise 11.1 (TWs)

Consider the Fisher equation from population dynamics (u > 0 !):

ut = uxx + γu(1− u), −∞ < x <∞

with boundary conditions u(−∞, t) = 1 and u(+∞, t) = 0. Determine the
travelling wave ODE, analyze the phase plane and sketch the corresponding
TW solution of the PDE.

Exercise 11.2 (TWs)

The same question as in exercise 11.1, but now for the non-equilibrium geo-
hydrology model from porous media:

ut = uxx + [u2]x + τuxxt, −∞ < x <∞, τ > 0

with boundary conditions u(−∞, t) = u− and u(+∞, t) = u+ (with u+ > u−).

Exercise 11.3 (TWs)

As in exercise 11.1, but now for the Fisher PDE with density-dependent diffu-
sion:

ut = [uux]x + u(1− u), −∞ < x <∞

with boundary conditions u(−∞, t) = 1 and u(+∞, t) = 0.
Assume monotonically decreasing solutions.

Exercise 11.4 (higher-order PDEs)

a) Work out a central second-order FD approximation for uxxxxx on a uniform
grid with step size ∆x. Alternatively, you could work with the D5-matrix from
lecture 2. Plot the eigenvalues in the complex plane.
b) Same question as in a), but now for a fourth-order approximation.
c) As in part a), but now on a non-uniform grid with grid points {xi−3, xi−2, xi−1, xi, xi+1, xi+2, xi+3}.
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Exercise 11.5 (higher-order PDEs)

Derive a second-order central finite difference approximation for the spatial
derivatives in the ‘stable-unstable’ PDE:

ut = −puxxxx − quxx, p, q > 0

and discuss its stability properties (in a method-of-lines context). Which time-
integrators do you recommend?

Exercise 11.6 (higher-order PDEs)

Consider the following PDE model which describes vibrations in a thin beam:

ψtt + ψxxxx = 0,

supplemented with appropriate boundary and initial conditions. Develop an
explicit (in time) finite difference approximation using differences at x = j∆x
and t = n∆t. Show that a sufficient condition for stability is ∆t

(∆x)2 <
1
2 . Sketch

the computational molecule.

*Exercise 11.7 (higher-order PDEs)

Apply a Fourier stability analysis (”Von Neumann”-analysis) to the scheme

un+1
j = un−1

j − µD0[η +
ϵ

(∆x)2
D+D−]u

n
j , with µ =

∆t

∆x
,

where η and ϵ are given parameters. This is a leapfrog discretization of the
linearized KdV equation

ut + ηux + ϵuxxx = 0.

Note that we have used the following notation:

D0uj = uj+1 − uj−1, D+uj = uj+1 − uj , D−uj = uj − uj−1.

*Exercise 11.8 (higher-order PDEs)

Check that the Zabusky-Kruskal scheme

1
2∆t (u

n+1
j − un−1

j ) + 1
6∆x (u

n
j+1 + unj + unj−1)(u

n
j+1 − unj−1)

+ ϵ
2(∆x)3 (u

n
j+2 − 2unj+1 + 2unj−1 − unj−2) = 0

is a consistent scheme for the KdV model

ut + uux + ϵuxxx = 0,

and that the truncation error is of the form O((∆t)3) +O(∆t(∆x)2).
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