Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 12

Exercise 12.1

Given the equidistribution principle

$$
\left[x_{\xi} \omega\right]_{\xi}=0, \quad x(0)=0, x(1)=1 .
$$

Show that for the arclength-type monitor function $\omega=\sqrt{1+\alpha u_{x}^{2}}$ we obtain a uniform grid distribution, if $\alpha \rightarrow 0$.
What happens with the grid distribution for the monitor function $\omega=u_{x}$, if the solution has flat parts $u_{x} \approx 0$?

Exercise 12.2

Show that the equidistribution principle in exercise 8.1 is obtained by minimizing the 'grid energy' functional $E=\frac{1}{2} \int_{0}^{1} \omega x_{\xi}^{2} d \xi$.

*Exercise 12.3

The deformation method in one space dimension can be described in terms of grid velocities:

$$
\frac{\partial}{\partial t} x(\xi, t)=\frac{v(x, t)}{\omega(x, t)},
$$

with $v(\xi, t)=-\int_{0}^{\xi} \frac{\partial \omega(\eta, t)}{\partial t} d \eta$ and ω is a normalized monitor function such that $\int_{0}^{1} \omega(x, t)=1, \quad \forall t \in(0, T)$. Show that, if $x_{\xi} \omega=1$ at $t=0$, then the grid distribution for the deformation method satisfies $x_{\xi} \omega=1, \quad \forall t \geq 0$ (an integrated version of the equidistribution principle).

Exercise 12.4

Consider the heat equation $u_{t}=u_{x x}$. Apply a coordinate transformation of the form $x(\xi, \theta), t=\theta$ and work out the transformed PDE.
Suppose we want to use an equidistribution principle as in exercises 8.1 and 8.2. Which monitor function ω must be used to cancel the first term in the local truncation error of $u_{x x}$ on a non-uniform grid? This is called supra-convergence.

Exercise 12.5

Consider the hyperbolic PDE $u_{t}+c(x) u_{x}=f(u)$. Apply a general coordinate transformation of the form

$$
x=x(\xi, \theta), \quad t=\theta
$$

and derive the transformed advection PDE:

$$
u_{\theta}+\beta x_{\theta}=\gamma u_{\xi}+g .
$$

Specify the functions β, γ and g. Also, give the Jacobian matrix (and its determinant) of this transformation. Which system of two PDEs would define the transformation for the 'method of characteristics'?

Exercise 12.6

(a) Work out a general non-uniform grid approximation for u_{x} at the grid point x_{i}, only making use of the values u_{i-1}, u_{i} and u_{i+1} at x_{i-1}, x_{i} and x_{i+1}, respectively. Show at least three different approximations $\left.u_{x}\right|_{i} \approx A u_{i-1}+B u_{i}+C u_{i+1}$.
(b) Derive the central difference approximation (as a special case from part ii): $\left.u_{x}\right|_{i} \approx \frac{u_{i+1}-u_{i-1}}{x_{i+1}-x_{i-1}}$, work out its local truncation error τ in terms of the transformation derivatives $x_{\xi}, x_{\xi \xi}, \ldots$ and solution derivatives $u_{x x}, u_{x x x}, \ldots$:

$$
\tau=\epsilon H^{2}+\mathcal{O}\left(H^{3}\right)
$$

where $H:=\Delta \xi$, the constant stepsize in the transformed variable ξ (find the factor ϵ).
(c) Considering only u_{x} as in part (b): which monitor function ω of the form $\left[\frac{\partial^{p} u}{\partial x^{p}}\right]^{q}$ in the equidistribution relation

$$
\left[\omega x_{\xi}\right]_{\xi}=0
$$

yields 'supra-convergence' on the non-uniform grid x_{i} ? In other words, set $\epsilon=0$ in part (b) and find the appropriate ω, for which $\tau=\mathcal{O}\left(H^{2}\right) \Rightarrow \tau=\mathcal{O}\left(H^{3}\right)$.

Exercise 12.7

Consider the time-dependent grid transformation

$$
\begin{align*}
& x=x(\xi, \eta, \theta), \\
& y=y(\xi, \eta, \theta), \tag{1}\\
& t=\theta .
\end{align*}
$$

Show that the determinant of this transformation is given by:

$$
J:=\operatorname{det}(\mathcal{J})=\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta}-\frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}
$$

*Exercise 12.8

(a) Work out the two-dimensional Laplacian Δ in 'curvilinear' coordinates

$$
(\xi, \eta)=(\xi(x, y), \eta(x, y))
$$

(b) Check with the formula in part (a) that, if we choose $(\xi, \eta)=(\rho, \phi)$ with

$$
\begin{aligned}
& x=\rho \sin (\phi) \\
& y=\rho \cos (\phi)
\end{aligned}
$$

we obtain the well-known formula in polar coordinates:

$$
\Delta u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}
$$

*Exercise 12.9

The deformation method in d space dimensions can be described in terms of grid velocities:

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial t}(\vec{\xi}, t)=\vec{v}(\vec{x}, t) f(\vec{x}, t), t>0, \quad \vec{x}(\vec{\xi}, 0)=\vec{x}_{0}(\vec{\xi}) \tag{2}
\end{equation*}
$$

where the velocity field \vec{v} satisfies

$$
\begin{equation*}
\nabla_{\vec{\zeta}} \cdot \vec{v}(\vec{\zeta}, t)=-\frac{\partial}{\partial t}\left[\frac{1}{f(\vec{\zeta}, t)}\right] \tag{3}
\end{equation*}
$$

and

$$
\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \frac{1}{f(\vec{x}, t)} d x_{1} d x_{2} \ldots d x_{d}=1, \quad \forall t \in(0, T)
$$

Suppose that at $t=0$ we have: $J\left(\vec{x}_{0}(\vec{\xi}), 0\right)=f\left(\vec{x}_{0}(\vec{\xi}), 0\right)$, where J is the determinant of the Jacobian matrix of the grid transformation in d space dimensions and $f=\frac{1}{\omega}$ (remember that ω is the monitor function which determines the adaptivity of the method.
Prove that for the time-dependent adaptive grid obtained from formulas (2) and (3) the following relation holds:

$$
J(\vec{x}, t)=f(\vec{x}, t) \quad \forall t \geq 0 .
$$

Hints: 1) prove that $\mathcal{H}=\frac{J}{f}$ is independent of $\left.t, 2\right)$ consult also the proof of the 1 d -version, 3) it is useful to make use of the following theorem (Abel-JacobiLiouville theorem):
Let A be a $d \times d$-matrix with continuous elements on an interval $I: a \leq t \leq b$ and suppose Φ is a matrix satisfying the matrix differential equation: $\Phi^{\prime}(t)=$ $A(t) \Phi(t), t \in I$. Then $\operatorname{det}(\Phi)$ satisfies on I the first order differential equation: $(\operatorname{det}(\Phi))^{\prime}=\operatorname{trace}(A) \operatorname{det}(\Phi)$.

*Exercise 12.10

Derive the moving finite element ODEs for piecewise linear approximations via a least squares minimization procedure. Comment on the regularity of the extended mass-matrix and of the right-handside vector.

