Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 12

Exercise 12.1
Given the equidistribution principle
[zewle =0, 2(0) =0, z(1) =1.

Show that for the arclength-type monitor function w = /1 + au2 we obtain a
uniform grid distribution, if o — 0.
What happens with the grid distribution for the monitor function w = u,, if
the solution has flat parts u, ~ 07

Exercise 12.2
Show that the equidistribution principle in exercise 8.1 is obtained by minimizing

the ‘grid energy’ functional E = 1 fol wag de.

*Exercise 12.3

The deformation method in one space dimension can be described in terms of
grid velocities:

0 v(x,t)
_ t) =
" &)= ey
with v(&,t) = — 05% dn and w is a normalized monitor function such

that fol w(z,t) =1, Vt € (0,T). Show that, if z¢ w = 1 at t = 0, then the
grid distribution for the deformation method satisfies z¢ w = 1, V¢ > 0 (an
integrated version of the equidistribution principle).

Exercise 12.4

Consider the heat equation u; = uz,;. Apply a coordinate transformation of the
form x(&,0), t = 6 and work out the transformed PDE.

Suppose we want to use an equidistribution principle as in exercises 8.1 and
8.2. Which monitor function w must be used to cancel the first term in the local
truncation error of u,; on a non-uniform grid? This is called supra-convergence.



Exercise 12.5

Consider the hyperbolic PDE u; + ¢(z)u, = f(u). Apply a general coordinate
transformation of the form

x:x(f,ﬂ), t=10
and derive the transformed advection PDE:
ug + By = yue + g.

Specify the functions 3, v and g. Also, give the Jacobian matrix (and its
determinant) of this transformation. Which system of two PDEs would define
the transformation for the ‘method of characteristics’?

Exercise 12.6

(a) Work out a general non-uniform grid approximation for u, at the grid point
x4, only making use of the values u;_1, u; and u; 1 at x;_1, ; and x;41, respec-
tively. Show at least three different approximations u,|; = Au;—1+ Bu;+Cu;y.

(b) Derive the central difference approximation (as a special case from part

i) wugly ~ %’ work out its local truncation error 7 in terms of the
T

transformation derivatives x¢, x¢e, ... and solution derivatives uzz, Uzze, -0
T=eH?+ O(H?),
where H := Ag, the constant stepsize in the transformed variable ¢ (find the

factor €).

(c) Considering only u, as in part (b): which monitor function w of the form

[%]q in the equidistribution relation

[wzele =0

yields ‘supra-convergence’ on the non-uniform grid z;? In other words, set € = 0
in part (b) and find the appropriate w, for which 7 = O(H?) = 7 = O(H?).

Exercise 12.7

Consider the time-dependent grid transformation

T = I(f, 1, 0)7
y=1y(&n.0), (1)
t=20.
Show that the determinant of this transformation is given by:
Ox 0y Oz dy
J :=det =——= - ——.
NI = Gean oy o



*Exercise 12.8
(a) Work out the two-dimensional Laplacian A in ‘curvilinear’ coordinates

(& n) = &z, y),n(x,y))-

(b) Check with the formula in part (a) that, if we choose (§,1) = (p, ¢) with

z = psin(e),
y = pcos(¢),

we obtain the well-known formula in polar coordinates:

0%y 10u 1 0%u

Au=22 4 200, — 20
“ 8p2+,05,0+p25¢2

*Exercise 12.9

The deformation method in d space dimensions can be described in terms of
grid velocities:

0% , - s R o L=
a(gvt) = U(J?,t)f(.]?, t)7 t> 07 $(§, O) = $0(§)7 (2)
where the velocity field v satisfies
- 0 1
V= 9((,t) = ——[—= 3
o IEH =gl 3)

and

1 1 -
———— dxydxs...drg =1, Vte (0,T).
Ly sy et e 0

— —

Suppose that at ¢ = 0 we have: J(Zo(€),0) = f(Zo(£),0), where J is the deter-
minant of the Jacobian matrix of the grid transformation in d space dimensions
and f = 1 (remember that w is the monitor function which determines the
adaptivity of the method.

Prove that for the time-dependent adaptive grid obtained from formulas (2) and
(3) the following relation holds:

J(T,t) = f(Z,t) Vt>0.

Hints: 1) prove that H = % is independent of ¢, 2) consult also the proof of the
1d-version, 3) it is useful to make use of the following theorem (Abel-Jacobi-
Liouville theorem):

Let A be a d x d-matriz with continuous elements on an interval I: a <t <b
and suppose O is a matriz satisfying the matriz differential equation: ®'(t) =
At)®(t), t € I. Then det(®) satisfies on I the first order differential equation:
(det(®))" = trace(A)det(P).



*Exercise 12.10

Derive the moving finite element ODEs for piecewise linear approximations via
a least squares minimization procedure. Comment on the regularity of the
extended mass-matrix and of the right-handside vector.



