
Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 2

Exercise 2.1

Use the method of undetermined coefficients to obtain a uniform grid FD ap-
proximation of

(a) ux at x = xi of the form

ux,i ≈ [−1

6
ui+2 + ui+1 −

1

2
ui −

1

3
ui−1]/∆x.

Show that the leading term in the error is O((∆x)3).

(b) uxx at x = xi of the form

uxx,i ≈ [ui−1 − ui − ui+1 + ui+2]/[2(∆x)2].

Show that the leading term in the error is O(∆x).

Exercise 2.2

Construct, for the first-derivative operator ux at the gridpoint x = xi, an ap-
proximation of the form:

ux,i ≈ Aui+1 +Bui + Cui−1.

Which order of approximation do you find? How many solutions exist? Discuss
a few well-known choices.

Exercise 2.3

Derive a fourth-order approximation of uxx at x = xi:

uxx,i ≈ Aui+2 +Bui+1 + Cui +Dui−1 + Eui−2

and determine the constants A,B,C,D and E. What happens at the boundary
grid points of the domain? Discuss the effects and how to include boundary
conditions.
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Exercise 2.4

(a) Show that the eigenvalues of the (tri-diagonal) M × M -matrix D2c (with
homogeneous Dirichlet boundary conditions), given by

D2c =
1

(∆x)2



−2 1 0
1 −2 1 0 ∅
0 1 −2 1 0

... ... ...
... ... ...
0 1 −2 1 0

∅ 0 1 −2 1
0 1 −2


,

are:

λp =
2

(∆x)2
(cos(pπ∆x)− 1), for p = 1, 2, ...,M.

The eigenvector vp corresponding to eigenvalue λp has components:

vpi = sin(pπi∆x), i = 1, 2, ...,M.

(b) Choose M = 10 and plot the eigenvalues in the complex plane. The same
question for M = 20. What do you expect for M ≫ 1?

*Exercise 2.5

(a) Show that the eigenvalues of the (circulant) (M + 1)× (M + 1)-matrix D1c

(with periodic boundary conditions), given by

D1c =
1

2∆x



0 1 0 −1
−1 0 1 0 ∅
0 −1 0 1 0

... ... ...
... ... ...
0 −1 0 1 0

∅ 0 −1 0 1
1 0 −1 0


,

are:

λp =
i

∆x
sin(2πp∆x), for p = 1, ...,M + 1.

Note that the i-th component of the p-th eigenvector has the form:

vpi = ei2pπi∆x (i =
√
−1).

(b) Choose M = 10 and plot the eigenvalues in the complex plane. The same
question for M = 20. What do you expect for M ≫ 1?
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Exercise 2.6

(a) Check that the following two identities hold:

D2c = D1+D1− & D1c =
1

2
(D1+ +D1−).

(b) Work out the matrix: D4c = (D2c)
2.

(the matrix D4c approximates u4x := uxxxx)

(c) Derive a finite difference matrix D6c for u6x := uxxxxxx.

Exercise 2.7

Consider the one-dimensional stationary convection-diffusion model:{
ϵ u′′(x)− u′(x) = 0, x ∈ [0, 1], 0 < ϵ < 1,

u(0) = 0, u(1) = 1.
(1)

We approximate (1) by

ϵ
ui+1 − 2ui + ui−1

(∆x)2
− ux,i = 0, i = 1, ...,M − 1, (2)

where u0 = 0, uM = 1 and ux,i is an approximation for u′(xi).

(a) Find the analytical solution of model (1). Sketch a few solutions for de-
creasing values of ϵ.

(b) Use central differences for ux,i on a three-point stencil. Check that the
exact solution of the (linear) numerical system (2) satisfies:

ui =
( 1+Pe

1−Pe
)i − 1

( 1+Pe

1−Pe
)M − 1

, i = 1, ...,M − 1,

where the mesh-Péclet number is defined by: Pe =
∆x
2ϵ . Sketch a few numerical

solutions for Pe > 1 and Pe < 1 (choose M not too large).

(c) Next, use first-order upwind (backward finite differences) for ux,i. Check
that the exact solution of the (linear) numerical system (2) now becomes:

ui =
(1 + Pe)

i − 1

(1 + Pe)M − 1
, i = 1, ...,M − 1.

Choose the same values for M and ϵ as in part (b) and compare both types of
numerical solutions. Discuss the influence of Pe.
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*Exercise 2.8

Consider the one-dimensional nonlinear Gelfand-Bratu model:{
u′′(x) + λeu(x) = 0, x ∈ [0, 1],

u(0) = 0, u(1) = 0, λ ∈ R.
(3)

We approximate (3) by

ui+1 − 2ui + ui−1

(∆x)2
+ λeui = 0, i = 1, ...,M − 1, (4)

with u0 = 0 and uM = 0.

(a) Check that, for λ ≥ 0, the exact solution of (3) satisfies:{
u(x) = −2 ln[

cosh((x− 1
2 )

θ
2 )

cosh( θ
4 )

],

θ =
√
2λ cosh( θ4 ).

Draw the two(!) solutions for λ = 1.

(b) Apply the Matlab-routine fsolve.m, with an appropriate initial guess and
M = 10, to the nonlinear system (4). Reproduce the two solutions for λ = 1
numerically.

*Exercise 2.9

Derive a non-uniform grid approximation at x = xi for both ux,i and uxx,i on
a three-point stencil {xi−1, xi, xi+1}. Express the truncation error in terms of
derivatives of u at xi and the non-uniform grid variables {∆xi−1,∆xi,∆xi+1}.

Exercise 2.10

In two dimensions the Laplacian ∆u can be approximated at the gridpoint
(x, y) = (xi,j , yi,j) on a nine-point stencil (take ∆x = ∆y := h):

∆ui,j ≈ 1
6h2 [4(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)+

ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1 − 20ui,j ].

Check that this approximation is of second order (similar to the five point central
approximation), but becomes fourth order, when the Laplace equation ∆u = 0
is solved, or when the Poisson equation ∆u = f(x, y) is solved with a harmonic
function f , i.e., ∆f = 0.
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