Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 3

Exercise 3.1

Show that
(a) the implicit Gear method

$$
u^{n+1}=\frac{1}{3}\left(4 u^{n}-u^{n-1}\right)+\frac{2 \Delta t}{3} f\left(u^{n+1}\right)
$$

is zero stable,
(b) the explicit 3-step Adams method

$$
u^{n+3}=u^{n+2}+\frac{\Delta t}{12}\left[5 f\left(u^{n}\right)-16 f\left(u^{n+1}\right)+23 f\left(u^{n+2}\right)\right]
$$

is zero stable,
(c) and that the linear multistep method

$$
u^{n+2}-3 u^{n+1}+2 u^{n}=-\Delta t f\left(u^{n}\right)
$$

is not zero stable.

Exercise 3.2

Find the stability polynomial $\pi(\zeta ; z)$ and its roots for the
(a) trapezoidal method:

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\frac{1}{2}\left[f\left(u^{n}\right)+f\left(u^{n+1}\right)\right] .
$$

(b) the midpoint (leapfrog) method:

$$
\frac{u^{n+1}-u^{n-1}}{2 \Delta t}=f\left(u^{n}\right)
$$

Exercise 3.3

Sketch/plot ${ }^{1}$ the stability regions in the complex plane of the following methods:
(a) a second-order explicit Runge-Kutta (two-stages) of the form:

$$
\left\{\begin{array}{l}
k_{1}=f\left(u^{n}\right) \\
k_{2}=f\left(u^{n}+k_{1} \Delta t\right) \\
u^{n+1}=u^{n}+\frac{\Delta t}{2}\left(k_{1}+k_{2}\right)
\end{array}\right\}
$$

(b) a fourth-order explicit Runge-Kutta (four stages):

$$
\left\{\begin{array}{l}
k_{1}=f\left(u^{n}\right), \\
k_{2}=f\left(u^{n}+k_{1} \frac{\Delta t}{2}\right), \\
k_{3}=f\left(u^{n}+k_{2} \frac{\Delta t}{2}\right), \\
k_{4}=f\left(u^{n}+k_{3} \Delta t\right), \\
u^{n+1}=u^{n}+\frac{\Delta t}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] .
\end{array}\right\}
$$

(c) the second-order Taylor method:

$$
u^{n+1}=u^{n}+\Delta t f\left(u^{n}\right)+\frac{1}{2}(\Delta t)^{2} f^{\prime}\left(u^{n}\right) f\left(u^{n}\right)
$$

Exercise 3.4

Show that the boundary locus of the method

$$
u^{n+1}=u^{n}+\Delta t f\left(u^{n}+\Delta t f\left(u^{n}\right)\right)
$$

is defined by

$$
\left[1+x+x^{2}-y^{2}\right]^{2}+y^{2}[1+2 x]^{2}=1
$$

Plot this curve, as described in Exercise 3.3.

Exercise 3.5

(a) Deduce the eigenvalues of the central finite-difference matrices $\mathcal{D}_{1 c}, \mathcal{D}_{2 c}$, $\mathcal{D}_{3 c}, \mathcal{D}_{4 c}$ and $\mathcal{D}_{6 c} .{ }^{2}$
(b) Mark their positions in the complex plane.
(c) Comment on the stability properties of the methods EF (explicit Euler) and $E B$ (implicit Euler), when applied to the semi-discrete ODE system:

$$
\dot{\vec{u}}=\mathcal{D}_{m c} \vec{u}, \quad(m=1,2,3,4,6) .
$$

[^0]
Exercise 3.6

Work out the semi-discrete ODE system (applying the Method-of-Lines) for the following PDE models:
(a) $u_{t}=d u_{x x}+\left(u^{2}\right)_{x}-\mu u_{x x t}$.
(b) $u_{t}=u_{x x x}+6 u u_{x}$.
(c) $u_{t t}=u_{x x x}$ with $u(x, 0)=u_{0}(x)$ and $u_{t}(x, 0)=v_{0}(x) .{ }^{3}$ Where in the complex plane do we find the eigenvalues of the semi-discrete ODE system? Comment on the applicability of explicit Euler, implicit Euler and other time-integration methods.

[^1]
[^0]: ${ }^{1}$ write $z=x+i y$ and make use of the Newton-Raphson method to find an approximation of the boundary locus for a finite set of (x, y)-values.
 ${ }^{2}$ You may assume that the eigenvectors of these matrices are identical.

[^1]: ${ }^{3}$ first re-write the PDE as a system of two PDEs.

