Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 5

Consider the advection equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 . \tag{1}
\end{equation*}
$$

Exercise 5.1

Show that for the CTCS-method ('Leapfrog')

$$
\frac{u_{i}^{n+1}-u_{i}^{n-1}}{2 \Delta t}+c \frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}=0
$$

the local truncation error is of the form

$$
\tau=-\left.\frac{1}{6}(\Delta t)^{2} u_{t t t}\right|_{i} ^{n}-\left.\frac{c}{6}(\Delta x)^{2} u_{x x x}\right|_{i} ^{n}+\text { H.O.T. in } \Delta t \text { and } \Delta x .
$$

Exercise 5.2

Compute the local truncation error for the Lax-Friedrichs method when applied to advection equation (1).

Exercise 5.3

Use the Von Neumann stability analysis to discuss the (in)stability of the Leapfrog method for PDE (1).

Exercise 5.4

Find a modified PDE for which the Lax-Wendroff method

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{c \Delta t}{2 \Delta x}\left(u_{i+1}^{n}-u_{i-1}^{n}\right)+\frac{(\Delta t)^{2}}{2(\Delta x)^{2}} c^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)
$$

applied to PDE (1) gives an $\mathcal{O}\left((\Delta t)^{3}\right)$ approximation.

Exercise 5.5

Compute the local truncation error for the Beam-Warming method when applied to advection equation (1):

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{c \Delta t}{2 \Delta x}\left(3 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}\right)+\frac{1}{2} c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\left(u_{i}^{n}-2 u_{i-1}^{n}+u_{i-2}^{n}\right) .
$$

Exercise 5.6

Show that the Beam-Warming method in exercise 5.5 is stable for $0 \leq c \frac{\Delta t}{\Delta x} \leq$ 2 , if we assume that $c>0$.

Exercise 5.7

In this exercise we apply the upwind method

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+c \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=0
$$

to advection equation (1). Show that the amplification factor in the Von Neumann stability analysis satisfies

$$
|G|=\left|(1-\lambda)+\lambda \mathrm{e}^{-i \xi_{m} \Delta x}\right|,
$$

with $\lambda=c \frac{\Delta t}{\Delta x}$. For which values of λ is this method stable?

Exercise 5.8

Apply the FTCS-scheme to the advection equation (1) and show that, for this case, the CFL-condition may give stable solutions (conditionally), but we know that the FTCS-solutions are unstable. This is an example of a numerical method for which the CFL-condition is not sufficient (although it is a necessary condition)! Illustrate this in a figure with computational stencils in the $x-t$-domain and with characteristics of PDE (1).

Exercise 5.9

Draw the domains of numerical and physical dependence for the FTBS and FTFS schemes applied to the linear advection equation (1).

