
Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 6

Consider the kinematic wave equation:

∂u

∂t
+ c(u)

∂u

∂x
= 0, −∞ < x < ∞, t > 0 (1)

with initial condition u0(x).

*Exercise 6.1

(a) Using the method of characteristics, show that the solution of (1) can be
written as: { u(x, t) = u0(ξ),

ξ = x− tU0(ξ),
U0(ξ) = c(u0(ξ)).

It can be shown (you do not need to prove this) that PDE (1) has a unique
solution provided that

{1 + tU ′
0(ξ)} ≠ 0

and when u0 and c are sufficiently smooth.

(b) Show that both ux and ut tend to infinity as 1 + tU ′
0(ξ) → 0. Thus, on

any characteristic for which U0(ξ) < 0, a discontinuity occurs at time t given by

t = − 1

U ′
0(ξ)

,

which is positive because U ′
0(ξ) = c′(u0)u

′
0(ξ) < 0.

(c) Check that the time t = τ when the solution first develops a discontinu-
ity (singularity) for some value of ξ is given by:

τ = − 1

min−∞<ξ<∞{c′(u0)u′
0(ξ)}

> 0.

When 1 + tU ′
0(ξ) = 0, the solution develops a discontinuity known as a shock.

(d) Consider the special case c(u) = u and

u0(x) =
{ 1− x2, if |x| ≤ 1,

0, if |x| ≥ 1.

Solve this problem, sketch the characteristic curves in the (x, t)-plane and the
solutions u(x, t) as a function of x at t = 0, 1, 2.
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Exercise 6.2

Show that for the nonlinear hyperbolic PDE

∂u

∂t
+

∂[F (u)]

∂x
= 0 (2)

the following property holds:∫ ∞

−∞
u(x, t) dx =

∫ ∞

−∞
u(x, 0) dx ∀t ≥ 0,

if we assume that limx→±∞ F (u(x, t)) = 0, ∀t ≥ 0. When we apply a finite-
volume method to equation (2), we write the approximation in flux-differencing
form:

un+1
i = un

i − ∆t

∆x
(Fn

i+1 − Fn
i ).

Show that the following discrete version of the conservation property holds:

∆x

J∑
i=I

un+1
i = ∆x

J∑
i=I

un
i −∆t(Fn

J+1 − Fn
I ),

for all choices of indices I and J > I.

Exercise 6.3

Show that, taking c(u) = u in PDE (1) (Burgers’ equation), a slightly modified
version of the upwind method

un+1
i = un

i − ∆t

∆x
un
i (u

n
i − un

i−1)

is also consistent with the two PDEs

ut + (u
2

2 )x = 0,

(u2)t + ( 2u
3

3 )x = 0.

Next, consider the wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
. (3)

.
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Exercise 6.4

Show, by using using d’Alembert’s formula, that the solution u(x, t) = u0(x−ct)
of the linear advection PDE

ut + cux = 0, u(x, 0) = u0(x), −∞ < x < ∞, t > 0

is also a solution of the wave equation (3) with the special initial conditions

u(x, 0) = u0(x),
ut(x, 0) = u′

0(x).

Describe the system of ODEs and its properties, after applying the first step in
the Method-of-Lines to the wave equation (3).

Exercise 6.5

Assume that u0
i = u(xi, 0) and u1

i (xi,∆t) ∀i are the exact solutions of PDE
(3) at the grid points xi. Prove that, for the special choice ∆t = ∆x

c , the FD
solutions un

i of the method CTCS, satisfy the recursion

un+1
i = un

i+1 + un
i−1 − un−1

i ,

and that they are the exact solution values to the PDE at (xi, t
n) (neglecting

computer round off errors).

Exercise 6.6

Work out the Von Neumann stability analysis for the wave equation with the
CTCS-scheme.

Exercise 6.7

Consider the following FD method, applied to PDE (3) with c > 0:

un+1
i − 2un

i + un−1
i

(∆t)2
= c2[

−un
i+2 + 16un

i+1 − 30un
i + 16un−1

i − un
i−2

12(∆x)2
]

Use the Von Neumann stability analysis to check that the scheme is stable, if
and only if

c
∆t

∆x
≤

√
3

2
.

What is the accuracy of this FD scheme?
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Exercise 6.8

Describe a central second-order FD scheme for the Euler-Bernoulli equation
with b > 0:

utt = −b2uxxxx.

This PDE models the vertical motion of a thin horizontal beam with small
displacements from the rest position. Show that for stability we must have

b
∆t

(∆x)2
≤ 1

2
.
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