Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 6

Consider the kinematic wave equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+c(u) \frac{\partial u}{\partial x}=0, \quad-\infty<x<\infty, t>0 \tag{1}
\end{equation*}
$$

with initial condition $u_{0}(x)$.

*Exercise 6.1

(a) Using the method of characteristics, show that the solution of (1) can be written as:

$$
\left\{\begin{array}{l}
u(x, t)=u_{0}(\xi), \\
\xi=x-t U_{0}(\xi), \\
U_{0}(\xi)=c\left(u_{0}(\xi)\right)
\end{array}\right.
$$

It can be shown (you do not need to prove this) that PDE (1) has a unique solution provided that

$$
\left\{1+t U_{0}^{\prime}(\xi)\right\} \neq 0
$$

and when u_{0} and c are sufficiently smooth.
(b) Show that both u_{x} and u_{t} tend to infinity as $1+t U_{0}^{\prime}(\xi) \rightarrow 0$. Thus, on any characteristic for which $U_{0}(\xi)<0$, a discontinuity occurs at time t given by

$$
t=-\frac{1}{U_{0}^{\prime}(\xi)},
$$

which is positive because $U_{0}^{\prime}(\xi)=c^{\prime}\left(u_{0}\right) u_{0}^{\prime}(\xi)<0$.
(c) Check that the time $t=\tau$ when the solution first develops a discontinuity (singularity) for some value of ξ is given by:

$$
\tau=-\frac{1}{\min _{-\infty<\xi<\infty}\left\{c^{\prime}\left(u_{0}\right) u_{0}^{\prime}(\xi)\right\}}>0 .
$$

When $1+t U_{0}^{\prime}(\xi)=0$, the solution develops a discontinuity known as a shock.
(d) Consider the special case $c(u)=u$ and

$$
u_{0}(x)= \begin{cases}1-x^{2}, & \text { if }|x| \leq 1 \\ 0, & \text { if }|x| \geq 1\end{cases}
$$

Solve this problem, sketch the characteristic curves in the (x, t)-plane and the solutions $u(x, t)$ as a function of x at $t=0,1,2$.

Exercise 6.2

Show that for the nonlinear hyperbolic PDE

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial[F(u)]}{\partial x}=0 \tag{2}
\end{equation*}
$$

the following property holds:

$$
\int_{-\infty}^{\infty} u(x, t) d x=\int_{-\infty}^{\infty} u(x, 0) d x \quad \forall t \geq 0
$$

if we assume that $\lim _{x \rightarrow \pm \infty} F(u(x, t))=0, \quad \forall t \geq 0$. When we apply a finitevolume method to equation (2), we write the approximation in flux-differencing form:

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1}^{n}-F_{i}^{n}\right)
$$

Show that the following discrete version of the conservation property holds:

$$
\Delta x \sum_{i=I}^{J} u_{i}^{n+1}=\Delta x \sum_{i=I}^{J} u_{i}^{n}-\Delta t\left(F_{J+1}^{n}-F_{I}^{n}\right),
$$

for all choices of indices I and $J>I$.

Exercise 6.3

Show that, taking $c(u)=u$ in PDE (1) (Burgers' equation), a slightly modified version of the upwind method

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x} u_{i}^{n}\left(u_{i}^{n}-u_{i-1}^{n}\right)
$$

is also consistent with the two PDEs

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \\
& \left(u^{2}\right)_{t}+\left(\frac{2 u^{3}}{3}\right)_{x}=0 .
\end{aligned}
$$

Next, consider the wave equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

Exercise 6.4

Show, by using using d'Alembert's formula, that the solution $u(x, t)=u_{0}(x-c t)$ of the linear advection PDE

$$
u_{t}+c u_{x}=0, \quad u(x, 0)=u_{0}(x), \quad-\infty<x<\infty, t>0
$$

is also a solution of the wave equation (3) with the special initial conditions

$$
\begin{aligned}
& u(x, 0)=u_{0}(x) \\
& u_{t}(x, 0)=u_{0}^{\prime}(x) .
\end{aligned}
$$

Describe the system of ODEs and its properties, after applying the first step in the Method-of-Lines to the wave equation (3).

Exercise 6.5

Assume that $u_{i}^{0}=u\left(x_{i}, 0\right)$ and $u_{i}^{1}\left(x_{i}, \Delta t\right) \quad \forall i$ are the exact solutions of PDE (3) at the grid points x_{i}. Prove that, for the special choice $\Delta t=\frac{\Delta x}{c}$, the FD solutions u_{i}^{n} of the method CTCS, satisfy the recursion

$$
u_{i}^{n+1}=u_{i+1}^{n}+u_{i-1}^{n}-u_{i}^{n-1}
$$

and that they are the exact solution values to the PDE at $\left(x_{i}, t^{n}\right)$ (neglecting computer round off errors).

Exercise 6.6

Work out the Von Neumann stability analysis for the wave equation with the CTCS-scheme.

Exercise 6.7

Consider the following FD method, applied to PDE (3) with $c>0$:

$$
\frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{(\Delta t)^{2}}=c^{2}\left[\frac{-u_{i+2}^{n}+16 u_{i+1}^{n}-30 u_{i}^{n}+16 u_{i}^{n-1}-u_{i-2}^{n}}{12(\Delta x)^{2}}\right]
$$

Use the Von Neumann stability analysis to check that the scheme is stable, if and only if

$$
c \frac{\Delta t}{\Delta x} \leq \frac{\sqrt{3}}{2}
$$

What is the accuracy of this FD scheme?

Exercise 6.8

Describe a central second-order FD scheme for the Euler-Bernoulli equation with $b>0$:

$$
u_{t t}=-b^{2} u_{x x x x}
$$

This PDE models the vertical motion of a thin horizontal beam with small displacements from the rest position. Show that for stability we must have

$$
b \frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}
$$

