Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 7

Exercise 7.1

Consider the logistic ODE model:

$$
\dot{u}=u-u^{2}
$$

with initial condition $u(0)=u^{0}$. First, check that the exact solution satisfies:

$$
u(t)=\frac{u^{0}}{u^{0}+\left(1-u^{0}\right) \mathrm{e}^{-t}}
$$

Show that we obtain, from this expression, the following exact finite-difference scheme:

$$
\frac{u^{n+1}-u^{n}}{\left[1-\mathrm{e}^{-\Delta t}\right]}=u^{n+1}\left(1-u^{n}\right)
$$

Exercise 7.2

Consider the nonlinear PDE:

$$
u_{t}+u_{x}=u(1-u)
$$

with initial condition $u(x, 0)=f(x)$. Check that the exact solution satisfies:

$$
u(x, t)=\frac{f(x-t)}{\mathrm{e}^{-t}+\left(1-\mathrm{e}^{-t}\right) f(x-t)}
$$

Derive the exact (explicit!) finite difference scheme:

$$
u_{i+1}^{n}=\frac{u_{i-1}^{n}}{1+\left(\mathrm{e}^{\Delta t}-1\right) u_{i-1}^{n}} .
$$

Exercise 7.3

Consider the nonlinear ODE model:

$$
\dot{u}=u^{2}-u^{3}
$$

with initial condition $u\left(t^{0}\right)=u^{0}$. Derive the nonstandard finite-difference scheme:

$$
u^{n+1}=\frac{\left(1+2 \phi(\Delta t) u^{n}\right) u^{n}}{1+\phi(\Delta t)\left(u^{n}+\left(u^{n}\right)^{2}\right)}
$$

Which function $\phi(\Delta t)$ would be a good choice?

Exercise 7.4

Consider Fisher's PDE

$$
u_{t}=u_{x x}+u(1-u) .
$$

The solution $u(x, t)$ satisfies "the boundedness condition":

$$
0 \leq u(x, 0) \leq 1 \Rightarrow 0 \leq u(x, t) \leq 1, \forall t>0
$$

Show that the non-standard finite-difference scheme with the nonlocal approximation ${ }^{1}$

$$
2 \bar{u}_{i}^{n}-u_{i}^{n+1}-\bar{u}_{i}^{n} u_{i}^{n+1}
$$

for the reaction term yields:

$$
0 \leq u_{i}^{0} \leq 1 \Rightarrow 0 \leq u_{i}^{n} \leq 1, \quad \forall n \geq 1, \forall \text { relevant } i
$$

Use the standard FT and CS approximations for u_{t} and $u_{x x}$, respectively. It is convenient to first work out an explicit expression $u_{i}^{n+1}=\ldots$ (do this for $\left.\frac{\Delta t}{(\Delta x)^{2}}=\frac{1}{2}\right)$.

Exercise 7.5

(a) Check that the Leapfrog method

$$
\frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\sqrt{u^{n}}, \quad u^{0}=1, u^{1}=\frac{1}{4}(\Delta t)^{2}+\Delta t+1
$$

is an exact finite difference (FD) scheme for: $\quad \dot{u}(t)=\sqrt{u(t)}$ with $u(0)=1$.
(b) Give two important ingredients of a nonstandard FD scheme, when compared to a standard FD scheme.

Exercise 7.6

Verify that the scheme:

$$
\left\{\begin{array}{l}
\frac{u^{n+1}-u^{n}}{\mathrm{e}^{\pi \Delta t}-1}=u^{n}, \quad n=0,1,2, \ldots ; \Delta t>0 \\
u^{0}=1 \\
u^{n} \approx u\left(t^{n}\right)=u(n \Delta t)
\end{array}\right\}
$$

is an exact finite difference (FD) scheme for the ODE:

$$
\left\{\begin{array}{l}
\dot{u}(t)=\pi u(t), \\
u(0)=1 .
\end{array}\right\}
$$

[^0]
Exercise 7.7

Show that the local truncation error ρ_{n} for the first-order splitting method

$$
w\left(t^{n+1}\right)=\mathrm{e}^{\tau A_{2}} \mathrm{e}^{\tau A_{1}} w^{n}
$$

with $\tau:=\Delta t$ and $A=A_{1}+A_{2}$ for the linear ODE

$$
w^{\prime}(t)=A w(t), w(0)=w^{0}
$$

satisfies:

$$
\rho_{n}=\frac{\tau}{2}\left[A_{1}, A_{2}\right] w\left(t^{n}\right)+\mathcal{O}\left(\tau^{2}\right)
$$

where $[*, *]$ denotes the commutator of A_{1} and A_{2}.

Exercise 7.8

Show that the symmetric splitting method ("Strang-splitting")

$$
w^{n+1}=\mathrm{e}^{\frac{1}{2} \tau A_{1}} \mathrm{e}^{\tau A_{2}} \mathrm{e}^{\frac{1}{2} \tau A_{1}} w^{n}
$$

has consistency order two. Work out the term in front of τ^{2}, where $\tau:=\Delta t$.

Exercise 7.9

Work out:

$$
\left[A_{2},\left[A_{2}, A_{1}\right]+\left[A_{1},\left[A_{1}, A_{2}\right]\right]\right]
$$

and

$$
\left[A_{2},\left[A_{1},\left[A_{1}, A_{2}\right]\right]\right] .
$$

Check that, if the matrices A_{1} and A_{2} commute, that then all higher-order terms in the Baker-Campbell-Hausdorff formula ${ }^{2}$ vanish. And, that we obtain, in that case: $\tilde{A}=A=A_{1}+A_{2}$, where $\tau=\Delta t$ and

$$
\mathrm{e}^{\tau A_{2}} \mathrm{e}^{\tau A_{1}}=\mathrm{e}^{\tau \tilde{A}} .
$$

*Exercise 7.10

Consider the nonlinear PDE

$$
u_{t}=\mathcal{L} u+\mathcal{N}(u, t) .
$$

Derive the ETD-Euler method ${ }^{3}$. Which function ϕ plays a role in this method?

[^1]
*Exercise 7.11

Give a few other choices for the function ϕ in the ETD-method. You may use the recurrence relation for these functions from the lecture notes.

[^0]: ${ }^{1} \bar{u}_{i}^{n}:=\frac{u_{i+1}^{n}+u_{i}^{n}+u_{i-1}^{n}}{3}$.

[^1]: ${ }^{2}$ see lecture notes.
 ${ }^{3}$ ETD stands for Exponential-Time-Differencing.

