
Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 7

Exercise 7.1

Consider the logistic ODE model:

u̇ = u− u2

with initial condition u(0) = u0. First, check that the exact solution satisfies:

u(t) =
u0

u0 + (1− u0)e−t
.

Show that we obtain, from this expression, the following exact finite-difference
scheme:

un+1 − un

[1− e−∆t]
= un+1(1− un).

Exercise 7.2

Consider the nonlinear PDE:

ut + ux = u(1− u)

with initial condition u(x, 0) = f(x). Check that the exact solution satisfies:

u(x, t) =
f(x− t)

e−t + (1− e−t)f(x− t)
.

Derive the exact (explicit!) finite difference scheme:

un
i+1 =

un
i−1

1 + (e∆t − 1)un
i−1

.

Exercise 7.3

Consider the nonlinear ODE model:

u̇ = u2 − u3

with initial condition u(t0) = u0. Derive the nonstandard finite-difference
scheme:

un+1 =
(1 + 2ϕ(∆t)un)un

1 + ϕ(∆t)(un + (un)2)
.

Which function ϕ(∆t) would be a good choice?
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Exercise 7.4

Consider Fisher’s PDE
ut = uxx + u(1− u).

The solution u(x, t) satisfies ”the boundedness condition”:

0 ≤ u(x, 0) ≤ 1 ⇒ 0 ≤ u(x, t) ≤ 1, ∀t > 0.

Show that the non-standard finite-difference scheme with the nonlocal approxi-
mation1

2ūn
i − un+1

i − ūn
i u

n+1
i

for the reaction term yields:

0 ≤ u0
i ≤ 1 ⇒ 0 ≤ un

i ≤ 1, ∀n ≥ 1, ∀ relevant i.

Use the standard FT and CS approximations for ut and uxx, respectively. It
is convenient to first work out an explicit expression un+1

i = ... (do this for
∆t

(∆x)2 = 1
2 ).

Exercise 7.5

(a) Check that the Leapfrog method

un+1 − un−1

2∆t
=

√
un, u0 = 1, u1 =

1

4
(∆t)2 +∆t+ 1

is an exact finite difference (FD) scheme for: u̇(t) =
√
u(t) with u(0) = 1.

(b) Give two important ingredients of a nonstandard FD scheme, when com-
pared to a standard FD scheme.

Exercise 7.6

Verify that the scheme:
un+1−un

eπ∆t−1 = un, n = 0, 1, 2, ...; ∆t > 0,

u0 = 1,

un ≈ u(tn) = u(n∆t),


is an exact finite difference (FD) scheme for the ODE:{

u̇(t) = π u(t),
u(0) = 1.

}
1ūn

i :=
un
i+1+un

i +un
i−1

3
.
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Exercise 7.7

Show that the local truncation error ρn for the first-order splitting method

w(tn+1) = eτA2eτA1wn

with τ := ∆t and A = A1 +A2 for the linear ODE

w′(t) = Aw(t), w(0) = w0

satisfies:
ρn =

τ

2
[A1, A2]w(t

n) +O(τ2),

where [∗, ∗] denotes the commutator of A1 and A2.

Exercise 7.8

Show that the symmetric splitting method (”Strang-splitting”)

wn+1 = e
1
2 τA1eτA2e

1
2 τA1wn

has consistency order two. Work out the term in front of τ2, where τ := ∆t.

Exercise 7.9

Work out:
[A2, [A2, A1] + [A1, [A1, A2]]]

and
[A2, [A1, [A1, A2]]].

Check that, if the matrices A1 and A2 commute, that then all higher-order
terms in the Baker-Campbell-Hausdorff formula2 vanish. And, that we obtain,
in that case: Ã = A = A1 +A2, where τ = ∆t and

eτA2eτA1 = eτÃ.

*Exercise 7.10

Consider the nonlinear PDE

ut = Lu+N (u, t).

Derive the ETD-Euler method 3. Which function ϕ plays a role in this method?

2see lecture notes.
3ETD stands for Exponential-Time-Differencing.
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*Exercise 7.11

Give a few other choices for the function ϕ in the ETD-method. You may use
the recurrence relation for these functions from the lecture notes.
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