
Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 8

Exercise 8.11

(a) Apply Euler-Forward (EF) to the mathematical pendulum for small angles (sin(𝑥) ≈
𝑥). Show that the numerical energy of the system increases in time.

(b) Same question for Euler-Backward. Now, show that the numerical energy of the
system decreases in time.

(c) Same question for the Implicit Midpoint method. What happens with the numer-
ical energy?

(d) And also for the symplectic Euler method (the one from the lecture notes).

Exercise 8.2
Consider the linearized pendulum ODE system:

{

𝑥′(𝑡) = 𝑦(𝑡),
𝑦′(𝑡) = −𝑥(𝑡).

(1)

Check that the exact FD-scheme

⎧

⎪

⎨

⎪

⎩

𝑥𝑛+1−𝑥𝑛
𝜙 = 𝑦𝑛+1+𝑦𝑛

2 ,
𝑦𝑛+1−𝑦𝑛

𝜙 = −𝑥𝑛+1+𝑥𝑛
2 ,

(2)

with 𝜙(Δ𝑡) = 2(1−cos(Δ𝑡))
Δ𝑡 sin(Δ𝑡) indeed conserves the energy of the system:

𝑛+1 = 𝑛, ∀𝑛 ≥ 0.

Exercise 8.3
Show that 𝐸(𝑝, 𝑞) = (𝑞 + 𝑝2 − 1

2 ) e2𝑞 is a constant of motion2 for the ODE system:
{

𝑞̇ = 𝑝,
𝑝̇ = −𝑞 − 𝑝2.

}

1See the first pages in the lecture notes of Lecture 8 for more details.
2𝐸(𝑝(𝑡), 𝑞(𝑡)) = 𝐸(𝑝(0), 𝑞(0)) = constant, ∀𝑡 ≥ 0.
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Exercise 8.4
Consider the orbit of a small asteroid of mass 𝑚 around a large star of mass𝑀 centered
at the origin, where 𝑀 ≫ 𝑚. Let (𝑝1, 𝑝2) and (𝑞1, 𝑞2) be the momentum and position
of the asteroid in the plane of motion. The Hamiltonian for this system is:

𝐻(𝑝, 𝑞) =
𝑝21 + 𝑝

2
2

2𝑚
− 𝐺𝑀𝑚

√

𝑞21 + 𝑞
2
2

,

where 𝐺 is the gravitational constant. By rescaling length and time, the constants 𝐺𝑀
and 𝑚 can be eliminated to obtain:

𝐻(𝑝, 𝑞) =
𝑝21 + 𝑝

2
2

2
− 1

√

𝑞21 + 𝑞
2
2

.

(a) Derive the four governing differential equations3 for 𝑝1, 𝑝2, 𝑞1 and 𝑞2.

(b) Show that 𝐻 is constant for all 𝑡 ≥ 0.

Exercise 8.5
The area of a triangle with vertices (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is given by:

𝐴Δ = 1
2
| det

⎛

⎜

⎜

⎝

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

⎞

⎟

⎟

⎠

|. (3)

(a) Verify, using property (3), that the area 𝑑𝐴▭ of a rectangle with the three corners
(𝑥, 𝑦), (𝑥 + 𝑑𝑥, 𝑦) and (𝑥, 𝑦 + 𝑑𝑦) reads:

𝑑𝐴▭ = 𝑑𝑥 𝑑𝑦. (as expected)

(b) Check that, for the dynamical system
{

𝑥̇ = 𝑦, 𝑥(0) = 𝑥0,
𝑦̇ = −𝑥, 𝑦(0) = 𝑦0,

}

(4)

the area 𝑑𝐴⋄ of a small parallelogram defined by the corners (𝑥1, 𝑦1), (𝑥2, 𝑦2) and
(𝑥3, 𝑦3) satisfies:

d𝐴⋄

d𝑡
= 0 ("the mapping is area preserving").

3In the early 1600’s, Johannes Kepler showed that the solutions are ellipses. More generally, the solutions
could be any conic section, including parabolae and hyperbolae.
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(c) Consider Euler-Forward (EF) with step size Δ𝑡, applied to system (4). For the three
points (𝑋1, 𝑌1), (𝑋2, 𝑌2) and (𝑋3, 𝑌3) we find the mapping:

{

𝑋𝑟 → 𝑋𝑟 + Δ𝑡𝑌𝑟, 𝑟 = 1, 2, 3,
𝑌𝑟 → 𝑌𝑟 − Δ𝑡𝑋𝑟, 𝑟 = 1, 2, 3.

}

Algebra can be simplified by choosing the points (𝑋1, 𝑌1), (𝑋1+ℎ, 𝑌1) and (𝑋1, 𝑌1+𝑘)
and denoting the initial element of area as 𝐴0 = ℎ 𝑘.
Show that the vertices, changed according to EF, give the area:

𝐴1 = 𝐴1(Δ𝑡) = (1 + (Δ𝑡)2) ℎ 𝑘.

This shows that EF will not preserve area and elements of area will increase exponen-
tially (EF is not a "symplectic" method).

(d) Show that the symplectic ("hybrid Euler") method:
{

𝑋𝑛+1 = 𝑋𝑛 + Δ𝑡𝑌𝑛
𝑌𝑛+1 = 𝑌𝑛 − Δ𝑡𝑋𝑛+1, 𝑛 = 0, 1, 2, ...

}

does preserve area!

(e) Show that another symplectic method:
{

𝑋𝑛+1 = 𝑋𝑛 + Δ𝑡𝑌𝑛+1
𝑌𝑛+1 = 𝑌𝑛 − Δ𝑡𝑋𝑛, 𝑛 = 0, 1, 2, ...

}

preserves a modified Hamiltonian 𝐻̂(𝑥, 𝑦). Which one?
(you may assume that 𝐻̂ is a homogeneous second order polynomial4 in 𝑥 and 𝑦).

Exercise 8.6
(a) Calculate the variational derivatives of the functionals

1(𝑢, 𝑣) =
1
2 ∫

∞

−∞
[𝑢2𝑥 + 𝑣

2] d𝑥,

and
2(𝑝, 𝑞) = ∫

∞

−∞
[1
2
𝑝2 + 1

2
𝑞2𝑥 + 𝑉 (𝑞)] d𝑥.

(b) Making use of part (a), show that both the linear wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 and the
nonlinear wave equation 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑉 ′(𝑢) = 0 are Hamiltonian PDEs.

4A homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero
terms all have the same degree.
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Exercise 8.7
(a) Calculate the variational derivative of the functional

3 = ∫

∞

−∞
[1
3
𝑢3 − 3𝑢2𝑥 +

1
15
𝑢2𝑥𝑥 +

1
2
𝑢 𝑢2𝑥] d𝑥.

(b) Making use of part (a), show that the extended fifth-order KdV-equation

𝑢𝑡 +
2
15
𝑢𝑥𝑥𝑥𝑥𝑥 + 𝑢 𝑢𝑥𝑥𝑥 + 3𝑢 𝑢𝑥 + 2𝑢𝑥𝑥𝑢𝑥 = 0

is a Hamiltonian PDE.

(c) Verify that 1 = ∫ ∞
−∞ 𝑢 d𝑥 and 2 = ∫ ∞

−∞ 𝑢
2 d𝑥 are also preserved.

Exercise 8.8
Consider the beam equation:

⎧

⎪

⎨

⎪

⎩

𝑢𝑡𝑡 + 𝑢𝑥𝑥𝑥𝑥 + 𝑓 (𝑥, 𝑢) = 0,

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0,
𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(𝜋, 𝑡) = 0.

⎫

⎪

⎬

⎪

⎭

Show that this is a Hamiltonian PDE with:

(𝑢, 𝑝) = ∫

𝜋

0
[
𝑝2

2
+
𝑢2𝑥𝑥
2

+ 𝐹 (𝑥, 𝑢)] d𝑥,

and
𝐽 =

(

 
− 

)

with 𝜕𝐹 (𝑥,𝑢)
𝜕𝑢 = 𝑓 (𝑥, 𝑢).

Exercise 8.9
Consider the Korteweg-de Vries (KdV) equation:

𝑢𝑡 − 6 𝑢 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0

with 𝑢(𝑥, 𝑡) → 0 as |𝑥| → +∞.
Show that this is a Hamiltonian PDE with:

(𝑢) = ∫

∞

−∞
[
𝑢2𝑥
2

+ 𝑢3] d𝑥,

and
𝐽 = 𝜕

𝜕𝑥
.
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Exercise 8.10
Consider the nonlinear Schroedinger (NLS) equation:

i 𝜓𝑡 = −
𝜕2𝜓
𝜕𝑥2

− 2 |𝜓|2𝜓, 𝑥 ∈ [0, 𝐿] (5)

with𝜓(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)+i 𝑝(𝑥, 𝑡) and periodic boundary conditions. The NLS is an exam-
ple of an integrable PDE. It possesses a Hamiltonian structure and an infinite number
of invariant integrals.

(a) Demonstrate that PDE (5) is a Hamiltonian PDE with

 = ∫

𝐿

0
[1
2
|𝜓𝑥|

2 − 1
2
|𝜓|4] d𝑥.

What is  in the Hamiltonian PDE?

(b) Show that the following two quadratic integrals are conserved quantities as well:

 = ∫

𝐿

0
|𝜓|2 d𝑥, and  = ∫

𝐿

0
𝜓̄𝜓𝑥 d𝑥.

(c) Construct a Hamiltonian spatial discretization of the NLS equation. Check which
of the integrals , ,  possess conserved discrete counterparts 𝐻 , 𝑀 , 𝑁 in your
discretization.

(d) Suppose you would discretize in time using the implicit midpoint method. Which
of the discrete integrals 𝐻 , 𝑀 , 𝑁 do you expect to be preserved to machine precision?

Exercise 8.11
Consider the Kawahara PDE (a special fifth-order KdV equation):

2𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥𝑥 =
𝜕
𝜕𝑥
ℎ(𝑢, 𝑢𝑥, 𝑢𝑥𝑥), 𝑥 ∈ [0, 𝐿]. (6)

Define 𝑓 = 1
2
𝛿
𝛿𝑢 ∫

𝐿
0 ℎ d𝑥,  = − 1

2
𝜕
𝜕𝑥 and

 = ∫

𝐿

0
[1
2
𝛽𝑢2𝑥𝑥 −

1
2
𝛼𝑢2𝑥 + ℎ(𝑢, 𝑢𝑥, 𝑢𝑥𝑥)] d𝑥.

(a) Show that PDE (6) is equivalent to 𝑢𝑡 =  𝛿
𝛿𝑢 , i.e., (6) is a symplectic (=Hamilto-

nian) PDE.

*(b) Show that (6) can be written as a multi-symplectic PDE:

𝑀 𝑧𝑡 +𝐾𝑧𝑥 = ∇𝑧𝑆(𝑧)

with 𝐾 ∈ ℝ6×6, 𝑀 ∈ ℝ6×6 and 𝑧 ∈ ℝ6.
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*Exercise 8.12
Re-write the KdV equation from exercise (13.8) as a multi-symplectic PDE:

𝑀 𝑧𝑡 +𝐾𝑧𝑥 = ∇𝑧𝑆(𝑧)

with 𝐾 ∈ ℝ4×4, 𝑀 ∈ ℝ4×4 and 𝑧 ∈ ℝ4.
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