Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 8

Exercise 8.1 ${ }^{1}$

(a) Apply Euler-Forward (EF) to the mathematical pendulum for small angles $(\sin (x) \approx$ x). Show that the numerical energy of the system increases in time.
(b) Same question for Euler-Backward. Now, show that the numerical energy of the system decreases in time.
(c) Same question for the Implicit Midpoint method. What happens with the numerical energy?
(d) And also for the symplectic Euler method (the one from the lecture notes).

Exercise 8.2

Consider the linearized pendulum ODE system:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t) \tag{1}\\
y^{\prime}(t)=-x(t)
\end{array}\right.
$$

Check that the exact FD-scheme

$$
\left\{\begin{array}{l}
\frac{x^{n+1}-x^{n}}{\phi}=\frac{y^{n+1}+y^{n}}{2} \tag{2}\\
\frac{y^{n+1}-y^{n}}{\phi}=-\frac{x^{n+1}+x^{n}}{2}
\end{array}\right.
$$

with $\phi(\Delta t)=\frac{2(1-\cos (\Delta t))}{\Delta t \sin (\Delta t)}$ indeed conserves the energy of the system:

$$
\mathcal{H}^{n+1}=\mathcal{H}^{n}, \quad \forall n \geq 0
$$

Exercise 8.3

Show that $E(p, q)=\left(q+p^{2}-\frac{1}{2}\right) \mathrm{e}^{2 q}$ is a constant of motion ${ }^{2}$ for the ODE system:

$$
\left\{\begin{array}{l}
\dot{q}=p \\
\dot{p}=-q-p^{2}
\end{array}\right\}
$$

[^0]
Exercise 8.4

Consider the orbit of a small asteroid of mass m around a large star of mass M centered at the origin, where $M \gg m$. Let $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ be the momentum and position of the asteroid in the plane of motion. The Hamiltonian for this system is:

$$
H(p, q)=\frac{p_{1}^{2}+p_{2}^{2}}{2 m}-\frac{G M m}{\sqrt{q_{1}^{2}+q_{2}^{2}}}
$$

where G is the gravitational constant. By rescaling length and time, the constants $G M$ and m can be eliminated to obtain:

$$
H(p, q)=\frac{p_{1}^{2}+p_{2}^{2}}{2}-\frac{1}{\sqrt{q_{1}^{2}+q_{2}^{2}}}
$$

(a) Derive the four governing differential equations ${ }^{3}$ for p_{1}, p_{2}, q_{1} and q_{2}.
(b) Show that H is constant for all $t \geq 0$.

Exercise 8.5

The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by:

$$
A_{\Delta}=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{3}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)\right|
$$

(a) Verify, using property (3), that the area $d A_{\square}$ of a rectangle with the three corners $(x, y),(x+d x, y)$ and $(x, y+d y)$ reads:

$$
\left.d A_{\square}=d x d y . \quad \text { (as expected }\right)
$$

(b) Check that, for the dynamical system

$$
\left\{\begin{array}{l}
\dot{x}=y, \quad x(0)=x_{0} \tag{4}\\
\dot{y}=-x, \quad y(0)=y_{0}
\end{array}\right\}
$$

the area $d A_{\diamond}$ of a small parallelogram defined by the corners $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ satisfies:

$$
\frac{\mathrm{d} A_{\diamond}}{\mathrm{d} t}=0 \quad \text { ("the mapping is area preserving"). }
$$

[^1](c) Consider Euler-Forward (EF) with step size Δt, applied to system (4). For the three points $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)$ and $\left(X_{3}, Y_{3}\right)$ we find the mapping:
\[

\left\{$$
\begin{array}{lr}
X_{r} \rightarrow X_{r}+\Delta t Y_{r}, & r=1,2,3, \\
Y_{r} \rightarrow Y_{r}-\Delta t X_{r}, & r=1,2,3 .
\end{array}
$$\right\}
\]

Algebra can be simplified by choosing the points $\left(X_{1}, Y_{1}\right),\left(X_{1}+h, Y_{1}\right)$ and $\left(X_{1}, Y_{1}+k\right)$ and denoting the initial element of area as $A_{0}=h k$.
Show that the vertices, changed according to EF, give the area:

$$
A_{1}=A_{1}(\Delta t)=\left(1+(\Delta t)^{2}\right) h k .
$$

This shows that EF will not preserve area and elements of area will increase exponentially (EF is not a "symplectic" method).
(d) Show that the symplectic ("hybrid Euler") method:

$$
\left\{\begin{array}{l}
X_{n+1}=X_{n}+\Delta t Y_{n} \\
Y_{n+1}=Y_{n}-\Delta t X_{n+1}, \quad n=0,1,2, \ldots
\end{array}\right\}
$$

does preserve area!
(e) Show that another symplectic method:

$$
\left\{\begin{array}{l}
X_{n+1}=X_{n}+\Delta t Y_{n+1} \\
Y_{n+1}=Y_{n}-\Delta t X_{n}, \quad n=0,1,2, \ldots
\end{array}\right\}
$$

preserves a modified Hamiltonian $\hat{H}(x, y)$. Which one?
(you may assume that \hat{H} is a homogeneous second order polynomial ${ }^{4}$ in x and y).

Exercise 8.6

(a) Calculate the variational derivatives of the functionals

$$
\mathcal{H}_{1}(u, v)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u_{x}^{2}+v^{2}\right] \mathrm{d} x,
$$

and

$$
\mathcal{H}_{2}(p, q)=\int_{-\infty}^{\infty}\left[\frac{1}{2} p^{2}+\frac{1}{2} q_{x}^{2}+V(q)\right] \mathrm{d} x .
$$

(b) Making use of part (a), show that both the linear wave equation $u_{t t}=u_{x x}$ and the nonlinear wave equation $u_{t t}-u_{x x}+V^{\prime}(u)=0$ are Hamiltonian PDEs.

[^2]
Exercise 8.7

(a) Calculate the variational derivative of the functional

$$
\mathcal{H}_{3}=\int_{-\infty}^{\infty}\left[\frac{1}{3} u^{3}-3 u_{x}^{2}+\frac{1}{15} u_{x x}^{2}+\frac{1}{2} u u_{x}^{2}\right] \mathrm{d} x .
$$

(b) Making use of part (a), show that the extended fifth-order KdV-equation

$$
u_{t}+\frac{2}{15} u_{x x x x x}+u u_{x x x}+3 u u_{x}+2 u_{x x} u_{x}=0
$$

is a Hamiltonian PDE.
(c) Verify that $\mathcal{I}_{1}=\int_{-\infty}^{\infty} u \mathrm{~d} x$ and $\mathcal{I}_{2}=\int_{-\infty}^{\infty} u^{2} \mathrm{~d} x$ are also preserved.

Exercise 8.8

Consider the beam equation:

$$
\left\{\begin{array}{l}
u_{t t}+u_{x x x x}+f(x, u)=0 \\
u(0, t)=u(\pi, t)=0 \\
u_{x x}(0, t)=u_{x x}(\pi, t)=0
\end{array}\right\}
$$

Show that this is a Hamiltonian PDE with:

$$
\mathcal{H}(u, p)=\int_{0}^{\pi}\left[\frac{p^{2}}{2}+\frac{u_{x x}^{2}}{2}+F(x, u)\right] \mathrm{d} x,
$$

and

$$
J=\left(\begin{array}{cc}
\mathcal{O} & \mathcal{I} \\
-\mathcal{I} & \mathcal{O}
\end{array}\right)
$$

with $\frac{\partial F(x, u)}{\partial u}=f(x, u)$.

Exercise 8.9

Consider the Korteweg-de Vries (KdV) equation:

$$
u_{t}-6 u u_{x}+u_{x x x}=0
$$

with $u(x, t) \rightarrow 0$ as $|x| \rightarrow+\infty$.
Show that this is a Hamiltonian PDE with:

$$
\mathcal{H}(u)=\int_{-\infty}^{\infty}\left[\frac{u_{x}^{2}}{2}+u^{3}\right] \mathrm{d} x,
$$

and

$$
J=\frac{\partial}{\partial x} .
$$

Exercise 8.10

Consider the nonlinear Schroedinger (NLS) equation:

$$
\begin{equation*}
\mathrm{i} \psi_{t}=-\frac{\partial^{2} \psi}{\partial x^{2}}-2|\psi|^{2} \psi, \quad x \in[0, L] \tag{5}
\end{equation*}
$$

with $\psi(x, t)=q(x, t)+\mathrm{i} p(x, t)$ and periodic boundary conditions. The NLS is an example of an integrable PDE. It possesses a Hamiltonian structure and an infinite number of invariant integrals.
(a) Demonstrate that PDE (5) is a Hamiltonian PDE with

$$
\mathcal{H}=\int_{0}^{L}\left[\frac{1}{2}\left|\psi_{x}\right|^{2}-\frac{1}{2}|\psi|^{4}\right] \mathrm{d} x .
$$

What is \mathcal{J} in the Hamiltonian PDE?
(b) Show that the following two quadratic integrals are conserved quantities as well:

$$
\mathcal{N}=\int_{0}^{L}|\psi|^{2} \mathrm{~d} x, \quad \text { and } \mathcal{M}=\int_{0}^{L} \bar{\psi} \psi_{x} \mathrm{~d} x
$$

(c) Construct a Hamiltonian spatial discretization of the NLS equation. Check which of the integrals $\mathcal{H}, \mathcal{M}, \mathcal{N}$ possess conserved discrete counterparts H, M, N in your discretization.
(d) Suppose you would discretize in time using the implicit midpoint method. Which of the discrete integrals H, M, N do you expect to be preserved to machine precision?

Exercise 8.11

Consider the Kawahara PDE (a special fifth-order KdV equation):

$$
\begin{equation*}
2 u_{t}+\alpha u_{x x x}+\beta u_{x x x x x}=\frac{\partial}{\partial x} h\left(u, u_{x}, u_{x x}\right), \quad x \in[0, L] . \tag{6}
\end{equation*}
$$

Define $f=\frac{1}{2} \frac{\delta}{\delta u} \int_{0}^{L} h \mathrm{~d} x, \mathcal{J}=-\frac{1}{2} \frac{\partial}{\partial x}$ and

$$
\mathcal{H}=\int_{0}^{L}\left[\frac{1}{2} \beta u_{x x}^{2}-\frac{1}{2} \alpha u_{x}^{2}+h\left(u, u_{x}, u_{x x}\right)\right] \mathrm{d} x
$$

(a) Show that PDE (6) is equivalent to $u_{t}=\mathcal{J} \frac{\delta \mathcal{H}}{\delta u}$, i.e., (6) is a symplectic (=Hamiltonian) PDE.
*(b) Show that (6) can be written as a multi-symplectic PDE:

$$
M \vec{z}_{t}+K \vec{z}_{x}=\nabla_{\vec{z}} S(\vec{z})
$$

with $K \in \mathbb{R}^{6 \times 6}, M \in \mathbb{R}^{6 \times 6}$ and $\vec{z} \in \mathbb{R}^{6}$.

*Exercise 8.12

Re-write the KdV equation from exercise (13.8) as a multi-symplectic PDE:

$$
M \vec{z}_{t}+K \vec{z}_{x}=\nabla_{\vec{z}} S(\vec{z})
$$

with $K \in \mathbb{R}^{4 \times 4}, M \in \mathbb{R}^{4 \times 4}$ and $\vec{z} \in \mathbb{R}^{4}$.

[^0]: ${ }^{1}$ See the first pages in the lecture notes of Lecture 8 for more details.
 ${ }^{2} E(p(t), q(t))=E(p(0), q(0))=$ constant, $\forall t \geq 0$.

[^1]: ${ }^{3}$ In the early 1600 's, Johannes Kepler showed that the solutions are ellipses. More generally, the solutions could be any conic section, including parabolae and hyperbolae.

[^2]: ${ }^{4} \mathrm{~A}$ homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree.

