Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 8

Exercise 8.1!

(a) Apply Euler-Forward (EF) to the mathematical pendulum for small angles (sin(x) =
x). Show that the numerical energy of the system increases in time.

(b) Same question for Euler-Backward. Now, show that the numerical energy of the
system decreases in time.

(c) Same question for the Implicit Midpoint method. What happens with the numer-
ical energy?

(d) And also for the symplectic Euler method (the one from the lecture notes).

Exercise 8.2

Consider the linearized pendulum ODE system:

x'(1) = y(@), )
V(1) = =x().
Check that the exact FD-scheme
Xn+1_xn _ yn+l+yn
yn+?_yn _ x2n+1+xn (2)
¢ 2

with p(Ar) = z(i%ni(ﬁ;» indeed conserves the energy of the system:

H™ = H", Vn>0.

Exercise 8.3
Show that E(p, q) = (q + p* — %) 24 is a constant of motion® for the ODE system:

4=np,
p=-q-p*

ISee the first pages in the lecture notes of Lecture 8 for more details.
2E(p(1), q(1)) = E(p(0),¢(0)) = constant, Vi > 0.




Exercise 8.4

Consider the orbit of a small asteroid of mass m around a large star of mass M centered
at the origin, where M > m. Let (p,, p,) and (q;, g,) be the momentum and position
of the asteroid in the plane of motion. The Hamiltonian for this system is:

24 .2

py+ D, GMm
H(p,q) = -

2m ’
N

where G is the gravitational constant. By rescaling length and time, the constants GM
and m can be eliminated to obtain:

pr+p; 1
> .
N

(a) Derive the four governing differential equations® for P1> Pa» qp and 5.

H(p.q) =

(b) Show that H is constant for all # > 0.

Exercise 8.5

The area of a triangle with vertices (x, ¥;), (x5, ¥,) and (x5, y3) is given by:

1 X1 N 1
Ap =7 |detjx; y, 1. 3)
x3 y3 |1

(a) Verify, using property (3), that the area d A, of a rectangle with the three corners
(x, ), (x +dx,y) and (x, y + dy) reads:

dA—-, =dxdy. (asexpected)

(b) Check that, for the dynamical system

x =) x(O) = x(),
{ y=x, 30) =y, } @

the area d A, of a small parallelogram defined by the corners (x;, y;), (x5, ¥,) and
(x3, y3) satisfies:

dA,
dr

3In the early 1600’s, Johannes Kepler showed that the solutions are ellipses. More generally, the solutions
could be any conic section, including parabolae and hyperbolae.

=0 ("the mapping is area preserving").




(c) Consider Euler-Forward (EF) with step size At, applied to system (4). For the three
points (X, Y}), (X,, Y;) and (X3, Y3) we find the mapping:

X, = X, +AtY,, r=1,23,
Y, - Y. - AtX,, r=1,2,3.

Algebra can be simplified by choosing the points (X, Y7), (X;+ A, Y;) and (X,Y; +k)
and denoting the initial element of area as Ay = h k.
Show that the vertices, changed according to EF, give the area:

A = A[(AD) = (1 +(AD) h k.

This shows that EF will not preserve area and elements of area will increase exponen-
tially (EF is not a "symplectic" method).

(d) Show that the symplectic ("hybrid Euler") method:

X,, = X, +AtY,
Y+1=)IH—AZ‘X’H_1, n:0,1,2,...

n

does preserve area!

(e) Show that another symplectic method:
Xn+1 = Xn + AtYn+1
Y, =Y,-AtX,, n=0,1,2,..

preserves a modified Hamiltonian H(x, y). Which one?
(you may assume that H is a homogeneous second order polynomial* in x and ).

Exercise 8.6

(a) Calculate the variational derivatives of the functionals

M,y (u,v) = %/ [u? + 0] dx,

and

| 1
Hy(p.q) = / [5p2+ §q§+V(q>] dx.

(b) Making use of part (a), show that both the linear wave equation u,, = u,, and the
nonlinear wave equation u,, — u,, + V' (u) = 0 are Hamiltonian PDEs.

4A homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero
terms all have the same degree.



Exercise 8.7

(a) Calculate the variational derivative of the functional

“ 1 1 1
H; = /_ [gu3 - 3u)2€ + Euix + Eu ui] dx.

(b) Making use of part (a), show that the extended fifth-order KdV-equation
u, + %uxxxxx +uu,, +3uu,+2u, u =0
is a Hamiltonian PDE.

(c) Verify that I} = [ udx and I, = [ u? dx are also preserved.

Exercise 8.8

Consider the beam equation:
Uy + Uyyyx + f(x,u) =0,
u(0,1) = u(rx,t) =0,
U (0,1) =u,, (z,1) = 0.
Show that this is a Hamiltonian PDE with:
P pz u?
H(u,p) = / [ + = + F(x,w)] dx,
0o 2 2

7=(% 9)

and

. JF (xu) _
with = f(x,u).

Exercise 8.9

Consider the Korteweg-de Vries (KdV) equation:
u,—6uu, +u,, =0
with u(x,7) - 0 as |x| - +o0.

Show that this is a Hamiltonian PDE with:
2

® u
H(u)=/ [7x+u3]dx,

[0e]

and



Exercise 8.10

Consider the nonlinear Schroedinger (NLS) equation:

2

. 0
iy, = —a—x"z’ —2|ylPy. xel0,L] ©)

with w(x, 1) = q(x,1)+1 p(x, t) and periodic boundary conditions. The NLS is an exam-
ple of an integrable PDE. It possesses a Hamiltonian structure and an infinite number
of invariant integrals.

(a) Demonstrate that PDE (5) is a Hamiltonian PDE with

o N T
H = - - = dx.
[ gt = St ex
What is J in the Hamiltonian PDE?

(b) Show that the following two quadratic integrals are conserved quantities as well:

L L
N:/ lw|*> dx, and M:/ y, dx.
0 0

(c) Construct a Hamiltonian spatial discretization of the NLS equation. Check which
of the integrals H, M, N possess conserved discrete counterparts H, M, N in your
discretization.

(d) Suppose you would discretize in time using the implicit midpoint method. Which
of the discrete integrals H, M, N do you expect to be preserved to machine precision?

Exercise 8.11

Consider the Kawahara PDE (a special fifth-order KdV equation):
0

aXh(u, Uy, u,,), x¢€Il0,L] (6)

Zut +auy o+ ﬂuxxxxx =

Define f = %% Jo hdx, J = —1% and

L

1 1

H = / [zﬁuix - zaui + h(u,u,,u )] dx.
0

(a) Show that PDE (6) is equivalent to u, = J %, i.e., (6) is a symplectic (=Hamilto-
nian) PDE.

*(b) Show that (6) can be written as a multi-symplectic PDE:
M Z,+ KZ, = V:5(2)

with K € R0 M € R%%® and Z € R®.



*Exercise 8.12
Re-write the KdV equation from exercise (13.8) as a multi-symplectic PDE:
M Z,+ KZ, = V:5(2)

with K € R, M € R** and 7 € R*.



