Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 9

Exercise 9.1

Show that the Caputo fractional derivative is "consistent" with the traditional integer derivative: taking the limit for the fractional order derivative $\alpha \in \mathbb{R} \to m \in \mathbb{N}$, we obtain the well-known expression for the integer derivative m.

Exercise 9.2

Define the space-fractional time-dependent PDE (in Caputo sense)

 $u_t = D_C^{\alpha} u, \quad 1 < \alpha < 2, \quad x \in \mathbb{R},$

with initial solution $u(x,0) = e^{-x^2}$. Discuss the solution behaviour for $\lim_{\alpha \to 1}$, $\lim_{\alpha \to 2}$ and intermediate values of α . Also, describe the two cases " $\int_{-\infty}^{x}$ " and " \int_{x}^{∞} " in the definition. How do we get a symmetric fractional diffusion behaviour? In this case, what is the difference with ordinary diffusion?

Exercise 9.3

(a) Check that the solution of the fractional ODE (not imposing any initial condition!):

$$\mathcal{D}_C^{\frac{3}{2}}u(t) = \frac{\Gamma(6)t^{\frac{7}{2}}}{\Gamma(\frac{9}{2})}$$

is given by: $u(t) = t^5$. (in fact, this is the only *analytic* solution of this ODE!)

(b) The solution of the space-fractional PDE:

$$\begin{cases} u_t = -(-\Delta u)^{\frac{\alpha}{2}}, & x \in [0,1], \\ u_{|t=0} = u_0(x), \end{cases}$$

with homogeneous boundary conditions at x = 0 and x = 1 is given by the following expression:

$$u(x,t) = \sum_{n=1}^{\infty} c_n \sin(n\pi x) e^{-n^{\alpha} \pi^{\alpha} t},$$

where $c_n = 2 \int_0^1 u_0(s) \sin(n\pi s) \, ds$. Plot¹ the solution for $\alpha = 2$ and $\alpha = 3/2$.

¹Check the Matlab file on the webpage of the course.

Exercise 9.4

Derive the following (low-order) finite-difference approximation for $D_C^{\alpha}u$, where $1 < \alpha < 2$:

$$D_C^{\alpha} u | x_j \approx \frac{1}{\Gamma(3-\alpha)h^{\alpha}} \sum_{j=1}^{i-1} \{ j^{2-\alpha} - (j-1)^{2-\alpha} \} \{ u_{i-j+1} - 2u_{i-j} + u_{i-j-1} \}$$

Describe the structure of the underlying finite-difference matrix.

Exercise 9.5

(a) Check that $D_C^{\alpha}(constant) = 0$ and find $D_{RL}^{\alpha}(constant)$.

(b) Show that the fractional derivative is a linear operator.

(c) Check that $f(x) = \cos(2m\pi x) \ \Gamma(x) \ (m \in \mathbb{N})$ solves the functional equation:

$$\begin{cases} f(x+1) = xf(x), & x > 0, \\ f(1) = 1. \end{cases}$$

- (d) Plot the function f(x) in part (c) for m = 0, 1, 2.
- (e) Calculate the values $\Gamma(\frac{1}{2}), \Gamma(\frac{3}{2})), \Gamma(\frac{5}{2}), \dots$

(f) Sketch the Mittag-Leffler function $E_{\alpha}(x)$ (x > 0) for $\alpha = 1, \frac{3}{4}, \frac{1}{2}$ and $\frac{1}{4}$.

Exercise 9.6

Consider the space-fractional advection-diffusion (dispersion) PDE^2 :

$$\frac{\partial u(x,t)}{\partial t} = d(x)\frac{\partial^{\alpha}u(x,t)}{\partial x^{\alpha}} - v(x)\frac{\partial u(x,t)}{\partial x} + f(x,t), \quad x_L < x < x_R$$

(a) Show that Euler-Forward combined with the Grünwald approximation defined by equation (3) in the mentioned extra file, applied to the advectiondiffusion (dispersion) equation, is unstable.

(b) Similar question for Euler-Backward combined with the Grünwald approximation defined by equation (3) in the extra file: it is unstable as well!

(c) Show that the <u>shifted</u> Grünwald approximation defined by equation (10) in the extra file is consistent with the Riemann-Liouville fractional derivative of equation, defined in equation (2).

 $^{^{2}}$ Check the article by Meerschaert and Tadjeran on the webpage = one of the extra files.

(d) Show that the shifted Grünwald approximation (10), applied to the advectiondiffusion (dispersion) equation is unconditionally *stable*.

Exercise 9.7

(a) Consider the ODE:

$$\left\{ \begin{array}{ll} u'(t) = \lambda \ u(t), \ \lambda \in \mathbb{C}, \\ u(0) = u_0. \end{array} \right.$$

Work out the system of linear equations that is obtained when the following BV-method is applied:

- 1) Euler-Forward in the first time-step
- 2) explicit-midpoint for the intermediate time-steps
- 3) Euler-Backward for the final time-step

(b) The same question as in part (a) but now for the linear ODE system:

$$\left\{ \begin{array}{ll} \vec{u}'(t) = \mathcal{A} \; \vec{u}(t), & \mathcal{A} \in \mathbb{R}^{2 \times 2}, \\ \vec{u}(0) = \vec{u}_0. \end{array} \right.$$

(c) Apply the BV-method from (a) to the nonlinear ODE:

$$\begin{cases} u'(t) = f(u(t)), \\ u(0) = u_0 \end{cases}$$

and describe the nonlinear system to be solved.

Exercise 9.8

Show that the boundary locus of any consistent linear multistep method possesses the following properties:

 \neq it consists always the origin in the complex plane.

 \ddagger it is symmetric with respect to the real axis.

 \neq it is perpendicular to the real axis at the origin.

Moreover, show that the stability region of the (basic) midpoint BV-method, as discussed in the lecture, is the whole complex plane, excluding the imaginary axis.

Exercise 9.9

Apply the doubling-splitting procedure (see lecture notes) for the model:

$$\begin{cases} u_t = -(-\Delta u)^{\frac{1}{2}}, \\ u_{|t=0} = u_0(x). \end{cases}$$

Describe the method-of-lines and the resulting ODE system. Comment on the eigenvalues of the matrix and the consequences/choices for the time-integration method.

Exercise 9.10

The same questions as in exercise 9.9, but now for the *left*-space fractional heat equation of order 5/4:

$$\begin{cases} u_t = \mathcal{D}_C^{\frac{5}{4}} u, \\ u_{|t=0} = u_0(x). \end{cases}$$