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Spring 2024

Exercises for Lecture 9

Exercise 9.1

Show that the Caputo fractional derivative is ”consistent” with the traditional
integer derivative: taking the limit for the fractional order derivative α ∈ R →
m ∈ N, we obtain the well-known expression for the integer derivative m.

Exercise 9.2

Define the space-fractional time-dependent PDE (in Caputo sense)

ut = Dα
Cu, 1 < α < 2, x ∈ R,

with initial solution u(x, 0) = sin50(πx). Discuss the solution behaviour for
limα→1, limα→2 and intermediate values of α. Also, describe the two cases
”
∫ x

−∞ ” and ”
∫∞
x

” in the definition. How do we get a symmetric fractional
diffusion behaviour? In this case, what is the difference with ordinary diffusion?

Exercise 9.3

(a) Check that the solution of the fractional ODE (not imposing any initial
condition!):

D
3
2

Cu(t) =
Γ(6)t

7
2

Γ( 92 )

is given by: u(t) = t5. (in fact, this is the only analytic solution of this ODE!)

(b) Check that the solution of the space-fractional PDE:{
ut = −(−∆u)

α
2 , x ∈ [0, 1],

u|t=0 = u0(x),

with homogeneous boundary conditions at x = 0 and x = 1 is given by the
following expression:

u(x, t) =

∞∑
n=1

cn sin(nπx)e
−nαπαt,

where cn = 2
∫ 1

0
u0(s) sin(nπs) ds. Plot

1 the solution for α = 2 and α = 3/2.

1Check the Matlab file on the webpage of the course.
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Exercise 9.4

Derive the following (low-order) finite-difference approximation for Dα
Cu, where

1 < α < 2:

Dα
Cu|xj ≈

1

Γ(3− α)hα

i−1∑
j=1

{j2−α − (j − 1)2−α}{ui−j+1 − 2ui−j + ui−j−1}

Describe the structure of the underlying finite-difference matrix.

Exercise 9.5

(a) Check that Dα
C(constant) = 0 and find Dα

RL(constant).

(b) Show that the fractional derivative is a linear operator.

(c) Check that f(x) = cos(2mπx) Γ(x) (m ∈ N) solves the functional equa-
tion: {

f(x+ 1) = xf(x), x > 0,
f(1) = 1.

(d) Plot the function f(x) in part (c) for m = 0, 1, 2.

(e) Calculate the values Γ( 12 ), Γ(
3
2 )), Γ(

5
2 ), ...

(f) Sketch the Mittag-Leffler function Eα(x) (x > 0) for α = 1, 3
4 ,

1
2 and 1

4 .

Exercise 9.6

Consider the space-fractional advection-diffusion (dispersion) PDE2:

∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
− v(x)

∂u(x, t)

∂x
+ f(x, t), xL < x < xR

(a) Show that Euler-Forward combined with the Grünwald approximation de-
fined by equation (3) in the mentioned extra file, applied to the advection-
diffusion (dispersion) equation, is unstable.

(b) Similar question for Euler-Backward combined with the Grünwald approxi-
mation defined by equation (3) in the extra file: it is unstable as well!

(c) Show that the shifted Grünwald approximation defined by equation (10)
in the extra file is consistent with the Riemann-Liouville fractional derivative of
equation, defined in equation (2).

2Check the article by Meerschaert and Tadjeran on the webpage = one of the extra files.
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(d) Show that the shifted Grünwald approximation (10), applied to the advection-
diffusion (dispersion) equation is unconditionally stable.

Exercise 9.7

(a) Consider the ODE: {
u′(t) = λ u(t), λ ∈ C,
u(0) = u0.

Work out the system of linear equations that is obtained when the following
BV-method is applied:

1) Euler-Forward in the first time-step
2) explicit-midpoint for the intermediate time-steps
3) Euler-Backward for the final time-step

(b) The same question as in part (a) but now for the linear ODE system:{
u⃗′(t) = A u⃗(t), A ∈ R2×2,
u⃗(0) = u⃗0.

(c) Apply the BV-method from (a) to the nonlinear ODE:{
u′(t) = f(u(t)),
u(0) = u0

and describe the nonlinear system to be solved.

Exercise 9.8

Show that the boundary locus of any consistent linear multistep method pos-
sesses the following properties:

T it consists always the origin in the complex plane.

T it is symmetric with respect to the real axis.

T it is perpendicular to the real axis at the origin.

Moreover, show that the stability region of the (basic) midpoint BV-method, as
discussed in the lecture, is the whole complex plane, excluding the imaginary
axis.
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Exercise 9.9

Apply the doubling-splitting procedure (see lecture notes) for the model:{
ut = −(−∆u)

1
2 ,

u|t=0 = u0(x).

Describe the method-of-lines and the resulting ODE system. Comment on the
eigenvalues of the matrix and the consequences/choices for the time-integration
method.

Exercise 9.10

The same questions as in exercise 9.9, but now for the left-space fractional heat
equation of order 5/4: {

ut = D
5
4

Cu,
u|t=0 = u0(x).
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