Lecture 11

Paul Andries Zegeling

Department of Mathematics, Utrecht University, The Netherlands
Numerical Methods for Time-Dependent PDEs, Spring 2024

Travelling Waves (TVs)

$$
\begin{aligned}
& u_{t}=F(u) \\
& u(x, t) \in \mathbb{R}^{m}, x \in \mathbb{R}, t \geqslant 0
\end{aligned}
$$

A solution $u(x, t)$ of the form $u(x, t)=v(x-c t), x \in \mathbb{R}, t \geqslant 0$ is called a TW with profile. v and speed c
If $\lim _{\xi \rightarrow-\infty} v(\xi)=v_{-} \in \mathbb{R}^{m}$ and $\lim _{\xi \rightarrow+\infty} v(\xi)=v_{+} \in \mathbb{R}^{m}$ exist
then u is called a travelling front of $v_{-} \rightarrow v_{+}$ and a Raveling pulse (on solitary wave) of $v_{-}=v_{+}$

ξ : TW coordinate

TVs: Heat equation

Heat equation

$$
\begin{gathered}
u_{t}=a \cdot u_{x x}, \\
, x \in \mathbb{R}, t \geqslant 0 \\
a \in \mathbb{R}^{+}
\end{gathered}
$$

TW "Ansatz" $u(x, t)=v(x-c t), x \in \mathbb{R}, t \geqslant 0$

$$
\begin{array}{ll}
N \text { "Ansate" } & u(x, t)=v(x-c t), x \in \mathbb{R}, t \geqslant 0 \quad v^{3}=\frac{d v}{d \xi} \\
\xi=x-c t & \mathcal{d} \Rightarrow-c v^{\prime}=a v^{\prime}, \\
\end{array}
$$

two limeonly independent solution: $v_{1}(\xi)=1$ and $v_{2}(\xi)=e^{-\frac{c}{a} \xi}$
both one either constant or cmbounded
\Rightarrow heat equation has no true bounded TW solution.

TVs: Advection equation

Advection equation

$$
u(x, t)=v(x-c t)
$$

$$
\begin{array}{ll}
u_{t}+a u_{x}=0 & , x \in \mathbb{R}, t \geqslant 0 \\
& a \in \mathbb{R} \backslash\{0\} \\
c v^{\prime}+a v^{\prime}=0 & , \xi \in \mathbb{R} \quad \\
c=a & v^{\prime}=\frac{d v}{d \xi}
\end{array}
$$

$$
T W O D E:-c v^{\prime}+a v^{\prime}=0 \quad, \xi \in \mathbb{R}
$$

$$
v \text { non constant } \Rightarrow v^{\prime} \neq 0 \Rightarrow c=a
$$

$$
u(x, t)=f v(x-c t)
$$

${ }^{T}$ any function v coufliciently motel is a TW solution for $c=a$ ie. $v \in C^{1}(\mathbb{R}, \mathbb{R})$

$$
\text { if } u(x, 0)=u_{0}(x), x \in \mathbb{R} \quad \begin{aligned}
\text { for } c & =a \\
S \text { then } u(x, t) & =u_{0}(x-c t)
\end{aligned}
$$

"all solutions of this PDE are TVs"
 or

TVs: Wave equation
wave equation

$$
u_{f t}=a^{2} u_{x x},\left\{\begin{array}{c}
B(\text { si } \\
u(-\infty, t)=\text { constant } \\
u(+\infty, t)=\text { constant }
\end{array}\right.
$$

TW "Ansatz": $u(x, t)=v(x-c t)$

$$
\Longrightarrow c_{(-=)} c^{2} v^{\prime \prime}=a^{2} v^{\prime \prime} \Rightarrow v^{\prime \prime} \cdot\left(c^{2}-a^{2}\right)=0
$$

$B C$ s can not be satisfied
umbles $B=0$
TW solution: $u(x, t)=$ constut

$c= \pm a$
$= \pm a$
for any twice differentiable r such that $\lim _{\xi \rightarrow \pm \infty}=d_{\text {me }}$
the solution $u(x, t)=v(x \pm a t)$ is a TW solution (a a truvelly pubs if $d_{\text {to }} d_{20}$)

TWi: Burgers [1]

Example 3 (nonlinear) Burgers'equation (with viscosity)

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}-\beta \frac{\partial^{2} u}{\partial x^{2}}=0
$$

produces shocks
Assume solution of the form: $u(x, t)=f(x-c t)$

$$
\begin{aligned}
& \text { me solution of the form: } u(x, t)=f(x-c t) \\
& \Rightarrow \quad-c f^{\prime}(z)+f(z) f^{\prime}(z)-\beta f^{\prime \prime}(z)=0 \text {, i.e. } \beta f^{\prime \prime}(z)=\frac{d}{d z}\left[\frac{1}{2} f(z)^{2}-c f(z)\right]
\end{aligned}
$$

then $\beta f^{\prime}(z)=\frac{1}{2} f(z)^{2}-c f(z)+\tilde{c}$ or $f^{\prime}(z)=\frac{1}{2 \beta}\left[f^{2}-2 c f+\bar{c}\right]=\frac{1}{2 \beta}\left(f-f_{1}\right)\left(f-f_{2}\right)$ $\begin{aligned} & \text { (integrate once) } \\ & \text { or } f^{\prime}(z)=\frac{1}{2 \beta}\left[f^{2}-2 c f+\bar{c}\right]=\frac{1}{2 \beta} \\ & \quad \text { with } f_{1}+f_{2}=2 c \text { and } f_{1} f_{2}=\bar{c}\end{aligned}$

$$
\Rightarrow f_{1,2}=c \pm \sqrt{c^{2}-\bar{c}}, 0<\bar{c}<c^{2}
$$

Note that $f^{\prime}(z)<0$ of $f_{1}<f<f_{2}$ and $f^{\prime}(z)>0$ if $f<f_{1} \cap f>f_{2}$

TWi: Burgers [2]

Explicit solution: $\sim \int \frac{d f}{\left(f-f_{1}\right)\left(f-f_{2}\right)}=\frac{1}{2 \beta} \int d z$
leading to $f(z)=\frac{f_{1}+f_{2} e^{-k z}}{1+e^{-k z}}$ for $k=\frac{f_{2}-f_{1}}{2 \beta}>0$
Clearly $f(z) \rightarrow f_{1}$ as $z \rightarrow+\infty, f(z) \rightarrow f_{2}$ as $z \rightarrow-\infty, f(0)=\frac{1}{2}\left(f_{1}+f_{2}\right)$
If we denote $u_{\beta}(x, t)=f(x-c t)$ for f given by $\left(0\right.$, with $c=\frac{1}{2}\left(f_{1}+f_{2}\right)=f(0)$ then as $\beta v_{0}, u_{\beta}(x, t)$ tends to the shock solution of the Riemann problem:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0, u(x, 0)=\left\{\begin{array}{l}
F_{2}, \text { of } x<0 \\
f_{1}, \text { if } x>0
\end{array}\right.
$$

Speed of the havelling wave $c=\frac{1}{2}\left(f_{1}+f_{2}\right)=f(0)$ $(\beta \neq 0)=$ speed of the shock solution $\tan \beta=0$

TVs: Burgers [3]

More general version:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\frac{\partial F(u)}{\partial x}-\beta \frac{\partial^{2} u}{\partial x^{2}}=0 \text {, where } F^{\prime \prime}(u)>0 \\
\Rightarrow & f^{\prime}(z)=\frac{1}{\beta}\left[F(f(z))-c f(z)+c_{0}\right]
\end{aligned}
$$

For a raveling wave we must require that $f^{\prime}(z) \rightarrow 0$ as $|z| \rightarrow \infty$ and hence $c=\frac{F(f(\infty))-F(f(-\infty))}{f(\infty)-f(-\infty)}=\frac{F\left(f_{2}\right)-F\left(f_{1}\right)}{f_{2}-f_{1}}$

$$
\text { speed }=\text { speed of shock solution of the Riemann problem: }
$$

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x} F(u)=0 \quad(\beta=0)
$$

TVs: KDV [1]

Example 4 the Kontewes-de Vies equation (KdV)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\beta \frac{\partial^{3} u}{\partial x^{3}}=0 \\
& \Rightarrow-c f^{\prime}(z)+f(z) f^{\prime}(z)+\beta f^{\prime \prime \prime}(z)=0 \text {, i.e. } \frac{d}{d z}\left[-c f(z)+\frac{1}{2} f(z)^{2}+\beta f^{\prime \prime}(z)\right]=0 \\
& \text { and }-c f(z)+\frac{1}{2} f(z)^{2}+\beta f^{\prime \prime}(z)=c_{0}
\end{aligned}
$$

Now impose on f the conditions $f(z), f^{\prime}(z)$ and $f^{\prime \prime}(z)$ all thad to z_{0} as $|z| \rightarrow \infty$
\Rightarrow a solution of the form $f(x-c t)$
in the form of a solitary wave:
Then $-C f(z)+\frac{1}{2} f(z)^{2}+\beta f^{\prime \prime}(z)=0$

$$
\begin{aligned}
& \text { and }-c f(z)^{\prime} f(z)+\frac{1}{2} f(z)^{2} f^{\prime}(z)+\beta f^{\prime \prime}(z) f^{\prime}(z)=0 \\
& \text { i.e. } \frac{d}{d z}\left[-\frac{1}{2} c f(z)^{2}+\frac{1}{6} f(z)^{3}+\frac{1}{2} \beta f^{\prime}(z)^{2}\right]=0
\end{aligned}
$$

TVs: KDV [2]

$$
\begin{aligned}
& \text { then }-\frac{1}{2} c f(z)^{2}+\frac{1}{6} f(z)^{3}+\frac{1}{2} \beta f^{\prime}(z)^{2}=c_{1}=0 \text { because of } \\
& \text { solitany wa } \\
& \Rightarrow 3 \beta f^{\prime}(z)^{2}=3 c f(z)^{2}-f(z)^{3} \\
& \text { and } f^{\prime}(z)=\frac{1}{\sqrt{3 \beta}} f(z) \sqrt{3 c-f(z)}
\end{aligned}
$$

then $\int \frac{d f}{f \sqrt{3 c-f}}=\frac{1}{\sqrt{3 \beta}} \int d z$ leads to: $f(z)=3 c \operatorname{sech}^{2}\left(\sqrt{\frac{c}{4 \beta}}\left(z-z_{0}\right)\right)$
and $u(x, t)=f(x-c t)=3 c \operatorname{sech}^{2}\left(\sqrt{\frac{c}{4 \beta}}\left(x-c t-z_{0}\right)\right)$
the wave speed c is proportional to the wave amplitude $3 C$

If we let $u=f$ and $v=f^{\prime}$ then $-c f(z)+\frac{1}{2} f(z)^{2}+\beta f^{\prime \prime}(z)=0$

$$
\text { gives }\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=\frac{1}{2 \beta} u(2 c-u)
\end{array}\right.
$$

the 2 -dimensional dynamical system has vitical points at $(0,0)$ and $(2 c, 0)$ the Jacobian of the system is $Y(u, v)=\left(\begin{array}{cc}0 & 1 \\ \frac{c-u}{\beta} & 0\end{array}\right)$
then $Y(0,0)$ has the eigenvalues $\lambda= \pm \sqrt{\frac{c}{\beta}}$ and $y(2 c, 0)$ the eigenvalues $\lambda= \pm i \sqrt{\frac{c}{\beta}}$ so that $(0,0)$ is a saddle point and $(2 c, 0)$ is a center

The homochinic orbit (from saddle to itself)
$=$ the separatrix
is the solitary wave solution of the KdV PDEmodel

TWi: Fisher [1]
Example 7 Reactṑ-diffusion
ex. Fisher's equation $\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=u(1-u)$
$u(x, t)=f(x-c t)=f(z)$, where $f(z)$ approaches constant values as $z \rightarrow \pm \infty$

$$
\Rightarrow-c f^{\prime}(z)-f^{\prime \prime}(z)=f(1-f)
$$

Write as $\left\{\begin{array}{l}f^{\prime}=g \\ g^{\prime}=-c g-g(1-f)\end{array}\right.$ with critical points at $(0,0)$ and $(1,0)$

$$
\text { Jacobian matrix: } Y(f, g)=\left(\begin{array}{cc}
0 & 1 \\
2 f-1 & -c
\end{array}\right) \xrightarrow{g^{\prime}=-c g-f(1-f)} \text { (1,0) } y=\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right) \text { with } \lambda_{ \pm}=\frac{-c \pm \sqrt{c^{2}+4}}{2}
$$

and $\lambda_{ \pm}^{(0,0)}<0$ of $c>2$
(then a stable node)
saddle point
of $0<c<2, \lambda_{ \pm}^{(0,0)}$ are complex conjugate with negative real part
\Rightarrow stable form
(f must have pinite limits for $z \rightarrow \pm \infty$)

TWs: Fisher [2]

TVs: Sine Gordon

Example 5 the sine-fordon equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\sin (u) \text { then } c^{2} f^{\prime \prime}(z)-f^{\prime \prime}(z)=\sin (f(z))
$$

or $f^{\prime \prime}(z)=A \sin (f(z))$, where $A=\frac{1}{c^{2}-1}$
Ne can rewrite this as $f^{\prime \prime}(z) f^{\prime}(z)=A \sin (f(z)) f^{\prime}(z)$ or $\frac{d}{d z}\left[\frac{1}{z} f^{\prime}(z)^{2}\right]=-A \frac{d}{d z}[\cos (f(z))]$
and $f^{\prime}(z)^{2}=c_{1}-2 A \cos (f(z)) \Rightarrow f^{\prime}(z)=\sqrt{c_{1}-2 A \cos (f(z))}$
Integration leads to elliptic functions
other way, via dynamical system $f^{\prime}=g, g^{\prime}=\frac{\sin (f(z))}{c^{2}-1}$
Critical points at $(n \pi, 0)$; when $c^{2}>1$ the even integer multiples of π are saddle points white the odd integer multiples of π are center (when $c^{2}<1$ it 5 the other way wound - -)

hetroccimic orb it joining saddle $(-\pi, 0)$ to saddle $(+\pi, 0)$ corresponds to a travelling wave solution

TVs: Schroedinger

Example 6 Nonlinear Schiodriger equation

$$
i \frac{\partial u}{\partial t}+\frac{\partial^{2} u}{\partial x^{2}}+u|u|^{2}=0 \quad u \text { is complex-valued }
$$

the travelling wave solution appean as a standing wave
(the equation arises in applications where it is expressed relative to a prate of reference that is mooning with the group velocity of a havelling wave)

$$
\begin{array}{r}
u(x, t)=f(x) e^{i \beta t} \Rightarrow-\beta f(x)+f^{\prime \prime}(x)+f(x)^{3}=0 \\
\text { or } f^{\prime \prime}(x)=f(x)\left(\beta-f(x)^{2}\right)
\end{array}
$$

explicit integration yields again elliptic functions....
instead let $f^{\prime}=g, g^{\prime}=f\left(\beta-f^{2}\right)$
critical points at $(0,0)$ and $(\pm \sqrt{\beta}, 0)$. The origin is a saddle point white the other two
Separatrix is a homoclinic obit
 = solitary wave with $f_{1} f^{\prime}=0$ at $x=-\infty$, increases to a point of maximum intensity $\left(f^{\prime}=0, f>0\right)$ then decreases to $f_{1} f^{\prime}=0$ at $x=+\infty$

GeoHydro model [1]

Experimental observations by Nicholl \& Glass (2005):

a)

b)

c)

d)

GeoHydro model [2]

Experimental measurements by DiCarlo (2004):

GeoHydro model [3]

Richards (1904-1993)

Conventional Richards' equation:

$$
\begin{aligned}
\frac{\partial S}{\partial t}= & \nabla \cdot[K(S) \nabla p]+\frac{\partial}{\partial z}[f(S)], \quad f(S): \text { fractional flow function } \\
& p=P(S): \text { (" static capillary pressure relation") }
\end{aligned}
$$

$0 \leq S(\vec{x}, t) \leq 1$: effective saturation level; p : water pressure; $K(S)$: hydraulic conductivity; $P(S)$: equilibrium pressure

GeoHydro model [4]

Majid Hassanizadeh

Nonequilibrium Richards' equation:

Replace $p=P(S)$ by a kinetic equation:

$$
\mathcal{F}\left(S, p, S_{t}, p_{t}, S_{t t}, p_{t t}\right)=0
$$

Hassanizadeh \& Gray (1990): $\tau S_{t}=p-P(S)$, with τ a relaxation parameter (\leftrightarrow "dynamic capillary pressure equation")

GeoHydro model [5]

Insert into PDE model \Rightarrow

$$
S_{t}=\nabla \cdot[D(S) \nabla S]+[f(S)]_{z}+\tau \nabla \cdot\left[H(S) \nabla\left(S_{t}\right)\right]
$$

in 1D: $S_{t}=\left[d D(S) S_{z}\right]_{z}+[f(S)]_{z}+\tau\left[H(S) S_{z t}\right]_{z}$

GeoHydro model [6]

GeoHydro model [7]

Assumption:

$$
\begin{gathered}
S(z, t)=\phi(z+c t)=\phi(\eta), \eta \in[-\infty,+\infty] \text { and substitute in PDE: } \\
c \phi^{\prime}=\left[d D(\phi) \phi^{\prime}\right]^{\prime}+[f(\phi)]^{\prime}+\left[c \tau H(\phi) \phi^{\prime \prime}\right]^{\prime}
\end{gathered}
$$

Integrating $\int_{-\infty}^{\eta}$ and using: $\phi(-\infty)=S_{-}, \phi^{\prime}(-\infty)=\phi^{\prime \prime}(-\infty)=0 \Rightarrow$

$$
c\left(\phi-S_{-}\right)=d D(\phi) \phi^{\prime}+f(\phi)-f\left(S_{-}\right)+c \tau H(\phi) \phi^{\prime \prime}
$$

Take limit $\eta \rightarrow \infty$ and using $\phi(+\infty)=S_{+}, \phi^{\prime}(+\infty)=\phi^{\prime \prime}(+\infty)=0$:

$$
c=\frac{f\left(S_{+}\right)-f\left(S_{-}\right)}{S_{+}-S_{-}}
$$

GeoHydro model [8]

$$
c\left(\phi-S_{-}\right)=d D(\phi) \phi^{\prime}+f(\phi)-f\left(S_{-}\right)+c \tau H(\phi) \phi^{\prime \prime}
$$

Re-write as a Liénard-type system of ODEs:

$$
\left\{\begin{array}{l}
\phi^{\prime}=\psi \\
\psi^{\prime}=\frac{c\left(\phi-S_{-}\right)+f\left(S_{-}\right)-f(\phi)-d D(\phi) \psi}{c \tau H(\phi)}
\end{array}\right.
$$

Critical points of ODE system: $(\phi, \psi)=\left(S_{-}, 0\right)$ and $(\phi, \psi)=\left(S_{+}, 0\right)$

Example (special case):

$$
D(S)=d, f(S)=S^{2} ; \quad \text { linear stability analysis of critical points } \rightsquigarrow
$$

GeoHydro model [9]

Eigenvalues:

$$
\lambda_{ \pm}=\frac{-d}{2 \tau c S_{ \pm}^{2}} \pm \sqrt{\frac{d^{2}}{4 \tau^{2} c^{2} S_{ \pm}^{4}}+\frac{3 c-\frac{2 c S_{-}}{S_{ \pm}}-4 S_{ \pm}+2 \frac{S^{2}}{S_{ \pm}}}{\tau c S_{ \pm}^{2}}}
$$

Four cases:

I. Stable focus ("spiral point"), if argument in $\sqrt{ }<0$
II. Stable star node, if argument in $\sqrt{ }=0$
III. Stable (regular) node, if argument in $\sqrt{ }>0$
IV. $d=0$: center point

GeoHydro model [10]

GeoHydro model [11]

Fix $c, S_{\text {_ }}$ and τ, vary d :

GeoHydro model [12]

GeoHydro model [13]

The 2D case [1]

The 2D case [2]

The 2D case [3]

MI

The 2D case [4]

The 2D case [5]

The 2D case [6]

Golden Gate Bridge waves [1]

Historical accounts of travelling wave behaviour in the Golden Gate Bridge in San Francisco motivated McKenna and Walter [21] to study travelling wave solutions in a nonlinear beam equation

$$
\begin{equation*}
u_{t t}+u_{x x x x}+f(u)=0, \tag{1}
\end{equation*}
$$

where the highly idealized nonlinearity f is chosen to model the effect that the cable holds the beam up but the constant force of gravity holds it down. (See also [17] for some general issues surrounding using such simple nonlinear beam equations as suspension-bridge models.) This led to the beam equation with restoring force of the general shape

$$
f(u)=\left(u^{+}-1\right), \quad \text { where } \quad u^{+}= \begin{cases}u, & u>0 \tag{2}\\ 0, & u<0\end{cases}
$$

Here the function $u(x, t)$ represents the displacement of the beam from the unloaded state. The natural equilibrium is at $u \equiv 1$ and solutions of the form $u(x, t)=1+y(x-c t)$ were found explicitly for the piecewise nonlinearity. Such solutions satisfy the ODE

$$
\begin{equation*}
y^{\prime \prime \prime \prime}+c^{2} y^{\prime \prime}+f(y+1)=0, \tag{3}
\end{equation*}
$$

Golden Gate Bridge waves [2]

Extended KdV5 [1]

In recent years, there has been considerable interest in the numerical treatment of partial differential equations (PDEs) describing nonlinear wave phenomena, and particular types of solitary waves. In this study, we focus our attention on an extended fifth-order Korteweg-de Vries (KdV) equation that can be used to model water waves with surface tension. The model is described by the PDE

$$
\begin{equation*}
u_{t}+\frac{2}{15} u_{x x x x x}+(\mu u-b) u_{x x x}+\left(3 u+2 \mu u_{x x}\right) u_{x}=0 \tag{1}
\end{equation*}
$$

for $-\infty<x<\infty, t>0$. In 1997, Champneys and Groves [2] studied the global existence properties of solitary wave solutions to Eq. (1), which can also be written in conservative form:

$$
\begin{equation*}
u_{t}+\left[\frac{2}{15} u_{x x x x}-b u_{x x}+\left(\frac{3}{2}\right) u^{2}+\mu\left(\left(\frac{1}{2}\right)\left(u_{x}\right)^{2}+\left(u u_{x}\right)_{x}\right)\right]_{x}=0 . \tag{2}
\end{equation*}
$$

This is a special case of a more general class of Hamiltonian evolution equations studied by Kichenassamy and Olver [10]. For $\mu=0$ this reduces to the usual fifth-order KdV equation introduced by Kawahara [9]. The extended form (1) may be derived via a regular Hamiltonian perturbation theory from an exact Euler equation formulation for water waves with surface tension [4]. Looking for traveling-wave solutions $u(x-c t)$, integrating once, setting the constant of integration to be zero, one arrives at the following ODE (the prime standing for $\mathrm{d} / \mathrm{d} \xi$ with $\xi:=x+a t$),

$$
\begin{equation*}
\frac{2}{15} u^{\prime \prime \prime \prime}-b u^{\prime \prime}+a u+\frac{3}{2} u^{2}+\mu\left[\frac{1}{2}\left(u^{\prime}\right)^{2}+\left(u u^{\prime}\right)^{\prime}\right]=0 \tag{3}
\end{equation*}
$$

where $a:=-c$. Nonzero values of μ can be scaled to plus or minus unity. For the rest of this work we shall take the sign value that is significant for water waves in the presence of surface tension and hence set $\mu=1$. Physically, $u(x, t)$ represents the height of the free surface of a 2D slab of fluid of finite depth. The parameter b and dimensionless wave speed a are related to the difference between the Bond and Froude numbers respectively from their critical values $\left(\frac{1}{3}, 1\right)$.

Lecture 11

Extended KdV5 [2]

Fig. 1. The region of existence of the embedded solitons for Eq. (3) with $\mu=1$.

Extended KdV5 [3]

Fig. 4. Numerical solutions for the moving-uniform mesh method with $\rho=0$ (no initial perturbation) at $t=0,90,180,300$; $N=40001, b=0$.

Lecture 11

Extended KdV5 [4]

Invariant 1 (conservation of mass for the water waves): $I_{1}:=\int_{-\infty}^{\infty} u \mathrm{~d} x$.
Invariant 2 (conservation of the horizontal momentum): $I_{2}:=\int_{-\infty}^{\infty} u^{2} \mathrm{~d} x$.
Invariant 3 (conservation of the energy): $I_{3}:=\int_{-\infty}^{\infty}\left[\frac{1}{15} u_{x x}^{2}+\frac{1}{2} u^{3}+\frac{1}{2} u_{x}^{2}\left\{\frac{b}{2}-u\right\}\right] \mathrm{d} x$.
gives $(\mathrm{d} / \mathrm{d} t) \int_{-\infty}^{\infty} u \mathrm{~d} x=0$. Since (1) is a Hamiltonian PDE, it also conserves I_{2}. Further, if we name the Hamiltonian $\mathscr{H}=I_{3}$, Eq. (2) is equivalent with

$$
\begin{equation*}
u_{t}=\mathcal{g}^{-1} \frac{\delta \mathscr{H}}{\delta u}, \tag{13}
\end{equation*}
$$

with a skew-symmetric operator $\mathscr{g}^{-1}=\partial / \partial x$, i.e. $\mathscr{g}^{-1}=-\mathscr{f}=\mathscr{g}^{\mathrm{T}}$. The variational derivative in (13) is given by

$$
\begin{equation*}
\frac{\delta \mathscr{H}}{\delta u}=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} \frac{\partial \mathscr{H}}{\partial u_{k x}}=\frac{\partial \mathscr{H}}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial \mathscr{H}}{\partial u_{x}}+\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \frac{\partial \mathscr{H}}{\partial u_{x x}}-\cdots . \tag{14}
\end{equation*}
$$

If we define the Poisson brackets

$$
\{\mathscr{T}, \mathscr{S}\}=\int_{\Omega} \frac{\delta \mathscr{T}}{\delta u} \mathscr{f} \frac{\delta \mathscr{S}}{\delta u},
$$

then it follows that $\{\mathscr{F}, \mathscr{\mathscr { S }}\}=-\{\mathscr{S}, \mathscr{T}\}$. To show that \mathscr{H} is invariant, we work out the following relations (the function f is the integrand of I_{3}):

$$
\begin{equation*}
\frac{\mathrm{d} \mathscr{H}}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} f \mathrm{~d} x=\int_{\Omega}\left[\frac{\partial f}{\partial u} u_{t}+\frac{\partial f}{\partial u_{x}} u_{t x}+\frac{\partial f}{\partial u_{x x}} u_{t x x}+\cdots\right] \mathrm{d} x=\int_{\Omega} \frac{\delta \mathscr{H}}{\delta u} u_{t} \mathrm{~d} x=\{\mathscr{H}, \mathscr{H}\}=0 . \tag{15}
\end{equation*}
$$

Extended KdV5 [5]

Fig. 7. Numerical solution with the adaptive mesh method in two different cases $b=-0.45$ (left) and $b=-0.30$ (right), at $t=0,100,200, \ldots, 1500$.

[^0]
Lecture 11

Extended KdV5 [6]

Fig. 9. Numerical solution (left), invariants I_{1}, I_{2}, I_{3} and soliton amplitude $v_{\text {max }}$ (right) with the adaptive mesh method in the case $b=0, a=-2.747732$, at $t=0,1,2, \ldots, 14$.

Extended KdV5 [7]

Fig. 11. "Double soliton" solution with the adaptive mesh method in the case $b=1.5, a=2$, at $t=0,5,6, \ldots, 12$.

Lecture 11

Extended KdV5 [8]

f. 13. "Triple soliton" solution with the adaptive mesh method in the case $b=3, a=2$, at $t=9,10, \ldots, 17$.

[^0]: Fig. 8. Numerical solution with the adaptive mesh method in two different cases $b=0.2$ (left) at $t=0,100,200, \ldots, 1500$, and $b=2$ (right), at $t=0,0.5,1, \ldots, 5$.

