|©R. J. LeVeque, 2004 — University of Washington AMlath 585-6 Notes

e ———

Chapter 12

Diffusion Equations

We now begin to study finite difference methods for time-dependent partial differential equations, where
variations in space arc related to variations in time. \We begin with the heat equation (or diffusion
equation) introduced in Chapter 10,
Uy = Klgz. (12.1)
This is the classical example of a parabolic equation, and many of the general properties seen here
carry over to the design of numerical methods for other parabolic equations. We will assume & = 1 for
simplicity but some comments will be made about how the results scale to other values of x > 0. (If
& < 0 then (12.1) would be a “backward heat equation”, which is an ill-posed problem.)
Along with this equation we need initial conditions at some time ¢y, which we typically take to be
t() = 01
u(z,0) = n(x) (12.2
and also boundary conditions if we are working on a bounded domain, e.g., the Dirichlet conditions
u(0,8) = go(t) for t>0

u(l,t) = g(t) for t>0 (12.3)

if0<z<1.

We have already studied the steady state version of this equation and spatial discretizations of u ..
(Chapter 2). We have also studied discretizations of the time derivatives and some of the stability
issues that arise with these discretizations in Chapters 6 thirough 9. Next we will put these two types
of discretizations together.

In practice we generally apply a set of finite difference equations on a discrete grid with grid points
(z:,ts) where

x; = ih, t, =nk.
Here h = Az is the mesh spacing on the z-axis and & = At is the time step. Let UP = u{zy, tn)
represent the numerical approximation at grid point (z;,¢,).

Since the heat equation is an evolution equation that can be solved forward in time, we set up our
difference equations in a form where we can march forward in time, determining the values U‘"'H for
all i from the values U at the previous time level, or perhaps using also values at earlier time levels
with a multistep formula.

As an example, one natural discretization of (12.1) would be

n+1 n
k
This uses our standard centered difference in space and a forward difference in time. This is an expheit
method since we can compute each U,-"+l explicitly in terms of the previous data;

1
= ﬁ(U{‘.l - 207 +UR,). (12.4)

k
UM = UR 4 5 (U, - 207+ UL,). (12.5)

153

154 Diffusion Equations

(a) (b)

tay1 [rs °

tn . . . - + -

ZTy-) x; Tyst

Figure 12.1: Stencils for the methods (12.5) and (12.7).

Figure 12.1(a) shows the stencil of this method. This is a one-step method in time, which is also called
a two-level method in the context of PDE's since it involves the solution at two different time levels.

Another one-step method, which is much more useful in practice as we will sce below, is the Crank-
Nicolson method,

Uin+l _ U‘n

1
7 = §(Dﬂu,." + Drurth) (12.6)

1
= W(U‘"‘l - 2U'n + U|'.‘+‘ + U‘"_"'ll ‘_)U'"+l e U'rf:il ,

which can be rewritten as

k
UM = UP 4 55 (U = 207 + U + U - 20T + U (12.7)
or
—rUP 4+ (14 20) U < UMK = UL+ (1 - 20U 41U, (12.8)
where r = k/2h*. This is an implicit method and gives s tridingonal system of equations to solve for
all the values U simultsneously. In matrix form this is
(1+2r) -r up+!
- (142r) —r !
-r (1+2r) -r up+l
r (142r) -r U";""' ‘l
— (l + ‘)r) U’V'l‘+l

(12.9)

r(go(tn) + go(tns1)) + (1 = 2r)UP + U
rUM + (1 - 2r)U3 + U3
rUD + (1 - 2r)UD + rUP

rUR o4+ (1 -2r)UR_ +1UR
rUn)+ (1= 2n)UR + r(gi(tn) + 91 (€ns1))

Note how the boundary conditions u(0,t) = gu(t} and u(1,t) = g,(t) come into these equations.

Since o tridiagonal system of m equations can be solved with O(m) work, this method is essentially
as eflicient per time step as an explicit method. WWe will see in Section 12.4 that the heat equation
is “stiff”, and hence this implicit method, which allows much larger time steps to be taken than an
explicit method, is a very efficient method for the heat equation.

Solving a parabolic equation with an implicit method requires solving a system of equations with
the same structure as the 2-point boundary value problem we studied in Chapter 2. Similarly, a
multidimensional parabolic equation requires solving a problem with the structure of a multidimensionat
elliptic equation in each time step. See Section 12.7.

R. J. LeVeque — AMath 585-6 Notes 185

Solving a parabolic equation with an implicit method requires solving a system of equations with
the same structure as the 2-point boundary value problemn we studied in Chapter 2. Similarly, a
multidimensional parabolic equation requires solving a problem with the structure of a multidimensional
elliptic equation in each time step.

12.1 Local truncation errors and order of accuracy

We can define the local truncation error as usual — we insert the exact solution u(z, t) of the PDE into
the finite difference equation and determine by how much it fails to satisly the discrete equation.

Example 12.1. The local truncation error of the method (12.5) is based on the form (12.4):
' = 7(24, t,), where

ulz b+ k’Z —u(zb) "-},_;(u(z ~ h, t) - 2u(z, t) + u(z + h,t)).

Again we should be careful to use the form that directly models the differential equation in order to get
powers of £ and k that agree with what we hope to see in the global error. Although we don't know
u(x, t) in general, if we assume it is smooth and use "Taylor series expansions about u{z, ¢}, we find that

T(z,t) =

T(:L‘, l‘) = (ut + 5":“((+ Ek'“m + - ') - (u.tx + l_zll-uzz:z + e) .

Since u¢ = u;,, the O(1) terms drop out. By differentiating u; = uz, we find that vy = uz; = Uzpzs

and so] |
7(z,t) = (Ek - ﬁlx‘z) Upzzr + O(K* + BY).

T'his method is said to be second order accurale in space and first order accurate in lLime since the
truncation error is O(h® + k).

The Crank-Nicolson method is centered in both space and time, and an analysis of its local truncation
error (Exercise 12.1) shows that it is second order accurate in both space and time,

7(z,t) = O(k* + B?).

A method is said to be consistent if T{z,t) — 0 as &, b — 0. Just as in the other cases we have
studied (boundary value problems and initial value problems for ODE'’s), we expect that consistency,
plus some form of stability, will be enough to prove that the method converges at each fixed point
(X,T) as we refine the grid in both space and time. Moreover we expect that for a stable method the
global order of accuracy will agree with the order of the local truncation error, e.g., for Crank-Nicolson
we expect that

Ul —u(X,T) = O(k®* + h?)

as k, h — 0 when ih = X and nk = 1" are fixed.

For linear PDE's, the fact that consistency plus stability is equivalent to convergence is known as
the Laz Equivalence Theorem, and is discussed in Section 12.5 after introducing the proper concept of
stability. As usual, it is the definition and study of stability that is the hard (and interesting) part of
this theory.

12.2 Method of Lines discretizations

‘lo understand how stability theory for time-dependent PDE'’s relates to the stability theory we have
slready developed for time-dependent ODE's, it is easiest to first consider the so-called Method of Lines
{MOL) discretization of the PDE. In this approach we first discretize in space alone, which gives a large

156 Diffusion Equations

zo T Iz Tin-1 Tm TImd

Figure 12.2: Method of lines interpretation. U;(2) is the solution along the line forward in time at the
grid point x;.

system of ODE's with each component of the system corresponding to the solution at some grid point,
as a function of time. The system of ODE's can then be solved using one of the methods for ODE's
that we have previously studied.

For example, we might discretize the heat equation (12.1) in space st grid point z; by

Ul - F‘,_,-(U..;(L) Wi(t) +Uina(t)), fori=1,2 ..., m, (12.10)

wliere prime now means differentintion with respect to time. We can view this as a coupled system of
m ODE's for the variables U;(t), which vary continuously in time along the lines shown in Figure 12.2.
‘This system can be written as

U'(t) = AU(t) + 9(t) (12.11)

where the tridiagonal matrix A is exactly as in (2.9) and g(t) includes the terins needed for the boundary
conditions, Un(t) = go(t) and Uy () = gi(t),

-2 1 go(t)
1 -2 1 0
1 1 =2 1 1 0
A= = e gty = n . . (12.12)
P =2 1 0
- g1(2)

This MOL approach is sometimes used in practice by Rrst discretizing in space and then applying
a software package for systems of ODE's. There are also packnges that are specially designed to apply
MOL. 'T'his approach has the advantage of being relatively easy to apply to a fairly general set of time-
dependent PDE's, but the resulting method is often not as efficient as specially designed methods for
the PDE

As a tool in understanding stability theory, however, the MOL discretization is extremely valuable,
and this is the main use we will make of it. \We know how to analyze the stability of ODE methods
applied to a linear system of the form (12.11) based on the eigenvalues of the matrix A, which now
depend on the spatial discretization.

If we apply an ODE method to discretize the system (12.11), we will obtain a fully discrete method
which produces approximations U' = U;(¢,,) ot discrete points in time which are exactly the points
(z.,tn) of the grid that we introduced at the beginning of this chapter.

For example, applying Euler’s method U*! = U™ 4k f(U™) to this linear system results in the fully
discrete method (12.5). Applying instead the trapezoidal method (6.16) results in the Crank-Nicolson

R. J. LeVeque — AMath 585-6 Notes 157

method (12.7). Applying a higher order linear multistep or Runge-Kutta method would give a different
method, though with the spatial discretization (12.10) the overall method would be only second order
accurate in space. Replacing the right hand side of (12.10) by a higher-order approximation to u..{(z,)
and then using a higher order time discretization would give a more accurate method.

12.3 Stability theory

We can now investigate the stability of schemes like (12.5) or (12.7) since these can be interpreted as
standard ODE methods applied to the linear system (12.11). We expect the method to be stable if
k) € S, ie, if the time step & multiplied by any eigenvalue A of A lies in the stability region of the
ODE method, as discussed in Chapter 8.

\We have determined the eigenvalues of A in (2.23),

2
Ap = -’-ﬁ(cos(prrh) ~1), for p=1,2, ..., m, (12.13)

where again m and h are related by h = 1/(m+1). Note that there is a new wrinkle here relative to the
ODE's we considered in Chapter 8: the eigenvalues A, depend on the mesh width h. As we refine the
grid and h — 0, the dimension of A increases, the number of eigenvalues we must. consider increases,
and the values of the eigenvalues change.

This is something we must bear in mind when we attempt to prove convergence as &, h — 0. lo
begin with, however, let's consider the simpler question of how the method behaves for sotme fixed k
and h, i.e., the question ol absolute stability in the ODE sense. ‘I'hen it is clear that the method is
absolutely stable (i.e., the effect of past errors will not grow expouentially in future time steps) provided
that kX, € S for each p, where § is the stability region of the ODE method, as discussed in Chapter B.

For the matrix (12.12) coming from the heat equation, the eigenvalues lie on the negative real axis
and the one farthest from the origin is A, = —4/h°. Hence we require that ~4k/h> € § (assuming the
stability region is connected along the negative real axis up to the origin, as is generally the case).

Example 12.2. If we use Euler's method to obtain the discretization (12.5), then we must require
|1 + kA| < 1 for each eigenvalue (see Chapter 8) and hence we require —2 € —d4k/h? £ 0. This limits
the time step allowed to

(12.14)

This is a severe restriction: the time step must decrease like h? as we refine the grid, which is much
smaller than the spatial width & when h is small.

Example 12.3. I we use the trapezoidal method we obtain the Crank-Nicolson discretization
(12.6). The trapezoidal method for the ODE is absolutely stable in the whole left half plane and the
eigenvalues (12.13) are always negative. Hence the Crank-Nicolson method is stable for any time step
k > 0. Of course it may not be accurate if k is too large. Generally we must take & = O(h) to obtain a
reasonable solution, and the unconditional stability allows this.

12.4 Stiffness of the heat equation

Note that the system of ODE’s we are solving is quite stiff, particularly for small h. 'The eigenvalues of
A lie on the negative real axis with one fairly close to the origin, A, &~ —a* for all h, while the largest in
magnitude is A, & —4/h%. The “stiffness ratio” of the system is 4/72h?, which grows rapidly as k — 0.
As a result the explicit Euler method is stable only for very small time steps k < :_!-h“. This is typically
much smaller than what we would like to use over physically meaningful times, and au implicit method
designed for stiff problems will be more efficient.

The stiffness is a reflection of the very different time scales present in solutions to the physical
problem wmodelled by the heat equation. High frequency spatial oscillations in the initial data will
decay very rapidly due to rapid diffusion over very short distances, while smooth datn decays much

158 Diffusion Equations

more slowly since diffusion over long distances takes much longer. This is apparent from the Fourier
analysis of Section 11.3 or is easily seen by writing down the exact solution to the heat equation on
0 < 2 < 1 with gy(2) = g1(t) = 0 as a Fourier sine series:

u(z,t) - iu,(t)sin(]mc).
=1

Inserting this in the heat equation gives the ODE’s
(1) = -7 mu, (1), for j=1,2,,... (12.15)

and s0 23
ul(t) =0 " "1:(0).

with the i;(0) determined as the Fourier coefficients of the initial data 7(z).

We can view the equations (12.15) as an infinite systein of ODE’s, but which are decoupled so that
the coefficient matrix is dingonal, with eigenvalues ~j2a® for j = 1, 2, By choosing data with
sufficiently rapid oscillation (large j), we can obtain arbitrarily rapid decay. For general initinl data
there may be some transient period when any high wave numbers are rapidly damped, but then the
long-time behavior is dominated by the slower decay rates. See Figure 12.3 for some examples of the
time evolution with different sets of data.

If we are solving the problem over the long time periods needed to track this slow diffusion, then
we would ultimately (after any physical transients have decayed) like to use rather large time steps,
since typically the variation in time is then on roughly the same scale as variations in space. e would
generally like to bave k & / so that we have roughly the same resolution in time as we do in space.
A method that requires & = A* forces us to take o much finer temporal discretization that we should
need to represent smooth solutions. If A = 0.001, for example, then if we must take & = 1i? rather than
k = h we would need to tuke 1000 time steps to cover each time interval that should be well modelled
by a single time step. This is the same difficulty we encountered with stilf ODE's in Chapter 9.

Note: The remark above that we want k = h is reasonable assuming the method we sre using has
the same order of accuracy in both space and time. The method (12.5) does not have this property.
Since the error is O(k + h%) we might want to take & = O(h?) just Lo get the same level of accuracy in
both space and time, In this sense the stability restriction & = O(h?) may not seem unreasonable, but
this is simply another reason for not wunting Lo use this particular method in practice.

Note: The general diffusion equation is u; = xu,, and in practice the diffusion coefficient £ may be
different from 1 by many orders of magnitude. How does this affect our conclusions above? We would
expect by scaling considerations that we should take k & h/k in order to achieve comparable resolution
in space and time, i.e., we would like to take xk/h =~ 1. (Note that u,(t) = exp(—j2m?xt)it,(0) in this
case.) With the MOL discretization we obtain the system (12.11) but A now has a factor & in frout.
For stability we thus require —4xk/h® € S, which requires xk/h? to be order 1 for any explicit method.
This i3 smaller than what we wish to use by a factor of A, regardless of the magnitude of x. So our
conclusions on stiffness are unchanged by . In particular, even when the diffusion coefficient is very
small it is best to use an implicit method because we then want to take very long time steps k = h/x.

These comments apply to the case of pure diffusion. If we are solving an advection-diffusion or
renction-diffusion equation where there are other time scales determined by other phenomena, then
if the diffusive term hos a very small coefficient we may be able to use an explicit method efficiently
because of other restrictions on the time step.

Note: The physical problem of diffusion is “infinitely stifl” in the sense that there are eigenvalues
—j%x* with arbitrarily large magnitude since j can be any integer. Luckily the discrete problem is not
this stiff. The reason it is not is that, once we discretize in space, only a finite number of spatial wave
numbers can be represented and we obtaine the finite set of cigenvalues (12.13). As we refine the grid
we can represent higher and higher wave numbers, leading to the increasing stiffness ratio as h — 0.

R. J. LeVeque — AMath 585-6 Notes 159

u(z, ty) ui(z, ty) u(z,t3)
t 3 3
* » i 3 3 4+ 1] L] - 1] 1 1 k] +] L) » 1 H)] L] » [
uz(z, ty) ua(z, ty) ua(z, ta)
H H H
: N R N NN NG N
. 1 ? ? L] . - » r] 1] . 1] (] 4 ’ 1 H] L] L] L]
uy(x, ty) uy(z,) uy(iz, t2)
L] z 3 1 1 3 1] t 1] 3 + (] L] » 1] t » . . (]

Figure 12.3: Solutions to the heat equation at three different times (columus) shown for three different
sets of initial conditions (rows). In the top row u,(z,ta) consists of only a low wave number, which
decays slowly. The middle row shows data consisting of a higher wave number, which decays more
quickly. The bottom row shows data us(z, tn) that contains a mixture of wave numbers. ‘The high wave
numbers are most rapidly damped (an initial rapid transient) while at later times only the lower wave
numbers are still visible and decaying slowly.

160 Diffusion Equations

12.5 Convergence

So far we have only discussed absolute stability, and determined the relation between & and & that must
be satisfied to ensure that errors do not grow exponentially as we march forward in time on this fixed
grid. We now address the question of convergence at o fixed point (X, T’) as the grid is refined. It turns
out that in general exactly the same relation between A and h must now be required to hold as we vary
k and h, letting both go to zero.

In other words, we cannot let & and h go to zero at arbitrary independent rates and necessarily expect
the resulting approximations to converge to the solution of the PDE. For a particular sequence of grids
(kv), (ka,h2), ..., with k; — 0 and h; — 0, we will expect convergence only if the proper relation
ultimately holds for each pair. For the method (12.5), for example, the sequence of approximations will
converge only if k,-/hf < 1/2 for all j sufficiently large.

It is sometinies ensiest to think of k£ and h as being related by some fixed rule (e.g., we might choose
k = 0.4h° for the method (12.5)), so that we can speak of convergence as k — 0 with the understanding
that this relation holds on each grid.

The methods we have studied so far can be written in the form

Uttt = BU™ 44" (12.16)

for some matrix B € R™"™ on a grid with & = 1/(m + 1) and 4" € R™. In the usual way, we can
apply the difference equation to the exact solution u(z,?) and obtain

2" = Bu 4 b 4 ke (12.17)
where
u(z), ty) 7(Z1,tn)
w(zg, tn) N T(x2,tn)
u = . ’ T= .
(T, tn) T(Zm, tn)

Subtracting (12.17) from (12.16} gives the difference equution for the global error E® = U" — u™:
En+l =BE" - krh,
and hence, os usual,

E" = B"EY_ I Zn: pn—mpm -l,

m=1
from which we obtain

n
WE" I S ABMIE + K D 4B =™ 7™ 1. (12.18)

m=]

‘The method converyes provided it is consistent, which requires that 77! — 0 in each step, and stable,
which now requires that ||B"|} be uniformly bounded for all k and n with nk < T. In the context of
linear PDE’s, the fact that consistency together with this form of stability gives convergence is known as
the Lax Equivalence Theorem. A complete proof can be found in [RMG7], but the essential inequality is
(12.18). The formn of stability required here, the uniform bound on |B"||, is often called Laz-Richtmyer
stability in the present context.

Recall that B depends on both & and h, but we are assuming some fixed relationship between these.
For the methods we analyzed earlier in this Chapter, we found relations that would guarantee || B||2 £ 1
for ench pair &, h, from which Lax-Richtmyer stability follows directly (in the 2-norm at least).

R. J. LeVeque — AMath 585-6 Notes 161

12.5.1 PDE vs. ODE stability theory

It may bother you that the stability we need for convergence now seems to depend on absolute stability,
and on the shape of the stability region for the time-discretization, which determines the required
relationship between k and k. Recall that in the case of ODE's all we needed for convergence was
“zero-stability”, which does not depend on the shape of the stability region except for the requirement
that the point = = 0 must lie in this region.

Here is the difference: With ODE's we were studying a fixed system of ODE’s and dimension of the
system and the fixed set of eigenvalues A were independent of k. For convergence we needed &) in the
stability region as & — 0, but since these values all converge to 0 it is only the origin that is important,
at least in order to prove convergence as & — 0. Hence the need for zero-stabilty. With PDE’s, on
the other haud, in our MOL discretization the system of ODE’s grows as we refine the grid, and the
eigenvalues A grow as k and h go to zero. So it is not clear that kA will go to zero, and zero-stability
is not sufficient. For the heat equation with k/h? fixed, these values do not go to zero as k — 0. For
convergence we must now require that these values at least lie in the region of absolute stability as
k — 0, and this gives the stability restriction relating & and h. If we want to keep k/h fixed as k, h — 0,
then kA — —oco and we must use an implicit method, and one that includes the entire negative real
axis in its stability region.

Although for the methods considered so far we have obtained ||B|| < 1, this is not really necessary
in order to have Lax-Richtmyer stability. If there is n constant a so that a bound of the form

1B <1 +ak (12.19)

holds in some norm (at least for all & sufficiently small), then we will have Lax-Richtmyer stability in
this norm, since

1B < (1 + ak)" < o

for nk < 1. Since the matrix B depends on k and grows in size as k — 0, the general theory of
stability in the sense of uniform power boundedness of such families of matrices is often nontrivial. The
Kretss Aatriz Theorem is one important tool in many practical problems. This is discussed in [RM67]
along with some other techniques. See also [Str89) for a good discussion of stability. The recent review
paper [L'T98) gives an overview of how ODE and PDE stability theory are related, with a discussion of
stability theory based on the “energy method”, another important approach.

12.6 von Neumann analysis

Althouglh it is useful to go through the MOL formulation in order to understand how stability theory
for PDE's is related to the theory for ODE's, in practice there is another approach that will typically
give the proper stability restrictions more easily.

The von Neumann approach to stability analysis is based on Fourier analysis and hence is generally
limited to constant coefficient linenr PDE's. For simplicity it is usually applied to the Cauchy prablem,
which is the PDE on all space with no boundaries, —0co < = < 60 in the one-dimensional case. Von
Neumann analysis can also be used to study the stability of problems with periodic boundary conditions,
e.g., in 0 <z <1 with u(0,¢) = u(l,t) imposed. This is generally equivalent to a Cauchy problem with
periadic initial data.

Stability theory for PDE's with more general boundary conditions can often be quite difficult, as
the coupling between the discretization of the boundary conditions and the discretization of the PDE
can be very subtle. Von Neumann analysis addresses the issue of stability of the PDE discretization
alone. Some discussion of stability theory for initial boundary value problems can be found in [Str89],
(RMG7).

The Cauchy problem for linear PDE’s can be solved using Fourier transforms — see Chapter 11 for
a review, The basic reason this works is that the functions e** with wave number £ = constant are

162 - : _ Diffusion Equations

cigenfunctions of the differential operator 9,,
3I€i£t - igeifx’

and hence of any constant coefficient linear differential operator. Von Neumann analysis is based on
the fact that the related grid function 1V, = e*/%¢ is an eigenfunction of any standard finite difference
operator!. For example, if we approximate v'(z;) by DyV; = 5',;(\’”,1 = V,-1), then in general the grid
function DoV is not just a scalar multiple of V. But for the special case of 1V, we obtain

D()"’, = L (81(1+llh5_ei(j-l)h£)

1 (cihE — g=iht) glihe

-~

(12.20)

S)

l sin(hg)eH

[~

sin{h&)IV;.

—~—

(1

So 1V is an “eigengridfunction” of the operator Dy, with eigenvalue ;‘;siu(h.f).

Note the relation between these and the eigenfunctions and ecigenvalues of the operator 8, lound
earlier: 1V; is simply the eigenfunction w(z) of O; evaluated ut the point z,, and for small A we can
approximate the cigenvalue of Dy by

;;sin(hfl % (1,5 _ %hn{u + O(h"‘g"))

= if—éh"'&"+---.

This agrees with the eigenvalue i€ of 8, to O(h*€?).
Suppose we have a grid function V; defined at grid points z; = jhfor 7 =0, £1, £2, ..., which
is an Iy function in the sense that the 2-norm

1/2

(= ¥}

Ulla= | Y ;P

j=-oc

is finite. Then we can express V, as a linear combination of the grid functions ¢*/%¢ for all € in the range
—x/h < & < w/h. Functions with larger wave number £ cannot be resolved on this grid. We can write

) 1 n/'h e

where

- h & By
(€)= T 37 Ve,
jmeoc

These are direct analogs of the formulas for & function v(x) in the discrete case.
Again we have Parseval’s relation, ||V]j2 = ||V||2, although the 2-norms used for the grid function
V; and the function V(£) defined on {—=/h, w/h] are different:

172

o . . e 1/2
Wi = &> W] . ||Vllz"(/ hIV(E)'df)

jomoo Y

!Note: in this section i = /=1 and the index j is used on the grid functions

R. J. LeVeque — AMath 585-6 Notes 163

In order to show that a finite difference method is stable in the 2-norm by the techniques discussed
earlier in this chapter, we would have to show that ||B|lz < 1+ ak in the notation of (12.19). This
amounts to showing that there is a constant a such that

"(]n+l"2 < (] -+ Ok)"Un”'-’

for all U". This can be difficult to attack directly because of the fact that computing ||U]2 requires
summing over all grid points, and each U;"“ depends on values of U™ at neighboring grid points so
that all grid points are coupled together. In some cases one can work with these infinite sums directly,
but it is rare that this can be done. Alternatively one can work with the matrix B itself, as we did
above in Section 12.5, but this matrix is growing as we refine the grid.

Using Parseval's relation, we see thot it is sufficient to instead show that

O™+ e < (1 + ak) 0" I

where U is the Fourier transform of the grid function U". The utility of Fourier analysis now stems
[rom the fact that after Fourier trauslorming the finite difference method, we obtain a recurrence relation
for eaclh U"(€) that is decoupled from all other wave numbers. For a 2-level method this has the form

o+ (e) = g()0™(¢). (12.21)

The factor g(€), which depends on the method, is called the amplification factor for the method at wave
number €. If we can show that

l9(€)l < 1+ ok

where a is independent of £, then it follows that the method is stable, since then
[0+ (€)] < (1 + ak)|U™(E) forall €

and so R R
0™ 2 < (1 + ak)IT™ 2.

Fourier analysis allows us Lo obtain simple scalar recursions of the form (12.21) for each wave number
separately, rather than dealing with a system of equations for U that couples together all values of 7.

Note: Here we are assuming that u(z,t) is a sealar, so that g(£) is o scalar. For an system of s
equations we would find that g(£) is an s x s matrix for each value of £, so some analysis of matrix
eigenvalues is still required Lo investigate stability. But the dimension of the matrices is s, independent
of the grid spacing, unlike the MOL analysis where the matrix dimension increases as h — 0.

Example 12.4. Cousider the method (12.5). ‘I'o apply von Neumann analysis we consider how this
method works on a single wavenumber £, i.e., we set

; h
Up = ek, (12.22)

Then we expect that '
Ut = g(g)e'™, (12.23)

where g(€) is the amplification factor for this wavenumber. Inserting these expressions into (12.5) gives

glE)eiinE = ok ’:‘_ﬂ (ef6U=1h _ peivhe TR

(1 + hi" (e 24 e“")) '7he,

and hence "
g =1+ 2F(cos[£h] 1).

164 Diffusion Equations

Since ~1 < cos(€h) < 1 for any value of &, we see that
1-4 k < <
-4z S9@) <1

for all £. We can guarantee that |g(¢)] < 1 for all £ if we require

d—s < 2.

Tl

This is exactly the stability restriction (12.14) we found earlier for this method. If this restriction is
violated, then the Fourier components with sonie wave number £ will be amplified (and, as expected,
it is the largest wavenumbers that go unstable first as & is increased).

Example 12.5. T'he fact that the Crank-Nicolson method is stable for all £ and & can also be shown
using von Neumann analysis. Substituting (12.22) and (12.23) into the difference equations (12.7) and
cancelling the common factor of ¢4 gives the following relation for g = g(£):

k R
g=14+ o (e%P —24€%r)} (1 + g)

und hence
14

1-

IR
]

—_
—
X
o
=

=

g=

T
[

where
ko _ien . 1eh
s = 7‘-5(8 =-24e)
2k
= -’;E(cos(fh) -1). (12.25)

Since = < 0 for all €, we see that |g| < 1 and the method is stable for any choice of & and .

Note that (12.24) agrees with the root ¢; found for the ‘Irapezoidal method in Example 8.6, while
the = determined in (12.25), for certain values of £, is simply A times an eigenvalue A, from (12.13), the
eigenvalues of the Method of Lines matrix. So there is a close connection between the von Neumann
approach and the MOL reduction to a system of ODE’s.

12.7 Multi-dimensional problems
In two space dimensions the heat equation takes the form

U = Upg + Uy, (12.26)

with initial conditions u(z, y, 0) = n(z, y) and boundary conditions all slong the boundary of our spatial
domain 2. We can discretize in space using a discrete Laplacian of the form considered in Chapter 3,
say the five-point Laplacian from Section 3.2:

1
ViU.'J' = F(U.’-].j+Ug+1,J‘+U.',J_[+U,'|j+| 4U.-J)A (12.27)

If we then discretize in time using the trapezoidal method, we will obtain the two-dimensional version
of the Crank-Nicolson method,
k
UG = U+ SIVAUG + VRUSH). (12.28)

Since this method is implicit, we must solve a system of equations for all the U;; where the matrix has
the same nonzero structure as for the elliptic systems considered in Chapters 3 and 5. 'T'his matrix is

R. J. LeVeque — AMath 585-6 Notes 165

large and sparse, and we generally do not want to solve the system by a direct method such as Gaussian
Elimination. In fact this is even more true for the systems we are now considering than for the elliptic
equation, because of the slightly different nature of this system, which makes other approaches even
more efficient relative to direct methods. It is also extremely important now that we use the most
efficient method possible, because we must now solve a linear system of this form tn every time step,
and we may need to take thousands of time steps to solve the time-dependent problem.

We can rewrite the equations (12.28) as

(r-5v8)vge = (14498 . (1229)

The matrix for this linear system hns the same pattern of nonzeros as the matrix for V3 (see Chapter 3),
but the values are scaled by k/2 and then subtracted from the identity matrix, so that the diagonal
elements are fundamentally different. If we call this matrix A,

k -
A=1- EV;'I,
then we find that the eigenvalues of A are
k
Apg=1— ﬁ[(cus(prrh] = 1) + (cos(gwh) — 1)}

forp, g=1, 2, ..., m, where we have used the expression for the eigenvalues of V3 from Section 3.3.
Now the largest eigenvalue of the matrix A thus has magnitude O(k/h?) while the ones closest to the
origin are at 1+ O(k). As a result the condition number of A is O(k/h?). By contrast, the discrete
Laplacian V3 alone has condition number O(1/h?) as we found in Section 3.3. 'The smaller condition
number in the present case can be expected to lead to faster convergence of iterative methods.
Moreover, we have an excellent starting guess for the solution U"*! to (12.28), a fact that we can
use to good advantage with iterative methods but not with direct methods. Since U_.';'” = U} + O(k),

we can use U{;, the values from the previous time step, as initial values U.-[;)] for an iterative method.

We might do even better by extrapolating forward in time, using say U..';’] =205 - Uy !, or by using
an explicit method, say
Uil = (1 + k93U

This explicit method (forward Euler) would probably be unstable as a time-marching procedure if we
used only this with the value of k we have in mind, but it can be used successfully as a way to generate
initial data for an iterative procedure.

Because of the combination of a reasonably well-conditioned system and very good initial guess, we
can often get away with taking only one or two iterations in each time step, and still get globat second
order accuracy.

12.8 The LOD method

Rather than solving the coupled sparse matrix equation for all the unknowns on the grid simultaneously
as in (12.29), an alternative approach is to replace this fully-coupled single time step by a sequence
of steps, each of which is coupled in only one space direction, resulting in a set of tridiagonal systems
which can be solved much more easily. One example is the Locally One-Dimenstonal (LOD) method:

k .
Ujj U + 5(DRUG + DIU) (12.30)

ustt = U5+ g(D:;U,-‘,- + DIustt). (12.31)

166 Diffusion Equations

or, in matrix forni,

(1+-§D§) un (12.32)

ka2 e
(I—ED,)U
k 2 n
(1--,_;0,,)0 e

In (12.30) we apply Crank-Nicolson in the z-direction only, solving u, = u;; alone over time k, and
we call the result U°. Then in (12.31) we take this result and apply Crank-Nicolson in the y-direction
to it, solving u, = u,, alone, again over time &, Physically this corresponds to modeling diffusion in
the - and y-directions over time & as a decoupled process in which we first allow u to diffuse only in
the z-direction and then only in the y-direction. If the time steps are very short then this might be
expected to give similar physical behavior and hence convergence to the correct behavior as & — 0.
In fact, for the constant coefficient diffusion problem, it can even be shown that (in the absence of
boundaries at least) this alternating diffusion approach gives ezaclly the same behavior as the original
two-dimensional diffusion. Diffusing first in z alone over time & and then in y alone over time & gives
the samme result as if the diffusion occurs simultaneously in both directions.

Numerically there is a great advantage in using (12.32) and (12.33) rather than the fully coupled
(12:29). In (12.32) the unknowns U;; are coupled together only across each row of the grid. For any
fixed value of j we have a (ridiagonal system of equations to solve for U (i = 1, 2, ..., m). The
system obtained for each value of j is completely decoupled from the system obtained for other values
of j. Hence we have a set of m + 2 tridiagonal systems to solve (for j =0, 1, ..., m+ 1), each of
dimension m, rather than a single coupled system with m?® unknowns as in (12.29). Since cach of these
systems is tridiagonnl, it is easily solved in O(m) operations by Gaussian climination and there is no
need for iterative methods. (In the next section we will see why we need to solve these for j = 0 and
J=m+ 1 as well as at the interior grid points.)

Similarly, (12.31) decouples into n set of m tridiagonal systems in the y-directionfori = 1, 2, ..., m.
Hence taking a single time step requires solving 2m + 2 tridiagonal systems of size m, and thus O(m?)
work. Since there are m? grid points, this is the optimal ocder and no worse than an explicit method,
except for a constant factor.

k a) e
<I+§D;)U . (12.33)

12.8.1 Boundary conditions

In solving the second set of systems (12.31), we need boundary values U, and UJ5*" along the bottom
boundacy and U;,,,, and UM along the top boundary, for terms that go on the right-hand side
of each tridingonal system. T'he values at level n -+ 1 are available from the given boundary data for
the heat equation, by evaluating the boundary conditions ot time ¢,4) (assuming Dirichlet boundary
conditions are given). To obtain the values U}, we solve equation (12.30) for j = 0 and j = m+1 (along
the boundaries) in addition to the systems along each row interior to the grid.

In order to solve the first set of systems {12.30), we need boundary values U, and U, along the
left boundary and values U7, ; and Uy, 4, ; along the right boundary. The values at level n come
from the given boundary conditions, but we must determine the intermediate boundary conditions at
level « along these boundaries. It is not immediately clear what values should be used. One might be
tempted to think of level » as being half way between ¢, and .4y, since U® is generated in the middle
of the two-step procedure used to obtain U™*! from U™. If this were valid, then evaluating the given
boundary data at time ¢,/ = t, + k/2 might provide values for {/* on the boundary. This is not a
good idea, however, and would lead to a degredation of accuracy. ‘F'he problem is that in the first step,
equation (12.30) does not model the full heat equation over time A/2, but rather models part of the
equation (diffusion in z alone) over the full time step k. The values along the boundary will in general
evolve quite differently in the two different cases.

To determine proper values for Uy; and Uy 4, ;, we can use the equations (12.31) along the left
and right boundaries. At i = 0, for example, this equation gives a system of equations along the left
boundary that can be viewed as a tridiagonal linear system or the unknowns Uy, in terms of the values

R. J. LeVeque — AMath 685-6 Notes 167

Ul;;-“, which are alrendy known from the boundary conditions at time ¢{,4,. Note that we are solving
this equation backwards from the way it will be used in the second step of the LOD process on the
interior of the grid, and this works only because we already know U,;‘j“ from boundary data.

Since we are solving this equation backwards, we can view this ss solving the diffusion equation
up = uy, over a time step of length -k, backwards in time. This makes sense physically — the
intermediate solution U* represents what is obtained from U™ by doing diffusion in z alone, with no
diffusion yet in y. There are in principle two ways to get this, either by starting with U™ and diffusing
in z, or by starting with U"*+! and “undiffusing” in y. We are using the latter approach along the
boundaries to generate data for U*.

Equivalently we can view this as solving the backward heat equation u, = —~uy, over time k. This
tway be cause for concern, since the backward heat equation is ill-posed. However, since we are only
doing this over one time step starting with given values U,;}“ in each time step, this turns out to be a
stable procedure.

There is still a difficulty at the corners. In order to solve (12.31) for Ui =12 ..., m we
need to know the values of Uy, and Uy, that are the boundary values for this system. These can
be approximated using some sort of explicit and uncentered approximation to either u; = uy, starting
with U", or to u, = —uy, starting with U™*+!. For example we might use

. k
U = U&;H - "‘ﬁ(uﬂ:)“ . 2Un')‘|+l + Ul')!.'“)v

which uses the approximation to u, centered at (zq,y;).

Alternatively, rather than solving the tridiagonal systems obtained from (12.31) for Ug;y we could
simply use an explicit approximation to the backwards heat equation along this boundary,

k
1 1 1 1
Us, = Upt! - h—a(u(',f;'_, =205 + U3, (12.34)

forj =1, 2, ..., m. This eliminates the need for values of U* in the corners. Again, since this is not
iterated but only done starting with given (and presumably smooth) boundary data U™*! in each time
step, this yields a stable procedure.

12.8.2 Accuracy and stability

With proper treatient of the boundary conditions, it can be shown that the LOD method is second
order accurate. [t can also be shown that this method, like full Crank-Nicolson, is unconditionally
stable for any time step.

12.8.3 The ADI method

A modification of the LOD method is also often used, in which the two steps each involve discretization
in only one spatial direction at the advanced time level (giving decoupled tridiagonal systems again),
but coupled with discretization in the opposite direction at the old time level. The classical method of
this form is:

. L 2 Trre
Uy = Uj+5(DUj + D:Uy) (12.35)
] k 2rre]
UGt = UG+ 5(DU; + DU, (12.36)

This is called the Alternating Direction Imphcit (ADI) method and was first introduced by Douglas
and Rachford [DR56). This again gives decoupled tridiagonal systems to solve in each step:

k a2\,
(1-o2)o

(1 : ébz) yntt = (1+§Ds) U-. (12.38)

ko o\ .
(1 + 51),;) U (12.37)

168 Diffusion Equations

With this method, each of the two steps involves diffusion in both the z- and y-directions. In the
first step the diffusion in z is modelled implicitly while diffusion in y is modelled explicitly, with the
roles reversed in the second step. In this case each of the two steps can be shown to give a first-order
accurate approximation to the full heat equation over time &/2, so that U’ represents a first-order
accurate approximation to the solution at time t,.,/2. Because of the symmetry of the two steps,
however, the local error introduced in the second step almost exactly cancels the lacal error introduced
in the first step, so that the combined method is in fact second-order accurate over the full time step.

Because U® does approximate the solution at time t,4,/2 in this case, it is possible to simply
evaluate the given boundary conditions at time t,, (s, to generate the necessary boundary values for
U*. This will maintain second-order accuracy. A better error constant can be achieved by using slightly
modified boundary data which introduces the expected error in U° into the boundary data that should
be cancelled out by the second step.

12.9 Exercises

Exercise 12.1 Compule the dominani term in the truncation error of Crank-Nicolson.

B 4
Ll J FD Methods for Parabolic PDEs

L SRR

A linear PDE of the form
t; = Lu, (4.!)

where ¢ usually denotes the time and L is a linear elliptic differential operator
in one or more spatial variables, is called parabolic. Furthermore, the second-
order canonical form

a(x, iy + 2b(x, iy + ¢(x,)i, + lower-order terms = f(x, t)

is parabolic if 5> — ac =0 in the entire x - r domain. Note that, we can trans-
form this second-order PDE into a system of two PDEs by setting v = 1,, where
the r-derivative is first order. Some important parabolic PDE are as follows.

¢ 1D heat equation with a source
= tge + f(x,1).

The dimension refers to the space variable (x direction).
o General heat equation

=V - (8Vu) + f(x,1), 4.2)

where 3 is the diffusion coefficient and f(x, 1) is the source (or sink) term.
¢ Diffusion-advection equation

=V (AVu) +w-Vu+ f(x,1),

where V - (V) is the diffusion term and w - Vu the advection term.
o Canonical form of diffusion-reaction equation

=V (fVu) + f(x,t,u).

The nonlinear source term f'(x, £, u) is a reaction term.

78

FD Methods for Parabolic PDEs 79

The steady-state solutions (when 1, = 0) are the solutions of the corre-
sponding elliptic PDEs, ie,

V - (BVu) + f(x,4) =0

for the last case, assuming ll_1’n°1° F(x, t,u) =f(x, u) exists.

Initial and Boundary Conditions

In time-dependent problems, there is an initial condition that is usually spec-
ified at 1 =0, ie, u(x,0) = uy(x) for the above PDE, in addition to relevant
boundary conditions. If the initial condition is given at r= T#0, it can of
course be rendered at =0 by a translation (' =1 — T. Thus for the 1D heat
equation 1, = 1, on @ < x < b for example, we expect to have an initial condi-
tion at 1= 0 in addition to boundary conditions at x = a and x = b say. Note
that the boundary conditions at 1 = 0 may or may not be consistent with the
initial condition, e.g, if a Dirichlet boundary condition is prescribed at x =a
and x = b such that u(a,)= g,(¢) and u(b, t) = g:(t), then up(a) = g,(0) and
1i9(b) = £2(0) for consistency.

Dynamical Stability

The fundamental solution u(x.rf)=e¢"/4/\/4xt for the 1D heat equation
Uy = gy is uniformly bounded. However, for the backward heat equation u, =

lyy, if 1(x,0) 3 0 then lim,, 1(x, t) = 0o. The solution is said to be dynam-
ically unstable if it is not uniformly bounded, i.e, if there is no constant C> 0
such that |u(x, 1) < C. Some applications are dynamically unstable and “blow
up,” but we do not discuss how to solve such dynamically unstable problems in
this book, i.e., we only consider the numerical solution of dynamically stable
problems.

Some Commonly Used FD Methods

We discuss the following finite difference methods for parabolic PDE in this
chapter:

e the forward and backward Euler methods;

the Crank-Nicolson and 8 methods;

o the method of lines (MOL), provided a good ODE solver can be applied; and

o the alternating directional implicit (ADI) method, for high-dimensional
problems.

80 FD Methods for Parabolic PDEs

MOL
B8C BC
k+1 [4 e o o
k ® o e []
FW-CT BW-CT
=0 @ o o L
ic

Fig. 4.1. Diagram of the finite difference stencil for the forward and back-
ward Euler methods, and the MOL.

Finite difference methods applicable to elliptic PDEs can be used to treat the
spatial discretization and boundary conditions, so let us focus on the time dis-
cretization and initial condition(s). To consider the stability of the consequent
numerical methods, we invoke a Fourier transformation and von Neumann
stability analysis.

4.1 The Euler Methods
For the following problem involving the heat equation with a source term,
= Puec +f(x, 1), a<x<b, >0,
ua, =g, ub,0=g), u(x,0)=ux),

let us seek a numerical solution for u(x, r) at a particular time 7> 0 or at certain
times in the interval 0 < ¢t < T..
As the first step, we expect to generate a grid

Xi=a+ih, i=0/1,...,m h b q,
m
*f=kAl, k=0,1,...,n, At-g.

It turns out that we cannot use arbitrary At (even it may be small) for explicit
methods because of numerical instability concerns. The second step is to
approximate the derivatives with finite difference approximations. Since we
already know how to discretize the spatial derivatives, let us focus on possi-
ble finite difference formulas for the time derivative. In Figure 4.1, we sketch
the stencils of several finite difference methods.

4.1 The Euler Methods 81
4.1.1 Forward Euler Method (FW-CT)

At a grid point (x;, 1*), k > 0, on using the forward finite difference approxima-
tion for u, and central finite difference approximation for 1, . we have

u(x,, t* + Ar) — u(x;, 1%) u(xio1, 0%) = 2u(x, %) + u(xigy, 15)
At =h I

+f(xi, 1) + T(xi, tb).

The local truncation error is

n? . At :
ﬁ".\'x.\'.\'(-"iv ’L) + _-,'”ll(xiy ’A) ey

T('\h ,‘) == 12

where the dots denote higher-order terms, so the discretization is O(/2 + At).
The discretization is first order in time and second order in space, when the
finite difference equation is

Ut , - 2UF 4+ UF
[hz‘ i+ +j'L‘ (4'3)

o vk

At s

where f} = f(x,, *), with U* again denoting the approximate values for the true
solution u(x;, t*). When k = 0, U? is the initial condition at the grid point (x;, 0);
and from the values U* at the time level the solution of the finite difference
equation at the next time level k + 1 is

: : Uk, - 2UF + UF .
UM = UF 4 A (,3 =l /,2‘+ BLagk], =12, 0,m 1. (44)

The solution of the finite difference equations is thereby directly obtained from
the approximate solution at previous time steps and we do not need to solve
a system of algebraic equations, so the method is called explicit. Indeed, we
successively compute the solution at 1! from the initial condition at 1%, and then
at 1* using the approximate solution at 1'. Such an approach is often called a
time marching method.

Remark 4.1. The local truncation error of the FW-CT finite difference scheme
under our definition is

_u(x, t+ AL —u(x, 1)
- At

= O(h* + A1),

X = - - . ,’
_ﬂu(\’ h,1) 2"1‘;) fulx+h) =f{x1)

T(x,1)

82 FD Methads for Parubolic PDEs

In passing, we note an alternative definition of the truncation error in the
literature

T(x, 1) = u(x, 1+ A1) —u(x, 1) - At (ﬁ u(x=h 1) -2"5;;’ Jhli A, ~f(x, t))

-0 (A:(/F + Ar))
introduces an additional factor At, so it is one order higher in Ar.

Remark 4.2. If f(x,7)=0 and S is a constant, then from u, = B, and u,, =
BBy /Ot = B, [OX* = Bt cxx, the local truncation error is

T(x, 1) = (ﬂ'_A’ N ?_’11) texee + 0 (807 + 7). 4.5)

2 12
Thus if 3 is constant we can choose Ar=h2/(6f) to get O(h* + (A1)?) =
O(#*), i.c., the local truncation error is fourth-order accurate without further
computational complexity, which is significant for an explicit method.

It is easy to implement the forward Euler’s method compared with other
methods. Below we list some scripts of the Matlab file called FW_Euler_heat.m:

a=90; bel; m= 10; n=20;
h = (b-a] /m;
k = h*2/2; &k = h"2/1.9;

t = 0; tau = k/h*2;
for i=1:m+1,
x(1) = a + (i-1}*h; y1(i) = uexact(t,x(i)); y2(i) = 0;
end
plot(x,yl); hold

for j=1:n,
y1{1)=0; yl(m+l)=0;
for i=2:m
y2(i) = y1(i) + tau*(yl(i-1)-2+y2(i)+y21(i+2)) + k*£f(t,x(1));
end

plot(x,y2); pause(0.25)
t =t + k; yl = y2;
end

In the code above, we also plot the history of the solution. On testing the
forward Euler method with different At and checking the error in a problem
with a known exact solution, we find the method works well when 0 < Ar < gﬁ
but blows up when At > é% Since the method is consistent, we anticipate that

4.1 The Euler Mcethods 83

(@) (b}

b 04

o Lo

04 .
0 01 02 03 04 05 06 07 08 09 |
X

Fig. 42. (a) Plot of the computed solutions using two different time step
sizes and the exact solution at some time for the test problem. (b) Error plots
of the computed solution using the two different step sizes: one is stable and
the crror is small; the other one is unstable and the error grows rapidly.

this is a question of numerical stability. Intuitively, to prevent the errors in u,‘
being amplified, one can set
2

%—t<l, or 0<Atsg—ﬁ. (4.6)
This is a time step constraint, often called the CFL (Courant-Friedrichs-Lewy)
stability condition, which can be verified numerically. In Figure 4.2, we plot the
computed solution for a testing problem with g =1, f(x) = —sintsin(nwx) +
cos tsin(wx)m>. The true solution is u(x,t) = cossin(mx). We take 20 time
marching steps using two different time steps, one is At, =I?/2 (stable), and
the other one is At; = 24" (unstable). The left plots are the true solution at
n = 20A¢; and 17 = 20A¢;. The red lines are the history of the solution com-
puted using Aty = 2/i%, and the “*” indicates the computed solution at the grid
points for the final step. We see that the solution begin to grow and oscillates.
The plot of the blue line is the true solution at 7; = 20A¢; with the little “0” as
the finite difference solution at the grid points, which is first-order accurate. The
right figure is the error plots with the blue one (the error is small) for the com-
puted solution using At, = h%/2; while the black one for the computed solution
using At = 212, whose error grows rapidly and begin oscillates. If the final time
T gets larger, so is the error, which we call the phenomenon as a blow-up due
to the instability of the algorithm. The stability and the CFL condition of the
time step constraint are very important for explicit or semi-explicit numerical
algorithms.

0<

84 FD Mcthods for Parabolic PDEs
4.1.2 The Backward Euler Mecthod (BW-CT)

If the backward finite difference formula is used for v, and the central finite
difference approximation for u, at (x;, t*), we get

Uf—uf-l_ﬁuf;l—zuf+u,+l o k=12
Ar " (U

which is conventionally reexpressed as

MU_ gk UuR—auRtt L Ui
U =0 =l 1:2 BL Y k=0,1,.... @&7)

The backward Euler method is also consistent, and the discretization error is
again O(At + 1?).

Using the backward Euler method, we cannot get U“'l with a few simple
algebraic operations because all of the A""s are coupled together. Thus we
need to solve the following tridiagonal system of equations, in order to get the

approximate solution at the time level A + 1:

(1 +2p —p T -Ulk"'"
- V42 —p Uf""

=i 1 4+2p —p Uit

k+1
“H i "'2# —H Um

A+1
! o b2 LU

[UF+ A 4 pgh!
US + Arfi+!

US + DefiH
an)) (4'8)

Uk_, + Agfit]

m=2 n—2

k+1
m—l + A’j;n+l + “g

4.2 The Mcethod of Lines 85

where p = 9,—'%-’ and [} = f(x;, t**1). Note that we can use f(x;, 1*) instead of
S (xi, t5+1), since the method is first-order accurate in time. Such a numerical
method is called an implicit, because the solution at time level k + 1 are coupled
together. The advantage of the backward Euler method is that it is stable for
any choice of At. For 1D problems, the computational cost is only slightly more
than the explicit Euler method if we can use an efficient tridiagonal solver, such
as the Grout factorization method at cost O(5n) (¢f. Burden and Faires, 2010,
for example).

4.2 The Method of Lines

With a good solver for ODE or systems of ODEs, we can use the MOL to
solve parabolic PDEs. In Matlab, we can use the ODE Suite to solve a system
of ODEs. The ODE Suite contains Matlab functions such as ode23, ode23s,
odelSs, oded5, and others. The Matlab function ode23 uses a combination of
Runge-Kutta methods of order 2 and 3 and uses an adaptive time step size. The
Matlab function ode23s is designed for a stiff system of ODE.

Consider a general parabolic equation of the form

i (x, 1) = Lu(x,) + f(x,10),

where L is an elliptic operator. Let L), be a corresponding finite difference oper-
ator acting on a grid x; =a + . We can form a semidiscrete system of ODEs
of form

au,

5 = LaUin) = fil0),

where U;(1) ~ u(x;, t) is the spatial discretization of u(x, t) along the line x = x;,
i.e., we only discretize the spatial variable. For example, the heat equation with
a source i, = Butg, + fwhere L = 30° /9x is represented by L;, = 452, produces
the discretized system of ODE

BUI1) _ ,-20() + Us)

+ g;,(gl) +f(xl) ') 1

o n
.) - 2/)
aUl(’) — ﬂUl-l(l) "Ul’(,) + UH"(’) +f(xiy’)) i 2’ 3,...,’" 2,
ot 2
aUm-l(’) _ Um—?.(’) - 2Um--l(‘) gl(’) :
BT, - ﬂ h'_) + hg +f (xm I '} ’ (49)

86 FD Mecthods for Parabolic PDEs

and the initial condition is
Ui(0) = up(x,,0), i=12,....m~1. (4.10)

The ODE system can be written in the vector form

The MOL is especially useful for nonlinear PDEs of the form u, = f(8/9x, u,).
For linear problems, we typically have

v
where A is a matrix and c is a vector. Both 4 and ¢ may depend on .

There are many efficient solvers for a system of ODEs. Most are based on
high-order Runge-Kutta methods with adaptive time steps, e.g., ODE suite in
Matlab, or dsode.f available through Netlib. However, it is important to recog-
nise that the ODE system obtained from the MOL is typically stiff, i.e., the
eigenvalues of A4 have very different scales. For example, for the heat equation
the magnitude of the eigenvalues range from O(1) to O(1/h?). In Matlab, we
can call an ODE solver using the format

(t,y) = ode23s('yfun-mol', ([0, t_finall, yo0);

The solution is stored in the last row of y, which can be extracted using

[mr,nc) = size(y);
ysol = y(mr,:);

Then ysol is the approximate solution at time ¢ =_final, To define the ODE
system of the MOL, we can create a Matlab file, say yfun-mol.m whose contents
contain the following

function yp = yfun-mol(t,y)
global m h x
k = length(y); yp=size(k,1);
yp(1l) = (-2*y(1) + y(2))/(h*h) + £(t,x(1)) + gi(t)/(h*h);
for i=2:m-2
yp(i) = (y(i-1) -2*y(1) + y(2))/(h*h) + f(e,x(i));
end
yp(m-1) = (y(m-2) -2*y(m-1} }/(h*h) + £(t,x(i)) + g2{t)/(h*h);

where g1(1) and g2(r) are two Matlab functions for the boundary conditions at
x=aand x=b; and f(¢, x) is the source term.

4.3 The Crank Nicolson Scheme 87

The initial condition can be defined as

global m h x
for i=1l:m-1

yo{i) = u_0(x(i));
end

where 1(.x) is a Matlab function of the initial condition.

4.3 The Crank-Nicolson Scheme

The time step constraint At = /i /(2/3) for the explicit Euler method is generally
considered to be a severe restriction, e.g., if h = 0.01, the final time is 7= 10and
£ = 100, then we need 2 x 107 steps to get the solution at the final time. The
backward Euler method does not have the time step constraint, but it is only
first-order accurate. If we want second-order accuracy O(h*), we need to take
At = O(h?). One finite difference scheme that is second-order accurate both in
space and time, without compromising stability and computational complexity,
is the Crank-Nicolson scheme.

The Crank-Nicolson scheme is based on the following lemma, which can be
proved easily using the Taylor expansion.

Lemma 4.3. Let ¢(t) be a function that has continuous first- and second-order
derivatives, i.e., ¢(t) € C. Then

é(1) - ; (¢ (t - g) +¢ (H— ?)) + %u”(() +hot. (4.12)

Intuitively, the Crank-Nicolson scheme approximates the PDE

= (Bit) s +f(x,1)

at (v, ¥ + At/2), by averaging the time level r* and r**+! of the spatial
derivative V - (8Vu)) and f(x,). Thus it has the following form

UM — Uk ﬁf.%uf-n - (/3,-"_;_, +ﬁ‘f‘+%)Uf +ﬁf+% Uty
At - 22

BEIUL! — (BE + BERYURY 4 phutUk

The discretization is second order in time (central at ¢ + Ar/2 with step size
At/2) and second order in space. This can easily be seen using the following

88 FD Methods for Parabolic PDEs

relations, taking 5 = 1 for simplicity:

“(-\’, {+ Al) - ll(-\'. ’) 3 ll’(.\" t + A’/z) + % (ATI)‘ ll,,,(.\’, ! + At/z)

At
+0((anf),
x—ht) - 2u(x, X+ h,)
ulx—h1) 2"7(;2 DAMEERY _)+ 000,
- -2
u(x — ht + Ar) -u(x,’th;i- At) +ul(x+ It + Ar) (v, £+ AT) + OU),

% (un(.\', 1)+ ey, 0 + Ar)) = tree(x, 1+ At/2) + O((A1)?),

3 (700 + s+ 80) =714+ Arj2) + 0((A1)?).

At cach time step, we need to solve a tridiagonal system of equations to get
U,""“. The computational cost is only slightly more than that of the explicit
Euler method in one space dimension, and we can take At = /1 and have second-
order accuracy. Although the Crank-Nicolson scheme is an implicit method,
it is much more efficient than the explicit Euler method since it is second-
order accurate both in time and space with the same computational complexity.
A sample Matlab code crank.m is accompanied with the book. If we use a fixed
time step At =/, given a final time 7, we can easily get the number of time
marking steps as Nr = int(T/h) as used in the crank.m. In the next section, we
will prove it is unconditionally stable for the heat equation.

4.3.1 A Class of One-Step FD Methods: The 6-Method
The §-method for the heat equation 1, = u, +f(x, 7) has the following form:

U - Uk 2 k) K A+
SR 0 U + (1 - 082 UR 4 a4+ (1 - a)fA.

When @ = I, the method is the explicit Euler method; when 6 = 0, the method
is the backward Euler method; and when 6=1/2, it is the Crank-Nicolson
scheme. [f0 < 6 < 1/2, then the method is unconditionally stable, and otherwise
it is conditionally stable, i e, there is a time step constraint. The 6-method is
generally first order in time and second order in space, except for = 1/2.

The accompanying Matlab codes for this chapter included Euler, Crank-
Nicolson, ADI, and MOL methods.

4.4 Stubility Analysis for Time-Dependent Problens 89

4.4 Stability Analysis for Time-Dependent Problems

A standard approach to stability analysis of finite difference methods for time-
dependent problems is named after John von Neumann and based on the
discrete Fourier transform (FT).

4.4.1 Review of the Fourier Transform
Let us first consider the Fourier transform in continuous space. Consider u(x) €

s &
L*(~00,00), i e.,/ 1Pdx < o0 or [|ul|2 < oo. The Fourier transform is defined

o0

as

in(w) \/% / N e~ u(x)dx 4.14)

where i = /1, mapping u(x) in the space domain into «(w) in the frequency
domain. Note that if a function is defined in the domain (0, c0) instead of
(00, 00), we can use the Laplace transform. The inverse Fourier transform is

u(x) \/% ‘/; - ¢ Ni(w)dw . 4.15)

Parseval's relation: Under the Fourier transform, we have ||iif|» = ||u||> or

a2 <
|| dw = [1]°dx. 4.16)
o =00

From the definition of the Fourier transform we have

—

ot . ou . .
(Bw) ixu, P = iwii 4.17)

To show this we invoke the inverse Fourier transform

au(v) L[a“
\/’_ﬂ. e o dw

so that, since u(x) and i(w) are both in L?(—-00,00), on taking the partial
derivative of the inverse Fourier transform with respect to x we have

Bu(x)

"”‘" dw-—/ iwtie™~ dw .
\/ﬁ/ V2r

Then as the Fourier transform and its inverse are unique, Bu/a\' iwn. The
proof of the first equality is left as an exercise. It is easy to generalize the

90 FD Mc¢thods for Purabolic PDEs

equality, to set
&
oxm

i.e., we remove the derivatives of one variable,
The Fourier transform is a powerful tool to solve PDEs, as illustrated below.

(iw)" u (4.18)

Example 4.4. Consider
H+aug=0, —co<x<oo, >0, u(x,0)=uyx)

which is called an advection equation, or a one-way wave equation. This is a
Cauchy problem since the spatial variable is defined in the entire space and
1> 0. On applying the FT to the equation and the initial condition,

i +ane=0, or u + aiwi=0, i{w, 0) = fip{w)
ic., we get an ODE

iw,) = i(w, 0) ™" = fip(w) e~ "

for i1(w). The solution to the original advection equation is thus

w - -
u(x, 1) = _\/_15_._/ ™% fig(w) e~ duy
mJ-oo
1 Al
m / et(x=al) ﬁo(w) dw
-0
= u(x - at,0),

on taking the inverse Fourier transform. It is notable that the solution for the
advection equation does not change shape, but simply propagates along the
characteristic line x — ar =0, and that

lleell2 = llillz = || (e, 0)e™" || = flir(w, O) |2 = |luo]2 -
Example 4,5. Consider

;= P, ~00<x<00, >0, u(x,0)=up(x), liim u=0,
Xj—00

involving the heat (or diffusion) equation. On again applying the Fourier
transform to the PDE and the initial condition,

i = Fge, or fy=Pliw)it=—pwtit, iw,0)=ipWw),
and the solution of this ODE is

it(w, 1) =itfw, 0) e+ |

4.4 Stability Analysis for Time-Dependent Problems 91
Consequently, if 8 > 0, from the Parseval’s relation, we have
Lulla = fillz = | i, 0)e™ 71|12 < o]} .

Actually, it can be seen that lim, ||t1]|2 =0 and the second-order partial
derivative term is call a diffusion or dissipative. If 3 < 0, then lim,_, o0 |1t]|2 = 00,
the PDE is dynamically unstable.

Example 4.6. Dispersive waves.
Consider

aZm-H“ 32"'11

Ox2n+l + Ox2m + I.O.I.,

=

where m is a nonnegative integer. For the simplest case 1, = ticc, we have

-~ —A ~ _ . 3a _ . 3.
iy =Plicey, or u=p(iw)'i=—iwn,

and the solution of this ODE is
fi(w, 1) = it(w, 0) e~ |
Therefore,
eel2 = litll2 = (e, 0) |2 = [[at{w, 0},

and the solution to the original PDE can be expressed as

) l__ * Iy - 't
u(x,t) = e ip(w)e dw

V2r J o

1 / ® rw(x-w'r) -
¢ tg(w) dw .
Vv 27T fors))
Evidently, the Fourier component with wave number w propagates with velocity
w?, so waves mutually interact but there is no diffusion.

Example 4.7. PDEs with higher-order derivatives.
Consider

a9y

I = Qm + a'x“,.";;,"_j—l 1 1.0.’-,

where i1 is a nonnegative integer. The Fourier transform yields

—aw ™ 4 -« ifm=2k + 1,

i - i)+ - {

awi + -+ ifm =2k,

92 FD Methods for Purabolic PDEs
hence
{ i(w, 0) e~ 4 ... ifm=2k + 1,
u

i(w, 0) 2™ 4. ifm =2k

such that 1, = uy¢ and 1, = ~tixeee are dynamically stable, whereas 1, = — 1y,
and w, = iy, are dynamically unstable,

4.4.2 The Discrete Fourier Transform

Motivations to study a discrete Fourier transform include the stability analysis
of finite difference schemes, data analysis in the frequency domain, filtering
techniques, etc.

Definition 4.8. If ..., v_3,v_}, v, 1, V2,... denote the values of a continuous
function v(x) at x, = ih, the discrete Fourier transform is defined as

OO
WE) = \/% 3wttty (4.19)
Je=m

Remark 4.9.

o The definition is a quadrature approximation to the continuous case, i.c., we
approximate [by ¥, and replace dx by /.
e (&) is a continuous and periodic function of £ with period 27 //1, since

e--t_'[ll(€+21r/h) - e—l:ihfeﬂjrr - e—ifjll , (4.20)

so we can focus on ¥(€) in the interval [—= /h,7/h], and consequently have
the following definition.

Definition 4.10. The inverse discrete Fourier transform is

1 /ﬂ I &b
Vi e v(E) dE. @.21
RT3
Given any finite sequence not involving /,
Vi, V2,004, V0,
we can extend the finite sequence according to the following

...,0,0,v|,\'3,...,l’,41,0,0,...)

4.4 Stability Analysis for Time-Dependent Problems 93

and alternatively define the discrete Fourier and inverse Fourier transform as

)] 00 i M .
(&) Tae j}-me flu'j:;:o e % v, 4.22)
1 L
v i .[-n S (E) de 4.23)

We also define the discrete norm as

Ivlla= | > vh, (4.24)

j==ca

which is often denoted by | v||>. Parseval’s relation is also valid, i.c.,

w/h oo))
l#)2 = / He)de= S hiyf = vz, 4.25)

w/h j=—00

4.4.3 Definition of the Stability of a FD Scheme

A finite diflerence scheme PA,_;,V} = 0 is stable in a stability region A if for any
positive time T there is an integer J and a constant Cr independent of Ar and
fr such that

J
Ivlla < Crd_ (v, (4.26)

j=0
for any n that satisfies 0 <nAr < T with (At,h) € A.
Remark 4.11.

1. The stability is usually independent of source terms,

2. A stable finite difference scheme means that the growth of the solution is at
most a constant multiple of the sum of the norms of the solution at the first
J + | steps.

3. The stability region corresponds to all possible Ar and /4 for which the finite
difference scheme is stable.

The following theorem provides a simple way to check the stability of any
finite difference scheme.

Theorem 4.12. If |[v*+'|l, < |IvR|, is true for any k. then the finite difference
scheme is stable.

94 FD Methods for Purabolic PDEs

Proof: From the condition, we have
”V"”/, < ”v"_l "II <---< ”vl "/1 .< !Ivoalll ’

and hence stability for J=0and Cr=1.

4.4.4 The von Neumann Stability Analysis for FD Methods

The von Neumann stability analysis of a finite difference scheme can be
sketched briefly as Discrete scheme = discrete Fourier transform === growth
factor g(§) == stability (|g(€)(< 1?). We will also explain a simplification of
the von Neumann analysis.

Example 4.13. The forward Euler method (FW-CT) for the heat equation «, =
Blicc is

. Uk, —2UF + U
UM g g (D2 T T) BAL
h- h
From the discrete Fourier transform, we have the following
X L™ i
U / MU (€)dE 4.28
'j \/-2-; /b (5) € ()

) | w/h . 1 #/h g
vt L / FEH ke ge — L / N {6 Ve | (4,29
7+ \/2—7'_ /b (6) § \/'7— el (E) €, ()

and similarly

) | s
Uk, = — eIk £) de | 4.30
j=1 \/2—” /b (E) E ()
Substituting these relations into the forward Euler finite difference scheme, we
obtain

. 1
Uk =
i \/2_1f

On the other hand, from the definition of the discrete Fourier transform, we
also know that

w/h P
/ el (I +p(e % -2 + e’"’)) Hede. (a31)

n/h

) 1 w/h ;
Ukt = — / S A (£)dE . 4.32
=T Ln (6)dg (4.32)
The discrete Fourier transform is unique, which implies

ORI = (1 +u(e® — 24+ &) F(e) = glO) IME), (4.33)

4.4 Stability Analysis for Time-Dependent Problems 95
where
g(€) =1+ p(e™ " — 2 4 &t (4.34)

is called the growth factor. If |g(€)| < 1, then |U*+!| <|U* and thus [|UAY|, <
|U*1|,, so the finite difference scheme is stable.

Let us examine |g(£)| now. We have

2(&) = 1 + p(cos(—&h) — isin(€h) — 2 + cos(Eh) + isin(Eh))

5 @35)
=1+ 2u(cos(€h) — 1) =1 —4usin~(Eh)/2,
but we need to know when |g(£)] <1, or -1 < g(£) < 1. Note that
—1<1—4p<) - dpsin’(h)/2=g(£) <1, (4.36)

so on taking -1 <1 - 4u we can guarantee that |g(£)] < |, which implies the
stability. Thus a sufficient condition for the stability of the forward Euler
method is

2

I1<1-4u or 4u<2, or A< ,I;—ﬂ . 4.37)
Although we cannot claim what will happen if this condition is violated, it
provides an upper bound for the stability.

4.4.5 Simplification of the von Neumann Stability Analysis
Jor One-Step Time Marching Methods

Consider the one-step time marching method U**! = 7 (U*, U¥+"), The follow-
ing theorem provides a simple way to determine the stability.

Theorem 4.14. Let 6 = hE. A one-step finite difference scheme (with constant
coefficiems) is stable if and only if there is a constant K (independent of 9, Ad,
and h) and some positive grid spacing Atg and hy such that

g0, Ah)| <1+ KAt (4.38)

Jorall@andO < h <y Ifg(8, At, h) is independent of h and At, then the stability
condition (4.38) can be replaced by

g0 <I. (4.39)

Thus only the amplification factor g(/s€) = g(8) needs to be considered, as
observed by von Neumann.

96 FD Mcthods for Parabolic PDEs
The von Neumann stability analysis usually involves the following steps:

set U = ¢ and substitute it into the finite difference scheme;

express Uj"“H as Ut =g(€)el™, erc;

solve for g(£) and determine whether or when |g(€)| < | (for stability); but
note that

4. if there are some £ such that |g(€)| > 1, then the method is unstable.

oy =

Example 4.15. The stability of the backward Euler method for the heat
equation ut; = By, is

. . , . : BAt
U = U (UR) 20ROk, w=S o)
Following the procedure mentioned above, we have
g(£)el = i 1, (,_,i&lj- D _ 9l 4. ei€(1+l)h) 2(€)
= (1+ p (e“’f" 2+ e’f"i) 8(¢)), (4.41)
with solution
i
8(6) = 3 (e — 2 + eiéh)
! ! <1, (442)

T T n(2cos(hE) = 2) 1 + dpsini(h)/2

for any /1and At > 0. Obviously, —1 <0< g(€) so |g(€)] <1 and the backward
Euler method is unconditionally stable, i.c., there is no constraint on At for
stability.

Example 4.16. The Leapfrog scheme (two-stage method) for the heat equation
Uy =gy IS
U - Ukt U 20+ U,
B I '
involving the central finite difference formula both in time and space. This
method is unconditionally unstable! To show this, we use Uf it /403
to get

(4.43)

g(f)eijllf —_ E—(lz;eijhf + eiEjIl ('u(e-ifh -2+ eifll))

- ﬁe‘)"”"‘ ~ e sin®(he/2),

4.5 FD Mvthods and Analysis for 2D Parubolic Equations 97

yielding a quadratic equation for g(£):

(g(€))* + 4psin®(h€/2) g(€) — 1 =0. (4.44)

The two roots are

2(€) = —2usin®(h€/2) + \/4;13 sin*(h€/2) + 1,

and one root

g(6) = ~2usin’(hE/2) — \/4u? sin* (hE/2) + 1

has magnitude |g(€)| > 1. Thus there are £ such that [g(€)[> 1, so the method
is unstable,

4.5 FD Methods and Analysis for 2D Parabolic Equations
The general form of a parabolic PDE is

U+ a4+ aguy = (Pue)c + (Buy)y + £ + f(x,3,1),

with boundary conditions and an initial condition. We need 3 > 3, > O for the
dynamic stability. The PDE can be written as

w=Lu+f,

where L is the spatial differential operator. The MOL can be used provided
there is a good solver for the stiff ODE system. Note that the system is
large (O(mn)), if the numbers of grid lines are O(m) and O(n) in the x- and
y-directions, respectively.

For simplicity, let us consider the heat equation 1, =V - (8Vu) + f(x, y, 1)
and assume J is a constant. The simplest method is the forward Euler
method:

A A k 3 k k ¢
Ut = Uf + (U + Ul + Uiy + Ul - 4UL) + Adff,

98 FD Mcthods for Parabolic PDEs

where i = §At/I”. The method is first order in time and second order in space,
and it is conditionally stable. The stability condition is

2
At< ""—ﬁ. (4.45)

Note that the factor is now 4, instead of 2 for 1D problems. To show stability
using the von Neumann analysis with /=0, set

u,j_' = ei([/‘tfl+f,')fl) - ei&x (4.46)

where £ = &1, &|T and x = I/, h,4]7,
UEH =g(6), &) i€, (4.47)
Note that the index is / instead of i in the x-direction, to avoid confusion with

the imaginary unit i = /1.
Substituting these expressions into the finite difference scheme, we obtain

860 €2) = 1 - 4u (Sin*(€h/2) + sin®(E21/2)),
where /iy = h,. = /i for simplicity. If we enforce
1<l -8u<l —dp (sinz(g,h/z) + sinz(gglx/Z)) <1 -8y,

and take —1 <1 — Bu, we can guarantee that |g(£), &) < 1, which implies the
stability. Thus, a sufficient condition for the stability of the forward Euler
method in 2D is

8A13 I
_—r P
S 2, or At< B’

in addition to the condition A¢ > 0,

4.5.1 The Backward Euler Method (BW-CT) in 2D

The backward Euler scheme can be written as

A1 3 k+1 k+1 k+1 k41 k+1
Up™ = Uy _ Uy + Ui + UE + Uil - aug? Lk (4.48)

At n i

4.6 The ADI Method 99

which is first order in time and second order in space, and it is unconditionally
stable. The coefficient matrix for the unknown U,ﬁ“ !is block tridiagonal, and
strictly row diagonally dominant if the natural row ordering is used to index
the U,-';“ and the finite difference equations.

4.5.2 The Crank—Nicolson (C=-N) Scheme in 2D
The Crank-Nicolson scheme can be written as
Ut -ug (U,.“_*,jj + UMY+ USE + Ut - aust!

U] i+, ij+1 k41
+ /A
Ar h? Jy

[TS

Uk, + Uk, UK+ UK 405
4 iy T iy hl,zjl ij+] A fvé . (4.49)

Both the local truncation error and global error are O((Ar)? + h?). The scheme
is unconditionally stable for linear problems. However, we need to solve a sys-
tem of equations with a strictly row diagonally dominant and block tridiagonal
coefficient matrix, if we use the natural row ordering for both the equations and
unknowns.

A structured multigrid method can be applied to solve the linear system of
equations from the backward Euler method or the Crank-Nicolson scheme.

4.6 The ADI Method
The ADI is a time splitting or fractional step method. The idea is to use
an implicit discretization in one direction and an explicit discretization in
another direction. For the heat equation u, = + 1, + f(x, 3, 1), the ADI
method is

Y gk % ked okt ko (k
U.{} - Uk 20,7 4+ U, Ui =205+ Uy k)

i-llj_ U] '+lvj + "v]- o
(Ar)/2 h? 2 by
Kl o+ H) gkt c+4 k41 k+1 k4]
U’l... _“U,I; S Y=l 2Uij +Ving + Uiu—l _2Uij + Ui.H-l +jk+§
(a1)/2 i I .
(4.50)

which is second order in time and in space if u(x, y, 1) € C}(£2), where Q is
the bounded domain where the PDE is defined. It is unconditionally stable
for linear problems. We can use symbolic expressions to discuss the method,

100

FD Methods for Parubolic PDEs
rewritten as

kL +1
x>y 2 JJJU

+1 k +
Ujf=u,+ JU"‘ =Yt
AL

4.51)
1 L+q At k+l At +i
.U, + 5 8, Uf —2-/: .
Thus on moving unknowns to the left-hand side, in matrix-vector form we have

(- A’D) Ukt = (1+ Ay) Uk + A'F"*‘

(4.52)
(1 f’)U‘“ (1+A’)U“" %{F"*i,

leading to a simple analytically convenient result as follows. From the first
equation we get

-1 -1
Uk+H (1 ‘;’D) (/ A'D)U‘+(l—é' ,) %Fk‘"%,

and substituting into the second equation to have

-1
(1 2p)U“" (I+A'D)(I—- -‘3—’-0};) (1 £ p:)U"

(1+ Slp) (1 %Di) Bl g A'F"**

2 2
We can go further to get
(1 : %-’Di) (1-- ap)U*“ (1+ 910) (1+ Az’)u‘

At ls+1 At k+d
(I + 5 — Dy) 5 —F 2 F**1,
This is the equivalent one step time marching form of the ADI method, which

will be use to show the stability of the ADI method later. Note that in this
derivation we have used

At At At Ar
(l+ 2D) (1+——D) (I+TD") (l+ 250_')
and other commutative operations

4.6 The ADI Mcthod 101

4.6.1 Implementation of the ADI Algorithm

The key idea of the ADI method is to use the implicit discretization dimension
by dimension by taking advantage of fast tridiagonal solvers. In the x-direction,
the finite difference approximation is

o £ o k, O kel
U, = U+ ST 4 S Sl Uk + S
, .. . i ks
For a fixed j, we get a tridiagonal system of equations for o UZj Sy e

44
U:le. j» assuming a Dirichlet boundary condition at x=a and x=b. The

system of equations in matrix-vector form is

]
1+ - 11 7Y
.+%
p 142 —u U;!
. 1
p b+ 2u—p U;j*'! _
F,
pl4 20 —p 43
I o m=2,j
| -H Ly +}
L “m=1,j
where
[Al k4l) : . .)
Uy, + El u+' + pttpe(er,) ¥ (UF - 20+ U 1)
k+& : .
U§.1+ f +p (U - 208+ Us 1)
. Al kt+d .
= U + 7y b (U5 - 205+ US)
b+ : :
m—"; + j;"j- (ULm—Z.j—I - 2Ukm---!.j + Ufn - 2]+I)
Al k4l . .)
_U::-l../ + 2 -/;n—l Wi +u (my— 1, j~1 = 2U&m-l.j + Ur‘n-l.j-fl) +l‘“hr(bl)'j)k+§]
and y= BA' andj, : —f(r“") For each j, we need to solve a symmetric

tndmgonal system of equations. The cost for the x-sweep is about O(5nm).

102 FD Mecthods for Parabolic PDEs

4.6.1.1 A Pseudo-code of the ADI Method in Matlab

for j = 2:n, % Loop for fixed j
A = sparse(m-1,m-1); bezeros(m-1,1};
for i=2:m,
b{i-1) = (ul(i,3j-1) =2*ul(i,j) + ul(i,j+1))/h1l + ...
£(t2,x(i),y(3)) + 2*ul(i,j)/dt;
if i == 2
b(i-1) = b(i-1) + uexact(t2,x(i-1),y(j))/h1;
A(i-1,i) = -1/h1;
else
if i==m
b(i-1) = b(i-1) + uexact (t2,x(i+1),y{(j))/h1;
A(i-1,i-2) = -1/h1;
else
A(i-1,1{) = -1/h1;
A(i-1,i-2) = -1/h1;

end
end
A(i-1,i-1) = 2/dt + 2/h1;
end
ut = A\b; % Solve the diagonal matrix.
$--ureannans «~- loop in the y direction =--evecucmmmmcacnnaaa.

for i = 2:m,
A = gparse(m-1,m-1); bezeros(m-1,1);
for je2:n,
b(j-1) = (u2(i-1,3) -2*u2(i,3j) + u2{i+1,j))/h1 + .
£(t2,%x(i),y(§)) + 2+vu2(i,5j)/at;
if § o= 2
b{j-1) = b(j-1) + uexact(tl,x(i),y(j-1))/h1;
A(3-1,3j) = -1/h1;

else
if j==n
b(3-1) = b(j-1) + uexact(tl,x(i),y(j+1))/h1;
A(j-1,j-2) = -1/h1;
else

A(j-1,3) = -1/h1;
A(j-1,3-2) = -1/hl;
end
end
A{j-1,j-1) = 2/dt + 2/h1; % Solve the system
end
ut = A\b;

A Matlab test code adi.m can be found in the depository directory of this
chapter.

4.6 The ADI Mcthod 103
4.6.2 Consistency of the ADI Method
Adding the two equations in (4.50) together, we get
Ut - Ut
YU U g g
(A1)/2 L

and if we subtract the first equation from the second equation, we get

v (U + U et @y

' .
4U, " =2 (Ut + Uf) - A (Upt - Uf). (4.54)
Substituting this into (4.53) we get
At Ul\+l UL U‘+| - k!
((i 6,,6“) Y A Y =(6_3X+6f.,.) —"———- +f; 1, (4.55)

and we can clearly see that the discretization is second-order accurate in both
space and time, i.c, T = O((Ar)? +).

4.6.3 Stability Analysis of the ADI Method
Taking /= 0 and setting

Ulj: UG I+E»Ily), UII}'H =g(&1,6) ci((.h.l+£ghy‘)’ (4.56)
on using the operator form we have

Ar o, At Ar_ At
(- 52 (1- 48) up = (10408) (1+ 4 us

which yields,

(1-58) (1- 58 st e temiseia

A, A,] i
(] - 5&) (1 + 75)2}) GHE &)

After some manipulations, we get

(| - dpsin’(€, h/z)) (— dyusin(E2h/2)
g(&h{!) = e A
(I+ 4y sm'({,h/z)) (1+ dpusin®(E2h/2)

N N’
-

104 FD Mcthods for Parabolic PDEs

where p = 2—% and for simplicity we have set /i, = &, = h. Thus |g(£),&) <1,
no matter what Ar and / are, so the ADI method is unconditionally stable for
linear heat equations,

4.7 An [mplicit-Explicit Method for Diffusion
and Advection Equations

Consider a diffusion and advection PDE in 2D

u +w-Vu=V.(4Vu) + f(x,y,

where w is 22D vector, and V is the gradient ogerator in 2D, see page 48.
In this case, itNs not so easy to get a second-opfler implicit scheme such that
the coefficient miyrix is diagonally dominant gr symmetric positive or negative
definite, due to the\advection term w - Vi,/One approach is to use an implicit
scheme for the diffusion term and an explicit scheme for the advection term, of
the following form from time level 7% 16 (+1:

k+1 :
. At ¢ (Vi BVu)* + (V/,-SVI.")H’) +rRH
(4.57)
where
,“)k = % (w- V,,u)""’ , (4.58)
= Mittj = Mimhg, Bt Uij1 - u,-,,-_,,' =

20 !

2h,

(4.60)
Pkt 2.k)]
(V- avuht! - ﬂAT-=_—_§;— +2(w- Vu)¥*i (V. guu)k Dokt

