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INTRODUCTION

Few of the differential equations which provide mathematical models of

important dynamical systems in the engineering and natural sciences can be

solved exactly in terms of a finite number of the elementary functions [1].

Consequently, a variety of methods have been constructed to calculate

numerical solutions. In particular, the use of finite difference procedures

has played a significant role in this area [2–5]. However, a major difficulty

is the occurrence of numerical instabilities [2,6]. In general, numerical

instabilities are solutions to the discrete finite difference equations that do

not correspond to any solution of the original differential equations.

Examples of elementary forms of numerical instabilities include “ghost

solutions” when the step-size is too large for ordinary differential equations

[1,7], the change of linear stability properties of special solutions when the

order of the difference equations is larger than that of the differential

equations [7], and the creation of additional fixed-points [6,7]. Another

source of numerical instabilities occurs when the discrete equations do not

satisfy certain constraint conditions obeyed by the differential equations

[8,9]. Such constraints include conservation of energy, monotonicity,

boundedness, and positivity.

Almost all of the standard procedures yield schemes for which one or

more of the above indicated difficulties arise. Our research program for the

past decade has centered on the creation of new methods for constructing

finite difference schemes such that these problems either do not occur or are

minimized. We call these new procedures “nonstandard finite difference

schemes” (NSFD). The general evolution of this topic can be found by

examining the following Refs. [6,10,11].

The main purpose of this paper is to introduce the concept of NSFD

schemes, state the most important rules for their construction, and illustrate

their use by applying them to several well known differential equations.

The next section introduces the concept of an “exact finite difference

scheme” for a differential equation. Based on investigations related to

constructing exact schemes, the third section presents four fundamental

rules used in the construction of NSFD schemes. The fourth section applies

the rules to five nonlinear differential equations and briefly examines the

influence of having the discrete models satisfy certain a priori desired

constraints. Finally, in the last section, a general discussion is given on the
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current status of NSFD schemes and several outstanding problems are

presented.

EXACT FINITE DIFFERENCE SCHEMES

Consider a dynamical system described by a first-order scalar equation

du

dt
¼ f ðu; t; lÞ; uðt0Þ ¼ u0; ð2:1Þ

where l is the system parameters and f ðu; t; lÞ is such that a unique solution

exists for t0 # t , T : (Note that for many dynamical systems modeling

physical phenomena, T ¼ 1:) Let the solution to Eq. (2.1) be

uðtÞ ¼ fðl; u0; t0; tÞ; ð2:2Þ

with

fðl; u0; t0; t0Þ ¼ u0: ð2:3Þ

Denote a finite difference model of Eq. (2.1)

ukþ1 ¼ Fðl; h; uk; tkÞ; ð2:4Þ

where h ¼ Dt; tk ¼ hk; and uk < uðtkÞ: Let the solution of Eq. (2.4) written

in the form

uk ¼ cðl; h; u0; t0; tkÞ; ð2:5aÞ

with

cðl; h; u0; t0; t0Þ ¼ u0: ð2:5bÞ

Definition 2.1 Equations (2.1) and (2.4) are said to have the same

general solution if and only if

uk ¼ uðtkÞ; ð2:6Þ

for h . 0:

Definition 2.2 An exact finite difference scheme is one for which the

solution of the difference equation has the same general solution as the

associated differential equation.
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Theorem 2.1 The first order differential equation

du

dt
¼ f ðu; t; lÞ; uðt0Þ ¼ u0; ð2:7Þ

has an exact finite difference scheme given by

ukþ1 ¼ fðl; uk; tk; tkþ1Þ ð2:8Þ

where the function f is the same as that in Eq. (2.2).

Proof [6] The group property of the solutions to Eq. (2.7) gives [12]

uðt þ hÞ ¼ f½l; uðtÞ; t; t þ h�: ð2:9Þ

Making the substitutions

t ! tk; uðtÞ! uk; ð2:10Þ

in Eq. (2.9) gives

ukþ1 ¼ fðl; uk; tk; tkþhÞ; ð2:11Þ

which is a difference equation having the same general solution as Eq.

(2.7). Thus, the result given by Eq. (2.11) is an exact scheme for Eq.

(2.7). A

Note that this theorem can be directly generalized to systems of first-

order differential equations. If the solutions to Eq. (2.7) exist for all time,

i.e. T ¼ 1; then Eq. (2.8) holds for all t and h; otherwise, the relation is

assumed to hold when the right-side of Eq. (2.11) is defined.

A major consequence of the theorem is that given a system of coupled,

first-order ordinary differential equations, if the general solution is known,

then an exact finite difference scheme can be constructed. However, for

systems for which the general solution is unknown, the theorem provides

no guidance as to what the exact scheme is. But, one can study the structure

of exact schemes and examine the general observed properties to find hints

as to how to make improved constructions for the finite difference schemes

of differential equations. To date, this procedure has formed the basis of our

research program on nonstandard schemes.

To illustrate the construction of exact schemes, consider the decay

equation

du

dt
¼ 2lu; uðt0Þ ¼ u0; ð2:12Þ
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where the exact solution is

uðtÞ ¼ u0 e2lðt2t0Þ: ð2:13Þ

Applying the theorem, see the results in Eq. (2.10), we obtain for the exact

scheme

ukþ1 ¼ uk e2lh; ð2:14Þ

which can be rewritten to the form

ukþ1 2 uk

12e2lh

l

ÿ � ¼ 2luk: ð2:15Þ

This result is to be contrasted with the standard forward-Euler scheme

ukþ1 2 uk

h
¼ 2luk; ð2:16Þ

which is known to have numerical instabilities for h $ 1 [6].

The logistic differential equation, in its general form, is

du

dt
¼ l1u 2 l2u2; uðt0Þ ¼ u0: ð2:17Þ

Its exact solution is

uðtÞ ¼
l1u0

ðl1 2 u0l2Þexp½2l1ðt 2 t0Þ� þ l2u0

: ð2:18Þ

Making in Eq. (2.18) the substitutions

t0 ! tk; t ! tkþ1; u0 ! uk; uðtÞ! ukþ1; ð2:19Þ

gives, after some rearranging, the exact finite difference scheme

ukþ1 2 uk

e2l1h 2 1

l1

� � ¼ l1uk 2 l2ukþ1uk: ð2:20Þ

A somewhat more complicated situation occurs for two coupled, linear

equations with constant coefficients, i.e.

du

dt
¼ auþ bw;

dw

dt
¼ cuþ dw: ð2:21Þ

After a considerable number of algebraic manipulations, the following

exact finite difference scheme is found
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ukþ1 2 cuk

f
¼ auk þ bwk;

wkþ1 2 cwk

f
¼ cuk þ dwk; ð2:22Þ

where

c ¼
l1 el2h 2 l2 el1h

l1 2 l2

; f ¼
el1h 2 el2h

l1 2 l2

; ð2:23Þ

and, l1 and l2 are solutions of the characteristic equation

det
a 2 l b

c d 2 l

 !
¼ 0: ð2:24Þ

In particular, the damped harmonic oscillator equation

d2u

dt 2
þ 2e

du

dt
þ u ¼ 0; ð2:25Þ

has the system equations

du

dt
¼ w;

dw

dt
¼ 2u 2 2ew: ð2:26Þ

The corresponding exact finite difference scheme is

ukþ1 2 cuk

f
¼ wk;

wkþ1 2 cwk

f
¼ 2uk 2 2ewk; ð2:27Þ

where

c ¼
ee2ehffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 e 2
p þ e2eh cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 e 2
p

h
� �

; ð2:28aÞ

f ¼
e2ehffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 e 2
p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 e 2
p

h
� �

: ð2:28bÞ

In the form of a second order difference equation, we have

ukþ1 2 2uk þ uk21

f2

� �
þ 2e

uk 2 cuk21

f

� �

þ
2ð1 2 cÞuk þ ðf

2 þ c2 2 1Þuk21

f2

� �
¼ 0: ð2:29Þ
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For partial differential equations having exact solutions, the procedure

for obtaining exact finite difference schemes is somewhat modified from

that required for ordinary differential equations. Consider the one-

dimensional unidirectional wave equation with the initial value given over

21 , x , 1; i.e.

ut þ ux ¼ 0; uðx; 0Þ ¼ f ðxÞ: ð2:30Þ

The solution to this problem is

uðx; tÞ ¼ f ðx 2 tÞ: ð2:31Þ

Now the first order partial difference equation

ukþ1
m ¼ uk

m21; ð2:32Þ

has as its general solution an arbitrary function of ðm 2 kÞ [13], i.e.

uk
m ¼ Fðm 2 kÞ: ð2:33Þ

If we select Dx ¼ Dt; define tk ¼ ðDtÞk and xm ¼ ðDxÞm; and set uk
m ¼

uðxm; tkÞ; then Eqs. (2.30) and (2.32) have the general solutions for the

initial value problem. Consequently, Eq. (2.32) can be rewritten as

ukþ1
m 2 uk

m

fðDxÞ
þ

uk
m 2 uk

m21

fðDxÞ
¼ 0; Dt ¼ Dx; ð2:34Þ

where f(z ) is arbitrary, except for the condition

fðzÞ ¼ zþ Oðz2Þ: ð2:35Þ

Observe that a functional relation exists between the space and time step-

sizes. Likewise, the unidirectional wave equation having spherical

symmetry is [14]

›u

›t
þ

u

r
þ

›u

›r
¼ 0; ð2:36Þ

and the corresponding exact finite difference scheme is [14] for uk
m ¼

uðxm; rkÞ the expression

ukþ1
m 2 uk

m

Dt
þ

uk
m21

rm

þ
uk

m 2 uk
m21

Dr
¼ 0; Dt ¼ Dr: ð2:37Þ
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The addition of a nonlinear (logistic) reaction term, uð1 2 uÞ; to Eq. (2.30)

produces the equation

ut þ ux ¼ uð1 2 uÞ; uðx; 0Þ ¼ f ðxÞ; ð2:38Þ

considered as an initial value problem where f(x ) is assumed to have a first

derivative. The nonlinear transformation

uðx; tÞ ¼
1

wðx; tÞ
; ð2:39Þ

reduces Eq. (2.38) to the following linear, inhomogeneous equation

wt þ wx ¼ 1 2 w; ð2:40Þ

which can be readily solved to give

wðx; tÞ ¼ gðx 2 tÞe2t þ 1; ð2:41Þ

where g(z ) is arbitrary except for having a first derivative. Note that

gðxÞ ¼
1 2 f ðxÞ

f ðxÞ
; ð2:42Þ

thus

uðx; tÞ ¼
f ðx 2 tÞ

e2t þ ð1 2 e2tÞf ðx 2 tÞ
; ð2:43Þ

and

f ðx 2 tÞ ¼
e2tuðx; tÞ

1 2 ð1 2 e2tÞuðx; tÞ
: ð2:44Þ

Making the substitutions

x ! xm; t ! tk; uðx; tÞ! uk
m; ð2:45Þ

and using the fact that (see Eqs. (2.32) and (2.33))

f ðx 2 tÞ! f k
m; f kþ1

m ¼ f k
m21; ð2:46Þ

it follows, after some algebraic manipulations, that the exact scheme for

Eq. (2.38) is

ukþ1
m 2 uk

m

fðDtÞ
þ

uk
m 2 uk

m21

fðDxÞ
¼ uk

m21ð1 2 ukþ1
m Þ; ð2:47Þ
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where Dx ¼ Dt ¼ h; and

fðzÞ ¼ ez 2 1: ð2:48Þ

Since this expression is linear in ukþ1
m ; solving for it gives the explicit

scheme

ukþ1
m ¼

uk
m21

1þ ðeh 2 1Þuk
m21

; Dt ¼ Dx: ð2:49Þ

Based on these and many other examples, we have formulated a basic set

of modeling rules for constructing nonstandard schemes for differential

equations. These rules are given in the next section along with a brief

discussion of their practical significance.

RULES FOR CONSTRUCTING NONSTANDARD SCHEMES

A detailed study of Eqs. (2.15), (2.20), (2.27), and (2.47) shows that the

discrete derivative generally takes on a form more complicated than the

usual forward-Euler representation [2–5]. In fact, we have

du

dt
!

ukþ1 2 cuk

f
; ð3:1Þ

where c and f depend on the step-size Dt ¼ h and other parameters

occurring in the differential equation, and, in addition, satisfies the

conditions

c ¼ 1þ OðhÞ; f ¼ hþ Oðh2Þ: ð3:2Þ

The functions c and f vary from one equation to another and, at this stage

of the investigation, no clear a priori set of guidelines exist for determining

them. However, for particular classes of equations, some progress has been

made; see Refs. [15,16]. In most applications, c is usually selected to be

c ¼ 1; and f (called the “denominator function”) is determined by the

requirement of having the correct stability properties for special solutions

to the differential equations. The Refs. [15,16] show in detail how this can

be achieved for the class of scalar ODE’s

du

dt
¼ f ðuÞ: ð3:3Þ
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For these equations the nonstandard scheme is taken to be

ukþ1 2 uk

f
¼ f ðukÞ; ð3:4Þ

where f is given by

fðh;R* Þ ¼
1 2 e2R* h

R*
: ð3:5Þ

The value of R* is determined as follows. First, calculate the fixed-points of

Eq. (3.3), i.e.

f ð�uÞ ¼ 0: ð3:6Þ

Assume that Eq. (3.6) has I-real solutions and denote them by {�u ðiÞ; i ¼

1; 2; . . .; I}: Now define Ri as

Ri ;
df

du

����
u¼�u ðiÞ

; ð3:7Þ

and take R* to be

R* ; max{jRij; i ¼ 1; 2; . . .; I}: ð3:8Þ

Note that fðh;R* Þ has the properties

f ¼ hþ OðR* h2Þ; 0 , f ,
1

R*
: ð3:9Þ

The result given in Eq. (3.5) can be given a physical interpretation which

also leads to a fundamental understanding of what f represents. Consider a

dynamical system where the independent variable t is the time. It follows

that the Ri have units of inverse time and a set of time scales can be defined

by means of the relations

Ti ;
1

Ri

; i ¼ 1; 2; . . .; I; T * ¼
1

R*
: ð3:10Þ

Thus, T* corresponds to the smallest time scale and a simple calculation

shows that

0 , fðh; T * Þ , T * : ð3:11Þ
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Consequently, the function f can be interpreted as a “renormalized” or

“rescaled” time step-size such that its value is never larger than the smallest

time scale of the system. Since many of the mechanisms that lead to the

occurrence of numerical instabilities have their origin in using a step-size

that is greater than some relevant physical time scale, this method for

selecting f eliminates these type of instabilities. In other words, the use of

the function f, rather than just h, in Eq. (3.4), allows the value of h to be

much larger than one normally selected because it is the effective step-size

f that determines the stability and not the actual step-size h.

Another issue of great importance is that in general nonlinear terms are

modeled by discrete expressions that are nonlocal on the computational

grid. For example, the u 2 term in the logistic equation (2.17) is replaced by

ukþ1uk in the exact finite difference scheme, whereas conventional methods

would use the local form (uk)
2. A similar situation holds for the

unidirectional wave equation (2.38) and its exact scheme given in Eq.

(2.47) is

u2 ! uk
m21ukþ1

m : ð3:12Þ

Note that each factor of u is evaluated at a different discrete space and time

variables.

Based on these and other related results, the following rules for

constructing nonstandard schemes for differential equations have been

selected. The details behind these rules, as well as the required explanations

as to how they were derived, are given in Ref. [11], Chapter 1; also, see

Ref. [6].

Rule 1. The orders of the discrete derivatives should be equal to the

orders of the corresponding derivatives of the differential equations.

Comment 1. If the orders of the discrete derivatives are larger than those

occurring in the differential equations, then spurious solutions (numerical

instabilities) will occur [2,6].

Rule 2. Discrete representations for derivatives must, in general, have

nontrivial denominator functions.

Comment 2. The discrete first derivative, for example, takes the form

du

dt
!

ukþ1 2 uk

f
; ð3:13Þ

where c and f have the properties given by Eq. (3.2). This result can be

generalized to both partial and higher-order derivatives.
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Rule 3. Nonlinear terms should, in general, be replaced by nonlocal

discrete representations.

Comment 3. For the logistic differential equation the u 2 term was

replaced by ukþ1uk. However, sometimes more general forms may be

required, such as

u2 ¼ 2u2 2 u2 ! 2ðukÞ
2 2 ukþ1uk: ð3:14Þ

Rule 4. Special conditions that hold for the solutions of the differential

equations should also hold for the solutions of the finite difference scheme.

Comment 4. Numerical instabilities can occur when the finite difference

equations do not satisfy a condition that is of importance for the

corresponding differential equations. For example, for many dynamical

systems a condition of positivity holds for the dependent variables. If the

numerical scheme leads to solutions that can violate this condition, then

numerical instabilities will eliminate any possibility of obtaining

meaningful numerical results.

A nonstandard finite difference scheme is any discrete representation of a

system of differential equations that is constructed according to the above

rules. Note that in general nonstandard schemes do not correspond to exact

schemes. However, they do offer the opportunity of constructing schemes

such that many of the elementary numerical instabilities will not appear.

While the above stated rules do not lead to a unique discrete representation

of a particular set of differential equations, their application, along with an

a priori knowledge of significant properties of the solutions to the

differential equations, greatly restricts possible discrete models.

APPLICATIONS

In this section, we illustrate both the power and some of the weaknesses of

the current stage of constructing nonstandard finite difference schemes.

A Conservative Oscillator

For a single-degree-of-freedom, a general conservative oscillator can be

modeled by first writing down its energy function [17]

Eðx; _xÞ ¼
m_x2

2
þ UðxÞ ¼ constant; ð4:1Þ
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and then taking the time derivative to obtain the equation of motion, i.e.

dE

dt
¼ m€xþ

dU

dx

� �
_x ¼ 0; ð4:2Þ

or

m€xþ
dU

dx
¼ 0: ð4:3Þ

In these expressions m is the mass of the oscillator, U(x ) is the potential

energy function, m_x2=2 the kinetic energy and _x ; dx=dt: Inspection

shows that both Eqs. (4.1) and (4.3) are variant under the transformations

t ! 2t ðtime reversalÞ; ð4:4aÞ

t ! t þ t0 ðtime translationÞ: ð4:4bÞ

It can be shown that the discrete version of the energy function, �Eðxk; xk21Þ;

should be invariant under the indices interchange [18]

k$ k 2 1; ð4:5Þ

that is
�Eðxk; xk21Þ ¼ �Eðxk21; xkÞ: ð4:6Þ

Thus, given �Eðxk; xk21Þ; the discrete equation of motion is obtained by

applying the D operator to the energy equation �Eðxk; xk21Þ ¼ constant; i.e.

D �Eðxk; xk21Þ ¼ 0: ð4:7Þ

To illustrate this method consider the conservative Duffing equation

€xþ v2xþ ax2 þ bx3 ¼ 0; ð4:8Þ

where the energy function is

Eðx; _xÞ ¼
1

2

� �
ð_xÞ2 þ

v2

2

� �
x2 þ

a

3

� �
x3 þ

b

4

� �
x4: ð4:9Þ

A possible discrete energy function is [18]

�Eðxk; xk21Þ ¼
1

2

� �
xk 2 xk21

fðhÞ

� �2

þ
v2

2

� �
xkxk21 þ

a

3

� �
�

x2
kxk21 þ xkx2

k21

2

� �
þ

b

4

� �
x2

kx2
k21: ð4:10Þ
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From D �E ¼ 0; the equation of motion is obtained and is given by

xkþ1 2 2xk þ xk21

½fðhÞ�2
þ v2xk þ a

xkþ1 þ xk þ xk21

3

� �
xk

þ bx2
k

xkþ1 þ xk21

2

� �
¼ 0: ð4:11Þ

This finite difference scheme has several interesting features:

i) It is linear in xkþ1 and consequently, the scheme is explicit, i.e. given

xk and xkþ1, then xkþ2 can be determined.

ii) The discrete equation of motion is symmetric in xkþ1 and xk21; this is

related to the result given in Eqs. (4.5) and (4.6).

iii) Note the very nonlocal discrete representations for the x 2 and x 3

terms, i.e.

x2 !
xkþ1 þ xk þ xk21

3

� �
xk; x3 ! x2

k

xkþ1 þ xk21

2

� �
: ð4:12Þ

The above procedure can be generalized to the case of N-coupled

conservative oscillators [19].

Elementary Model for Combustion

The dynamical equation in this case is [20]

du

dt
¼ u2ð1 2 uÞ; uð0Þ ¼ u0 . 0: ð4:13Þ

There are three fixed-points

�u ð1Þ ¼ �u ð2Þ ¼ 0; �u ð3Þ ¼ 1: ð4:14Þ

Referring to Eqs. (3.7) and (3.8), we have

R1 ¼ R2 ¼ 0; R3 ¼ 1; R* ¼ 1; ð4:15Þ

and the denominator function

fðhÞ ¼ 1 2 e2h: ð4:16Þ
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Thus the discrete derivative is

du

dt
!

ukþ1 2 uk

1 2 e2h
: ð4:17Þ

Now u(t ) represents a nonnegative physical quantity, for example, the

density of the fuel, and thus the following condition must hold

uk $ 0) ukþ1 $ 0: ð4:18Þ

A way to enforce this requirement is to make the following replacements

for u 2 and u 3

u2 ! 2ðukÞ
2 2 ukþ1uk; u3ukþ1ðukÞ

2: ð4:19Þ

Placing these substitutions into Eq. (4.13) gives

ukþ1 2 uk

fðhÞ
¼ 2ðukÞ

2 2 ukþ1uk 2 ukþ1ðukÞ
2; ð4:20Þ

which when solved for ukþ1 is

ukþ1 ¼
ð1þ 2fukÞuk

1þ f½uk þ ðukÞ
2�
: ð4:21Þ

Equation (4.13) has the property that all solutions, for u0 . 0;

monotonically go to the value �u ð3Þ ¼ 1: This is because the fixed-points

ū(1) and ū(2) are unstable, while ū(3) is stable. Using the fact that f(h ), given

by Eq. (4.16) has the property

0 , fðhÞ , 1; h . 0; ð4:22Þ

it is easy to show that the one dimensional map, Eq. (4.21), has exactly the

same properties as the solutions to the combustion equation, i.e.

(1) Equation (4.21) has three fixed-points located at �u ð1Þ ¼ �u ð2Þ ¼ 0 and

�u ð3Þ ¼ 1:

(2) The first two fixed-points are unstable, while the third is stable.
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(3) For u0 . 0; the uk monotonically approach �u ð3Þ ¼ 1: Observe that

these three properties hold for all h . 0: Thus, the qualitative behavior

of the numerical solution has the correct properties independently of

the value of the step-size!

HIV Transmission and Control

Nonstandard schemes have been used to numerically integrate a coupled,

nonlinear system of ordinary differential equations used to understand the

transmission and control of HIV [21,22]. The particular equations to be

presented are based on the work of Gumel et al. [23].

The model studies four sub-populations, namely: the untreated

susceptible population, Su; the vaccinated susceptible population, Sv; the

untreated infected population, Yu; and the treated (given a drug such as

AZT) infected population, Yv. The total size of the sexually-active

population is taken to be

NðtÞ ¼ SuðtÞ þ SvðtÞ þ YuðtÞ þ YvðtÞ: ð4:23Þ

The dynamics of this system is given by the following four equations:

dSu

dt
¼ ð1 2 peÞp 2 mSu 2

cðb1Yu þ b2YvÞSu

Su þ Sv þ Yu þ Yv

þ vSv; ð4:24Þ

dSv

dt
¼ pep 2 mSv 2 vSv 2

cð1 2 peÞðb1Yu þ b2YvÞSv

Su þ Sv þ Yu þ Yv

; ð4:25Þ

dYu

dt
¼

cðb1Yu þ b2YvÞSu

Su þ Sv þ Yu þ Yv

2 mYu 2 d1Yu 2 tYu; ð4:26Þ

dYv

dt
¼

cðb1Yu þ b2YvÞSv

Su þ Sv þ Yu þ Yv

2 mYv 2 d2Yv þ tYu: ð4:27Þ

Our nonstandard scheme for Eqs. (4.24)–(4.27) is

Skþ1
u 2 Sk

u

h
¼ ð1 2 peÞp 2 mSkþ1

u 2
cðb1Yk

u þ b2Yk
vÞS

kþ1
u

Sk
u þ Sk

v þ Yk
u þ Yk

v

þ vSk
v; ð4:28Þ

Skþ1
v 2 Sk

v

h
¼ pep 2 mSkþ1

v 2 vSkþ1
v 2

cð1 2 peÞðb1Yk
u þ b2Yk

vÞS
kþ1
v

Skþ1
u þ Sk

v þ Yk
u þ Yk

v

; ð4:29Þ
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Ykþ1
u 2 Yk

u

h
¼

c b1ð2Yk
u 2 Ykþ1

u Þ þ b2Yk
v

� �
Skþ1

u

Skþ1
u þ Skþ1

v þ Yk
u þ Yk

v

2 mYkþ1
u 2 d1Ykþ1

u 2 tYkþ1
u ;

ð4:30Þ

Ykþ1
v 2 Yk

v

h
¼

cb1Ykþ1
u Skþ1

v þ cb2ð2Yk
v 2 Ykþ1

v ÞSkþ1
v

Skþ1
u þ Skþ1

v þ Ykþ1
u þ Yk

v

2 mYkþ1
v 2 d2Ykþ1

v þ tYkþ1
u : ð4:31Þ

The parameters (b1, b2, c, d1, d2, p, m, e, p, t, v ) are all positive. These

equations can be, respectively, solved for the dependent variable at the

discrete-time tkþ1. Carrying out this calculation gives four equations of the

form

Skþ1
u ¼ FðSk

u; S
k
v; Y

k
u; Y

k
vÞ; ð4:32Þ

Skþ1
v ¼ GðSkþ1

u ; Sk
v; Y

k
u; Y

k
vÞ; ð4:33Þ

Ykþ1
u ¼ HðSkþ1

u ; Skþ1
v ; Yk

u; Y
k
vÞ; ð4:34Þ

Ykþ1
v ¼ IðSkþ1

u ; Skþ1
v ; Ykþ1

u ; Yk
vÞ: ð4:35Þ

The structure of these equations are such that if the values for

ðSk
u; S

k
v; Y

k
u; Y

k
vÞ are nonnegative, then their values are nonnegative at tkþ1.

To obtain numerical solutions, Skþ1
u is calculated from ðSk

u; S
k
v; Y

k
u; Y

k
vÞ;

Skþ1
v is next determined by using this value for Skþ1

u and those of ðSk
v; Y

k
u; Y

k
vÞ

in Eq. (4.33). Subsequent calculations repeat this process for Ykþ1
u and

Ykþ1
v : In summary, given ðSk

u; S
k
v; Y

k
u; Y

k
vÞ; the calculation of the dependent

variables at the tkþ1, discrete-time, proceeds in the order

Skþ1
u ! Skþ1

v ! Ykþ1
u ! Ykþ1

v : ð4:36Þ

Extensive numerical simulations were carried out using realistic estimates

for the various parameters. For purposes of comparison, the RK4 method

was used to also solve the initial value problem, i.e. the S0
u; S0

v; Y0
u; and Y0

v

are given. In all of the tests, the above derived nonstandard scheme

outperformed the standard RK4 method.

It should be noted that our nonstandard scheme used a simple forward-

Euler approximation for the first-order time derivatives. For this system the

use of a more complex denominator function was not required. The

NONSTANDARD FINITE SCHEMES 839

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
U
t
r
e
c
h
t
]
 
A
t
:
 
1
1
:
2
2
 
1
8
 
A
p
r
i
l
 
2
0
1
1



standard selection, fðhÞ ¼ h; worked quite well. As a check, the numerical

simulations were run with h in the range, 0:001 # h # 106; and in each

case the nonstandard scheme always gave solutions that converged to the

correct fixed-point.

Fisher Equation

Another of the famous partial differential equations used to test numerical

integration methods is the Fisher equation

ut ¼ uxx þ uð1 2 uÞ: ð4:37Þ

The physically relevant solutions are those that satisfy the condition

0 # uðx; 0Þ # 1) 0 # uðx; tÞ # 1; t . 0: ð4:38Þ

We would like to have the nonstandard scheme also satisfy this requirement.

A possible nonstandard finite difference scheme for the Fisher equation is

ukþ1
m 2 uk

m

Dt
¼

uk
mþ1 2 2uk

m þ uk
m21

ðDxÞ2
þ 2�uk

m 2 ukþ1
m 2 �uk

mukþ1
m ; ð4:39Þ

where the simplest choice was made for the two denominator functions, i.e.

f1ðDtÞ ¼ Dt; f2ðDxÞ ¼ ðDxÞ2; ð4:40Þ

and the variable �uk
m is defined to be

�uk
m ;

uk
mþ1 þ uk

m þ uk
m21

3
: ð4:41Þ

Note that the following discrete, nonlocal representations were used for the u

and u 2 terms,

u ¼ 2u 2 u ! 2�uk
m 2 uk

m; u2 ! �uk
mukþ1

m : ð4:42Þ

Since ukþ1
m appears linearly in Eq. (4.39), it can be solved for to obtain the

explicit scheme, for R ¼ Dt=ðDxÞ2 ¼ 0:5;

ukþ1
m ¼

ð0:5Þðuk
mþ1 þ uk

m21Þ þ ð2DtÞ�uk
m

1þ Dt þ ðDtÞ�uk
m

: ð4:43Þ

In general, only the restriction R # 0:5 is required to enforce the positivity

condition.
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An important feature of this scheme is that its solutions also satisfy a

boundedness condition; see Eq. (4.38). The proof of this result is very

direct. First, require uk
m to have the property 0 # uk

m # 1: From this it

follows that

1

2

� �
ðuk

mþ1 þ uk
m21Þ # 1; ð4:44Þ

and

ð2DtÞ�uk
m ¼ ðDtÞ�uk

m þ ðDtÞ�uk
m # Dt þ ðDtÞ�uk

m: ð4:45Þ

Adding Eqs. (4.44) and (4.45) gives

1

2

� �
ðuk

mþ1 þ uk
m21Þ þ ð2DtÞ�uk

m # 1þ Dt þ ðDtÞ�uk
m: ð4:46Þ

Dividing the inequality by 1þ Dt þ ðDtÞ�uk
m; gives

1
2

ÿ �
ðuk

mþ1 þ uk
m21Þ þ ð2DtÞ�uk

m

1þ Dt þ ðDtÞ�uk
m

# 1: ð4:47Þ

However, the left-side of the expression in Eq. (4.47) is ukþ1
m : Consequently,

it follows (by induction) that

0 # u0
m # 1) 0 # uk

m # 1; k $ 1; ð4:48Þ

and all relevant values of m.

The following nonlinear equation has been used study propagation

problems related to laminar flow in combustion [25]

ut ¼ uxx þ u2ð1 2 uÞ: ð4:49Þ

This equation is a modified Fisher equation and the techniques used for that

equation can be applied to it. A possible nonstandard scheme is obtained by

making the following replacements [9]

u2 ¼ 2u2 2 u2 ! uk
mþ1

ÿ �2
þ uk

m21

ÿ �2
2

uk
mþ1 þ uk

m21

2

� �
ukþ1

m ; ð4:50aÞ

u3 !
ðuk

mþ1Þ
2 þ ðuk

m21Þ
2

2

� �
ukþ1

m ; ð4:50bÞ
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ut !
ukþ1

m 2 uk
m

Dt
; uxx !

uk
mþ1 2 2uk

m þ uk
m21

ðDxÞ2
: ð4:50cÞ

Making these substitutions into Eq. (4.49) and solving for ukþ1
m gives

ukþ1
m ¼

R uk
mþ1 þ uk

m21

ÿ �
þ ðDtÞ ðuk

mþ1Þ
2 þ ðuk

m21Þ
2

� �
þ ð1 2 2RÞuk

m

1þ Dt
2

ÿ �
uk

mþ1 þ ðu
k
mþ1Þ

2 þ uk
m21 þ ðu

k
m21Þ

2
� �

ð4:51Þ

where R ¼ Dt=ðDxÞ2: Examination of Eq. (4.51) shows that if uk
m is

nonnegative, then ukþ1
m will also be nonnegative provided

1 2 2R $ 0: ð4:52Þ

Selecting the equal sign, the following relation holds between the step-sizes

Dt ¼
ðDxÞ2

2
; ð4:53Þ

and Eq. (4.51) becomes

ukþ1
m ¼

ð0:5Þ uk
mþ1 þ uk

m21

ÿ �
þ ðDtÞ ðuk

mþ1Þ
2 þ ðuk

m21Þ
2

� �
1þ Dt

2

ÿ �
uk

mþ1 þ ðu
k
mþ1Þ

2 þ uk
m21 þ ðu

k
m21Þ

2
� � : ð4:54Þ

It can be demonstrated that [9]

0 # uk
m # 1) 0 # ukþ1

m # 1; ð4:55Þ

for fixed k and over all values of m. Consequently, the above nonstandard

scheme satisfies both the positivity and boundedness conditions.

Simple Isothermal Chemical System

In dimensionless form the dynamics of a simple isothermal chemical

system can be modeled by the following pair of nonlinear partial

differential equations [26]
ut ¼ uxx 2 uw; ð4:56Þ

wt ¼ wxx þ uw 2 hw; ð4:57Þ

where h is a positive parameter. Twizell et al. [26] made a detailed study of

various explicit and implicit finite difference schemes for these equations.

They concluded that finite difference schemes can produce chaotic
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behavior in the numerical solutions, in spite of the fact that these

differential equations are not expected to have such behaviors for their

solutions. We have constructed nonstandard schemes and find no chaotic

solutions. The scheme used for numerical experiments is given by the

following expressions

ukþ1
m 2 uk

m

Dt
¼

uk
mþ1 2 2uk

m þ uk
m21

ðDxÞ2
2 ukþ1

m uk
m; ð4:58Þ

wkþ1
m 2 wk

m

Dt
¼

wk
mþ1 2 2wk

m þ wk
m21

ðDxÞ2

þ 2uk
mwk

m 2 uk
mwkþ1

m 2 hwkþ1
m : ð4:59Þ

Solving for ukþ1
m and wkþ1

m gives

ukþ1
m ¼

Rðuk
mþ1 þ uk

m21Þ þ ð1 2 2RÞuk
m

1þ ðDtÞwk
m

; ð4:60Þ

wkþ1
m ¼

Rðwk
mþ1 þ wk

m21Þ þ ð2DtÞuk
mwk

m þ ð1 2 2RÞwk
m

1þ ðDtÞðhþ uk
mÞ

: ð4:61Þ

Note that the positivity requirement is satisfied if

1 2 2R $ 0) Dt #
ðDxÞ2

2
: ð4:62Þ

In our numerical experiments, we used R ¼ 0:5 [27].

An alternative expression can be obtained by replacing uk
m with ukþ1

m in

Eqs. (4.59) and (4.61). In this case, ukþ1
m is calculated first and then used to

determine wkþ1
m :

Unplugged Van Der Pol Equation

The van der Pol equation with no energy input, i.e. “unplugged”, takes the

form [28]

€xþ x ¼ 2mx 2 _x; ð4:63Þ

where _x ¼ dx=dt; etc.; and m is a positive parameter. Using an energy

argument, it can be shown that all solutions to Eq. (4.63) oscillate with an

amplitude that monotonically goes to zero.
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The application of elementary methods of numerical integration to Eq.

(4.63) do not give results that are consistent with the known properties of its

solutions. In fact, the forward Euler method produces a scheme for which

the fixed point in the ðx; y ¼ _xÞ phase space is always unstable [29]. Thus,

for this method, the dynamics of the discrete equations are clearly

inconsistent with those of the original equation (4.63). However, the direct

application of nonstandard techniques leads to a scheme that is dynamically

consistent with the differential equation.

To proceed, rewrite Eq. (4.63) in the following system form

dx

dt
¼ y 2

m

3

� �
x3;

dy

dt
¼ 2x: ð4:64Þ

The scheme selected for Eq.(4.64) is

xkþ1 2 xk

f
¼ yk 2

m

3

� �
x3

k ;
ykþ1 2 yk

f
¼ 2xkþ1; ð4:65Þ

with

f ¼ 2 sin
h

2

� �
; h ¼ Dt: ð4:66Þ

Eliminating the yk variable gives a second-order equation for xk, i.e.

xkþ1 2 2xk þ xk21

f2
þ xk ¼ 2m

x2
k þ xkxk21 þ x2

k21

3

� �
xk 2 xk21

f

� �
: ð4:67Þ

Note that the x 2 expression in Eq. (4.64) was replaced by

x2 !
x2

k þ xkxk21 þ x2
k21

3
; ð4:68Þ

and that the first-order time derivative is modeled by a backward-Euler

representation. Our numerical experiments showed that the nonstandard

scheme of Eq. (4.65) gave solutions with the correct dynamical behavior.

Also, we were able to obtain a restriction on the maximum step-size, h*,

that could be used. For the initial conditions

xð0Þ ¼ x0; _xð0Þ ¼ 2yð0Þ ¼ 0; ð4:69Þ

this was

h* ¼
6

mx2
0

: ð4:70Þ
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DISCUSSION

Nonstandard finite difference schemes are beginning to have an impact on

the field of the numerical integration of differential equations. In particular,

such schemes have been constructed and applied to the wave and

Maxwell’s equations [30], subsurface biobarrier formation in porous media

[31,32], and convective–dispersive transport problems with nonlinear

reaction [33]. Further, initial work has begun on placing the mathematical

foundation of the subject on a firm basis [34,35]. To date our investigations

have centered on constructing nonstandard schemes that incorporate the

important dynamical properties of the original differential equations such

as positivity and/or conservation requirements. We have not attempted to

find, in some sense, the best or optimal discrete models for the differential

equations. However, there does exist strong hints as to how to proceed with

this task [36].

In conclusion, we list several problems for which further work is needed:

(1) A very difficult problem is the construction of a proper nonstandard

scheme for systems of ordinary differential equations when a fixed-

point exists with neutral stability.

(2) Partial differential equations having nonlinear advection and/or

diffusion terms occur in the mathematical modeling of many systems

in the chemical, biological, and engineering sciences [24]. Very little

work has been done on constructing nonstandard schemes for such

equations. In particular, it would be of interest to determine if schemes

can always be constructed such that they are “explicit” in the

dependent variables. We have already demonstrated that this is the

case if a linear advection term is present [37]. For one-space

dimension, the general scalar equation takes the form

ut þ ½f ðuÞ�x ¼ ½DðuÞux�x þ gðuÞ; ð5:1Þ

where g(u ) is the reaction term, D(u ) is a dependent variable diffusion

function, and f(u ) is a nonlinear function of u.

(3) Finally, all of these procedures, obtained and studied for one-space

dimension need to be generalized to higher dimensional systems.

Preliminary work suggests that while this is possible, the algebraic and

other calculational details increase rapidly with the space-dimension

number [38].
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