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Solutions for Tutorial 5

Exercise 5.1
Consider the advection equation

ut + cux = 0. (1)

Show that for the CTCS-method (Leapfrog’) the local truncation error is of the
form

τ = −1/6∆t2uttt|ni − c

6
∆x2uxxx|ni +H.O.T in ∆t and ∆x. (2)

Solution:
Taylor expanding the solution around (xi, t

n) we obtain

un±1
i = un

i ±∆tut|ni +
∆t2

2
utt|ni ± ∆t3

3!
uttt|ni +H.O.T in ∆t, (3)

un
i±1 = un

i ±∆xux|ni +
∆x2

2
uxx|ni ± ∆x3

3!
uxxx|ni +H.O.T in ∆x, (4)

By substituting the above expansions into the difference equation we have

2∆tut|ni + ∆t3

3 utt|ni +H.O.T in ∆t

2∆t
+ c

2∆xux|ni + ∆x3

3 uxxx|ni +H.O.T in ∆x

2∆x
,

(5)

Because u satisfies the PDE hence (ut + cux)|ni = 0, simplifying the above
equation gives the local truncation error

τ = −1/6∆t2uttt|ni − c

6
∆x2uxxx|ni +H.O.T in ∆t and ∆x. (6)

Exercise 5.2
Compute the local truncation error for the Lax-Friedrichs method when

applied to advection equation.

Solution:
The Lax-Friedrichs for (1) reads

un+1
j − 1

2 (u
n
j−1 + un

j+1)

∆t
+ c

un
j+1 − un

j−1

2∆x
= 0, (7)
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Taylor expanding the solution around (xi, t
n) we obtain

un±1
i = un

i ±∆tut|ni +
∆t2

2
utt|ni +H.O.T in ∆t, un

i±1 = un
i ±∆xux|ni +

∆x2

2
uxx|ni +H.O.T in ∆x,

(8)

By substituting the above expansions into the difference equation we have

∆tut|ni + ∆t2

2 utt|ni +H.O.T in ∆t− [un
i + ∆x2

2 uxx|ni +H.O.T in ∆x]

∆t
+

∆xux|ni + ∆x3

3! uxxx|ni +H.O.T in ∆x

∆x
(9)

Because u satisfies the PDE hence (ut + cux)|ni = 0, simplifying the above
equation gives the local truncation error

τ = −∆tutt|ni +
∆x2

2∆t
uxx|ni − c

6
∆x2uxxx|ni +H.O.T in ∆t and ∆x. (10)

Exercise 5.3
Use the Von Neumann stability analysis to discuss the (in)stability of the

Leapfrog method for PDE (1)

Solution:
Let r = a∆t

∆x , the Leapfrog scheme can be rewritten as

un+1
j = un−1

j − r(un
j+1 − un

i−1), (11)

By substituting un
j = gnexp(ij∆xα) in to the above equation, we have

g2 = 1− rg(exp(i∆xα)− exp(−i∆xα)), (12)

which implies that

g± = −irsin(∆xα)±
√
1− r2sin(∆xα). (13)

To determine the stability we consider two cases:

• |r| > 1: worst case for sin(∆xα) = 1, hence

|g±| = −i(r ∓
√
r2 − 1), with |g−| > 1. Hence, the scheme is unstable.

• |r| ≤ 1: |g±| = (−rsin(∆xα))2 + (1 − r2sin2(∆xα)) = 1, ∀j, hence the
scheme is stable for all |r| ≤ 1.

Exercise 5.4 Consider the advection equation

ut + cux = 0. (14)

Find a modified PDE for which the Lax-Wendroff method applied to PDE (14)
gives an O(∆t3) approximation.
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Solution: The derivation of a modified PDE is similar to computing the local
truncation error. Now we insert v(x, t) into the FD equation to derive a PDE
that v(x, t) satisfies exactly, thus

v(x, t+∆t) = v(x, t)− c∆t

2∆x
(v(x+∆x, t)− v(x−∆x, t)) +

∆t2

2∆x2
c2(v(x+∆x, t)− 2v(x, t) + v(x−∆x, t))

(15)

Expanding the terms in Taylor series about (x, t) and simplifying yields

vt +
∆t

2
vtt +

∆t2

6
vttt +O(∆t3) = −cvx − c∆x2

6
vxxx +

∆tc2

2
vxx +O(∆t∆x2),

(16)

Then we have

vtt = −cvxt +O(∆t,∆x) = c2vxx +O(∆t,∆x) (17)

vttt = −c3vxxx +O(∆t,∆x) (18)

so the leading modified PDE is

vt + cvx = −c∆x2

6
(1− (

c∆t

∆x
)2)vxxx (19)

Exercise 5.5
Compute the local truncation error for the Beam-Warming method when

applied to advection equation:

Solution:
Taylor expanding the solution around (xi, t

n) we obtain

un±1
i = un

i ±∆tut|ni +
∆t2

2
utt|ni ± ∆t3

3!
uttt|ni +H.O.T in ∆t, (20)

un
i±1 = un

i ±∆xux|ni +
∆x2

2
uxx|ni ± ∆x3

3!
uxxx|ni +H.O.T in ∆x, (21)

By substituting the above expansions into the difference equation we have

∆tut|ni +
∆t2

2
utt|ni +

∆t3

6
uttt +O(∆t4) = − c∆t

2∆x
(2∆xux|ni − 2∆x3

3
uxxx|ni +O(∆x4))

(22)

+
c2∆t2

2∆x2
(∆x2uxx −∆x3uxxx|ni +

7∆x4

12
uxxxx|ni +O(∆x5)), (23)

Because u satisfies the PDE hence (ut + cux)|ni = 0, and

utt = (−cux)t = c2uxx, (24)
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thus we have utt|ni = c2uxx|ni , simplifying the above equation gives the local
truncation error

τ =
c∆x2

3
uxxx|ni − c2∆t∆x

2
uxxx|ni − ∆t2

6
uttt +H.O.T in ∆t and ∆x. (25)

Exercise 5.6
Show that the Beam-Warming method is stable for 0 ≤ c∆t

∆x ≤ 2, if we
assume that c > 0.

Solution:
Let λ = c∆t

∆x , by substituting un
j = gnexp(ijξ) into the FD equation, we have

obtained an isolate expression for the amplification factor g:

g = 1− λ

2
(3− 4exp(−iξ) + exp(−2iξ)) +

λ2

2
(1− 2exp(−iξ) + exp(−2iξ)),

(26)

since

exp(iξ) = cos(ξ) + i sin(ξ), (27)

cos(2ξ) = 2 cos2(ξ)− 1, sin(2ξ) = 2 sin(ξ)cos(ξ), (28)

we obtain

g = iλ2 sin(ξ) cos(ξ)− iλ2 sin(ξ) + λ2 cos2(ξ) + iλ sin(ξ) cos(ξ)− λ2 cos(ξ)
−2iλ sin(ξ) + λ cos2(ξ)− 2λ cos(ξ) + λ+ 1,

We compute the norm of g by summing the squares of the real and imaginary
part. The scheme is stable if |g|2 ≤ 1, ∀ξ. Preceding conditions gives the
following form

λ(λ− 2)(λ+ 1)2(cos(ξ)− 1)2 ≤ 0, (29)

thus it implies the Beam-Warming scheme is stable if

λ =
c∆t

∆x
≤ 2. (30)

Exercise 5.7
Show the amplification factor of the upwind method applied to advection

equation.

Solution:
By substituting un

j = gnexp(ij∆xξm) in to the above equation, we have

g − 1 +
c∆t

∆x
(1− exp(−i∆xξm)) = 0 (31)
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Thus

|g| = |1− c∆t

∆x
+

c∆t

∆x
exp(−iξm∆x) (32)

= |(1− λ) + λexp(−iξm∆x)| (33)

= |1− λ(1− cos(∆xξm))− iλsin(∆xξm)| (34)

with magnitude

|g|2 = 1− 2(1− λ)λ(1− cos(∆xξm)), (35)

since c > 0, so if 1− λ ≥ 0 we have |g| ≤ 1, then this method is stable.

Exercise 5.8
Apply FTCS scheme to the linear advection equation. Illustrate this i a

figure with stencils in the x− t domain and with characteristics of the PDE.

Solution:
The FTCS scheme for linear advection equation reads

un+1
j − un

j

∆t
+ c

un
j+1 − un

j−1

2∆x
= 0, (36)

when |c∆t
∆x | ≤ 1 the scheme satisfies the CFL condition. However, substituting

un
j = gnexp(ij∆xα) in to the scheme, we have

g = (1− i
c∆t

∆x
sin(∆xα)) (37)

since

|g| =
√
1 + (

c∆t

∆x
)2sin2(∆xα) ≥ 1 (38)

doesn’t satisfy von Neumann condition, thus it is always unstable.
Below we illustrate this in a figure with stencils in the x− t domain and with

characteristics of the PDE
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Exercise 5.9 Draw the domains of numerical and physical dependence for the
FTBS and FTFS scheme applied to the linear advection equation.

Solution:
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