Numerical Methods for Time-Dependent PDEs

Spring 2024

Solutions for Tutorial 5

Exercise 5.1
Consider the advection equation

uy + cuy, = 0. (1)

Show that for the CTCS-method (Leapfrog’) the local truncation error is of the
form

7= —1/6Aug|" — %Aﬁumw +H.O.T in At and Ax. (2)

Solution:
Taylor expanding the solution around (x;,t"™) we obtain

At? At3

Ax? Ax3 .
upp = ul £ Azug |} + Tumw + Tumxw +H.0.T in Ax, (4)

By substituting the above expansions into the difference equation we have

20t |7 + Ay |7 + H.O.T in At | 2Avull + A2y ee|? + HO.T in Ax
2At ‘ 2z ’
(5)

Because u satisfies the PDE hence (u; + cug)|? = 0, simplifying the above
equation gives the local truncation error

7= —1/6Au|7 — gmﬂumw +H.O.T in At and Ax. (6)

Exercise 5.2
Compute the local truncation error for the Lax-Friedrichs method when
applied to advection equation.

Solution:
The Lax-Friedrichs for (1) reads

ntl 1/ mn n no_
uj 5(ul_y +uj+1)+cuj+1 u

At 2Ax

n
7j—1

=0, (7)



Taylor expanding the solution around (z;,t™) we obtain

nEl n n At? n : n n n Az? n :
upT =l £ Atug|? 4+ 7”tt|i +H.O.T in At,ulyy = ul' £ Azu,|} + Tumh +H.O.T in Ax,

(8)

By substituting the above expansions into the difference equation we have

Atug|? + AthuttW +H.O.T in At — [ul + Af Uz | + H.O.T in Ax] N Azug ! + Ag—fuwwm|f +H.0.T in Ax
At Azx
(9)

Because u satisfies the PDE hence (u; + cu,)|? = 0, simplifying the above
equation gives the local truncation error

Az?

= —Atuy|" + =2
T unli + 557

tno? = £ A%y, | + HOT in At and Ax.  (10)

Exercise 5.3
Use the Von Neumann stability analysis to discuss the (in)stability of the
Leapfrog method for PDE (1)

Solution:

Let r = ‘Z—A;, the Leapfrog scheme can be rewritten as

ur.LJrl 1

o,
J = Uy

—r(ufy —uiy), (11)
By substituting u} = g"exp(ijAra) in to the above equation, we have

> =1 —rg(exp(iAza) — exp(—iAza)), (12)
which implies that

g+ = —irsin(Aza) £ /1 — r2sin(Aza). (13)
To determine the stability we consider two cases:

e |r| > 1: worst case for sin(Aza) = 1, hence
lg+| = —i(r F vr? — 1), with |[g—| > 1. Hence, the scheme is unstable.

o |r] < 1: |gi| = (—rsin(Aza))? + (1 — r%sin®(Aza)) = 1, V9, hence the
scheme is stable for all |r| < 1.
Exercise 5.4 Consider the advection equation
ug + cuy, = 0. (14)

Find a modified PDE for which the Lax-Wendroff method applied to PDE (14)
gives an O(At3) approximation.



Solution: The derivation of a modified PDE is similar to computing the local
truncation error. Now we insert v(z,t) into the FD equation to derive a PDE
that v(x,t) satisfies exactly, thus

cAt At?

—_— p— p— —_— 2 — p—
Az (v(z + Az, t) — v(z — Az, t)) + TNk (v(x 4+ Az, t) — 2v(x,t) + v(x — Az, t))

(15)

v(x, t+ At) = v(z,t) —

Expanding the terms in Taylor series about (x,t) and simplifying yields

2 2 2
Ut + %U“ + ATt’Uttt + O(Atj) = —CUgx — CAix’U$zz + A%’UII + O(AtASC2),
(16)
Then we have
v = —cvg + O(AL, Az) = Augy + O(At, Ax) (17)
Uttt = _Csvwzw + O(At? A.’E) (18)
so the leading modified PDE is
cAz? cAt
Ut + CUyp = — 6 (1- (E)Q)Umx (19)

Exercise 5.5
Compute the local truncation error for the Beam-Warming method when
applied to advection equation:

Solution:
Taylor expanding the solution around (x;,t") we obtain

n A2 A
U?il = ’LL;L + Atut“L + TUtt“L + ?utttly + H.O.T in At, (20)
Ax? Az

By substituting the above expansions into the difference equation we have

At? At3 cAt 203
Atutw + TU’ttnL + Tum + O(At4) = 72A{1§ (QACU’LLx"Zn - Tumx\? + O(ACE4))
(22)
ZAt? TAz?
62 o (80P — AvPug, |} + T;ummw +O(ALY)), (23)
Because u satisfies the PDE hence (u; + cu,)|? = 0, and
Uy = (—cug)t = gy, (24)



thus we have uy|! = c?u,,|?, simplifying the above equation gives the local
truncation error

Ax? 2ALA At?
;o e 390 Ugga|? — ST > L el — e+ HO.T in At and Ax.(25)

Exercise 5.6
Show that the Beam-Warming method is stable for 0 < c% < 2, if we
assume that ¢ > 0.

Solution:
Let A = %‘;, by substituting u} = g"exp(ij€) into the FD equation, we have
obtained an isolate expression for the amplification factor g:

2
g=1-— %(3 — dexp(—i€) + exp(—2i&)) + %(1 — 2exp(—i€) + exp(—2i&)),

(26)
expli€) = cos(€) + isin(¢), (27)
cos(2¢) = 2cos?(€) — 1, sin(2¢) = 2sin(§)cos(€), (28)
we obtain

g = iAZsin(€) cos(&) — iAZsin(€) + A2 cos?(€) + iAsin(€) cos(€) — A2 cos(€)
—2iAsin(€) + Acos?(€) — 2Acos(€) + A + 1,

We compute the norm of g by summing the squares of the real and imaginary
part. The scheme is stable if |g|? < 1, V. Preceding conditions gives the
following form

A =2) (A +1)%(cos(¢) —1)2 <0, (29)
thus it implies the Beam-Warming scheme is stable if

cAt
A= —<2. 30
Ax — (30)
Exercise 5.7
Show the amplification factor of the upwind method applied to advection
equation.

Solution:
By substituting u} = g"exp(ijAxE,,) in to the above equation, we have

Al

-1
g +A:E

(1 - exp(~iAag,,)) = 0 (31)



Thus

A A
ol = 1= o+ T exp(—itnA) (32
= |(1 = A) + dexp(—i&mAx)| (33)
=11 = A1 — cos(Az&,,)) — idsin(AxE,, )| (34)
with magnitude
lg]> =1 —2(1 = A)A(1 — cos(Az&,y)), (35)

since ¢ > 0, so if 1 — A > 0 we have |g| < 1, then this method is stable.

Exercise 5.8
Apply FTCS scheme to the linear advection equation. Illustrate this i a
figure with stencils in the z — ¢ domain and with characteristics of the PDE.

Solution:
The FTCS scheme for linear advection equation reads

+1
i e N 25 el = R (36)
At 2Azx ’

when |c%\ <1 the scheme satisfies the CFL condition. However, substituting
u? = g"exp(ijAra) in to the scheme, we have

cAt
g=(1- ZA—xsm(Ama)) (37)
since
cAt
= “=")24ip2 >
gl \/1 + ( Aat) sin”(Aza) > 1 (38)

doesn’t satisfy von Neumann condition, thus it is always unstable.
Below we illustrate this in a figure with stencils in the x — ¢ domain and with
characteristics of the PDE
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Exercise 5.9 Draw the domains of numerical and physical dependence for the
FTBS and FTFS scheme applied to the linear advection equation.

Solution:
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