Numerical Methods for Time-Dependent PDEs

 Spring 2024
Solutions for Tutorial 5

Exercise 5.1

Consider the advection equation

$$
\begin{equation*}
u_{t}+c u_{x}=0 . \tag{1}
\end{equation*}
$$

Show that for the CTCS-method (Leapfrog') the local truncation error is of the form

$$
\begin{equation*}
\tau=-1 /\left.6 \Delta t^{2} u_{t t t}\right|_{i} ^{n}-\left.\frac{c}{6} \Delta x^{2} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t} \text { and } \Delta \mathrm{x} . \tag{2}
\end{equation*}
$$

Solution:

Taylor expanding the solution around $\left(x_{i}, t^{n}\right)$ we obtain

$$
\begin{gather*}
u_{i}^{n \pm 1}=u_{i}^{n} \pm\left.\Delta t u_{t}\right|_{i} ^{n}+\left.\frac{\Delta t^{2}}{2} u_{t t}\right|_{i} ^{n} \pm\left.\frac{\Delta t^{3}}{3!} u_{t t t}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t}, \tag{3}\\
u_{i \pm 1}^{n}=u_{i}^{n} \pm\left.\Delta x u_{x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} u_{x x}\right|_{i} ^{n} \pm\left.\frac{\Delta x^{3}}{3!} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{x}, \tag{4}
\end{gather*}
$$

By substituting the above expansions into the difference equation we have

$$
\begin{equation*}
\frac{\left.2 \Delta t u_{t}\right|_{i} ^{n}+\left.\frac{\Delta t^{3}}{3} u_{t t}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t}}{2 \Delta t}+c \frac{\left.2 \Delta x u_{x}\right|_{i} ^{n}+\left.\frac{\Delta x^{3}}{3} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{x}}{2 \Delta x} \tag{5}
\end{equation*}
$$

Because u satisfies the PDE hence $\left.\left(u_{t}+c u_{x}\right)\right|_{i} ^{n}=0$, simplifying the above equation gives the local truncation error

$$
\begin{equation*}
\tau=-1 /\left.6 \Delta t^{2} u_{t t t}\right|_{i} ^{n}-\left.\frac{c}{6} \Delta x^{2} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t} \text { and } \Delta \mathrm{x} . \tag{6}
\end{equation*}
$$

Exercise 5.2

Compute the local truncation error for the Lax-Friedrichs method when applied to advection equation.

Solution:

The Lax-Friedrichs for (1) reads

$$
\begin{equation*}
\frac{u_{j}^{n+1}-\frac{1}{2}\left(u_{j-1}^{n}+u_{j+1}^{n}\right)}{\Delta t}+c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}=0, \tag{7}
\end{equation*}
$$

Taylor expanding the solution around $\left(x_{i}, t^{n}\right)$ we obtain
$u_{i}^{n \pm 1}=u_{i}^{n} \pm\left.\Delta t u_{t}\right|_{i} ^{n}+\left.\frac{\Delta t^{2}}{2} u_{t t}\right|_{i} ^{n}+$ H.O.T in $\Delta \mathrm{t}, u_{i \pm 1}^{n}=u_{i}^{n} \pm\left.\Delta x u_{x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} u_{x x}\right|_{i} ^{n}+$ H.O.T in $\Delta \mathrm{x}$,

By substituting the above expansions into the difference equation we have
$\frac{\left.\Delta t u_{t}\right|_{i} ^{n}+\left.\frac{\Delta t^{2}}{2} u_{t t}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t}-\left[u_{i}^{n}+\left.\frac{\Delta x^{2}}{2} u_{x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{x}\right]}{\Delta t}+\frac{\left.\Delta x u_{x}\right|_{i} ^{n}+\left.\frac{\Delta x^{3}}{3!} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{x}}{\Delta x}$

Because u satisfies the PDE hence $\left.\left(u_{t}+c u_{x}\right)\right|_{i} ^{n}=0$, simplifying the above equation gives the local truncation error

$$
\begin{equation*}
\tau=-\left.\Delta t u_{t t}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2 \Delta t} u_{x x}\right|_{i} ^{n}-\left.\frac{c}{6} \Delta x^{2} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t} \text { and } \Delta \mathrm{x} . \tag{10}
\end{equation*}
$$

Exercise 5.3

Use the Von Neumann stability analysis to discuss the (in)stability of the Leapfrog method for PDE (1)

Solution:

Let $r=\frac{a \Delta t}{\Delta x}$, the Leapfrog scheme can be rewritten as

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n-1}-r\left(u_{j+1}^{n}-u_{i-1}^{n}\right) \tag{11}
\end{equation*}
$$

By substituting $u_{j}^{n}=g^{n} \exp (i j \Delta x \alpha)$ in to the above equation, we have

$$
\begin{equation*}
g^{2}=1-r g(\exp (i \Delta x \alpha)-\exp (-i \Delta x \alpha)) \tag{12}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
g_{ \pm}=-i r \sin (\Delta x \alpha) \pm \sqrt{1-r^{2} \sin (\Delta x \alpha)} \tag{13}
\end{equation*}
$$

To determine the stability we consider two cases:

- $|r|>1$: worst case for $\sin (\Delta x \alpha)=1$, hence
$\left|g_{ \pm}\right|=-i\left(r \mp \sqrt{r^{2}-1}\right)$, with $\left|g_{-}\right|>1$. Hence, the scheme is unstable.
- $|r| \leq 1:\left|g_{ \pm}\right|=(-r \sin (\Delta x \alpha))^{2}+\left(1-r^{2} \sin ^{2}(\Delta x \alpha)\right)=1, \quad \forall j$, hence the scheme is stable for all $|r| \leq 1$.

Exercise 5.4 Consider the advection equation

$$
\begin{equation*}
u_{t}+c u_{x}=0 \tag{14}
\end{equation*}
$$

Find a modified PDE for which the Lax-Wendroff method applied to PDE (14) gives an $\mathcal{O}\left(\Delta t^{3}\right)$ approximation.

Solution: The derivation of a modified PDE is similar to computing the local truncation error. Now we insert $v(x, t)$ into the FD equation to derive a PDE that $v(x, t)$ satisfies exactly, thus

$$
\begin{equation*}
v(x, t+\Delta t)=v(x, t)-\frac{c \Delta t}{2 \Delta x}(v(x+\Delta x, t)-v(x-\Delta x, t))+\frac{\Delta t^{2}}{2 \Delta x^{2}} c^{2}(v(x+\Delta x, t)-2 v(x, t)+v(x-\Delta x, t)) \tag{15}
\end{equation*}
$$

Expanding the terms in Taylor series about (x, t) and simplifying yields

$$
\begin{equation*}
v_{t}+\frac{\Delta t}{2} v_{t t}+\frac{\Delta t^{2}}{6} v_{t t t}+\mathcal{O}\left(\Delta t^{3}\right)=-c v_{x}-\frac{c \Delta x^{2}}{6} v_{x x x}+\frac{\Delta t c^{2}}{2} v_{x x}+\mathcal{O}\left(\Delta t \Delta x^{2}\right) \tag{16}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& v_{t t}=-c v_{x t}+\mathcal{O}(\Delta t, \Delta x)=c^{2} v_{x x}+\mathcal{O}(\Delta t, \Delta x) \tag{17}\\
& v_{t t t}=-c^{3} v_{x x x}+\mathcal{O}(\Delta t, \Delta x) \tag{18}
\end{align*}
$$

so the leading modified PDE is

$$
\begin{equation*}
v_{t}+c v_{x}=-\frac{c \Delta x^{2}}{6}\left(1-\left(\frac{c \Delta t}{\Delta x}\right)^{2}\right) v_{x x x} \tag{19}
\end{equation*}
$$

Exercise 5.5

Compute the local truncation error for the Beam-Warming method when applied to advection equation:

Solution:

Taylor expanding the solution around $\left(x_{i}, t^{n}\right)$ we obtain

$$
\begin{gather*}
u_{i}^{n \pm 1}=u_{i}^{n} \pm\left.\Delta t u_{t}\right|_{i} ^{n}+\left.\frac{\Delta t^{2}}{2} u_{t t}\right|_{i} ^{n} \pm\left.\frac{\Delta t^{3}}{3!} u_{t t t}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{t} \tag{20}\\
u_{i \pm 1}^{n}=u_{i}^{n} \pm\left.\Delta x u_{x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} u_{x x}\right|_{i} ^{n} \pm\left.\frac{\Delta x^{3}}{3!} u_{x x x}\right|_{i} ^{n}+\text { H.O.T in } \Delta \mathrm{x} \tag{21}
\end{gather*}
$$

By substituting the above expansions into the difference equation we have

$$
\begin{align*}
\left.\Delta t u_{t}\right|_{i} ^{n} & +\left.\frac{\Delta t^{2}}{2} u_{t t}\right|_{i} ^{n}+\frac{\Delta t^{3}}{6} u_{t t t}+\mathrm{O}\left(\Delta t^{4}\right)=-\frac{c \Delta t}{2 \Delta x}\left(\left.2 \Delta x u_{x}\right|_{i} ^{n}-\left.\frac{2 \Delta x^{3}}{3} u_{x x x}\right|_{i} ^{n}+\mathcal{O}\left(\Delta x^{4}\right)\right) \\
& +\frac{c^{2} \Delta t^{2}}{2 \Delta x^{2}}\left(\Delta x^{2} u_{x x}-\left.\Delta x^{3} u_{x x x}\right|_{i} ^{n}+\left.\frac{7 \Delta x^{4}}{12} u_{x x x x}\right|_{i} ^{n}+\mathcal{O}\left(\Delta x^{5}\right)\right) \tag{22}
\end{align*}
$$

Because u satisfies the PDE hence $\left.\left(u_{t}+c u_{x}\right)\right|_{i} ^{n}=0$, and

$$
\begin{equation*}
u_{t t}=\left(-c u_{x}\right)_{t}=c^{2} u_{x x} \tag{24}
\end{equation*}
$$

thus we have $\left.u_{t t}\right|_{i} ^{n}=\left.c^{2} u_{x x}\right|_{i} ^{n}$, simplifying the above equation gives the local truncation error

$$
\begin{equation*}
\tau=\left.\frac{c \Delta x^{2}}{3} u_{x x x}\right|_{i} ^{n}-\left.\frac{c^{2} \Delta t \Delta x}{2} u_{x x x}\right|_{i} ^{n}-\frac{\Delta t^{2}}{6} u_{t t t}+\text { H.O.T in } \Delta \mathrm{t} \text { and } \Delta \mathrm{x} . \tag{25}
\end{equation*}
$$

Exercise 5.6

Show that the Beam-Warming method is stable for $0 \leq c \frac{\Delta t}{\Delta x} \leq 2$, if we assume that $c>0$.

Solution:

Let $\lambda=\frac{c \Delta t}{\Delta x}$, by substituting $u_{j}^{n}=g^{n} \exp (i j \xi)$ into the FD equation, we have obtained an isolate expression for the amplification factor g :

$$
\begin{equation*}
g=1-\frac{\lambda}{2}(3-4 \exp (-i \xi)+\exp (-2 i \xi))+\frac{\lambda^{2}}{2}(1-2 \exp (-i \xi)+\exp (-2 i \xi)) \tag{26}
\end{equation*}
$$

since

$$
\begin{align*}
\exp (i \xi) & =\cos (\xi)+i \sin (\xi) \tag{27}\\
\cos (2 \xi) & =2 \cos ^{2}(\xi)-1, \tag{28}
\end{align*} \quad \sin (2 \xi)=2 \sin (\xi) \cos (\xi)
$$

we obtain

$$
\begin{aligned}
& g=i \lambda^{2} \sin (\xi) \cos (\xi)-i \lambda^{2} \sin (\xi)+\lambda^{2} \cos ^{2}(\xi)+i \lambda \sin (\xi) \cos (\xi)-\lambda^{2} \cos (\xi) \\
& -2 i \lambda \sin (\xi)+\lambda \cos ^{2}(\xi)-2 \lambda \cos (\xi)+\lambda+1
\end{aligned}
$$

We compute the norm of g by summing the squares of the real and imaginary part. The scheme is stable if $|g|^{2} \leq 1, \quad \forall \xi$. Preceding conditions gives the following form

$$
\begin{equation*}
\lambda(\lambda-2)(\lambda+1)^{2}(\cos (\xi)-1)^{2} \leq 0 \tag{29}
\end{equation*}
$$

thus it implies the Beam-Warming scheme is stable if

$$
\begin{equation*}
\lambda=\frac{c \Delta t}{\Delta x} \leq 2 \tag{30}
\end{equation*}
$$

Exercise 5.7

Show the amplification factor of the upwind method applied to advection equation.

Solution:

By substituting $u_{j}^{n}=g^{n} \exp \left(i j \Delta x \xi_{m}\right)$ in to the above equation, we have

$$
\begin{equation*}
g-1+\frac{c \Delta t}{\Delta x}\left(1-\exp \left(-i \Delta x \xi_{m}\right)\right)=0 \tag{31}
\end{equation*}
$$

Thus

$$
\begin{align*}
|g| & =\left\lvert\, 1-\frac{c \Delta t}{\Delta x}+\frac{c \Delta t}{\Delta x} \exp \left(-i \xi_{m} \Delta x\right)\right. \tag{32}\\
& =\left|(1-\lambda)+\lambda \exp \left(-i \xi_{m} \Delta x\right)\right| \tag{33}\\
& =\left|1-\lambda\left(1-\cos \left(\Delta x \xi_{m}\right)\right)-i \lambda \sin \left(\Delta x \xi_{m}\right)\right| \tag{34}
\end{align*}
$$

with magnitude

$$
\begin{equation*}
|g|^{2}=1-2(1-\lambda) \lambda\left(1-\cos \left(\Delta x \xi_{m}\right)\right) \tag{35}
\end{equation*}
$$

since $c>0$, so if $1-\lambda \geq 0$ we have $|g| \leq 1$, then this method is stable.

Exercise 5.8

Apply FTCS scheme to the linear advection equation. Illustrate this i a figure with stencils in the $x-t$ domain and with characteristics of the PDE.

Solution:

The FTCS scheme for linear advection equation reads

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}=0 \tag{36}
\end{equation*}
$$

when $\left|c \frac{\Delta t}{\Delta x}\right| \leq 1$ the scheme satisfies the CFL condition. However, substituting $u_{j}^{n}=g^{n} \exp (i j \Delta x \alpha)$ in to the scheme, we have

$$
\begin{equation*}
g=\left(1-i \frac{c \Delta t}{\Delta x} \sin (\Delta x \alpha)\right) \tag{37}
\end{equation*}
$$

since

$$
\begin{equation*}
|g|=\sqrt{1+\left(\frac{c \Delta t}{\Delta x}\right)^{2} \sin ^{2}(\Delta x \alpha)} \geq 1 \tag{38}
\end{equation*}
$$

doesn't satisfy von Neumann condition, thus it is always unstable.
Below we illustrate this in a figure with stencils in the $x-t$ domain and with characteristics of the PDE

Exercise 5.9 Draw the domains of numerical and physical dependence for the FTBS and FTFS scheme applied to the linear advection equation.
Solution:

FTBS Scheme

physical domain of dependence

