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Abstract This paper points out that the treatment of utility maximization in current
textbooks on microeconomic theory is deficient in at least three respects: breadth
of coverage, completeness-cum-coherence of solution methods and mathematical
correctness. Improvements are suggested in the form of a Kuhn-Tucker type theorem
that has been customized for microeconomics. To ensure uniqueness of the optimal
solution stringent quasiconcavity, an apparently new adaptation of the notion of
strict quasiconcavity, is introduced. It improves upon an earlier notion formulated
by Aliprantis, Brown and Burkinshaw. The role of the domain of differentiability of
the utility function is emphasized. This is not only to repair a widespread error
in the microeconomic literature but also to point out that this domain can be
chosen sensibly in order to include the maximization of certain nondifferentiable
utility functions, such as Leontiev utility functions. To underscore the usefulness
of the optimality conditions obtained here, five quite different instances of utility
maximization are completely solved by a single coherent method.

1 Introduction

In the currently popular textbooks [8, 10, 11, 13] on microeconomic theory and
mathematical economics, all of which profess to be rigorous and precise, the
treatment of the fundamental subject of utility maximization would seem to show
considerable shortcomings in the following three respects: breadth of coverage,
completeness-cum-coherence of solution methods and mathematical correctness.
Similar shortcomings also show up in related textbooks with a less formal orienta-
tion [9, 14]. These shortcomings are briefly reviewed and explained in Remark 2.
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As a consequence, the reader will search in vain in the standard literature on
microeconomic theory and mathematical economics for a method to derive the
Marshallian demand function that meets the following criteria: it must be coherent,
complete and correct (i.e., based on generally accepted principles of correct mathe-
matical reasoning starting from, say, the Kuhn-Tucker and Weierstrass’ theorems),
and it must be operationally useful by being applicable to at least the following five
basic instances of standard utility functions, where ` 2 N stands for the number of
commodities: .i/ Cobb–Douglas utility function, ` > 2, .i i/ CES utility function
(more precisely, this instance will be separated below into three different cases
.i ia/, .i ib/ and .i ic/), ` > 2, .i i i/ linear utility function with positive coefficients,
` � 2, .iv/ the utility function u.x1; x2/ D x21.x2 C 1/ or any similar one leading
to partial corner point solutions, and .v/ Leontiev utility function, ` � 2. The actual
state of affairs in the standard literature is even more perplexing than stated above:
the problems signaled in Remark 2 already affect the classical instances .i/–.i i/
and already for ` D 2. The appendix offers a more detailed account of this.

To motivate the above five instances, I first observe that there are very good
reasons for including instances with more than two commodities in the preceding
list. Indeed, although not many of the aforementioned references point this out, the
standard utility maximization problem in microeconomics (see (1)) can immediately
be reduced to an optimization problem over an interval if ` D 2. This follows from
the fact that its optimal solution must be budget-balanced; cf. Theorem 1.a/. Now
an interval optimization problem is quite elementary. One can solve it very directly
by means of sign diagrams of the derivative, possibly supported by the use of
computer algebra packages. This explains why I take `>2 in instances .i/–.i i/: it
is a minimal check of operational usefulness. Next, instances .i i i/–.iv/ require the
solution method to be able to detect multiple solutions and corner point solutions.
The latter form a standard subject in intermediate microeconomics courses [4].
Remarkably, even though at least three of the above-mentioned textbooks indicate
the possibility of corner point or multiple solutions in the form of illustrations (see
Fig. 3.D.4 in [10], Fig. 1.10 in [8] and Fig. 1.17 of [13]), none of them manages
to treat this subject in an analytically satisfactory and complete manner. Finally,
instance .v/ has a nondifferentiable utility function, which presents a quite unusual
operational challenge for the solution method. I observe that in [8, 10, 11, 13] this
Leontiev instance is not included in the mainstream approach.

In Sect. 3 I shall develop an efficient solution method that meets all of the
above criteria; it is based on optimality results for general utility maximization
that are presented in Sect. 2. This development started in my Utrecht lecture notes,
because I was dissatisfied with what the standard microeconomics literature had to
offer. Essentially, the optimality results take the form of a Kuhn-Tucker theorem,
Theorem 1, that has been customized for microeconomics. To a high degree such
customization depends on a special property of utility functions that is commonly
found in microeconomics: they are strictly increasing. I observe beforehand that the
classical Cobb–Douglas and CES instances .i/–.i i/ require that the model can deal
with utility functions that are defined on the nonnegative orthant R`C only, possibly
with nondifferentiability on the boundaryR`CnR`CC . Together with the applicability
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of my method to the nondifferentiable instance .v/, this indicates that careful consid-
eration of the differentiability domain of the utility function plays an important role
in this paper (cf. Remark 2). Parts .a/ to .c/ of the customized Kuhn-Tucker theorem
come close to what is done on [8, p. 23 ff.], but, as my applications to instances .i/,
.i ia/–.i ib/ and .iv/ will show in particular, it is part .d/ of Theorem 1, absent
in [8], which makes a considerable difference. This part uses an apparently new
adaptation of the notion of strict quasiconcavity, called stringent quasiconcavity,
which improves upon a related earlier notion by Aliprantis, Brown and Burkinshaw
[2] (see Remark 3). It allows the method, in its handling of sufficient conditions
for optimality and uniqueness, to go beyond interior optimal solutions and makes it
possible to derive corner point solutions in a rigorous, coherent and efficient way, for
instance in instance .iv/, whose utility function is not strictly quasiconcave on R

2C.
In sum, this paper improves on the usual literature on utility maximization in

microeconomics by presenting a custom-made Kuhn-Tucker theorem that exploits
the usual strict monotonicity of utility functions in microeconomics via the new
notion of stringent quasiconcavity and that pays careful attention to the utility
function’s domain of differentiability.

2 Customized Optimality Results for Microeconomics

Let u W R`C ! R be a continuous function, the utility function. Let˝ be an open set
that is contained in R

`C (whence in the strictly positive orthant R`CC); the function u
is supposed to be differentiable on ˝ [6]. In Sect. 3 I shall choose for ˝ the strictly
positive orthant R`CC so as to treat instances .i/–.iv/, but to deal with the Leontiev
instance .v/ I am going to choose ˝ differently. Throughout I suppose that u is
strictly increasing on R

`C; that is to say, for every x and x0 in R
`C the following

must hold: if xi > x0
i for every i D 1; 2; : : : ; n, then u.x/ > u.x0/. For p 2 R

`CC
(price vector) and y 2 RC (income) the consumer’s utility maximization problem is
as follows:

maximize u.x/ over all x 2 R
`C such that p � x � y (1)

and it is desired to determine all global optima (if any). The problem is well-defined
because 0 2 B . Here B WD fx 2 R

`C W p � x � yg stands for the feasible set of this
problem, which is called the budget set. Of course, for y D 0 the problem is trivial,
because then B D f0g. I shall also use B0 WD fx 2 R

`C W p � x D yg to denote the
so-called budget plane. A vector x in R

`C is said to be budget-balanced if p �x D y,
that is to say, if it belongs to the budget plane B0. Recall that u W R

`C ! R is
defined to be quasiconcave on R

`C if u.txC .1� t/x0/ � min.u.x/; u.x0// for every
pair x; x0 2 R

`C and every t 2 Œ0; 1�. I shall say that the function u W R
`C ! R

is stringently quasiconcave if it is both quasiconcave on R
`C and if it has the

following property, which I shall call property .S/: for every pair x; x0 2 R
`C

with x 6D x0 and u.x/ D u.x0/ > u.0/ one has u. 1
2
x C 1

2
x0/ > u.x/ D u.x0/.
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It is worth noting that in the main text of this paper the stringent quasiconcavity
notion is always considered on the full domain R

`C of the utility function u (but
see Remark 1.i i/). Observe that stringent quasiconcavity is a modification of the
classical notion of strict quasiconcavity which excludes certain points that are sub-
optimal (if y > 0) and only works with points x and x0 at the same utility level.
Clearly, a sufficient condition for u W R

`C ! R to be stringently quasiconcave is
that it is quasiconcave on R

`C and strictly quasiconcave when restricted to the set
C WD fx 2 R

`C W u.x/ > u.0/g (i.e., if u.tx C .1 � t/x0/ > min.u.x/; u.x0//
for every pair x; x0 2 C , x 6D x0, and every t 2 .0; 1/). A related sufficient
condition for stringent quasiconcavity is given below in Proposition 1; it shows the
utility function to be stringently quasiconcave in some of the previously mentioned
instances. Because it turns out to work so very well for utility maximization, it is
surprising that the stringent quasiconcavity notion was neither introduced before
in economics nor implicitly exploited in another guise. Yet this appears to be the
case.

Theorem 1. .a/ The consumer’s utility maximization problem (1) has an optimal
solution. Moreover, every optimal solution is budget-balanced.

.b/ Suppose that (1) has an optimal solution x� which is such that x� 2 ˝ . Then
there exists � � 0 such that

ru.x�/ D �p: (2)

.c/ If x� 2 ˝ is budget-balanced and such that (2) holds for some � > 0, then x�
is an optimal solution of (1), provided that u is quasiconcave on R

`C.
.d/ If u has property .S/, then (1) has a unique optimal solution. In particular, if

u is stringently quasiconcave, then any budget-balanced x� 2 ˝ for which (2)
holds for some � > 0, is the unique optimal solution of (1).

This result has the familiar makeup of results in optimization theory: existence,
followed by necessary conditions for optimality that are sharpened into sufficient
conditions and even a uniqueness condition. Simple examples show that the above
formulation is sharp; for instance, taking ` D 1, u.x/ WD .x�1/3, y D 1 and p D 1

shows that the possibility � D 0 cannot be excluded in part .b/, etc.

Lemma 1. Suppose that u is quasiconcave on R
`C. Then for every x 2 ˝ and

x0 2 R
`C

u.x/ � u.x0/ implies ru.x/ � .x0 � x/ � 0:

Proof. For t 2 Œ0; 1� let �.t/ WD u..1 � t/x C tx0/. Then u.x/ � u.x0/ implies
�.t/ � u.x/ D �.0/. So �.t/ attains a minimum over Œ0; 1� for t D 0. Also �, the
composition of u and a linear mapping, is differentiable from the right at 0, because
u is differentiable at x 2 ˝ . It follows that �0.0/ � 0, as a first order necessary
condition for optimality. The desired inequality then follows by the chain rule. ut
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Proof. Now Theorem 1 can be proved.

.a/ Existence of an optimal solution x� follows by the Weierstrass theorem,
because u is continuous and B is a nonempty compact set. For y D 0 the
identityB D B0 D f0g causes budget balancedness to hold trivially. For y > 0,
x� 62 B0 would imply p � x� < y. So setting Qxi WD x�

i C t for i D 1; : : : ; `

would result in a contradiction for t > 0 sufficiently small, because then Qx 2 B
and u. Qx/ > u.x�/ by the fact that u increases strictly.

.b/ The hypothesis x� 2 ˝ implies that x� is also an optimal solution of the
auxiliary optimization problem

maximize u.x/ over all x 2 ˝ with p � x � y,

which has only one inequality constraint. At this stage it is traditional to invoke
a version of the Kuhn-Tucker theorem and preferably – to avoid incomplete
or inaccurate arguments – a version that allows open domains of definition for
its functions: e.g., Theorems 1.D.3–1.D.4 in [13] can be used. However, the
following extremely simple argument can be used instead, based on budget-
balancedness in Theorem 1.a/ (incidentally, a different but similarly simple
argument, based on polar considerations, can also be given for the consumer’s
expenditure minimization problem to prove a result that is very similar to
Theorem 1). By part .a/ the bundle x� is also an optimal solution of the
auxiliary optimization problem

maximize u.x/ over all x 2 ˝ with p � x D y.

Here the constraint can be expressed as x` D .y � Pm
iD1 pixi /=p`, where

m WD ` � 1. Hence, the previous optimization problem can be rephrased in the
variables x1; : : : ; xm as follows

maximize Qu.x1; : : : ; xm/ WD u

�

x1; : : : ; xm;
y � Pm

iD1 pixi
p`

�

over all

.x1; : : : ; xm/ 2 Q̋ :
Here Q̋ is the set of all .x1; : : : ; xm/2R

m such that .x1; : : : ; xm; .y �Pm
iD1 pixi /=p`/ 2 ˝ . By continuity of linear maps it is clear that Q̋

is open. Because Qu attains its maximum over the open set Q̋ at Qx� WD
.x�
1 ; : : : ; x

�
m/, it follows from standard calculus results and the chain rule that

0 D @Qu. Qx�/=@xi D @u.x�/=@xi � pip
�1
` @u.x�/=@x` for i D 1; : : : ; ` � 1. So

setting � WD p�1
` @u.x�/=@x` gives (2).

.c/ Suppose that x� 2 B0 \˝ were not optimal. Then there would be Ox 2 B such
that u. Ox/ > u.x�/. So u..1� t/ Ox/ > u.x�/ would hold for t > 0 small enough,
by continuity of u. By Lemma 1 the quasiconcavity hypothesis for u implies

ru.x�/ � .x � x�/ � 0 for every x 2 R
`C with u.x/ � u.x�/:
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By ru.x�/D�p and �>0, it then follows that p � ..1� t/ Ox�x�/ � 0, whence
p � Ox > .1 � t/p � Ox � y by the given budget-balancedness of x� (observe that
p � Ox > 0 by Ox 6D 0). This contradicts Ox 2 B .
.d/ First, if y D 0 then B D f0g, so x� D 0 is the unique optimal solution.

Next, if y > 0, then u.x�/ > u.0/ must hold for any optimal solution x�,
because .t; t; : : : ; t/ belongs to B for t > 0 small enough and because u is
strictly monotone. Now suppose that x� and x�� were two different optimal
solutions of (1). Then u.x�/ D u.x��/ D optimal value of (1) and u.x�/ > u.0/
by the previous argument. Define Ox WD 1

2
x� C 1

2
x��; then Ox 2 B and property

.S/ gives u. Ox/ > 1
2
u.x�/C 1

2
u.x��/ D u.x�/. This contradicts the optimality

of x�. So the optimal solution is unique. The final part of the statement is an
immediate consequence of combining part .c/ with uniqueness. ut

Remark 1. .i/ Without monotonicity in Theorem 1, the budget-balancedness of the
optimal solution can obviously not be maintained, but a fair part of Theorem 1
continues to hold when u is nondecreasing and the details are as follows. In
part .a/ the existence of at least one budget-balanced optimal solution is still
guaranteed and part .b/ continues to hold as stated. Part .c/ of Theorem 1
remains meaningful by linking the additional possibility x� 2 BnB0 with the
multiplier � D 0. In that case the optimality of x� can be guaranteed if u,
next to being nondecreasing, is concave on R

`C (the example ` D 1, x� D 1,
u.x/ WD .x�1/3, y D 2 andp D 1 shows that mere quasiconcavity is insufficient
in this situation). Finally, part .d/ is without significance: to have property .S/,
a nondecreasing u must be strictly increasing, a situation that is already covered
by Theorem 1.d/ itself.

.i i/ Some utility functions have R
`CC as their natural domain of definition. Let u W

R
`CC ! R be such a function and suppose that u is continuous and strictly

increasing on R
`CC, as well as differentiable on some open set ˝ � R

`CC.
To avoid trivialities, the new situation requires y > 0. Then parts .b/–.d/ of
Theorems 1 continue to hold, naturally with quasiconcavity on R

`C replaced by
quasiconcavity on R

`CC and with property .S/ redefined as follows: for every
pair x; x0 2 R

`CC with x 6D x0 and u.x/ D u.x0/ one has u. 1
2
xC 1

2
x0/ > u.x/ D

u.x0/. An obvious sufficient condition for these two properties to hold is that u
be strictly quasiconcave. As shown by the example ` D 2, u.x1; x2/ WD x1Cx2,
part .a/ of Theorem 1 needs adjustment: an optimal solution is guaranteed to
exist under the extra condition that the set Cv WD fx 2 R

`CC W u.x/ � vg is
closed for every v 2 u.R`CC/. Namely, given p and y > 0, fix any Nx 2 R

`CC
with p � Nx � y and set Nv WD u. Nx/. Then

sup
x2R`

CC
;p�x�y

u.x/ D sup
x2CNv;p�x�y

u.x/

and on the right side a continuous function is maximized over a nonempty
compact set.
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Remark 2. A different application of the Kuhn-Tucker theorem is obtained if,
instead of working with the above open set ˝ � R

`C, one uses a model where
the utility function u is defined and differentiable on an open set ˝ 0 (for instance,
this could be R` itself) that contains R`C. In that case optimality of x� for (1) can be
expressed equivalently as optimality of x� for the following optimization problem:

maximize u.x/ over all x 2 ˝ 0 with p � x � y and �xi � 0, i D 1; : : : ; `. (3)

Precisely such an application was chosen in [9–11, 13], but in doing so one
forms a model that no longer applies to all Cobb–Douglas or CES utility functions,
because for general parameter values such functions are not differentiable at points
in R

`CnR`CC! In [9, p. 131 ff.], [10, p. 50 ff.], [11, Theorem 22.1, Example 22.1] and
[14, Sect. 2.2] (the latter reference discusses this for profit maximization) this has
led to imprecise or incorrect formulations of their necessary first order optimality
conditions and, in the case of [9–11], to an incorrect application to the Cobb–
Douglas instance .i/.1 The appendix to this paper provides more details to support
this claim. Apart from this shortfall, the derivation of these optimality conditions is
standard and can be found in [10,11]: by applying the Kuhn-Tucker theorem [13] to
(3), which has `C1 inequality constraints, one now obtains as a first-order necessary
condition for optimality

@u.x�/
@xi

� �pi ; with equality if x�
i > 0; i D 1; : : : ; `

instead of (2) and this holds for every optimal x� in ˝ 0, a set that now includes
the boundary of R`C. For utility functions that fit into this model, but only for those,
this formulation gives meaningful and somewhat sharper results. These remarks do
not affect [8]; however, the optimality results in that reference presuppose that the
optimal solution belongs to R

`CC, as is exemplified by the application to the Cobb–
Douglas instance in Exercise 1.20 of [8]. That is not enough to allow a treatment of
the corner point solution instances .i i i/–.iv/. It reflects a common shortcoming of
the above references: except for [14, p. 57], none would seem to treat corner point
solutions analytically.

From part .d/ of Theorem 1 it is evident that stringent quasiconcavity can help
to solve the optimization problem (1), but it should be kept in mind that this is very
much due to the hypothesis that the utility function u is strictly increasing: property
.S/ ignores bundles at the lowest utility level, which is u.0/. For operational use
I shall state a simple sufficient condition for stringent quasiconcavity. To prepare
for it, I observe that the properties of u in Theorem 1 cause the range of u to be an

1Notwithstanding its general Kuhn-Tucker Theorem 1.D.3, reference [13] considers utility maxi-
mization only for utility functions defined on all of R` (see its pp. 134–135); on pp. 223–224 this
has resulted in an ad hoc solution of instance .i/.
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interval, namely Œu.0/; u1/, where u1 WD supx2R`
C

u.x/ (this notation allows

for the possibility that u1 equals C1). To see this, define  .t/ WD u.t; t; : : : ; t/
for t � 0; this is a continuous, strictly increasing function on RC. Clearly,
u1 D supt�0  .t/ and the supremum cannot be attained. Because for any x 2 R

`C
the value u.x/ lies between  .0/ and  .t/ for some t > 0 sufficiently large (this
follows by strict monotonicity and continuity of u), the intermediate value theorem
can be invoked to finish the argument.

Proposition 1. If fx 2 R
`C W u.x/ > u.0/g is convex and if there exists a strictly

increasing function h W .u.0/; u1/ ! R such that the composition mapping x 7!
h.u.x// is strictly quasiconcave on fx 2 R

`C W u.x/ > u.0/g, then u is stringently
quasiconcave.

Proof. By a previous remark, it is enough to prove that u is quasiconcave on R
`C

and strictly quasiconcave on fx 2 R
`C W u.x/ > u.0/g. Let ˛ 2 R. If ˛ � u.0/,

then fu � ˛g WD fx 2 R
`C W u.x/ � ˛g D R

`C. If ˛ > u.0/, then for any
x; x0 2 fu � ˛g � fu > u.0/g, x 6D x0, and for any t 2 .0; 1/ the given strict
quasiconcavity property implies h.u.tx C .1 � t/x0// > min.h.u.x//; h.u.x0/// �
h.˛/. So u.tx C .1 � t/x0/ > ˛ by strict monotonicity of h. For the set fu � ˛g
I conclude that it equals R

`C for every ˛ � u.0/ and that it is strictly convex for
every ˛ > u.0/. Hence, u is certainly quasiconcave on R

`C and the desired strict
quasiconcavity of u on fu > u.0/g also follows from the previous conclusion. ut
Example 1. .i/ A utility function u W R`C ! RC of Cobb–Douglas type is given by

u.x/ WD ˘`
iD1x

˛i
i ; here all ˛i > 0. This function is not strictly quasiconcave on

R
`C (observe that u.x1; 0; 0; : : : ; 0/ D 0). However, it is stringently quasiconcave

and I use Proposition 1 to show this. Observe first that the set fx 2 R
`C W u.x/ >

u.0/g D R
`CC is convex. On .u.0/; u1/ D .0;C1/ I choose h.t/ WD log.t/;

this is a strictly increasing function, which gives h.u.x// D P`
iD1 ˛i log.xi / on

R
`CC. Because each function xi 7! log.xi / is strictly concave on RCC, it easily

follows that the function x 7! h.u.x// is strictly concave on R
`CC. Therefore, it

follows from Proposition 1 that u is stringently quasiconcave on R
`C.

.i i/ A utility function of CES type is given by u.x/ WD .
P`

iD1 x
�
i /
1=� with either

.i ia/ 0 < � < 1, .i ib/ � < 0 or .i ic/ � > 1. In case .i ic/ u is not stringently
quasiconcave, as is easy to see. In case .i ia/ the function u is defined on R

`C,
as usual, but in case .i ib/ its domain of definition has to be R

`CC, because
of the negative exponent �. See also Remark 1.i i/ below. I observe that u is
strictly increasing in both cases .i ia/ and .i ib/ (and in case .i ic/ as well).

.i ia/ I will show that in case .i ia/ u is stringently quasiconcave and even strictly
quasiconcave on R

`C. First, I observe that the set fx 2 R
`C W u.x/ > u.0/g D

R
`Cnf0g is convex (because this only leaves out the origin, the argument can

immediately be adapted to imply that u is even strictly quasiconcave on R
`C).

On .u.0/; u1/ D .0;C1/ I choose h.t/ WD t�, a strictly increasing function;
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then x 7! h.u.x// D P`
iD1 x

�
i is easily seen to be strictly concave on R

`C,
because each function xi 7! x

�
i is strictly concave on RC. So the conditions

in Proposition 1 certainly hold; hence, u is stringently quasiconcave on R
`C.

.i ib/ As observed above, the domain of definition is R`CC in this case. In particular,
u.0/ is not well-defined, so stringent quasiconcavity loses its meaning (but see
Remark 1.i i/ below for an adaptation). However, by analogy to Proposition 1,
I can still show that u is strictly quasiconcave on R

`CC. Indeed, in this
case h.t/ WD �t� is strictly increasing on .0;C1/ and x 7! h.u.x// D
� P`

iD1 x
�
i is strictly concave on R

`CC, because each xi 7! �x�i is strictly
concave on RC by � < 0. It now follows easily that u is strictly quasiconcave
on R

`CC.
.i i i/ Let u W R

2C ! R be given by u.x1; x2/ D x21.x2 C 1/, as in my instance
.iv/. This function is not strictly quasiconcave on R

2C (note that u.0; x2/ D
0 for all x2 � 0). However, u is stringently quasiconcave. To prove this, I
observe first that the set fx 2 R

2C W u.x/ > u.0/g D f.x1; x2/ W x1 >
0; x2 � 0g is convex. On .u.0/; u1/ D .0;C1/ I choose h.t/ WD log.t/, a
strictly increasing function; then x 7! h.u.x// D 2 log.x1/C log.x2 C 1/ is
evidently strictly concave on f.x1; x2/ W x1 > 0; x2 � 0g (repeat the reasoning
in instance .i/). Hence, u is stringently quasiconcave by Proposition 1.

The above example will be used for applications of Theorem 1 to the instances
.i/, .i ia/, .i ib/ and .iv/. It is well-known that more can be said, although this is not
of importance for my applications. For instance, for

P
i ˛i � 1 the Cobb–Douglas

utility function in part .i/ of Example 1 is concave on R
`C and in part .i ia/ the same

is true for the CES utility function. Results from [5] or [12] can be invoked to derive
such additional properties: see Remark 4 in [5, p. 123] or see Theorem 2.5.3 and its
Examples 5, 6 in [12].

Remark 3. In [2] Aliprantis, Brown and Burkinshaw consider utility maximization
for a pure exchange consumer, but their analysis extends effortlessly to that for
an ordinary consumer. For ` D 2 they correctly and completely solve instances
.i/, .i ia/ and .iv/ in a coherent way, based on using existence and necessary first
order optimality conditions, similar to parts .a/ and .b/ of Theorem 1, aided by
considerations involving strict quasiconcavity of u on R

2CC: see the solutions to
problems 1.2.1, 1.3.2 and 1.3.4 in [1, pp. 25–26, pp. 34–35]. Instance .i i i/ is not
treated in [2] and instance .v/ is solved in an ad hoc fashion; the former would not
seem to be out of reach of the general method presented in [2], but the latter would
seem to be. Thus, in the area of utility maximization the book [2], although not
devoted to general microeconomic theory as such, managed to reach further than
the references mentioned above and it did so flawlessly.

For purposes going beyond mere computations, Definition 1.3.4 of [2] defines
a neoclassical preference to be a continuous preference relation on R

`C that has
certain monotonicity properties. In terms of the representing utility function of such
a preference relation, which exists by [10, Proposition 3.C.1], this definition comes
down to the following two possibilities: either .NC1/ u is strongly increasing and
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strictly quasiconcave on R
`C or .NC2/ strongly increasing and strictly quasiconcave

onR`CC and u.x/> u.x0/ for every x 2R
`CC and x0 2R

`CnR`CC. Here I use standard
terminology from [8, 10] – the one used in [2] is somewhat different. Observe that
CES utility functions satisfy .NC1/ but not .NC2/ and that Cobb–Douglas utility
functions satisfy .NC2/ but not .NC1/; thus, the above definition is inherently
two-pronged. I observe that if possibility .NC2/ obtains, then one has actually the
following special property, which seems not to have been stated explicitly in [2]:
everywhere on the boundary of R

`C the function u is equal to u.0/ (to see this,
it suffices to compare any point on the boundary with .t; t; : : : ; t/ for sufficiently
small t > 0 and use continuity and strict monotonicity of u to finish the argument).
I claim that both possibilities .NC1/ and .NC2/, and therefore the definition of
a neoclassical preference relation as a whole, are subsumed by the more general
notion of a strictly increasing utility function that is stringently quasiconcave
(incidentally, this continues to hold if in .NC1/ and .NC2/ “strongly increasing” is
replaced by the less demanding “strictly increasing”). For possibility .NC1/ this is
immediately obvious. As for .NC2/, by continuity of u and strict quasiconcavity of u
on R

`CC it easily follows that u is quasiconcave on R
`C, which is the closure of R`CC.

To show property .S/, recall from the discussion of .NC2/ in the preceding lines that
if x; x0 2 R

`C, x 6D x0, have u.x/ D u.x0/ > u.0/ then this implies x; x0 2 R
`CC.

Therefore, the fact that possibility .NC2/ results in strict quasiconcavity of u
on R

`CC implies u. 1
2
x C 1

2
x0/ > u.x/ D u.x0/. As already said, this shows

that utility functions that correspond to a neoclassical preference are stringently
quasiconcave. The converse is not true, even when the neoclassical preference
definition is adapted so as to encompass strictly increasing utility functions: for
instance, in Example 1.i i i/ it was demonstrated that in instance .iv/ the utility
function u is stringently quasiconcave, but not strictly quasiconcave on R

2C; hence,
for this u possibility .NC1/ is out of the question. On the other hand, .NC2/ is also
impossible because of u.1; 0/ 6< u. 1

2
; 1
2
/.

3 Testing for Operational Usefulness

Here I shall discuss the use of Theorem 1 as a means to meet my criterion of
operational usefulness for utility maximization; similar applications to expenditure
minimization are also possible. So my task is to derive complete solutions for the
Marshallian demand function, using Theorem 1 in a coherent way, for each of the
following utility functions:

.i/ u.x/ D ˘`
iD1x

˛i
i with all ˛i > 0,

.i i/ u.x/ D
�P`

iD1 aix
�
i

�1=�
with all ai > 0 and .a/ � 2 .0; 1/, .b/ � < 0 or

.c/ � > 1,
.i i i/ u.x/ D P`

iD1 ai xi , with all ai > 0,
.iv/ u.x1; x2/ D x21.x2 C 1/,
.v/ u.x/ D min1�i�` bixi , with all bi > 0.



Exact and Useful Optimization Methods for Microeconomics 31

These five functions are continuous and strictly increasing. In instance .v/
I suppose ` � 2, so as to avoid overlap with instance .i i i/. My solution method,
which is based on familiar reasoning in optimization theory [3], goes as follows.
The starting point is that Theorem 1.a/ guarantees that an optimal solution of
(1) exists and is budget-balanced. It is useful to introduce the following term: an
optimality candidate is a vector x� 2 B0 \˝ that satisfies the first order necessary
optimality condition (2). Then it follows from parts .a/–.b/ of Theorem 1 that the
optimal solution of (1) must be an optimality candidate, provided that it belongs
to ˝ . Subsequently, if u happens to be quasiconcave then part .c/ applies and all
optimality candidates (if there are any) are indeed optimal solutions. If in addition
u has property .S/, then the solution is of course complete (but only then, for I
wish to determine all globally optimal solutions of (1) and in the previous steps
the so-called remainder set B0n˝ has not been inspected). In sum, if the utility
function is stringently quasiconcave, then an optimality candidate, when found, is
immediately known to be the unique optimal solution of (1). If there does not exist
an optimality candidate or if u is not quasiconcave or fails to possess property .S/,
a careful look at the values that u attains on the remainder set B0n˝ is needed,
and these values should be compared with the maximum value of all the optimality
candidates already found (if any). For ` D 2 the latter is easy, but for ` > 2 it can
be somewhat of a challenge: see my solution of instances .i ic/, .i i i/ and .v/.

It must be mentioned that the alternative optimality conditions that I mentioned
in Remark 2 can also be used, but only for instances such as .i i i/ and .iv/, where
the utility functions are differentiable on all of R

`. This gives ` C 1 multipliers
and it is well-known from nonlinear programming [3] that one should then work
with the set of active indices of x� 2 B0 (i.e., those indices i for which x�

i D 0).
A good example of this is presented in Sect. 4.3 of [14] for a linear technology
(the derivation there is nonrigorous because it is exclusively based on using first-
order necessary conditions). Another observation is that ad hoc methods to solve
specific problems abound. For example, it is well-known that instance .i/ can be
solved by trivially eliminating the boundary of R`C, after which one can apply the
logarithmic transformation. However, such a transformation is already contained in
Example 1.i/, where it is part of a fairly systematic solution method.

Solution of instance (i) To solve problem (1) for the utility function u.x/ WD
˘`
iD1x

˛i
i on R

`C with all ˛i > 0, I choose˝ D R
`CC. From Example 1.i/ I already

know that u is stringently quasiconcave. So if I can find x� 2 B0 \˝ that satisfies
(2), then it must be the unique optimal solution by Theorem 1.d/. In search of
such x�, I combine (2) with p � x� D y and verify concretely that the x� found
belongs to ˝ . This is a simple algebraic task (incidentally, note that the possibility
� D 0 in (2) leads to x� 62 ˝). It yields x�

i D ˛iy=.˛pi/, i D 1; : : : ; `, where
˛ WD P`

jD1 ˛j . This outcome happens to be strictly positive, so the unique optimal
solution has been found.

Solution of instance (iia) To solve problem (1) for the utility function u.x/ WD
�P`

iD1 x
�
i

�1=�
on R

`C with � 2 .0; 1/, I choose ˝ D R
`CC. From Example 1.i ia/ I

know that u is stringently quasiconcave.
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Step 1: special case ai D 1 for all i . If I can find x� 2 B0 \ ˝ that satisfies
(2), then it must be the unique optimal solution by Theorem 1.d/. To find such
x�, I combine (2) with p � x� D y and then check that their solution belongs to
˝ (the possibility � D 0 in (2) can be excluded, because it leads to nonsensical
expressions). This is a simple algebraic task, which gives the strictly positive
expression x�

i D pr�1i y=.pr1 C � � � C pr`/, i D 1; : : : ; `, where r WD �=.� � 1/.
So the unique optimal solution has been determined.

Step 2: general case. I absorb the coefficients into the variables by using
the variables �i WD a

1=�
i xi . Then the utility maximization problem for u.x/ WD

�P`
iD1 ai x

�
i

�1=� D
�P`

iD1 �
�
i

�1=�
can be rewritten as the one already solved in

step 1, provided that the prices are adapted by setting qi WD a
�1=�
i pi . So by

step 1 the unique optimal solution is ��
i D qr�1i y=.qr1 C � � � C qr` /, i.e., x�

i D
a1�ri pr�1i y=.a1�r1 pr1 C � � � C a1�r` pr`/.

Solution of instance (iib) To solve problem (1) for the utility function u.x/ WD
�P`

iD1 x
�
i

�1=�
onR`CC with � < 0, I choose˝ D R

`CC and appeal to Remark 1.i i/.

Because of Example 1.i ib/, the solution method is almost exactly the same as the
one presented above for case .i ia/: again it follows that any x� 2 B0 \ ˝ that
satisfies (2) must be the unique optimal solution and again this leads to the same
expression for the optimal solution x�

i as in case .i ia/.

Solution of instance (iic) To solve problem (1) for the utility function u.x/ WD
�P`

iD1 x
�
i

�1=�
on R

`C with �> 1, I choose ˝ D R
`CC. In contrast to case

.i ia/, the function u is not stringently quasiconcave and this explains why I
follow a completely different line of attack. It concentrates on the remainder set
B0 \ .R`CnR`CC/ and uses parts .a/ and .b/ of Theorem 1.

Step 1: special case ai D 1 for all i . By Theorem 1.a/ an optimal solution

of (1) for u.x/ WD
�P`

iD1 x
�
i

�1=�
exists and it belongs to B0. I claim that any such

optimal solution must have precisely `�1 coordinates equal to 0. This can be proved
by means of a contradiction argument. For suppose that an optimal solution x�
of (1) had precisely k > 1 nonzero coordinates; without loss of generality I can
suppose that these are the first k coordinates x�

1 ; : : : ; x
�
k (or else I could relabel the

coordinates). The given optimality of x� implies a fortiori that z� WD .x�
1 ; : : : ; x

�
k /,

the vector composed of the first k coordinates of x�
k , is the optimal solution of the

following problem: maximize Qu.z/ WD
�Pk

iD1 z�i

�1=�
over all z 2 R

kC such that

Qp � z � y. Here Qp WD .p1; : : : ; pk/. Observe that z� belongs to R
kCC by definition

of k. So I can apply Theorem 1.b/ to the aforementioned maximization problem,
which is a version of (1) with dimension k. From the theorem it follows that there
exists � � 0 such that r Qu.z�/ D � Qp. Writing this out, the same algebra as in
case .i ia/ gives z�

i D pr�1i y=.pr1 C � � � C prk/, i D 1; : : : ; k. Because z�
i D x�

i

for all i � k and x�
i D 0 for all i > k, it would follow with a little algebra that
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x� D .x�
1 ; : : : ; x

�
k ; 0; : : : ; 0/ satisfies u.x�/ D y=

�Pk
iD1 pri

�1=r
. But the present

case has r WD �=.� � 1/ > 0, so u.y=p1/ > u.x�/ would hold by k � 2 and this
contradiction proves my claim. It follows easily that the optimal solution, known
to exist, must be one of the corner points xi WD .0; : : : ; 0; y=pi ; 0; : : : ; 0/, i D
1; : : : ; `, of B0. It is now easy to conclude that any corner point xj whose index j
is such that it corresponds to the lowest price, i.e., pj D min1�i�` pi , is optimal
(so multiple optimal solutions can occur when two or more commodities share the
lowest price).

Step 2: general case. The same absorption trick as used in case .i ia/, i.e., setting
�i WD a

1=�
i xi and qi WD a

�1=�
i pi , gives precisely the same optimal solution(s) as

obtained in step 1, i.e., the corner point(s) of B0 which correspond to the lowest
value(s) a�1=�

i pi .

Solution of instance (iii) To solve problem (1) for the linear utility function u.x/ WDP`
iD1 aixi , with all ai > 0, I choose ˝ D R

`CC. The function u is clearly not
stringently quasiconcave, but it is so simple that a solution, essentially based on
parts .a/ and .b/ of Theorem 1, can be provided in each of the following two cases.
Case 1: a WD .a1; : : : ; a`/ is a scalar multiple of p, say a D �p for some � 2 R,
and then � > 0 of course. Case 2: a is not a scalar multiple of p.

Case 1: By Theorem 1.b/, for any optimal x� 2 ˝ WD R
`CC there exists � � 0

such that a D �p. In the present case this was already true (take � D � > 0),
so every x� 2 B0 \ ˝ is an optimality candidate. Next, u is quasiconcave, so
every optimality candidate is also an optimal solution. Again this offers no news,
because all optimality candidates x� satisfy a � x� D �p � x� D �y and because
a � x D �p � x � �y for all x 2 B . It remains to inspect the remainder set B0n˝ .
Here that is the set of all x� in B0 with at least one coordinate equal to zero. The
value u.x�/ of any x� 2 B0n˝ is a � x� D �p � x� D �y, which is the same value
as found before. Hence, I conclude that in case 1 the set of all optimal solutions is
B0, that is to say the union of B0 \˝ and B0n˝ .

Case 2: This time the necessary condition a D �p is incompatible with
the present situation. So there are no optimality candidates at all, which means
that the optimal solution, known to exist by Theorem 1.a/, must belong to the
remainder set B0n˝ . Now for every x in B I have a � x D P

i aip
�1
i pixi �

˛p � x � ˛y, where ˛ WD maxi ai =pi . Let I be the set of those indices i for
which ai=pi D ˛. Then I is nonempty and it is a strict subset of f1; : : : ; `g
(or else I would find a D ˛p, which cannot be true in the present case). Any
corner point xi WD .0; : : : ; 0; y=pi ; 0; : : : ; 0/, i 2 I , belongs to B0 and achieves
a � xi D ˛y. So I conclude supx2B a � x D ˛y. I claim that the set of optimal
solutions is the intersection B0 \ \i 62I fx 2 R

`C W xi D 0g, which is a face
of B0. As for one inclusion, let x� belong to this intersection. Then a � x� DP

i2I ai x�
i D P

i2I aip�1
i pix

�
i D ˛p � x� D ˛y, so x� is optimal. Conversely,

let x� be optimal. Then Theorem 1.a/ implies x� 2 B0 and ˛y D a � x�. Hence,
˛y D ˛

P
i2I pix�

i CP
i 62I aix�

i . By p�x� D y this implies
P

i 62I .ai�˛pi /x�
i D 0,

so it follows that x�
i D 0 for every i 62 I (note that ai � ˛pi < 0 for each
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i 62 I ). This proves the desired characterization of the set of optimal solutions in
case 2.

Solution of instance (iv) To solve problem (1) for the utility function u.x1; x2/ WD
x21.x2 C 1/ on R

2C, I choose ˝ D R
2CC. By Example 1.iii/ u is stringently

quasiconcave. So if I can find x� 2 B0 \ ˝ which satisfies (2), then it must
be the unique optimal solution by Theorem 1.d/. I solve p � x� D y and (2), the
latter amounting to x�

2 D p1.2p2/
�1x�

1 � 1, and then I pick the solution, if any, that
belongs to ˝ . From the former two equations I also obtain that � D 0 if and only
if .x�

1 ; x
�
2 / D .0; y=p2/, a vector which is not in ˝ . So I can proceed with � > 0.

I solve the two equations and this gives x�
1 D 2

3
.yCp2/=p1, x�

2 D 1
3
.y � 2p2/=p2.

Because x� 2 ˝ is needed for x� to be an optimality candidate, I distinguish
between the following two cases (note that y > 2p2 is equivalent to x� 2 ˝):

Case 1: y > 2p2. Then x� D . 2
3
.y C p2/=p1;

1
3
.y � 2p2/=p2/ belongs to ˝ .

Hence, it is an optimality candidate and by the previous argument it must also be
the unique optimal optimal solution.

Case 2: y � 2p2. In this case there is not any optimality candidate. Therefore,
I know that the best u-value over the remainder set B0n˝ is the optimal value. The
set B0n˝ contains only two vectors, the corner points .y=p1; 0/ and .0; y=p2/. Of
these, the former one gives the highest u-value. Combining cases 1 and 2, I conclude
that the optimal solution is given by

.x�
1 ; x

�
2 / D

( �
2
3
.y C p2/=p1;

1
3
.y � 2p2/=p2

�
if y > 2p2,

.y=p1; 0/ if y � 2p2.

This is only partly a corner solution; graphical illustrations can help greatly to
understand why this is so.

Solution of instance (v) To solve problem (1) for the utility function u.x/ D
min1�i�` bixi on R

`C with all bi > 0, I choose˝ to be the open set of all x 2 R
`CC

such that bixi 6D bj xj for any i 6D j . Then u is locally of the form u.x/ D bkxk
near each point x� of˝ (the index k being unique to x�), so there are no optimality
candidates at all, because in such x� condition (2) amounts to bkek D �p, which
does not have a solution (recall that ` � 2). Here ek again denotes the k-th unit
vector. It follows that the optimal solution, known to exist, must belong to the
remainder set B0n˝ . For any x in B0n˝ either of the following two cases can
occur: case 1: x 2 R

`CC and there is a tie in the form of an equality bixi D bj xj for
some i 6D j or case 2: some coordinate of x is equal to zero. In case 2 u.x/ equals
zero, which means the certain sub-optimality of x. So I concentrate on those vectors
in B0 \ R

`CC that have ties. For any x in B I have xi � u.x/=bi for all i , giving
y � P

i pixi � u.x/
P

i pi=bi , i.e., u.x/ � y=ˇ, with ˇ WD P
i pi=bi > 0. In fact,

the same reasoning shows that u.x/ < y=ˇ whenever the set of all indices i for
which bixi > u.x/ is nonempty. So u.x�/ D y=ˇ for x� 2 B , which amounts to
x� being optimal in view of the previous lines, requires bix�

i D bj x
�
j D u.x�/ for
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all i and j . Clearly, there is precisely one such x� and it is given by x�
i D b�1

i y=ˇ,
i D 1; : : : ; n; so this is the optimal solution.
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Appendix

This appendix details the findings that I summarized in Remark 2. I discuss what
I found in the textbooks [8,10,11,13], all of which make explicit claims about being
rigorous and precise, and also in the two less formally oriented textbooks [9, 14]
which were added in a second round. Reference [7] is also reviewed briefly, at the
request of one of the editors. The intermediate textbook [4], which I cite for other
reasons, is no part of these comparisons.

Example 1. (Mas-Colell-Whinston-Green [10]) In Microeconomic Theory [10,
p. 50] the utility function u is defined on the consumption set R`C. On p. 53, which
states first-order necessary conditions for optimality in problem (1), u is required
to be continuously differentiable in the following way: “If u.�/ is continuously
differentiable, an optimal consumption bundle ... can be characterized ...”. I quote
this in full, because what is meant by differentiability of functions on closed sets
can be a very confusing matter (for instance, some authors will call a function
differentiable on R

`C if and only if it is differentiable in every interior point of
R
`C, i.e., if it is differentiable on R

`CC; see [13, p. 81]). In Example 3.D.1O [10,
p. 56] the first-order necessary conditions are applied to the Cobb–Douglas instance
u.x1; x2/ D kx˛1 x

1�˛
2 , with 0 < ˛ < 1. This function does not have partial

derivatives in points with either x1 D 0 or x2 D 0. In view of this application,
it cannot be that the necessary conditions on p. 53 should contain a partial derivative
@u.x�/

@xi
for any x� on the boundary of R`C. Yet this is so: the first-order condition

(3.D.1) on p. 53 contains the following explicit clause “with equality if x�
i > 0”,

which would make no sense if boundary points x� were excluded a priori. In fact,
on p. 54 one finds: “Fig. 3.D.4(b) depicts the first-order condition ... when the
consumer’s optimal bundle x� lies on the boundary of the consumption set.” The
trouble is that the proof on p. 53 of [10] relies on the Kuhn-Tucker Theorem M.K.2
from p. 959. But the latter result is formulated for functions whose domain is
all of R

`. See Remark 2 for further explanation. To those readers who might
object that, after all, in Example 3.D.1 boundary points are automatically sub-
optimal and need not really be subjected to (3.D.1), the response must be that,
mathematically/logically speaking, such an ad hoc readjustment is beside the point:
necessary conditions for optimality should apply to all points for which they have
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been formulated. Here the result and the function were simply not made for each
other. There is also another misplaced application of first order necessary conditions
in [10]. Example 3.D.1 on p. 56 treats the Cobb–Douglas family in a well-known
ad hoc fashion by the logarithmic transformation. However, the transformed utility
function is once more hors concours for the first-order condition (3.D.1), which is
formulated for a real-valued function that is defined on all of R`C. Writing “Since
log 0 D �1 ...” on [10, p. 55] cannot alter this fact.

Example 2. (Simon–Blume [11]) Example 22.1 in Mathematics for Economists
[11] treats utility maximization for the Cobb–Douglas instance with `D 2. In
Example 22.1 one finds the following: “We use Theorems 22.1 and 22.2 to compute
the demand function ... for the Cobb–Douglas utility function U.x1; x2/ D xa1 x

b
2 .”

Here a; b > 0 and a C b D 1. However, Theorems 22.1 and 22.2 have the same
deficiency as observed in Example 1: they are formulated for a utility function
U W R

`C ! R that is stated to be C1 (i.e., continuously differentiable). Just as
on [10, p. 53], the condition “... and equality holds if x�

i > 0” appears in a formula
that uses partial derivatives of the utility function at the point .x�

1 ; : : : ; x
�̀/. So, just

as in [10] there is a mismatch: these results require derivatives to be well-defined
on all of R`C, a requirement that the above Cobb–Douglas utility function cannot
meet. Compared to [10], the book by Simon and Blume offers a longer discussion
of (continuous) differentiability. In fact, on p. 371 its definition is formally stated,
but only for a function defined on all of R`.

Example 3. (Takayama [13]) The approach taken in Mathematical Economics [13]
suffers from similar shortcomings. The utility maximization problem is stated on
[13, p. 135] for a utility function that appears to be defined on all of R

`. The
first-order necessary conditions for optimality are obtained directly from the Kuhn-
Tucker type result on p. 134, which works with R

` for the domain of the functions.
Upon closer inspection, it is surprising that a far better Kuhn-Tucker type result is
available in [13, Theorem 1.D.3]. This result allows open domains of definition
for the functions involved in the optimization problem, but the aforementioned
application on pp. 134–135 does not benefit from this. The subsequent treatment
of the Cobb–Douglas instance in [13, pp. 223–224] (for ` D 2) is presented
correctly, but with no apparent connections to the material on pp. 134–135 (see
also footnote 32 on p. 231 of [13]).

Example 4. (Jehle-Reny [8]) As already indicated in Sect. 2, the first-order opti-
mality conditions on p. 23 ff. in Advanced Microeconomic Theory [8] are virtually
the same as parts .a/–.c/ of Theorem 1. Nonetheless, there are serious compli-
cations with the way [8, Chapter A2] presents the underpinning notions for its
optimality conditions. This is because [8] fails to distinguish (total) differentiability
from partial differentiability: only a formal definition of partial differentiability is
presented, namely in Definition A2.1. Consequently, Example 4 of [6, p. 69] forms
a counterexample against the intuitive definition of the directional derivative on [8,
p. 463], which is exclusively based on partial differentiability. This can also help to
explain why no chain rule for (totally) differentiable functions has been presented
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in [8]; yet this rule is applied. Moreover, a formula for the total differential can be
found on pp. 487–488, but neither the adjective “total” nor the term “differential”
would seem to have been defined in [8]. Last but not least, as already mentioned in
Sect. 2 the treatment of (1) in [8] is exclusively occupied with optimal solutions
which already belong to R

`CC. Therefore, it is unable to treat situations with
corner point solutions, such as instances .iii/–.iv/. Hence its Exercise 1.20 about
deriving the Marshallian demand for the Cobb–Douglas instance seems slightly
incomplete.

Example 5. (Luenberger [9]) On p. 130 of Microeconomic Theory [9] the standard
choice of R`C is made for the commodity space. The first-order conditions on p. 131
and p. 133 are correctly stated for interior points of R`C. However, at the bottom of
p. 133, still in the same section and with no mention of any change of the model,
the following is stated: “We assumed above that the solution occurred at a point
x with x > 0 ... If the solution occurs at a point with x1 > 0 and x2 D 0, the
first-order condition is that MRS21 > p1=p2.” Here the notation refers to marginal
rate of substitution, a notion which contains partial derivatives that would have to
be meaningful on the boundary but need not be so for the Cobb–Douglas family.
Yet Example 5.1 on p. 132 discusses application of the same first-order conditions
to the Cobb–Douglas utility function.

Example 6. (Varian [14]) Microeconomic Analysis [14] contains no first-order opti-
mality conditions that are especially made to suit the general utility maximization
problem. Rather, for each separate application the author refers to the Kuhn-Tucker
theorem on p. 503. However, this result is only formulated for functions with
all of R` as their domain of definition. Hence, applications to the Cobb–Douglas
instance (p. 111) and the CES instance (p. 55) are out of order from a formal
viewpoint (on p. 112 utility maximization for the CES family is treated by means
of earlier results for the producer that are handled by duality). Of course, the use
of the logarithmic transformation to the Cobb–Douglas function on p. 111 could be
exploited very easily to rectify the application of the Kuhn-Tucker theorem, because
the transformed optimization problem takes place on R

2CC, which is an open set
(see Remark 2). In contrast to all other references under review, [14, p. 57] contains
a rather complete derivation (informal, because it is based only on applying first-
order necessary conditions) of a corner point solution. This was already observed in
Sect. 3.

Example 7. (Henderson-Quandt [7]) Microeconomic Theory: a Mathematical
Approach [7] offers more evidence of the aforementioned confusion. The conditions
for the utility function, stated in the lines following (2-1) on p. 8, fail to include
a proper specification of the domains of definition, differentiability and continuity.
General existence of an optimal solution seems to have been ignored. Worse,
because the conditions on p. 8 also require the partial derivatives of the utility
function to be strictly positive, the applications to the Cobb–Douglas utility function
in [7, pp. 18–19] can only be explained if the main results of Sects. 2-2 and 2-6 were



38 E.J. Balder

meant to deal with R
`CC as the domain of the utility function. However, that clashes

with the corner solution depicted in Fig. 2-4(b) and the nonnegativity formulas that
precede it. The lines following (2-1) also require the utility function to be regular
strictly quasiconcave, which is in terms of second-order partial derivatives (see
footnote 1 on p. 8); thus, some mention can be made in [7] about sufficiency in the
sense of part .c/ of Theorem 1. However, a coherent and complete method of utility
maximization is not presented and, in fact, because of the deficiencies observed
above, already Sect. 2-2 (which is for `D 2) is unable to deal with any of the five
instances .i/ to .v/ in a mathematically correct way.
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