
ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

Realistic Crowd Simulation with Density-Based Path Planning

Wouter G. van Toll
Utrecht University

Department of Information
and Computing Sciences
W.G.vanToll@uu.nl

Atlas F. Cook IV
Utrecht University

Department of Information
and Computing Sciences

A.F.CookIV@uu.nl

Roland Geraerts
Utrecht University

Department of Information
and Computing Sciences
R.J.Geraerts@uu.nl

Abstract

Virtual characters in games and simulations often need
to plan visually convincing paths through a crowded en-
vironment. This paper describes how crowd density in-
formation can be used to guide a large number of charac-
ters through a crowded environment. Crowd density in-
formation helps characters avoid congested routes that
could lead to traffic jams. It also encourages characters
to use a wide variety of routes to reach their destination.

Our technique measures the desirability of a route by
combining distance information with crowd density in-
formation. We start by building a navigation mesh for
the walkable regions in a polygonal 2D or multi-layered
3D environment. The skeleton of this navigation mesh
is the medial axis. Each walkable region in the naviga-
tion mesh maintains an up-to-date density value, given
by the fraction of the area that is being occupied by
characters. These density values are mapped onto the
medial axis to form a weighted graph. An A* search
on this graph yields a backbone path for each charac-
ter, and forces are used to guide the characters through
the weighted environment. The characters periodically
replan their routes as the density values are updated.
Our experiments show that we can compute congestion-
avoiding paths for tens of thousands of characters in
real-time.

1 Introduction

Virtual characters often need to plan visually convinc-
ing paths through a crowded environment. Such paths
should be easy to compute and should permit characters
to avoid static obstacles as well as other moving char-
acters. Although shortest paths can be used to guide
characters through an environment, traffic jams can oc-
cur when many characters traverse the same route.

This paper has been submitted for presentation at ICT.OPEN
2012. This is the national Dutch ICT conference and serves, for
this paper, the role of training the presentation skills rather than
to push scientific limits. ICT.OPEN does not claim copyright. For
this reason, ICT.OPEN 2012 encourages authors to submit mostly
papers that have been sent to or have recently been presented at
international conferences.

(a) Without density information

(b) With density information

Figure 1: A multi-layered 3D environment. Characters move
from the bottom floor to the top floor. (a) Without density
information, most of the characters follow the same short
path. This leads to a traffic jam. (b) When density infor-
mation is considered, the characters will naturally spread
out among the available routes.

1.1 Goal and Contributions

The goal of this paper is to use continuously updated
density information to guide tens of thousands of char-
acters through a crowded environment in real-time. The
desirability of a route is measured by combining distance
information with crowd density information.

Figure 1 shows the effect of our method. When all
characters simply look for the shortest route, they cause
congestions which cannot be easily solved with local
collision avoidance. Our density-based planning algo-
rithm lets characters prefer areas that are less crowded,
thus spreading them among the available routes. This
behaviour is emergent : it is caused by the individual
choices of the characters.

1

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

Our method works for any polygonal 2D or multi-
layered 3D environment. The latter is a set of con-
nected two-dimensional layers, e.g. a collection of floors
and staircases [23]. Figure 1 shows an example.

The real-world concept of crowd density is often ex-
pressed in characters per square meter [25]. Field stud-
ies have shown that as the crowd density of a region in-
creases, characters will move more slowly through that
region [2]. Our technique will model this behavior by
reducing the expected walking speed of characters based
on the crowd density.

We maintain crowd density information in a naviga-
tion mesh that partitions the environment into walkable
regions. Our mesh is based on the medial axis: the set
of all points in the walkable space that have more than
one closest point on the boundary of obstacles [21].

During the simulation, each region in the mesh stores
a local crowd density value that is updated as characters
enter or exit the region. We refer to the set of regions
and their densities as the density map. These densities
are mapped onto the medial axis to form a weighted
graph, and we use A* search [6] on this graph to guide
each character through the crowded environment. Be-
cause the medial axis is sparse, it can be searched more
efficiently than a grid.

Finally, periodic replanning ensures that characters
can respond to congestions as they appear or disap-
pear. We present a version of the A* algorithm that lets
characters replan their paths partially, which is more
efficient than replanning the entire paths. Intuitively,
density values of areas that are far away are not im-
mediately important, because they may have changed
drastically by the time a character is closer to these ar-
eas and wants to replan again.

We improve upon related work [7] by presenting
a more effective density representation, a generalized
planning algorithm, and an efficient replanning method.

1.2 Related Work on Crowd Simulation

Many techniques exist to steer characters through vir-
tual environments. Graph-based techniques such as
probabilistic roadmaps [12], rapidly-exploring random
trees [15], and waypoint graphs [22] represent the en-
vironment using a set of one-dimensional edges. By
contrast, a navigation mesh partitions the environment
into two-dimensional walkable regions [4], [8], [16], [20],
[26]. A character can first plan a global route through
these regions, and then locally control its movement
within each region [5]. This flexibility also allows colli-
sion avoidance between characters.

Most navigation meshes can only be used for two-
dimensional problems. By contrast, the Navigation
Graphs technique of Pettré et al. [20] uses a sampling-
based approach to capture the topology of 3D multi-
layered environments. Our own method [23] computes

the medial axis of a multi-layered environment, leading
to a compact, exact, and flexible navigation mesh.

A navigation mesh typically returns a global route
through the environment. Local collision-avoidance rou-
tines should then ensure that characters avoid each
other along the way [1], [11]. One drawback to this two-
level approach is that a character can get stuck when the
global route is congested by other characters. Our new
approach can prevent such congestions by guiding the
global planning phase with local density information.

Techniques based on potential fields combine the
global and local planning phases. A potential field is a
grid representation of the walkable space in which each
cell stores the optimal walking direction towards a fixed
goal [17], [18], [24]. While these grids can model large
crowds, they are expensive to store and update. To en-
sure real-time performance, the crowd is often assumed
to consist of homogeneous groups. Within a group,
characters share a potential field and cannot have indi-
vidual goals. Hence, potential fields alone do not permit
individual planning properties for each character.

Yersin et al. [27] use a navigation graph for global
planning, and grid-based methods for local avoidance in
only the high-interest regions of the environment. This
hybrid method is very scalable, but the grids are again
based on homogeneous groups.

Unlike these field-based approaches, we separate the
global and local planning phases, such that each char-
acter can use its individual properties to plan its own
path based on the current crowd density information.
We focus on global planning on a navigation mesh; lo-
cal collision-avoidance techniques can still be added as
an extra level [1], [11]. Our density-based planning algo-
rithm can prevent the congestion problems of previous
two-level techniques.

1.3 Related Work on Crowd Density

In a practical study, Weidmann [25] shows that a per-
son’s movements are influenced by environmental fac-
tors (e.g. the incline of a surface) and personal factors
(e.g. age). He also shows that the expected walking
speed of a person decreases as the crowd density around
that person increases. This observed relation has influ-
enced several simulation models [3]. Our density-based
planning algorithm is based on the same principle.

Karamouzas et al. [9] use a grid for density-based
crowd simulation. They mark a grid cell as ‘dense’
when a character enters it, and this density value de-
creases gradually over time. Path planning on this grid
leads to natural variety among characters. However, the
grid is an approximation of the environment’s geometry,
and path planning is usually more expensive on a grid
than on a sparse graph such as our navigation mesh
[23]. Their technique is also not based on the real-world
density concept validated in many studies [3], [25].

2

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

Pettré et al. [19] propose subdividing a crowd into
separate flows according to density. Their Navigation
Flow queries can dispatch entities that move between
shared locations. In our method, characters can have
individual start and goal locations.

Our density-based planning algorithm is a generaliza-
tion of the Fastest-Path Algorithm by Höcker et al. [7].
Kneidl and Borrmann [13] have shown that the Fastest-
Path Algorithm can lead to behavior that matches real
crowds. However, Höcker et al. [7] use a collection of
squares to approximate the local density information.
These squares can overlap and can cause some parts of
the walkable space to be represented more than once,
which implicitly makes them more important. Further-
more, some parts of the walkable space may not be rep-
resented at all. By contrast, our method partitions any
2D or multi-layered 3D polygonal environment into a set
of non-overlapping polygonal regions. Another improve-
ment is that we allow replanning during the simulation
as the density information changes over time.

2 Density-Based Navigation

In this section, we describe our new algorithm for
density-based crowd simulation. Section 2.1 intro-
duces our density map data structure. Section 2.2 de-
scribes the algorithm that we use to plan global density-
avoiding routes. Section 2.3 introduces an efficient re-
planning approach that permits characters to periodi-
cally update their global routes as the densities change.

2.1 Density Map

We present the density map as a representation of the
local crowd densities in an environment. Our density
map subdivides the walkable space into polygonal, non-
overlapping regions, each of which keeps track of the
current local density value. Unlike grid-based decompo-
sitions, our method partitions the entire walkable space
in a compact and exact manner.

The basis of our algorithm is the Explicit Corridor
Map (ECM) navigation mesh [4], [23]. The ECM can
efficiently answer global path planning queries for char-
acters of all sizes, and it provides flexibility for local
behavior. It is based on the medial axis, a compact
structure that is well-defined for all locally planar en-
vironments, including those with non-convex obstacles
and multiple layers [23].

The ECM annotates the medial axis with closest-
obstacle information for a linear number of positions.
By connecting these positions to their closest obstacle
points, we partition the walkable space into a set of
non-overlapping regions E ={R1, ..., Rm}. Each region
Ri contains exactly one edge ei of the medial axis. Fig-
ure 2 shows an example.

Rj

Ri

Ri

Rj

Figure 2: The ECM of an environment, with obstacles shown
in gray. The medial axis is shown in blue. Orange line
segments connect the vertices of the medial axis to their
nearest obstacles. This partitions the environment into a
set of walkable regions. We have highlighted two regions as
an example. Each region contains one medial axis edge.

We define the density value ρi ∈ [0, 1] of each Ri ∈ E
as the area of all characters currently inside Ri divided
by the total area of Ri. Unlike the more common defini-
tion in ‘persons per square meter’, our definition permits
each character to have a distinct size.

We can now refer to the set E ={R1, ..., Rm} as the
density map, because it maps any point in the environ-
ment onto its containing region Ri and onto the asso-
ciated density value ρi. This density value will be used
to weight the corresponding medial axis edge ej .

Each time the characters move, the density values for
all of the walkable regions need to be updated. We keep
track of each character’s current walkable region. When
a character leaves a region Ri, we subtract the area of
that character from the occupied area of Ri. When a
character enters a new region Rj , we add the area of
that character to the occupied area of Rj .

2.2 Planning Algorithm

Our planning algorithm is based on time: it looks for
a path that can be quickly traversed, assuming that
higher local densities lead to a longer traversal time.

Let v(ρ) be the expected speed of a character at den-
sity ρ ∈ [0, 1]. According to field studies [25], v(ρ)
should return the maximum speed of the character when
ρ = 0, and it should decrease to zero as ρ increases.
Various functions have been used in practice [3]. We let
v(ρ) decrease linearly, down to v(1) = 0.

Next, let ||ei|| denote the arc length of an edge ei. We
define the cost c(ei) for traversing an edge ei as follows:

c(ei) = tmin(ei) + w · (treal(ei)− tmin(ei)),

where tmin(ei) = ||ei||/v(0) is the time required to tra-
verse ei at maximum speed, treal(ei) = ||ei||/v(ρi) is the
expected traversal time due to the density of ei, and w
is a non-negative weight.

3

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

With the weight w, we can naturally interpolate be-
tween the shortest path and the least dense path in the
graph. If w = 0, characters will look for the shortest
path. As w increases, characters will have an increasing
desire to avoid dense regions. If w = 1, characters will
look for the fastest path as in Höcker et al. [7]. Note
that each character can have its own value of w.

By running an A* search [6] on the medial axis with
these edge costs, the optimal path for any character can
be quickly determined. For the A* heuristic function,
we use the straight-line time to the goal, assuming that
the density is zero. This function never overestimates
the actual time to the goal, i.e. it is admissible.

2.3 Partial Replanning

For a moving crowd, the density values of the walkable
regions can change rapidly. This means that characters
should regularly replan their global routes. Since it may
be infeasible for characters to recompute their entire
paths in large simulations, we describe an efficient and
optimal technique for partial replanning.

The key idea is to speed up the replanning step by
only permitting the character to ‘see’ nearby density in-
formation. Given a character at a position s, the replan-
ning distance dr(s, t) from this character to any point
t on the medial axis is determined as follows. Let n be
the closest point on the medial axis to s. Then, dr(s, t)
equals the Euclidean distance ||s − n|| plus the length
of an optimal path along the medial axis from n to t.

Let D be a threshold value. All points p on the medial
axis for which dr(s, p) ≤ D are said to be visible to
the character. All other points on the medial axis are
invisible. During the A* search on the medial axis, a
character sees the density for only the visible parts. For
the other parts, we assume that ρ = 0. Note that all of
the density information will be considered if D =∞.

An advantage of this approach is that we can often
make replanning more efficient without losing optimal-
ity. Figure 3 shows a character that plans a path from
a point s0 to t. The path is visible up to the replanning
distance D, and the remainder is invisible. Later, the
character replans the path to t, from its current posi-
tion s1. Because the character has progressed along its
path, the set of visible points has changed.

We call a point on the medial axis mutually invisible
if and only if that point is invisible in both the original
path and the replanned path. During replanning, the
A* algorithm may reach such a mutually invisible point,
as in Figure 3b. Let π(a, b) denote a path between two
points a and b. The following theorem holds:

Theorem 1 As soon as A* reaches the first mutually
invisible point q, we can halt the search and simply copy
π(q, t) into the new replanned path. The resulting path
π(s1, t) is optimal.

s0

D

t

(a) Initial path

s1

D

t

q

s0

(b) Replanned path

Figure 3: (a) A character initially computes a path from a
point s0 to a target point t. The visible and invisible parts
of the path are shown in green and gray, respectively. (b)
When the character replans its path from a position s1, the
new path eventually meets the original path at a mutually
invisible point q. The sub-path from q to t does not change.

Proof. First, note that π(s1, q) is optimal, because A*
returns optimal paths when the heuristic is admissible.

In the old situation, π(q, t) was found without using
densities. Hence, it is the shortest sub-path, computed
with only static information. In the new situation, q is
still invisible, so the character can still only use static
information to find a new path π′(q, t). Thus, π′(q, t) =
π(q, t), and we do not need to recompute it. �

Section 3.4 will show that the threshold D provides
a tradeoff between speed and accuracy. An alternative
approach to replanning is the D* Lite algorithm [14].
However, D* Lite uses too much memory overhead per
character to be applicable for large crowds.

3 Experiments

We have implemented our density-based crowd simu-
lator in C++ with Microsoft Visual Studio 2008. All
of the experiments were performed on a PC with an
2.5GHz Intel Xeon E5420 processor, an nvidia Quadro
FX 1700 graphics card, and 4 GB of RAM. The ma-
chine uses Windows XP (64-bit, Service Pack 2). All
experiments use a single CPU core.

3.1 Environments and Settings

Our experiments were performed in one multi-layered
3D environment and in three 2D environments.

We refer to the environment in Figure 1 as the Layers
environment. It consists of three floors connected by
five staircases. It also contains a number of non-convex
obstacles that let characters choose between numerous
routes when they traverse the environment.

Figure 4 illustrates our 2D environments. Blocks
is a small environment with a number of potential
routes that characters may choose. It was also used
by Karamouzas et al. [9]. Zelda is a medium-sized vil-
lage from a popular video game. City is a large virtual

4

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

(a) Blocks (b) Zelda (c) City

Figure 4: The three 2D environments used in our experiments. Obstacles are shown in gray, the medial axis is shown in blue,
and boundaries of the density regions are shown in orange.

city with many polygonal obstacles and routes. More
details can be found in Table 1.

Environment Navigation Mesh

Name Width Vertices Vertices Build Time

Layers 100m 332 248 38ms
Blocks 100m 52 132 25ms
Zelda 100m 560 1,243 49ms
City 500m 2,638 6,273 403ms

Table 1: Details of the four environments. The ECM
was constructed with a GPU-based algorithm [4].
For Layers, Blocks, and Zelda, we used a resolution
of 1,000x1,000 pixels. For City, the resolution was
4,000x4,000 pixels. This is the reason for the longer
construction time.

Although our method supports individual character
properties, we follow the suggestions of Weidmann [25]
and model each character as a disk with a radius of
0.24m (i.e. an area of approximately 0.18m2), and with
a maximum speed of 1.4m/s. In Figure 1, we gave each
character a random side preference within its homotopic
route. In our experiments, all characters follow the me-
dial axis. Characters are pushed towards their goal by
attractive forces [10], at 10 frames per second.

No collision avoidance was used. Instead, we used
the density-speed function v(ρ) to decrease a charac-
ter’s maximum walking speed based on the density in
its current region. This gives a good approximation of
the slowdowns caused by high densities.

3.2 Overhead of Density Values

Our first experiment measured the overhead to maintain
the density values for the walkable regions and the me-
dial axis. We inserted a large number of characters with
random start and goal positions into each of our environ-
ments and simulated their movement. Characters were

removed from the environment as soon as they reached
their goal position. Table 2 shows the time to perform
each frame of the simulation for the entire crowd.

For all environments, the density measurements re-
quired at most 2ms per simulation step. Thus, updating
the densities only marginally affects the running time,
and crowds can still be steered in real-time.

Environment Characters Step Time: Density?

No Yes

Layers 10,000 23ms 24ms
Blocks 10,000 15ms 16ms
Zelda 10,000 16ms 17ms
City 20,000 32ms 34ms

Table 2: Running times for simulation steps with-
out and with density measurements.

3.3 Crowd Variety

Our second experiment used the Blocks environment to
test the effect of planning paths with different values
of the density weight w. We also compared simulations
without replanning to simulations with replanning. In
every simulation step, we added two characters at ran-
dom positions at the bottom of the scene and with ran-
dom goal positions at the top of the scene. We ran the
simulation for 5,000 steps (500 seconds).

Without using density information (i.e., with w = 0),
all of the characters moved along a shortest path in the
graph. Hence, almost all of the paths ran through the
environment’s middle section. This led to traffic jams
that slowed down the crowd.

With density information (w = 1) but without any
replanning, characters in the Blocks environment ini-
tially took a shortest path. This led to traffic jams in
the central sections. Newly created characters detected
this congestion and chose other paths. These charac-

5

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

ters crowded the other routes while the central section
was gradually emptied. This periodic behavior repeated
several times during the simulation. On average, the
walking speed of the characters was much higher while
the traversed paths were not much longer.

We also ran the experiment with w = 1 while let-
ting characters replan their paths every 100 steps. This
spread the characters among the available routes, and
the crowd did not leave any periodic gaps. On average,
the speed of the characters was high while the traversed
paths were still quite short. This setting led to the most
natural-looking crowd flow.

With w = 5 and replanning, characters switched be-
tween routes more frequently and took large detours
to avoid congested regions. While the average walking
speed of the characters increased, their paths became
much longer due to increased indecisiveness.

Table 3 shows the average path length and walking
speed for each setting.

Experiment Avg Path Length Avg Speed

w = 0 (No Density) 106.87m 0.67m/s
w = 1 115.90m 0.91m/s
w = 1, Replanning 114.85m 0.96m/s
w = 5, Replanning 132.96m 1.01m/s

Table 3: The average path lengths and walking speed
of the characters for different settings in Blocks.

Figure 1 shows the difference between w = 0 and w = 1
(with replanning) in the Layers environment. Without
density awareness, nearly all characters follow the same
route, causing a traffic jam. By contrast, when den-
sity information is considered, characters will naturally
spread out among all of the available routes.

3.4 Replanning Efficiency

Our third experiment investigated how the replanning
time can be reduced by changing the density viewing
threshold D of the characters. We simultaneously added
5,000 characters to the City environment with random
start and goal positions in such a way that the Euclidean
distance between each character’s start and goal was at
least 100 meters. We set w = 5 for all experiments
so that convincing detours would be explored. We let
each character replan its path every 10 seconds, and we
ran the simulation for over 40 seconds to ensure that
each character replanned up to four times. Figure 5
illustrates the time to update an existing path based on
the updated density information.

With D = ∞, each character could use all of the
updated density values. Routes with 20 vertices took
between 0.2ms and 1ms to compute, per character.
Routes with 40 vertices took between 0.5ms and 2.5ms.
Routes with 60 vertices took between 1.5ms and 3ms.
On average, a character needed 2ms to replan a path.

With D = 350m, each character could see all den-
sity updates within 350m of the current position. The
average replanning time was reduced to 1ms.

With D = 0m, the characters could not use any
density information, and replanning reduced to simply
copying the remaining part of the old path. The average
time to perform each replanning operation was 0.3ms.

Notice that replanning was more expensive for larger
values of D, because more vertices had to be explored
before an old sub-path could be copied. Likewise,
smaller values of D made replanning more efficient, in
exchange for a loss of some density information.

Table 2 shows that 20,000 characters can be steered
through City in 34ms per frame, leaving 66ms for other
tasks such as replanning. If D = ∞, replanning takes
2ms on average, so at most 33 characters can replan
their paths in one frame. Consequently, all 20,000 char-
acters can replan their paths every 60.6s. If D = 350m,
this interval becomes 30.3s. Hence, our method enables
real-time periodic replanning for large simulations.

3.5 Multi-Threaded Speedup

Finally, we have built the simulator using OpenMP tech-
nology so that it can steer multiple characters in par-
allel. Using only one CPU core, our method can steer
50,000 characters through the Blocks environment in
90ms per frame. With 4 CPU cores, we can reduce this
time to 30ms per frame. These results show that our
method is prepared for future hardware improvements.

4 Conclusion

Although it is common to steer virtual characters along
short paths to their destinations, high crowd densities
can lead to unnatural traffic jams while longer routes are
underutilized. To enhance realism, we use crowd density
information to guide a large number of characters along
various routes. We do this by building a navigation
mesh and weighting the desirability of routes based on
the crowd density along the path. Our technique can
guide tens of thousands of characters through a 2D or
multi-layered environment in real-time.

One limitation of our technique is that an extremely
small walkable region could have a very high density
value if a large character suddenly enters that region.
This large density value could adversely affect the desir-
ability of an entire route. If this behavior is a problem,
it might be interesting to scale the density values based
on the length of the affected medial axis edge.

As future work, we are interested in looking beyond
density information to the speed and direction of a
crowd. This flow information might play an important
role in e.g. crowd evacuation scenarios. It would also
be interesting to replan paths based on density-change
events rather than replanning paths periodically.

6

ASCI – IPA – SIKS tracks, ICT.OPEN, Rotterdam, October 22–23, 2012

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

P
la

n
n

in
g

 t
im

e
(m

s)

Number of path vertices

Efficiency of re-planning, dV = ∞

(a) D = ∞

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

P
la

n
n

in
g

 t
im

e
(m

s)

Number of path vertices

Efficiency of re-planning, dV = 350

(b) D = 350m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

P
la

n
n

in
g

 t
im

e
(m

s)

Number of path vertices

Efficiency of re-planning, dV = 0

(c) D = 0m

Figure 5: Replanning times for 5,000 characters in the City environment with (a) D = ∞, (b) D = 350m, and (c) D = 0m.
Each point in this figure corresponds to one replanning action. The horizontal axis shows the number of vertices in the newly
computed path. The vertical axis shows the running time of our path planner in milliseconds.

Acknowledgments

This research has been supported by the GATE project
(http://gate.gameresearch.nl), INCONTROL Sim-
ulation Solutions, and the Netherlands Organization for
Scientific Research (NWO).

References

[1] J.P. van den Berg, M. Lin, and D. Manocha. Reciprocal Ve-
locity Obstacles for real-time multi-agent navigation. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, pages 1928–1935, 2008.

[2] W. Daamen. Modelling passenger flows in public transport
facilities. PhD thesis, Delft University of Technology, 2004.
Thesis number: T2004/6, TRAIL series.

[3] W. Daamen and S.P. Hoogendoorn. Level difference impacts
in passenger route choice modelling. In Proceedings of the
8th TRAIL conference: A world of transport, infrastructure
and logistics, pages 103–127, 2004.

[4] R. Geraerts. Planning short paths with clearance using Ex-
plicit Corridors. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1997–2004,
2010.

[5] R. Geraerts and M.H. Overmars. Enhancing corridor maps
for real-time path planning in virtual environments. Com-
puter Animation and Social Agents, pages 64–71, 2008.

[6] P. Hart, N. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

[7] M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann, and
W. Klein. Graph-based approaches for simulating pedes-
trian dynamics in building models. In eWork and eBusiness
in Architecture, Engineering and Construction, pages 389–
394, 2010.

[8] M. Kallmann. Path planning in triangulations. In Proceed-
ings of the IJCAI Workshop on Reasoning, Representation,
and Learning in Computer Games, pages 49–54, 2005.

[9] I. Karamouzas, J. Bakker, and M.H. Overmars. Density con-
straints for crowd simulation. In Proceedings of the ICE
Games Innovations Conference, pages 160–168, 2009.

[10] I. Karamouzas, R. Geraerts, and M.H. Overmars. Indicative
routes for path planning and crowd simulation. In Proceed-
ings of the 4th International Conference on Foundations of
Digital Games, pages 113–120, 2009.

[11] I. Karamouzas, P. Heil, P. van Beek, and M.H. Overmars.
A predictive collision avoidance model for pedestrian simu-
lation. In Proceedings of the 2nd International Workshop on
Motion in Games, pages 41–52, 2009.

[12] L.E. Kavraki, P. Švestka, J.C. Latombe, and M.H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12:566–580, 1996.

[13] A. Kneidl and A. Borrmann. How do pedestrians find their
way? Results of an experimental study with students com-
pared to simulation results. In Emergency Evacuation of
people from Buildings, 2011.

[14] S. Koenig and M. Likhachev. Fast replanning for navigation
in unknown terrain. IEEE Transactions on Robotics, 21(3),
2005.

[15] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient
approach to single-query path planning. IEEE International
Conference on Robotics and Automation, pages 995–1001,
2000.

[16] M. Mononen. Recast Navigation. Google Project: http:
// code. google. com/ p/ recastnavigation , 2011.

[17] R. Narain, A. Golas, S. Curtis, and M.C. Lin. Aggregate
dynamics for dense crowd simulation. ACM Transactions
on Graphics, 28:1–8, 2009.

[18] S. Patil, J.P. van den Berg, S. Curtis, M.C. Lin, and
D. Manocha. Directing crowd simulations using navigation
fields. IEEE Transactions on Visualization and Computer
Graphics, 17:244–254, 2010.

[19] J. Pettré, H. Grillon, and D. Thalmann. Crowds of moving
objects: Navigation planning and simulation. IEEE Interna-
tional Conference on Robotics and Automation, pages 3062
– 3067, 2007.

[20] J. Pettré, J.-P. Laumond, and D. Thalmann. A navigation
graph for real-time crowd animation on multilayered and un-
even terrain. In Proceedings of the First International Work-
shop on Crowd Simulation, 2005.

[21] F. Preparata. The medial axis of a simple polygon. In Mathe-
matical Foundations of Computer Science, volume 53, pages
443–450. Springer, 1977.

[22] S. Rabin. AI game programming wisdom 2. Charles River
Media Inc., Hingham, 2004.

[23] W.G. van Toll, A.F. Cook IV, and R. Geraerts. Navigation
meshes for realistic multi-layered environments. In Proceed-
ings of the International Conference on Intelligent Robots
and Systems, pages 3526–3532, 2011.

[24] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds.
ACM Transactions on Graphics, 25:1160–1168, 2006.

[25] U. Weidmann. Transporttechnik der Fussgänger - Trans-
porttechnische Eigenschaften des Fussgängerverkehrs. Lit-
erature Research 90, ETH Zürich, Institut für Verkehrspla-
nung, Transporttechnik, Strassen- und Eisenbahnbau, 1993.
In German.

[26] R. Wein, J.P. van den Berg, and D. Halperin. The Visibility-
Voronoi Complex and its applications. Computational Ge-
ometry: Theory and Applications, 36(1):66–78, 2007.

[27] B. Yersin, J. Mäım, F. Morini, and D. Thalmann. Real-
time crowd motion planning: Scalable avoidance and group
behavior. The Visual Computer, 24:859–870, 2008.

7

