
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
Motion in Games 2014, November 06 – 08, 2014, Los Angeles, California.
2014 Copyright held by the Owner/Author. Publication rights licensed to ACM.
ACM 978-1-4503-2623-0/14/11 $15.00
http://dx.doi.org/10.1145/2668084.2668093

GPGPU-Accelerated Construction of High-Resolution Generalized Voronoi
Diagrams and Navigation Meshes

Rudi Bonfiglioli∗

Textkernel
Wouter van Toll†

Utrecht University
Roland Geraerts‡

Utrecht University

(a) Approximated GVD (b) Filtered grid (c) Multiple tiles (d) ECM navigation mesh

Figure 1: The pipeline of our algorithm. (a) For a set of obstacles (a ‘U’ and a bounding box), we approximate the Generalized Voronoi
Diagram (GVD) using the GPU framebuffer. (b) Close-up. Instead of copying the entire framebuffer to the CPU, we copy only the grid
points that are relevant to the GVD (white disks). (c) By subdividing large buffers into multiple tiles, we lift the algorithm to virtually infinite
resolutions. (d) The ECM navigation mesh is obtained by marking event points (small dots) where obstacle normals are intersected, and
adding closest obstacle points (gray segments) to event points and edge endpoints. We compute most of this data on the GPU.

Abstract

This paper presents a GPU-accelerated approach for improving
the approximated construction of Generalized Voronoi Diagrams
(GVDs). Previous work has shown how to render a GVD onto
the GPU framebuffer, and copy it to the CPU for extraction of a
high-quality diagram. We improve upon this technique by perform-
ing more computations in parallel on the GPU, and reducing the
amount of data transferred to the CPU. We also design a multi-tiled
construction technique that overcomes hardware limitations and en-
ables much higher rendering resolutions, thus reducing discretiza-
tion errors. Next, we extend our approach to create an Explicit
Corridor Map navigation mesh, which is an efficient data structure
for path planning in modern crowd simulation systems. The new
implementation allows much faster construction of GVDs and nav-
igation meshes at virtually infinite resolutions.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors

Keywords: Voronoi diagram, navigation mesh, GPGPU

∗e-mail:rudi@textkernel.nl
†e-mail:W.G.vanToll@uu.nl
‡e-mail:R.J.Geraerts@uu.nl

1 Introduction

An important goal of modern interactive virtual environments is to
efficiently and naturally steer many agents. To compute realistic
paths for these agents, it is common to run search algorithms on a
compact and efficient representation of the walkable space, referred
to as a navigation mesh.

One particular navigation mesh is the Explicit Corridor Map (ECM)
[Geraerts 2010], which is related to the Generalized Voronoi Dia-
gram (GVD) of the environment’s obstacles. ECMs allow efficient
computation of paths with any desired clearance from obstacles,
and are thus capable of steering thousands of heterogeneous charac-
ters through multi-layered 3D environments in real-time, with many
possible extensions such as crowd density constraints, weighted re-
gions, and dynamic updates [Jaklin et al. 2013]. The method is used
in various crowd simulation packages and research projects.

ECMs can be constructed using the GPU framebuffer, based on an
approximated computation of the GVD [Hoff et al. 1999]. The re-
sults of this algorithm depend on the resolution of the framebuffer:
in general, a higher resolution improves the quality of the mesh, but
leads to longer construction times. Furthermore, this resolution has
an upper limit imposed by GPU and CPU memory constraints.

In this paper, we describe a new, more efficient approach to com-
pute GVDs and ECMs at very high, virtually infinite resolutions.
This approach takes advantage of general-purpose GPU (GPGPU)
computing to improve performance and overcome hardware limita-
tions. Our main contributions are the following:

• We show how to compute approximated GVDs more effi-
ciently by employing GPGPU techniques. This dramatically
decreases running times and memory usage.

• We describe a multi-tiled technique that lifts this algorithm to
virtually infinite resolutions, thus reducing precision errors.

• We extend the algorithm to compute high-quality navigation
meshes.

25

2 Preliminaries and Related Work

2.1 Navigation Meshes

In games and simulations, a common task is to let AI-controlled
characters compute paths through the virtual environment. To allow
efficient and flexible path planning, one can use a navigation mesh:
a subdivision of the environment’s walkable space into polygonal
regions. When a character plans a path through the mesh, it can use
the surrounding free space to locally adjust its movement during the
simulation. Navigation meshes used to be constructed ‘by hand’,
but automatically computed navigation meshes are surging, both
for 2D environments [Wein et al. 2005; Geraerts 2010; Kallmann
2010] and for multi-layered 3D environments, in which multiple
2D layers are connected [Pettré et al. 2005; van Toll et al. 2011;
Oliva and Pelechano 2013; Mononen 2014].

2.2 Voronoi Diagrams and Approximations

A fundamental data structure in computational geometry is the 2D
Generalized Voronoi Diagram (GVD). Given a planar environment
with 2D objects, the GVD is a subdivision of the environment into
object-free regions such that each region has a distinct closest ob-
ject. In this paper, we assume that all objects (or obstacles in the
context of navigation meshes) are points, line segments, or convex
polygons. Non-convex polygons can easily be decomposed into
convex parts during pre-processing [de Berg et al. 2008]. Comput-
ing an exact GVD involves many geometric tests that are numeri-
cally unstable [Liotta et al. 1998]. Software packages such as Vroni
[Held 2011] work around these difficulties, but they acknowledge
the practical complexity of GVDs.

An alternative way to obtain a GVD is to use graphics hardware.
Hoff et al. [Hoff et al. 1999] developed a technique that defines a 3D
distance mesh of cones and quads for each input object, and then
rasterizes all distance meshes in distinct colors. An orthographic
top view of these objects yields a visual representation of the GVD,
as shown in Figure 2. The resulting color information can be con-
verted to a graph structure by copying the framebuffer data to the
CPU, and then grouping the relevant pixels into vertices and edges
[Geraerts and Overmars 2008]. Multiple improvements and alter-
natives for the approach by Hoff et al. have been presented [Sud
et al. 2005; Fischer and Gotsman 2006].

(a) Distance meshes (b) 2D top view

Figure 2: The Voronoi diagram of a set of objects can be approxi-
mated by (a) defining 3D distance meshes per object, and then (b)
rendering them from an orthographic top view.

This approximating algorithm is robust and efficient, but it depends
on a resolution parameter in multiple ways. First, approximation er-
rors can occur, since objects, vertices, and edge points are rounded
to pixel coordinates [Denny 2003]. Second, increasing the resolu-
tion will also increase the construction time, because more memory
needs to be allocated on the CPU and transferred from the GPU, and
more edge pixels need to be traced when converting the buffer to a
graph. Third, the resolution of the GVD is limited by the maximum

size of a continuous buffer that can be allocated on the CPU. In this
paper, we describe how to overcome many of these problems.

2.3 Application: Explicit Corridor Map

The Explicit Corridor Map (ECM) is a navigation mesh for path
planning and crowd simulation [Geraerts 2010]. It is based on the
medial axis, which is the set of all points with at least two distinct
closest obstacle points in the input environment [Preparata 1977].
The points of the medial axis form a graph: vertices occur in con-
cave corners (vertex degree 1) and at positions with more than two
distinct closest obstacle points (vertex degree > 2), while the other
points form the edges connecting those vertices. The medial axis
is a pruned version of the cell boundaries induced by a GVD, as
shown in Figure 1d.

The medial axis can be converted to an ECM by annotating spe-
cific event points with their closest obstacle points. This annotated
graph induces a subdivision of the walkable space into polygonal
areas, and hence, a navigation mesh. Geraerts [2010] has shown
that this mesh is compact, geometrically complete, and efficient to
construct and query; furthermore, it can compute paths with arbi-
trary clearance from obstacles. The ECM has also been extended to
multi-layered 3D environments [van Toll et al. 2011]. Incremental
Voronoi diagram algorithms can be used to update the ECM dy-
namically in real-time [van Toll et al. 2012].

Figure 1d shows an example of an ECM in 2D. The ECM is
computed using the graphics-based GVD technique described ear-
lier, followed by post-processing steps for pruning non-medial axis
edges and adding closest-obstacle annotations [Geraerts 2010]. We
show how GPGPU techniques can be used to improve construction
of both GVDs and ECMs.

2.4 GVDs and Navigation Meshes on the GPU

It would be interesting to compute GVDs and navigation meshes di-
rectly on the GPU, with no further processing of data on the CPU.
Rong and Tan [2006] have used jump flooding to compute Voronoi
diagrams on the GPU. NVIDIA developed a GPGPU-powered nav-
igation mesh for its AI framework [Bleiweiss 2010], but it does not
have the same flexibility as the ECM (e.g. it is less compact and
it does not support characters of arbitrary radii). The same paper
states that graph operations similar to our tracing step are hard to
parallelize effectively on the GPU. For this reason, we keep using
the CPU for converting pixels to compact ECM edges. In this pa-
per, we focus on pre-processing the visual GVD approximation on
the GPU as much as possible, such that less data needs to be copied
to and processed on the CPU.

More recently, Hong et al. [2011] have developed an advanced
graph search technique that subdivides CUDA workloads into warp
units, allowing to parallellize clearly divergent parts over group of
threads. This may allow us to perform efficient tracing on the GPU;
we will investigate it in the near future.

3 GPGPU-Enhanced GVD Construction

This section shows how GPGPU techniques can pre-process the
GVD approximation stored in the framebuffer, to reduce the CPU
load afterwards. We assume that the GPU stores the framebuffer
data and the obstacle coordinates grouped into segments (i.e. pairs
of two points, plus a reference to the original obstacle). We de-
fine a grid of wg × hg points over the pixels, with the coordinate
axes starting in the top-left corner. Each grid point represents a
point shared by the edges of 4 surrounding pixels. To each grid
point (x, y), we can associate a unique ID computed as y ·wg + x.

26

Hence, the entire framebuffer can be seen as an array of n grid
points: FB = {p0, p1, . . . , pn−1}. We will use the terms ‘grid
point’ and ‘pixel’ interchangeably throughout this paper, because
they are so tightly related.

We use GPGPU for the following steps:

• (Section 3.1) Discriminating which pixels are potential ver-
tices or edge points of the GVD;

• (Section 3.2) Filtering out irrelevant pixels that do not need to
be copied to the CPU;

• (Section 3.3, ECMs only) Computing closest obstacle points
to pixels;

• (Section 3.4, ECMs only) Computing information related to
obtacle normals.

Other tasks are still performed on the CPU, such as converting sam-
pled edges to lists of ECM event points, and filtering out GVD
edges that do not belong to the medial axis. These steps are de-
scribed in previous work [Geraerts 2010]. We reduce the CPU
workload for these steps by precomputing the required information
on the GPU (Sections 3.3 and 3.4).

3.1 Marking Vertices and Edge Points

Each grid point has four neighboring pixel colors (except near the
image borders). By checking the number of different colors we can
derive the point’s role in the GVD: 2 colors signal a point that can
be part of a GVD edge while 3 or 4 colors signal a potential vertex.
We will call the number of distinct neighboring colors the ‘degree’
of a point. Note that this is not necessarily the same as the degree of
the corresponding GVD point: for instance, edge endpoints that lie
on a concave obstacle corner will become a degree-1 GVD vertex,
but they are represented by degree-2 pixels.

After rasterizing the distance meshes, we keep the data on the
GPU and invoke a CUDA kernel that computes the degree for each
point. We also keep two marker buffers that store a 1 at all pix-
els marked as a vertex or an edge point, respectively. We subdi-
vide the framebuffer into 2D CUDA blocks, eventually spawning
one CUDA thread per pixel for maximum parallellism. The de-
gree of a pixel could also be estimated by activating and processing
a z-buffer [Geraerts 2010], but since this would involve consum-
ing additional GPU memory and/or performing additional memory
transfers, it would hinder performance in our GPGPU pipeline.

3.2 Filtering Pixels

As can be seen from Figures 1a and 1b, many pixels in the frame-
buffer have degree 1 and are unnecessary for obtaining the under-
lying graph of the GVD. Previously, the entire framebuffer was
transferred to the CPU [Geraerts 2010]. To save time and mem-
ory, we filter out the irrelevant pixels by compressing the two
marker buffers into smaller arrays containing only the relevant pix-
els (marked with a 1).

To perform this compression efficiently on the GPU, we compute
the exclusive prefix sum of both marker buffers. The exclusive
prefix sum of a sequence S = {x0, x1, . . . , xn−1} is defined as
P = {0, x0, x0 + x1, . . . ,

∑n−2
i=0 xi}. It can be computed effi-

ciently in parallel on the GPU [Merrill and Grimshaw 2011]. In our
case, if S is a marker buffer, and S[i] is marked with a 1 (i.e. the ith
pixel is a potential GVD vertex or edge point), then P [i] contains
the desired index of the ith pixel in the compressed array. Further-
more, the total number of marked pixels can easily be computed as
P [n− 1] + S[n− 1] (the last element of the exclusive prefix sum,

plus a possible 1 for the last pixel). With this information, we can
efficiently create two arrays of the correct size containing only the
marked pixels. A summary is shown in Figure 3.

S

P

p2 compressed array

p3 p7p6 p9

p5 p6 p8 p9

p2p1 p4 p5 p8p0

+1 = 5

0 0 1 0 0 1 1 0 1 1

0 0 0 1 1 1 2 3 3 4

Figure 3: From an array S of pixels marked with 0 or 1, we com-
pute the exclusive prefix sum P . For all pixels pi marked with 1,
P [i] stores how many 1s have occured so far. This allows us to
build a compressed array containing only the 1-pixels.

3.3 Computing Closest Obstacle Points

The previous step results in two arrays of pixel IDs; from now
on, we refer to these as the ‘marked pixels’. They already pro-
vide enough information to obtain a sampled graph representation
of the GVD [Geraerts and Overmars 2008]. From this point on, we
discuss extra steps that lead to an Explicit Corridor Map, whose un-
derlying graph is a compact representation of the medial axis. An
explanation of how to filter non-medial-axis edges from the GVD
can be found in previous work [Geraerts 2010].

Recall from Section 2.3 that the ECM should store the nearest ob-
stacle coordinates at selected event points. In practice, it is useful
to store the closest obstacle points for all marked pixels, and then
decide which pixels are event points [Geraerts 2010].

Finding the nearest point on a polygon from a query point is nor-
mally a non-uniform computation that can perform badly on the
GPU. Given any marked pixel, we can check what are the closest
input polygons (at most 4) by reading from the associated color in-
formation. We use the GPU to quickly compute the closest points
of all marked pixels to all segments of the closest obstacles, and
for each polygon we keep the overall closest point to the pixel. Se-
lecting this closest point from a set of candidates can efficiently be
parallelized on the GPU; this is commonly referred to as segmented
reduction. We invoke the kernel spawning enough threads to allow
computation of a point-to-segment distance per thread. To prevent
threads from having to read the same data simultaneously, we du-
plicate the obstacle segments in GPU memory m times, where m
is the number of marked pixels. While this copying may seem rig-
orous, preliminary experiments showed that it leads to increased
performance, most likely because using different memory locations
per thread triggers common GPGPU parallelizations.

3.4 Assigning obstacles’ normals for edge pixels

ECM event points occur exactly at the intersections of obstacle nor-
mals with the medial axis, as shown in Figure 1d. To find these
intersections, we use the GPU to find out between which obstacle
normals each edge pixel lies.

First, we compute the outward normals (directional 2D vectors) of
all obstacle segments, by spawning a GPU thread for each normal
to be computed (Figure 4). Next, we look at all edge pixels. Per
pixel, we determine the local edge direction to find out which two
colors (i.e. obstacles) lie on the left and right side of the edge. For
both resulting obstacles, we determine between which normals the
pixel is located, using one GPU thread per query (i.e. two threads

27

per edge pixel). We assign an index i to the pixel if it lies in the
space spanned by obstacle point pi and normals ni−1 and ni. Oth-
erwise, we assign the index −1. See Figure 4 for an overview.
Later, the CPU will traverse the edge pixels and create event points
at all pixels where this index changes.

p0

p1

p2

n0

n0

n1

n1

n2

n2

-1
1

2

0
-1

-1

Figure 4: Normal indexing. For each obstacle (gray), we compute
the normals ni (dotted half-lines). For each edge pixel, we assign
an index to indicate between which normals it lies. Event points
will be created at pixels where this index changes.

In this step, we do not copy the obstacle normals in GPU memory:
preliminary experiments revealed that it did not improve the perfor-
mance. Because there are fewer conflicts than in the previous step,
the overhead introduced by this ‘unrolling’ is too high in this case.

4 Multi-Tiled GVD Extension

The method described up until now is limited by a maximum res-
olution for the GPU framebuffer. To overcome this, we have de-
veloped an extension that separates the grid into multiple tiles that
do fit in the framebuffer. Since we compute a GVD or ECM per
tile and then stitch the graphs together without further need of the
framebuffer, we are no longer limited by the framebuffer size; this
allows much higher resolutions. We use the same level of precision
throughout the entire environment.

The main difficulty of this extension lies in connecting the adjacent
tiles. First, we ensure that there is a 1-pixel overlap between the
tiles, such that the degree of each pixel can be computed properly:
see Figure 5. To prevent duplicate work for the overlapping pixels,
we do not process the pixels of the first row and column of each tile.
In our application, it is not a problem to ignore the first row and
column of the entire grid: since all environments have a bounding
box, the global border always consists of obstacle pixels, so it can
never contain GVD elements.

(a) Color data (close-up) (b) Multiple tiles

Figure 5: Multi-tiled GVDs. (a) Top-left corner of the color data.
The first row, first column and bottom-right pixel are obstacles.
Voronoi regions are shown in different shades. A Voronoi vertex
occurs near the middle of the image. (b) A subdivision into tiles.
Overlapping pixels are highlighted with thick edges. Without a 1-
pixel overlap between tiles, the vertex would not be recognized.

Second, we need to merge the GVD edges around tile borders. We

do this entirely on the CPU as a final step because it involves case
distinction and object grouping that is hard to parallellize. After we
have performed all the steps from Section 3 for each tile, we have
(on the CPU) a set of partial GVDs. However, most edges that end
at a tile border are likely to be incomplete, because they continue
in the adjacent edge. For each edge endpoint e1 at the border of a
tile, we check the neighbouring grid point e2 from the adjacent tile.
The following cases can occur:

• e1 and e2 are both edge points. The two partial edges are
merged into one longer edge.

• e1 is an edge point and e2 is a vertex (or vice versa). The edge
is extended to e2 such that it ends at the vertex.

• e1 and e2 are both vertices. An extra edge (with a length of 1
pixel) is added between the two vertices.

When we have processed all edges in this fashion, the result is a
single, high-resolution GVD for the entire environment.

5 Implementation Details

We have implemented the GPGPU algorithm in C++ using the
CUDA SDK and version 1.5.0 of the Thrust library [Hoberock and
Bell 2010]. Our software extends an ECM framework that already
provided a solid implementation of graphics-based ECM construc-
tion [Geraerts 2010]. Since we use Thrust mainly for routines for
which GPGPU-optimized approaches are well-known (e.g. prefix
sums and parallel filtering), our improvements could also be imple-
mented using other platforms such as OpenCL.

The implementation tries to take advantage of GPGPU in many
ways. First, when computing the degree of a grid point, we use
texture memory to speed-up the reads of neighboring pixels, since
texture queries are cached and optimized for 2D spatial locality.

Second, we allow memory coalescence, i.e. having a sequence of
threads efficiently access a sequence of memory blocks. To maxi-
mize the number of coalesced reads and writes during the various
steps, we arrange our data in a ‘Structure of Arrays’ fashion instead
of the more traditional ‘Array of Structures’. For example, an Ar-
ray of Structures for 2D points would contain x and y coordinates
interchangeably:

P = {x1, y1, x2, y2, . . . , xn, yn}

Instead, we let two arrays store the x and y coordinates separately:

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}

We apply this to obstacles, vertex positions, closest points, and ob-
stacle normals. This way, when a GPU thread ti needs to read a
point (xi, yi), it only needs to looks at one element of each array.
Consequently, more threads can read from the same array in paral-
lel, and the GPU can group these read operations more efficiently.
This technique is typical for GPGPU programming.

Third, we use ‘pinned’ (i.e. page-locked) memory on the CPU to
mitigate the cost of transfers from GPU to CPU. On modern sys-
tems with a front-side bus, the bandwidth between pinned host
memory and device memory is higher.

6 Results

We have used the new implementation to construct the GVD and
ECM of different environments at various resolutions, and we com-
pared the memory usage and speed of the new approach to an exist-
ing one [Geraerts 2010]. Our machine had the following specifica-
tions: Intel i7-3930K CPU at 3.2 GHz, NVIDIA GeForce GTX 680

28

GPU, 16 GB RAM, and Windows 7 64-bit as its OS. The software
was developed and built using Visual Studio 2010.

We used the two environments shown in Figure 6. Military is a
simple environment that measures 200 × 200 m and features 23
convex obstacles. City measures 500 × 500 m and features 548
convex obstacles that induce many routes and narrow passages.

(a) Military (b) City

Figure 6: The environments used in our experiments, along with
their medial axis (black curves) and closest-obstacle data (gray
segments).

For convenience, we used multiples of 1024 pixels in width and
height at all resolutions. We used the multi-tiled technique purely
to enable higher resolutions: to prevent unnecessary graph stitching
operations, it is always good to use the largest possible tile size. The
maximum tile size on our machine was 4096× 4096 pixels; hence,
we performed multi-tiling for all ECMs at higher resolutions.

6.1 Running Times

Figure 7 summarizes the construction times recorded. All times are
averaged over 40 runs. With respect to the existing implementa-
tion [Geraerts 2010], the GPGPU version achieved speedups of up
to 8.5x for Military and 3.5x for City. Moreover, the introduced
merging phase has basically no impact on the total times: it con-
sists for less than 2% of running times also when 64 tiles of 4096
squared pixels are employed (worst case). A two-tailed Student t-
test confirmed that the new implementation is significantly faster
(α = 0.05) at all resolutions from 4096 × 4096 pixels and higher.
The speedup factor depends on the complexity of the ECM that is
being constructed; City has a more complex ECM, i.e. more pixels
to copy and edges to trace. Hence, the new implementation is more
‘output-sensitive’ and less heavily dependent on the resolution.

6.2 Memory

We have also measured the memory transferred from CPU to the
GPU, as shown in Figure 8. We use 32-bit colors when rasterizing
the GVD, because it allows us to handle a greater number of obsta-
cles (i.e. 232). Since the original implementation simply transfers
all pixels of the GPU framebuffer, it transfers wg × hg × 4 bytes.
This cost does not depend on the input environment, but only on the
resolution. For instance, 16 MB was already needed at 2048×2048
pixels, and this amount grows rapidly as the resolution increases.

By contrast, in the GPGPU implementation the amount of trans-
ferred memory depends on the complexity of the graph to be traced.
The City environment transfers only 1 MB at the same resolution;
it transfers 16 MB at a resolution of 16384× 16384 pixels. Multi-
tiling does not affect this significantly since we only transfer an
additional strip of pixels for each border shared by two tiles.

0 4 8 12 16 20 24 28 32

0

1 000

2 000

3 000

4 000

5 000

Grid width and height (pixels ×1024)

E
C

M
co

ns
tr

uc
tio

n
tim

e
(m

s)

Military (GPGPU) City (GPGPU)
Military (Original) City (Original)

Figure 7: Running times of the implementations at various res-
olutions. Our GPGPU implementation exhibits significantly lower
computation times at most resolutions. It also allows higher resolu-
tions that were previously impossible due to buffer size constraints.

0 4 8 12 16 20 24 28 32

0

200

400

600

800

1,000

Grid width and height (pixels ×1024)

M
em

or
y

tr
an

sf
er

re
d

(M
B

)

Military (GPGPU) City (GPGPU)
Military and City (Original)

Figure 8: Memory transferred from the GPU. In the original im-
plementation, the amount of memory depends only on the grid res-
olution. In comparison, our GPGPU implementation transfers an
almost negligible amount of memory.

6.3 Resolution and Precision

Multi-tiling allows resolutions that were originally not possible.
After all, the other implementation copies the entire color buffer
to the CPU, which imposes a limit on the maximum buffer size: it
cannot produce results at more than 32,000 squared pixels using
32-bit colors. The new method is free from this constraint, so we
can now compute GVDs and ECMs that capture the environment’s
geometry much more accurately.

Mapping the GVD to a discrete grid of insufficient size can lead
to mistakes. For example, narrow passages may not be detected,
short edges may be overlooked, or normals may be crossed mul-
tiple times. The existing ECM implementation can already filter
out incorrect configurations: the method is robust in the sense that
it always generates a navigation mesh that allows artifact-free path
planning of agents. However, it cannot fill in information that was
lost during the discretization. A higher resolution decreases the
number of errors and allows small details to be recognized.

29

7 Conclusions and Future Work

In this work, we have shown how to take advantage of GPGPU
methodologies when computing a Generalized Voronoi Diagram
(GVD). A previous implementation rendered an approximation of
the GVD on the GPU, transferred all data to the CPU, and per-
formed all computations there. Our new implementation assigns
more work to the GPU: we use parallelism to mark relevant ver-
tices and edges, to decide which pixels need to be copied to the
CPU, and to compute closest obstacle points. This significantly re-
duces running times and CPU memory usage. Time and memory
consumption become less dependent on the resolution, and more
related to the complexity of the GVD that is being computed.

We have also introduced an approach that builds the GVD in sepa-
rate tiles and then stitches them together. This overcomes the tech-
nical limitations that imposed an upper bound on the GVD resolu-
tion. Since the resolution influences the precision of the computed
data structure, our multi-tiled technique can greatly reduce approx-
imation errors. Our results were obtained using only a single ‘pro-
sumer’ graphics card, a baseline for multimedia-rich applications.

The GVD is easily extended to the Explicit Corridor Map, which is
a state-of-the-art navigation mesh for 2D and multi-layered 3D en-
vironments. Hence, our implementation provides a step forward in
building a framework for interactive applications that uses graphics
hardware not only for rendering or physics, but also for AI and ge-
ometrical computations. At the same time, the decreased CPU load
makes this approach more applicable for memory-intensive appli-
cations such as level editors or modeling tools.

The improved efficiency could be investigated further with the goal
of computing ECMs at interactive rates. Technically, we could try
to perform memory transfers and GPGPU computation in parallel,
evaluate the use of GPU persistent threads, or address tracing on
the GPU using warp-based methods. We are also interested in de-
signing a GPGPU-friendly approach for partial re-computations of
the changes in real-time. This would allow us to process dynamic
obstacles in a similar manner. In general, we expect that this work
will encourage researchers to further explore GPGPU approaches
for navigation meshes and other AI purposes.

References

DE BERG, M., CHEONG, O., VAN KREVELD, M., AND OVER-
MARS, M. 2008. Computational Geometry: Algorithms and
Applications, 3rd ed. Springer-Verlag.

BLEIWEISS, A. 2010. Parallel compact roadmap construction of
3D virtual environments on the GPU. In Intelligent Robots and
Systems, 2010 IEEE/RSJ International Conference on, IEEE,
5007–5013.

DENNY, M. 2003. Solving geometric optimization problems using
graphics hardware. In Computer Graphics Forum, vol. 22, Wiley
Online Library, 441–451.

FISCHER, I., AND GOTSMAN, C. 2006. Fast approximation
of high-order Voronoi diagrams and distance transforms on the
GPU. Journal of Graphics Tools 11, 4, 39–60.

GERAERTS, R., AND OVERMARS, M. 2008. Enhancing corri-
dor maps for real-time path planning in virtual environments.
In International Conference on Computer Animation and Social
Agents, 64–71.

GERAERTS, R. 2010. Planning short paths with clearance us-
ing Explicit Corridors. In IEEE International Conference on
Robotics and Automation, 1997–2004.

HELD, M. 2011. Vroni and ArcVroni: Software for and applica-
tions of Voronoi diagrams in science and engineering. In Inter-
national Symposium on Voronoi Diagrams in Science and Engi-
neering, 3–12.

HOBEROCK, J., AND BELL, N., 2010. Thrust: A parallel template
library. Version 1.5.0.

HOFF, III, K., CULVER, T., KEYSER, J., LIN, M., AND
MANOCHA, D. 1999. Fast computation of generalized Voronoi
diagrams using graphics hardware. International Conference on
Computer Graphics and Interactive Techniques, 277–286.

HONG, S., KYUN KIM, S., OGUNTEBI, T., AND OLUKOTUN, K.
2011. Accelerating CUDA graph algorithms at maximum warp.
SIGPLAN Notices 46, 8, 267.

JAKLIN, N., VAN TOLL, W., AND GERAERTS, R. 2013. Way to
go - A framework for multi-level planning in games. In Planning
in Games Workshop, 11.

KALLMANN, M. 2010. Navigation queries from triangular meshes.
In Proceedings of the 3rd International Conference on Motion in
Games, 230–241.

LIOTTA, G., PREPARATA, F., AND TAMASSIA, R. 1998. Robust
proximity queries: An illustration of degree-driven algorithm de-
sign. SIAM Journal on Computing 28, 3, 864–889.

MERRILL, D., AND GRIMSHAW, A. 2011. High performance and
scalable radix sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters 21,
02, 245–272.

MONONEN, M., 2014. Recast Navigation. https://github.
com/memononen/recastnavigation.

OLIVA, R., AND PELECHANO, N. 2013. NEOGEN: Near optimal
generator of navigation meshes for 3D multi-layered environ-
ments. Computers & Graphics 37, 5, 403–412.

PETTRÉ, J., LAUMOND, J., AND THALMANN, D. 2005. A navi-
gation graph for real-time crowd animation on multilayered and
uneven terrain. In Proceedings of the First International Work-
shop on Crowd Simulation, 81–89.

PREPARATA, F. 1977. The medial axis of a simple polygon.
In Mathematical Foundations of Computer Science, vol. 53.
Springer, 443–450.

RONG, G., AND TAN, T. 2006. Jump flooding in GPU with appli-
cations to Voronoi diagram and distance transform. In Sympo-
sium on Interactive 3D graphics and games, ACM, 109–116.

SUD, A., GOVINDARAJU, N., AND MANOCHA, D. 2005. Interac-
tive computation of discrete generalized Voronoi diagrams using
range culling. In International Symposium on Voronoi Diagrams
in Science and Engineering.

VAN TOLL, W., COOK IV, A., AND GERAERTS, R. 2011.
Navigation meshes for realistic multi-layered environments. In
IEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 3526–3532.

VAN TOLL, W., COOK IV, A., AND GERAERTS, R. 2012. A nav-
igation mesh for dynamic environments. Computer Animation
and Virtual Worlds 23, 6, 535–546.

WEIN, R., VAN DEN BERG, J., AND HALPERIN, D. 2005. The
Visibility-Voronoi complex and its applications. In Proceedings
of the 21st Annual ACM Symposium on Computational Geome-
try, 63–72.

30

https://github.com/memononen/recastnavigation
https://github.com/memononen/recastnavigation

