
Path Planning for Groups

Using Column Generation�

Marjan van den Akker, Roland Geraerts, Han Hoogeveen, and Corien Prins

Institute of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, The Netherlands
{marjan,roland,slam}@cs.uu.nl,

C.R.Prins@students.uu.nl

Abstract. In computer games, one or more groups of units need to
move from one location to another as quickly as possible. If there is only
one group, then it can be solved efficiently as a dynamic flow problem.
If there are several groups with different origins and destinations, then
the problem becomes NP-hard. In current games, these problems are
solved by using greedy ad hoc rules, leading to long traversal times or
congestions and deadlocks near narrow passages. We present a central-
ized optimization approach based on Integer Linear Programming. Our
solution provides an efficient heuristic to minimize the average and latest
arrival time of the units.

1 Introduction

Path planning is one of the fundamental artificial intelligence-related problems in
games. The path planning problem can be defined as finding a collision-free path,
traversed by a unit, between a start and goal position in an environment with
obstacles. Traditionally, this problem and its variants were studied in the field
of robotics. We refer the reader to the books of Choset et al. [3], Latombe [11],
and LaValle [12] for an extensive overview.

The variant we study is the problem of finding paths for one or more groups
of units, such as soldiers or tanks in a real-time strategy game, all traversing in
the same (static) environment. Each group has its own start and goal position
(or area), and each unit will traverse its own path. We assume that the units in
a group are equal with respect to size and speed. The objective is to find the
paths that minimize the average arrival times of all units.

Current solutions from the robotics field can be powerful but are in general
too slow for handling the massive number of units traversing in the ever growing
environments in real-time, leading to stalls of the game. Solutions from the
games field are usually fast but greedy and ad hoc, leading to long traversal
times or congestions and deadlocks near narrow passages, in particular when
two groups meet while moving in opposite directions. Obviously, such solutions
have a negative impact on the gameplay.
� This work was partially supported by the itea2 Metaverse1 (www.metaverse1.org)

Project.

R. Boulic, Y. Chrysantou, and T. Komura (Eds.): MIG 2010, LNCS 6459, pp. 94–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Path Planning for Groups Using Column Generation 95

One of the first solutions for simulating (single) group behavior was introduced
by Reynolds in 1987 [17]. His influential boids model, comprising simple local
behaviors such as separation, cohesion and alignment, yielded flocking behavior
of the units. While this model resulted in natural behavior for a flock of birds or
school of fish moving in an open environment, they could get stuck in cluttered
areas. Bayazit et al. [2] improved this model by adding global navigation in the
form of a roadmap representing the environment’s free space. While the units did
not get stuck anymore, they could break up, losing their coherence. By following
a point that moves along a backbone path centered in a two-dimensional corridor,
coherence was guaranteed by the method proposed by Kamphuis and Overmars
[9]. In their method, the level of coherence was controlled by two parameters,
namely the corridor width and the group area.

When multiple units are involved, possible interference between them com-
plicates the problem, and, hence, some form of coordination may be required to
solve the global problem. From the robotics field, two classes of methods have
been proposed. Centralized methods such as references [18,19] compute the paths
for all units simultaneously. These methods can find optimal solutions at the cost
of being computationally demanding, usually making them unsuitable for sat-
isfying the real-time constraints in games. Decoupled methods compute a path
for each unit independently and try to coordinate the resulting motions [15,21].
These methods are often much quicker than centralized methods but the result-
ing paths can be far from optimal. Also hybrid methods such as references [7,13]
have been proposed. A variant to solving the problem is called prioritized motion
planning [14,23]. According to some prioritization scheme, paths are planned se-
quentially which reduces the problem to planning the motions for a single unit.
It is however not clear how good these schemes are.

Our main contribution is that we propose a centralized as well as computa-
tionally efficient solution for the path planning planning problem with groups.
This solution translates the problem into a dynamic multi-commodity flow prob-
lem on a graph that represents the environment and uses column generation to
identify promising paths in this graph. More concretely, it provides the division
of characters at each node (and each time step). A series of divisions can be
considered as a global path. The assignment of such a path to a specific unit
and performing local collision avoidance between units is handled by an external
local method such as the Predictive model of Karamouzas et al. [10] or the Re-
ciprocal Velocity Obstacles of van den Berg et al. [22]. When characters follow
the same global path, Kamphuis’ method [9] can be used to introduce coherence
if desired. Our solution can be used to handle difficult situations which typically
occur near bottlenecks (e.g. narrow passages) in the environment. It is efficient
because it provides a global distribution of the paths. As far as we know, it is the
first method that combines the power of a centralized method with the speed
and flexibility of a local method.

Our paper is organized as follows. In Section 2, we show that path planning
for one group can be solved to optimality as a dynamic flow problem. Computing
the distribution of paths for multiple groups is more difficult (i.e. NP-hard). We

96 M. van den Akker et al.

propose a new heuristic solution that solves the corresponding dynamic multi-
commodity flow problem in Section 3. We conduct experiments on some hard
problems in Section 4 and show that they can be solved efficiently. In Section 5,
we discuss the applicability of this technique for path planning in games, and
we conclude our paper with Section 6.

2 Path Planning for One Group

We are given one group of units, who all need to move from their origin p to
their destination s. We assume that all units have equal width and speed. Our
goal is to maximize the number of units that have reached q for each time t;
using this approach, we automatically minimize both the average arrival time
and the time by which all units have reached the destination. We further assume
that the environment in which the units move is static.

To solve the problem, we first need a directed graph that resembles the free
space in the environment. There are several ways to create such a graph. One
possibility is to use tiles but this may lead to unnatural paths. A better alterna-
tive is to use a waypoint graph [16] in combination with a navigation mesh [6].
No matter how the graph has been constructed, we determine for each arc (i, j)
in the graph its traversal time l(i, j) as the time it takes to traverse the arc, and
we determine its capacity cij as the number of units that can traverse the arc
while walking next to each other. For instance in [6], the traversal time can be
computed as the edge length divided by the maximum velocity and the capacity
by the minimum clearance along the arc divided by the character’s width. We
choose the time unit as the time a unit has to wait until it can leave after the
previous one. The path planning problem can then be modeled as a dynamic flow
problem for which we have to determine a so-called earliest arrival flow from the
origin to the destination. This problem can be solved by a classic algorithm due
to Ford and Fulkerson [4], with a small adaptation due to Wilkinson [24]. The al-
gorithm by Ford and Fulkerson computes a dynamic flow in an iterative version:
given an optimal dynamic flow for the problem with T − 1 periods, an optimal
dynamic flow for the T -period problem is constructed. Even though we do not
have a deadline T but a number of units that have to go to the destination, we
can use this algorithm by increasing the deadline each time by one time unit
until all units have arrived.

When an optimal solution to the T -period problem has been constructed,
Ford and Fulkerson’s algorithm [4] splits it up in a set of chain-flows, which
can be interpreted as a set of compatible paths in the graph. The flow (units in
our case) are then sent through the graph following the chain-flows, where the
last unit leaves the origin such that it arrives at the destination exactly at time
T . Although the decomposition in chain flows maximizes the number of units
that have arrived at the destination at time T , this solution does not need to be
optimal when it is cut off at time t, even though their algorithm did find it as an
intermediate product. Wilkinson [24] described a way to store the intermediate
information of the algorithm to find an earliest arrival flow.

Path Planning for Groups Using Column Generation 97

3 Path Planning for Multiple Groups

In this section, we consider the path planning problem for multiple groups of
units. For each group, we are given the origin, the destination, and the size of the
group. The goal is to minimize the average arrival time of all units. We assume
that the graph that we use to model the problem is directed, that the capacities
are constant over time, and that all units are available at time zero. At the end
of this section, we describe what to do if these assumptions do not hold.

Since there are different groups with different origins and/or destinations, we
do not have a dynamic flow problem anymore, but a dynamic multi-commodity
flow problem, which is known to be NP-hard in the strong sense. We present a
new heuristic for the problem that is based on techniques from (integer) linear
programming. We refer the reader to reference [25] for a description of this
theory. The basic idea is that we formulate the problem as an integer linear
program (ILP), but we restrict the set of variables by eliminating variables that
are unlikely to get a positive value anyway. In this way, we make the problem
tractable, without loosing too much on quality.

Instead of using variables that indicate for each arc at each time the number of
units of group k that traverse this arc (an arc formulation), we use a formulation
that is based on paths for each origin-destination pair. A path is described by the
arcs that it uses and the times at which it enters these arcs. Here we require that
the difference in the entering times of two consecutive arcs (i, j) and (j, k) on
the path is no less than the traversal time l(i, j) of the arc (i, j); if this difference
is larger than l(i, j), then this implies that there is a waiting time at j. Initially,
we assume that there is infinite waiting capacity at all vertices. The advantage
of using a formulation based on path-usage instead of arc-usage is twofold. First
of all, we do not have to model the ‘inflow = outflow’ constraints anymore for
each arc, time, and group. Second, we can easily reduce the number of variables
by ignoring paths that are unlikely to be used in a good solution.

Suppose that we know all ‘possibly useful’ paths for each origin-destination
pair. We can now model our path planning problem as an integer linear pro-
gramming problem as follows. First, we introduce two sets of binary parameters
to characterize each path s ∈ S, where S is the set containing all paths. The
first one, which we denote by dks, indicates whether path s does connect ori-
gin/destination pair k (then dks gets value 1), or does not (in which case dks

has value 0). The second set, which we denote by bats, keeps track of the time
t at which arc a is entered by s: it gets value 1 if path s enters arc a at time t,
and it gets value 0, otherwise. Note that these are parameters, which are fixed
in advance, when the path s gets constructed. More formally, we have

dks =
{

1 if path s connects origin/destination pair k
0 otherwise

bats =
{

1 if path s enters arc a ∈ A at time t
0 otherwise.

As decision variables we use xs for each path s ∈ S, which will denote the number
of units that follow path s. We use cs to denote the cost of path s, which is

98 M. van den Akker et al.

equal to the arrival time of path s at its destination. We formulate constraints
to enforce that the desired number yk of units arrive at their destination for
each origin/destination pair k and to enforce that the capacity constraints are
obeyed. We define K as the number of origin/destination pairs, and we denote
the capacity of arc a ∈ A by ua. We use T to denote the time-horizon; if this has
not been defined, then we simply choose a time that is large enough to be sure
that all units will have arrived by time T . This leads to the following integer
linear program (ILP):

min
∑

s∈S csxs subject to

∑
s∈S dksxs = yk ∀k = 1, . . . , K∑
s∈S batsxs ≤ ua ∀a ∈ A; t = 0, . . . , T

xs ≥ 0 and integral ∀s ∈ S.

Obviously, we do not know the entire set of paths S, and enumerating it would be
impracticable. We will make a selection of the paths that we consider ‘possibly
useful’, and we will solve the ILP for this small subset. We determine these paths
by considering the LP-relaxation of the problem, which is obtained by removing
the integrality constraints: the last constraint simply becomes xs ≥ 0 for all
s ∈ S. The intuition behind taking the relaxation is that we use it as a guide
toward useful paths, since the problems are so close together that a path which
will be ‘possibly useful’ for the one will also be ‘possibly useful’ for the other. The
LP-relaxation can be solved quickly because there is a clear way to add paths
that improve the solution. We solve the LP-relaxation through the technique of
column generation, which was first described by Ford and Fulkerson [5] for the
multi-commodity flow problem.

Column Generation

The basic idea of column generation is to solve the linear programming problem
for a restricted set of variables and then add variables that may improve the
solution value until these cannot be found anymore. We can start with any
initial set of variables, as long as it constitutes a feasible solution.

Given the solution of the LP for a restricted set of variables, we check if
the current solution can be improved, and, if this the case, which paths we
should add. It is well-known from the theory of column generation, in case of
a minimization problem, that the addition of a variable will only improve the
solution if its reduced cost is negative; if all variables have non-negative reduced
cost, then we have found an optimal solution for the entire problem. In our case,
the reduced cost of a path s, characterized by the parameters dks (k = 1, . . . , K)
and bats (a ∈ A; t = 0, . . . , T) has reduced cost equal to cs − ∑K

k=1 λkdks −∑
a∈A

∑T
t=0 πatbats, where λk (k = 1, . . . , K) and πat (a ∈ A; t = 0, . . . , T) are

the shadow prices for the corresponding constraints; these values follow from

Path Planning for Groups Using Column Generation 99

the solution to the current LP. The reduced cost takes the ‘combinability’ of the
path s into account with respect to the current solution.

Since we are testing whether there exists a feasible path with negative reduced
cost, we compute the path with minimum reduced cost. If this results in a non-
negative reduced cost, then we have solved the LP-relaxation to optimality; if
the outcome value is negative, then we can add the corresponding variable to
the LP and iterate. The problem of minimizing the reduced cost is called the
pricing problem.

We break up the pricing problem into K sub-problems: we determine the path
with minimum reduced cost for each origin/destination pair separately. Suppose
that we consider the problem for the lth origin/destination pair; we denote the
origin and destination by p and q, respectively. Since we have dls = 1 and dks = 0
for all k �= l, the term

∑K
k=1 λkdks reduces to λl, and we ignore this constant

from now on. The resulting objective is then to minimize the adjusted path
length cs −

∑
a∈A

∑T
t=0 πatbats. We will solve this as a shortest path problem in

a directed acyclic graph.
We construct the following graph, which is called the time expanded graph.

The basis is the original graph, but we add a time index to each vertex: hence,
vertex i in the original graph corresponds to the vertices i(t), with t = 0, . . . , T .
Similarly the arc (i, j) with traversal time l(i, j) results in a series of arcs con-
necting i(t) to j(t + l(i, j)). We further add waiting arcs (i(t), i(t + 1)) for each
i and t. The length of the arc is chosen such that it corresponds to its contri-
bution to the reduced cost. As cs is equal to the arrival time of the path s in
the destination, this term contributes a cost l(i, j) to each arc (i(t), j(t+ l(i, j)))
and cost 1 to each waiting arc. With respect to the term −∑

a∈A

∑T
t=0 πatbats,

suppose that arc a corresponds to the arc (i, j). Then bats, with a = (i, j), is
equal to 1 if the path uses the arc (i(t), j(t + l(i, j))) and zero otherwise; and,
therefore, this term contributes −πat to the length of the arc (i(t), j(t+ l(i, j))),
given that a = (i, j).

Summarizing, we put the length of the arc (i(t), j(t+ l(i, j))) equal to l(i, j)−
πat, where a = (i, j); the waiting arcs (i(t), i(t + 1)) simply get length 1. The
path that we are looking for is the shortest one from p(0) to one of the vertices
q(t) with t ∈ {0, . . . , T}. We use the A∗ algorithm [8] to solve this problem. We
compute the reduced cost by subtracting λl. If this path has negative reduced
cost, then we add it to the LP. Since we know the shortest paths from p(0) to
each vertex q(t), we do not have to restrict ourselves to adding only the path
with minimum reduced cost, if there are more paths with negative reduced cost.
If in all K sub-problems the shortest paths have non-negative reduced cost, then
the LP has been solved to optimality.

Obtaining an Integral Solution

Most likely, some of the variables in our optimal LP solution will have a fractional
value, and, hence, we cannot follow this solution, as we cannot send fractions
of units along a path. We use a heuristic to find a good integral solution. Since
we have generated ‘useful’ paths when we solved the LP, it is a safe bet that

100 M. van den Akker et al.

these are ‘useful’ paths for the integral problem as well. Hence, we include all
these paths in the ILP. Since there is no guarantee that these paths will enable
a feasible solution to the ILP, we add some paths, which we construct as follows.
First, we round down all decision variables, which leads to an integral solution
that satisfies the capacity constraints, but in which too few units will arrive at
their destination. For the remaining units, we construct additional paths using
Cooperative A* by Silver [20]. These paths are added to the ILP, which is then
solved to optimality by the ILP-solver cplex [1].

Extensions

Time constraints on the departure and arrival. It is possible to specify
an earliest departure and/or latest possible arrival time for each group of units.
These can be incorporated efficiently in the paths by restricting the time ex-
panded graph. The only possible drawback is, if we put these limits too tight,
that we may make the problem infeasible. Since the problem of deciding whether
there is a feasible solution is NP-complete, we apply a computational trick. We
replace the yk in the constraint that yk units have to move from the origin to the
destination by yk + Qk, where Qk is an artificial variable measuring the number
of units of group k that did not reach their destination. We now add a term∑K

k=1 wkQk to the objective function, where wk is a large penalty weight, which
makes it unattractive for the units not to reach their target.

Changes in the environment. A change in the environment may lead to
a change in the capacity of an arc (for example that it drops to zero if the
arc gets closed) or to a change in the traversal time in a certain period. If
we know the changes beforehand, then these are incorporated efficiently in our
model. A change in the capacity can be modeled by making the capacity of arc
a time dependent; the right-hand side of the capacity constraint then becomes
uat instead of ua. A change in the traversal times can be modeled by changing
the arcs in the graph that we use to solve the pricing problem.

Undirected edges in the graph. An undirected edge can be traversed both
ways, which makes it much harder to model the capacity constraint. If, for
example, the traversal time is l and we want to send x units through the edge at
time t, then this is possible only if the number of units that start(ed) to traverse
the edge from the other side at times t − l + 1, t − l + 2, . . . , t + l − 1 does not
exceed the remaining capacity. To avoid having to add this enormous number of
constraints, we split such an edge e in two arcs, e1 and e2, which have a constant
capacity over time. We do not fix the capacity distribution beforehand, but we
make it time-independent by putting the capacities equal to ue1 and ue2 , which
are two non-negative decision variables satisfying that ue1 + ue2 is equal to the
capacity of the edge. We can modify this time-independent capacity distribution
a little by making ue1 or ue2 equal to zero until the first time it can be reached
from any origin that is part of an origin/destination pair which is likely to use
this arc. Similarly, in case of edges with capacity 1, we can fix ue1 = 1 or ue2 = 1

Path Planning for Groups Using Column Generation 101

during given periods in time. Splitting an undirected edge results in the addition
of two variables and one constraint.

4 Experiments

In this section, we will describe the experiments we have conducted. In partic-
ular, we investigated the efficiency of our solution on three difficult problems.
The solution from Section 3 was implemented in C++ using the ilog cplex
Concert Technology library version 11.100 for solving the LPs and ILPs [1]. All
the experiments were run on a pc (CentOS linux 5.5 with kernel 2.6.18) with an
Intel Core 2 Duo cpu (3 ghz) with 2 gb memory. Only one core was used.

Each experiment was deterministic and was run a small number of times
to obtain an accurate measurement of the average integral running times (in
ms). These times include the initialization of the algorithm (such as the data
structures, cplex, heuristics, building the initial LP), the column generation,
the solving of the LP and ILP, path finding, and making an integer solution.

One Group

Fig. 1(a) shows the problem where one group moved from node 0 to node 6.
The experiment was carried out for a single group with 100 through 500 units.
Because it may be inefficient to let all units use the shortest path (e.g. when the
capacity of the shortest path is low), it may be better to let some units take an
alternative path. Indeed, as is shown in Fig. 1(b), the group (with 100 units) was
split to minimize the average arrival times. The algorithm took 10ms for 100
units, 40ms for 200 units, 100ms for 300 units and 250ms for 400 units. Even
with 500 units the algorithm took less than half a second. Note that these times
can be distributed during the actual traversal of the paths, yielding real-time
performance. In a game situation, the units should already start moving when
the algorithm is executed to avoid stalls.

Two Groups Moving in Opposite Directions

In the following case, as is displayed in Fig. 2(a), two groups moved in opposite
directions while switching their positions. One group started at node 0 and the
other one at node 3. Since the arcs had limited capacities, the units had to share
some arcs. There were two different homotopic paths between these two nodes,
and both paths could be used by only 5 units per timestep. On the left side we
placed 10 units and on the right side we had 50 units. Computing the solution
took only 10ms. Also other combinations were tested, e.g. 20 versus 50 units
(20ms), 20 versus 100 units (40ms), 40 versus 100 units (70ms), and 40 versus
200 units (230ms). The latter case is visualized in Fig. 2(b). Here, most units
from the right side used the lower path, while some used the upper path. All the
units from the left side used the upper path. Again, these running times were
sufficiently low for real-time usage.

102 M. van den Akker et al.

(a) Test environment (b) Output algorithm

Fig. 1. (a) The environment used for testing the division of units among the arcs. The
(large) red numbers show the node numbering and the black numbers show the arc
numbering. For every arc we give the length l and capacity c. (b) The output of the
algorithm for 100 units at timestep 16. The pink squares symbolically represent the
units, and the width of a square is proportional to the number of units.

(a) Test environment (b) Output algorithm

Fig. 2. (a) The environment and graph used for testing two groups moving in opposite
directions, i.e. one group starts at node 0 and the other one starts at node 3. (b) The
output of the algorithm for 40 versus 200 units at timestep 3.

Four Groups with Many Units Moving in a Big Graph

We created a large graph whose structure was a raster with arcs between the
raster points. The length of these arcs was set to 3 with capacity 20. We refer the
reader to Fig. 3 for an illustration of this graph and the output of the algorithm.
In every corner we placed 100 units that needed to move to their diagonally op-
posite corners. Computing their paths took 510ms. We also tested the algorithm
with 1000 units placed at each corner (where the capacities were scaled with the
same proportion), which took 480ms. The results clearly illustrated the scaling
power of the algorithm as it did not slow down when both the number of units
and the capacities were scaled proportionally.

Path Planning for Groups Using Column Generation 103

(a) Timestep 0 (b) Timestep 9

Fig. 3. (a) The test environment is empty and the graph’s nodes lie on a raster. (b)
The output of the algorithm is displayed at timestep 0 and 9.

5 Applicability in a Game

There are three main challenges that we face when we want to apply our tech-
nique in a game. First, all motions should be computed in real-time. Second,
the environment may change while the units are moving, thereby making our
solution infeasible. Third, how to satisfy game-specific constraints? For example,
in combat games, it may be undesirable that a single unit (or a small troop of
units) follows a path that separates them from the main group. Moreover, there
can be other units with different sizes and velocities (for example soldiers and
tanks). Below we will describe how we can tackle these issues, at the expense of
a small loss in quality of the solution.

There are several ways to reduce the running time. The first one is to find a
feasible solution by rounding instead of by solving the ILP. Since rounding down
will reduce the number of units for which we find paths, we artificially increase
the number of units that need to move from each origin to destination. An
additional advantage of this increase is, if we have more routes for the units than
we need after rounding, that we can select the best paths in a post-processing
step. If necessary, we can reduce the running time even further by quitting the
column generation before we have solved the LP-relaxation to optimality. In any
case, the remainder of the computations can be done while the first units start
moving to avoid stalls.

As mentioned in Section 3, changes in the environment are incorporated easily
in the algorithm, because we can usually reuse the large part of the solution that
is not affected by the change. Hence, in such a case, we initialize with the former
set of paths, adjust the capacity constraints, and add additional paths in the
column generation phase. We let the units depart from their current position as
much as possible, but a group that is spread over an edge is artificially grouped
in one or both of the edge’s endpoints to reduce the number of origins; this
is not a major violation of the truth since most units cannot leave from this
origin immediately due to a limited capacity, and during this waiting time they

104 M. van den Akker et al.

can move to the origin from their current position. If there are obvious targets
for sabotage, like bridges, then we can already incorporate these possibilities by
computing additional paths circumventing these edges while the current solution
is being executed in the game.

Avoiding isolated units can be achieved by post-processing a solution in which
too many units move. If this is not satisfactory, then we can remove these isolated
paths from the set of available paths and resolve the LP. If there are other types
of units like tanks in the game, then we could first find paths for the tanks, and,
given this solution, find paths for the units subject to the remaining capacity.

6 Conclusion

We have presented a centralized method based on techniques from ILP for path
planning problems involving multiple groups. The crux is that the LP-relaxation
can be solved quickly by using column generation. The solution to the LP-
relaxation can be used as a basis to construct a heuristic solution. We have
described a method to find a good approximation by solving a restricted ILP. If
the instance is so big that solving the ILP would require too much time, then
we can still use the solution to the LP-relaxation to find a solution by clever
rounding. The units can then already start moving according to this solution
while a good solution for the remaining units is determined in the meantime.
We further have described ways to address the special constraints that are posed
upon us by a game.

In future work, we will integrate two efficient local collision-avoidance models
[10,22] to test whether our solution leads to visually pleasing motions. We think
that our solution enhances the gameplay in difficult path planning situations
involving one or multiple groups.

References

1. CPLEX 11.0. User’s manual. Technical report, ILOG SA, Gentilly, France (2008)

2. Bayazit, O., Lien, J.-M., Amato, N.: Better group behaviors in complex environ-
ments using global roadmaps. Artificial Life, 362–370 (2002)

3. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations,
1st edn. MIT Press, Cambridge (2005)

4. Ford Jr., L., Fulkerson, D.: Constructing maximal dynamic flows from static flows.
Operations Research 6, 419–433 (1958)

5. Ford Jr., L., Fulkerson, D.: A suggested computation for maximal multi-commodity
network flows. Management Science 5, 97–101 (1958)

6. Geraerts, R.: Planning short paths with clearance using explicit corridors. In: IEEE
International Conference on Robotics and Automation, pp. 1997–2004 (2010)

7. Ghrist, R., O’Kane, J., LaValle, S.: Pareto optimal coordination on roadmaps. In:
International Workshop on the Algorithmic Foundations of Robotics, pp. 171–186
(2004)

Path Planning for Groups Using Column Generation 105

8. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4,
100–107 (1968)

9. Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance.
In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 19–
28 (2004)

10. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A predictive collision avoid-
ance model for pedestrian simulation. In: Egges, A. (ed.) MIG 2009. LNCS,
vol. 5884, pp. 41–52. Springer, Heidelberg (2009)

11. Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)
12. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
13. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having

independent goals. Transaction on Robotics and Automation 14, 912–925 (1998)
14. Li, Y.: Real-time motion planning of multiple agents and formations in virtual

environments. PhD thesis, Simon Fraser University (2008)
15. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints

along specified paths. International Journal of Robotics Research 24, 295–310
(2005)

16. Rabin, S.: AI Game Programming Wisdom 2. Charles River Media Inc., Hingham
(2004)

17. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21, 25–34 (1987)

18. Sánchez, G., Latombe, J.-C.: Using a PRM planner to compare centralized and
decoupled planning for multi-robot systems. In: IEEE International Conference on
Robotics and Automation, pp. 2112–2119 (2002)

19. Schwartz, J., Sharir, M.: On the piano movers’ problem: III. Coordinating the
motion of several independent bodies: The special case of circular bodies moving
amidst polygonal obstacles. International Journal of Robotics Research 2, 46–75
(1983)

20. Silver, D.: Cooperative pathfinding. In: Artificial Intelligence for Interactive Digital
Entertainment, pp. 117–122 (2005)

21. Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile
robots: A resolution complete algorithm. IEEE Transactions on Robotics and Au-
tomation 18, 42–49 (2002)

22. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-
time multi-agent navigation. In: IEEE International Conference on Robotics and
Automation, pp. 1928–1935 (2008)

23. van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
2217–2222 (2005)

24. Wilkinson, W.: An algorithm for universal maximal dynamic flows in a network.
Operations Research 19, 1602–1612 (1971)

25. Wolsey, L.: Integer Programming. Wiley, New York (1998)

	Path Planning for GroupsUsing Column Generation
	Introduction
	Path Planning for One Group
	Path Planning for Multiple Groups
	Experiments
	Applicability in a Game
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

