
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2013; 24:285–295

Published online 14 May 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1511

SPECIAL ISSUE PAPER

Real-time path planning in
heterogeneous environments
Norman Jaklin1*, Atlas Cook IV2 and Roland Geraerts1

1 Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
2 Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA

ABSTRACT

Modern virtual environments can contain a variety of characters and traversable regions. Each character may have differ-
ent preferences for the traversable region types. Pedestrians may prefer to walk on sidewalks, but they may occasionally
need to traverse roads and dirt paths. By contrast, wild animals might try to stay in forest areas, but they are able to leave
their protective environment when necessary. This paper presents a novel path planning method named Modified Indicative
Routes and Navigation (MIRAN) that takes a character’s region preferences into account. Given an indicative route as a
rough estimation of a character’s preferred route, MIRAN efficiently computes a visually convincing path that is smooth,
keeps clearance from obstacles, avoids unnecessary detours, and allows local changes to avoid other characters. To the
best of our knowledge, MIRAN is the first path planning method that supports the aforementioned features while using an
exact representation of the navigable space. Experiments show that with our approach, a wide range of different character
behaviors can be simulated. It also overcomes problems that occur in previous path planning methods such as the Indicative
Route Method. The resulting paths are well suited for real-time simulations and gaming applications. Copyright © 2013
John Wiley & Sons, Ltd.

KEYWORDS

path planning; autonomous agents; heterogeneous virtual environments

*Correspondence

Norman Jaklin, Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands.
E-mail: N.S.Jaklin@uu.nl

1. INTRODUCTION

The goal of this paper is to show how virtual characters
can be steered through a heterogeneous environment in
real time. Such an environment contains impassable obsta-
cles plus many types of traversable regions. Our method
uses customizable weights for arbitrary terrain polygons,
thus making it applicable for a great variety of settings.
City environments with traversable regions such as side-
walks, roads, and lawns can be modeled in the same way
as weather-influenced environments such as swamps, dirt
paths, deserts, and frozen lakes. Furthermore, psycholog-
ical influences such as unattractive environments (narrow
passages or trashy areas) or attractive areas (artsy neigh-
borhoods or areas with a panoramic view; see Figure 1)
can be modeled as well.

The ability to automatically guide virtual characters
along their preferred traversable regions enhances real-
ism in simulation applications. It also improves player
immersion in digital games.

1.1. Related Work

The general path planning problem in homogeneous vir-
tual environments has been widely studied in the past. Such
environments have traversable regions and nontraversable
obstacles. This research has led to advanced data struc-
tures and algorithms. We refer the reader to the books
of Latombe [1], LaValle [2], and Choset et al. [3] for an
overview.

Other related works have considered autonomous agent
navigation in virtual environments. Shao and Terzopoulos
[4] present an artificial life approach that integrates and
combines motor, perceptual, behavioral, and cognitive
components to emulate the complexity of real pedestrians
in urban environments. Only recently, Lo et al. [5] showed
how agents can learn from raw vision input to navigate
autonomously. They introduce a hierarchical state model
and a novel regression algorithm to avoid the “curse of
dimensionality”. Kang et al. [6] use a different approach
to find paths for agents in virtual environments. Their

Copyright © 2013 John Wiley & Sons, Ltd. 285

Real-time path planning in heterogeneous environments N. Jaklin, A. Cook IV and R. Geraerts

Figure 1. A path (gray) in a forest (green) with obstacle trees
(black), puddles (blue), fallen trees (brown), and a spot with a
panoramic view (light gray). Two characters (adult and child) fol-
low automatically computed indicative routes (solid and dashed
black). The smoothed paths (solid red for the adult, dashed red
for the child) are computed with our MIRAN method. Both the
indicative routes and the paths are based on the characters’
terrain preferences. The adult avoids puddles and fallen trees
and is attracted to the spot with the panoramic view. The child
prefers to walk through puddles, climbs over the trees and is

not interested in the panoramic view.

adaptive agent navigation approach collects data and learns
new paths from user-controlled characters.

The problem we tackle can be seen as a variant of the
weighted region problem (WRP) that was introduced by
Mitchell and Papadimitriou [7]. They assign a weight to
each type of region. The weighted length of a path inside
any single region is the arc length of that path times the
weight of the containing region. The weighted length of a
path that passes through multiple regions is the sum of the
weighted path lengths inside each region. An optimal path
between two points is a path with the minimum possible
weighted length. Solving the WRP means finding such an
optimal path. The algorithm of Mitchell and Papadimitriou
has O.n8/ time complexity with n being the total number
of vertices in a heterogeneous environment. Because this
running time is too large for most practical applications,
research has been carried out on finding feasible approxi-
mation algorithms [8–13]. Only recently, De Carufel et al.
[14] showed that the WRP is unsolvable in the Algebraic
Computation Model over the Rational Numbers.

Because of the computational complexity of the WRP,
many experimental works show how to compute reason-
ably short paths through an environment by combining a
grid or quadtree with an A* or D* search [15,16]. Harabor
and Botea [17] use a grid to guide a set of uniquely sized
characters through a heterogeneous environment. Each
character occupies a c � c square in the grid. The value of
c can be any nonnegative integer, and c can be unique for
each character. They keep track of the nearest obstacle to

each grid cell to guarantee that paths have good clearance
with respect to the obstacles. Multiple terrain types are
handled by associating each character with a set of terrain
types that this character can traverse. These kinds of grid-
based approaches often approximate an environment and
can sometimes produce nonsmooth paths that are located
very close to obstacles. This behavior can make it diffi-
cult to avoid other moving characters. Furthermore, the
approaches are expensive and can yield long computation
times when dealing with a large number of characters.

Geraerts [18] presented an augmented medial axis to
create a navigation mesh called the Explicit Corridor Map
(ECM). The ECM can compute paths with any desired
amount of clearance to obstacles and permits each char-
acter to have any desired size. Although this navigation
mesh is compact and exact, each region in the environ-
ment is strictly traversable or not traversable. Thus, the
ECM does not consider heterogeneous environments. By
contrast, our method can use the ECM and its concept of
corridors as an underlying data structure to handle local
collision avoidance.

Karamouzas et al. [19] introduced the Indicative Route
Method (IRM) as a force-based approach to steer charac-
ters through a homogeneous environment. An indicative
route is a rough estimation of the preferred path from a
character’s start position to a goal position. An indicative
route can be manually designed or automatically com-
puted by a higher-level path planning approach such as an
A* search on a grid [20]. However, an indicative route is
usually not natural enough for a character to strictly fol-
low. Local collision avoidance is also difficult if characters
strictly follow their indicative route. Instead, an indicative
route can be used as a guideline to produce smooth trajec-
tories for a character. In the IRM, an attraction point on the
indicative route is computed to make the character follow
the route while avoiding obstacles and other moving char-
acters. Using the ECM as an underlying navigation mesh,
the paths can have any desired amount of clearance from
obstacles.

1.2. Contribution

The main focus of our work lies in computing visually
convincing and terrain-dependent paths for characters in
virtual environments. We solve a generalized variant of the
WRP [7]. In this variant, we do not look for a shortest
path to a goal destination while taking weighted regions
into account. Instead, we compute natural-looking paths
that follow an arbitrary indicative route. Such an indica-
tive route functions as a rough estimation of the characters’
preferred path. We adopt the concept from the IRM by
Karamouzas et al. [19] of using attraction points on the
indicative route to let the character follow the route until
the goal position is reached. Our method supports hetero-
geneous environments because the character follows the
indicative route based on its individual terrain preferences.
To the best of our knowledge, it is the first path planning

286 Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

N. Jaklin, A. Cook IV and R. Geraerts Real-time path planning in heterogeneous environments

method that combines the aforementioned features with
the possibility to use it on an exact representation of the
environment.

Such an exact representation is provided by the ECM
that was introduced by Geraerts [21]. Modified Indica-
tive Routes and Navigation (MIRAN) is general enough
to be used with any other type of underlying representa-
tion of the navigable space. However, using it on an exact
representation such as the ECM overcomes the problems
approximated representations (such as grids) suffer from.
For example, narrow passages between obstacles will never
be blocked, which can be the case when using a grid with
large cell sizes.

MIRAN also overcomes the following problem: In the
IRM, the character may skip arbitrarily large parts of the
indicative route. See Figure 8 for an example. This is
because the attraction point is defined as the intersection
of the indicative route with a maximum clearance disk
centered on the medial axis of the navigable space. When-
ever there is a large area of free space around the indica-
tive route, the radius of the maximum clearance disk is
also large. This permits the attraction point to be farther
away along the indicative route. If the indicative route
has many turns inside the clearance disk, those turns will
be skipped by the character. Our method presented in
Section 3 overcomes this issue because the computation
of attraction points is independent of the amount of free
space around the character. It is therefore applicable to both
virtual indoor and outdoor environments.

1.3. Overview

This paper is organized as follows. Section 2 introduces the
terminology and a navigation mesh that is well suited for
heterogeneous environments. In Section 3, we present our
new MIRAN method for using an indicative route to com-
pute the final path trajectories. We provide the theoretical
background and show that a character will always reach the
goal position. In Section 4, we briefly discuss how indica-
tive routes can be automatically computed with respect to
a character’s traversable region preferences. We conduct
experiments in Section 5 and conclude in Section 6 that
MIRAN can be used to compute visually convincing paths
in heterogeneous environments in real time.

2. PRELIMINARIES

We say that a two-dimensional polygonal environment
is heterogeneous when it contains more than one type
of traversable region. A traversable region is a two-
dimensional polygon that is annotated with a type. Exam-
ples of types are roads, sidewalks, carpeted floors, tile
floors, grasslands, snowlands, deserts, and mud pits. A
region type can also represent a psychological aspect such
as a dangerous area or a pleasant spot with a panoramic
view. Slope information and crowd density information
[22] could be used to weight the attractiveness of a

traversable region as well. The union of these regions make
up the free navigable space of the environment.

Our method generally works with any popular repre-
sentation of the navigable space such as grids, waypoint
graphs, or navigation meshes. We choose the ECM data
structure of Geraerts [21] as a navigation mesh because it
yields a storage space-efficient representation of the exact
geometry of the environment. We construct the ECM based
on the obstacle polygons and consider the union of all
traversable terrain polygons to be free space. The ECM
works both on 2D and multilayered 3D environments [23].

For our method, we assume that a character is repre-
sented by a single point in the environment. Each character
has a unique set of region preferences that are given as
positive numerical values. For example, consider a fam-
ily that strolls through a park. A child might walk through
mud and puddles, whereas the adults will avoid those spots
(Figure 1). Furthermore, a person who is very late might
be willing to run through muddy terrain to save time,
whereas a person in a nice suit is willing to take large
detours. Those kind of higher-level considerations can be
modeled with MIRAN in the same way as geometrical
terrain information by setting the character’s preferences
accordingly.

A character is steered through a heterogeneous environ-
ment by using both an indicative route and local steering
methods. An indicative route is a curve �ind W Œ0; 1� !
R2 through the environment. This curve passes through a
sequence of traversable regions that a character prefers to
traverse. The character can locally diverge from the route
to walk a smooth path or to avoid collisions with other
characters.

3. THE MIRAN METHOD

In this section, we show how MIRAN works in detail.
Given an indicative route �ind , we assume that the initial
character’s position x0 equals the starting point s of �ind .
Otherwise, we first compute a connection from x0 to s to
bridge the gap.

Algorithm 1 THE MIRAN METHOD

Input. Start s, goal g, indicative route from s to g
Output. Smooth terrain-dependent path from s to g

1: i 0

2: x0 s

3: while xi ¤ g do
4: ri COMPUTEREFERENCEPOINT(xi)

5: Ai COMPUTECANDIDATEATTRACTIONPOINTS(ri ;xi)

6: ˛i PICKBESTCANDIDATE(Ai ;xi)

7: xiC1 MOVECHARACTERTOWARDSATTRACTIONPOINT(xi ;˛i)

8: i iC1

9: end while

Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

287

Real-time path planning in heterogeneous environments N. Jaklin, A. Cook IV and R. Geraerts

Because of smoothing and taking shortcuts along the
way, the character’s position will usually not be exactly
on the indicative route. Furthermore, the character can be
pushed away from �ind by other forces (such as other
moving characters). In each step i of the method, we com-
pute a reference point ri on �ind to indicate how far along
the route the character has come.

We use two user-controlled parameters, the shortcut
parameter � and the sampling distance d , which together
with the reference point determine the set Ai of candidate
attraction points. Our method ensures that each candidate
attraction point in Ai is visible from the character’s current
position. Once Ai is computed, we pick the best attrac-
tion point with respect to a cost function. This cost func-
tion assigns a cost to each straight-line segment between
the character’s current position and a candidate attraction
point. The costs depend on the Euclidean length of the line
segment, the types of terrain it intersects, and the position
of the candidate point on �ind . The farther ahead the can-
didate point is on �ind , the lower the cost. In this way,
we reward picking the farthest candidate attraction point
whenever there are multiple choices. We then use the same
force-based steering approach that is used in the IRM [19]
to move the character.

The pseudo-code on page 3 shows how the overall
method works. In Section 3.1, we describe how to com-
pute the reference point in each step of the simulation. In
Section 3.2, we give details on how the set Ai of can-
didate attraction points is computed, and in Section 3.3,
we explain how to choose an attraction point from Ai
using our cost function. In Section 3.4, we discuss the
force-based approach to steer the character through the het-
erogeneous environment. We prove the correctness of our
method in Section 3.5.

3.1. Computing a Reference Point

We will now discuss how to compute a reference point ri
in each step i of the method. Let xi be the character’s cur-
rent position. We define ri as the first closest point from
xi to the part of �ind that lies between the previous ref-
erence point ri�1 and the previous attraction point ˛i�1
for i � 1 (Figure 2). For the initial step i D 0, we have
r0 D x0 because we assumed x0 to be the starting point s
of �ind . Whenever the character is standing on the indica-
tive route, the reference point ri equals the current position
xi . We restrict the reference point to the given subpath of
�ind because otherwise we might refer to a point that lies
too far ahead along the route, leading to undesired short-
cuts. In the example shown in Figure 2, picking the closest
point c as the next reference point ri would lead to skip-
ping the whole part of the indicative route between ˛i�1
and c, which can be arbitrarily large in general.

With the aforementioned definition of the reference
point, we are now able to compute the set Ai of candidate
attraction points. We will show next how this is performed
in detail.

Figure 2. Only the subpath of �ind between ri�1 and ˛i�1

(shown in red) is taken into consideration for the computation of
reference point ri . Choosing the closest point c as the reference

point would lead to an undesired shortcut.

3.2. Computing the Candidate
Attraction Points

As sketched previously, we introduce two parameters that
can be adjusted by the user to compute the set Ai of
candidate attraction points:

� The shortcut parameter � defines the maximum
allowed curve length distance from the reference
point to the farthest candidate attraction point.

� The sampling distance d defines the maximum curve
length distance between each candidate attraction
point.

The shortcut parameter � is used to control the degree of
smoothing we want to allow and to prevent the character
from taking undesired shortcuts. It defines the maximum
curve length distance the character is allowed to skip when
following the route. Because all candidate attraction points
in Ai are not farther away from ri than � (with respect
to the curve length of �ind), we ensure that we can pick
any of them without generating undesired shortcuts. By
�i , we denote the point on �ind that has curve length dis-
tance � from ri . Let �ind .ri ; �i / be the subpath of �ind
from ri to �i . Our candidate attraction points are always
on �ind .ri ; �i /.

Now, the first step in the computation of Ai is to
determine all parts of �ind .ri ; �i / that are visible from
the current position xi with respect to all static obsta-
cle polygons. Formally, we compute the visibility polygon
Pi for xi and the union of all static obstacle polygons,
and let the intersection Vi WD Pi

T
�ind .ri ; �i / be the

set of all points on �ind .ri ; �i / that are currently visible
(Figure 3). The set Vi yields a division of the indicative
route into a set of real intervals Vj D Œaj ; bj � � R,
such that �ind .t/ is visible from xi for all t 2 Vj . We
let each visible end point �ind .aj / and �ind .bj / of each
interval be a candidate attraction point. The only exception
is that we do not want the reference point ri to become
a candidate point whenever ri D xi . Because ri equals
�ind .a1/ whenever the reference point is visible, the char-
acter would be attracted to its current position. We ignore
a1 in this case and start assigning the candidate attraction

288 Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

N. Jaklin, A. Cook IV and R. Geraerts Real-time path planning in heterogeneous environments

Figure 3. Visible parts of the environment and the indicative
route from the current position xi .

points with the point �ind .b1/. Note, however, that we do
not exclude ri from the set of candidate attraction points
if xi ¤ ri because ri might be the only visible and valid
candidate point.

We continue to add more values to our set Ai by sam-
pling each visible interval of the indicative route using the
sampling distance d . The closer to 0 the sampling distance,
the more candidate attraction points we generate, and the
more is our set Ai an approximation of a continuous set. A
smaller sampling distance therefore generates higher accu-
racy while increasing computation time. If d is set too
large, the resulting inaccuracy may lead to undesired out-
put paths. In practice, however, feasible values of d can
be easily set if the size of the environment and the curve
length of the indicative route are known (see Section 5
for examples). Once set to a feasible value, smaller values
affect the overall output paths only insignificantly. In areas
near static obstacles with no change of the underlying ter-
rain, smaller values of d do not change the output paths
at all because the last visible point along the route will
always be picked as an attraction point (see Section 3.3
for details).

Sampling each visible interval is performed as fol-
lows. If for any real interval Vj , the curve length dis-
tance between �ind .aj / and �ind .bj / is greater than the
sampling distance d , we add a candidate attraction point
between those two points with curve length distance d
from �ind .aj /. We iterate this process until the maximum
distance between any two subsequent candidate attraction
points is d . Note that the curve length distance between
bj and the previous sampled candidate attraction point can
be smaller than d . We then let Ai D

˚
˛i1 ; ˛i2 ; : : :

�
be

the final set of candidate attraction points, ordered by their
positions along the indicative route. See Figure 4 for an
example of the resulting set Ai .

3.3. Choosing the Attraction Point

Now that we have computed the set Ai of candidate attrac-
tion points, we pick the best candidate with respect to a
weight function ! as our final attraction point ˛i for the
current step i of the algorithm.

Figure 4. Example of candidate attraction points computed by
our method.

Let k be the total number of candidate attraction points
in the current step i . We consider the straight line seg-
ments l.˛ij ; xi / between ˛ij and xi , with 1 � j � k.
We compute a weight !.l.˛ij ; xi // for each such line
segment and choose ˛i to be the final attraction point
for which the corresponding line segment has minimum
weight. The Euclidean length of the line segments, the
different types of terrain the line segments intersect, as
well as the corresponding character’s preference values
influence the weight function. Furthermore, we define the
weight function such that candidate attraction points that
are farther away from the current position reduce the
weight of the line segments. This ensures that the charac-
ter will be rewarded for picking an attraction point that is
farther away.

For each line segment l.˛ij ; xi /, let Tij be the set of

all terrain types that l.˛ij ; xi / intersects. Let dij be the
curve length distance along the indicative route from the
reference point ri to the candidate attraction point ˛ij . For
each terrain T 2 Tij , we let w.T / > 0 be the charac-

ter’s terrain preference. By lTij , we denote the amount of

terrain type T on l.˛ij ; xi / by summing up the length of
all parts of l.˛ij ; xi / that cross terrain type T . We define

the weight !.l.˛ij ; xi // WD
P
T2Tij

w.T / � lTij
=dij .

The fraction lTij
=dij describes the relation between the

Euclidean length of the line segment with underlying ter-
rain T and the curve length distance dij . It ensures that
we reward picking an attraction point that is farther away
along the route.

After computing the weights for each one of the k

line segments, we pick the final attraction point ˛i WD
˛i ;m with m D argmin

1�j�k

!.l.˛ij ; xi //. If there are sev-

eral candidate points with minimum weight for the cor-
responding line segments, we pick the one with greatest
curve length distance from the reference point along the
indicative route.

Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

289

Real-time path planning in heterogeneous environments N. Jaklin, A. Cook IV and R. Geraerts

3.4. Moving the Character

Once the final attraction point ˛i is computed for the cur-
rent step i of the algorithm, the character moves toward that
point. We basically use the same local force-based steer-
ing method as described in the IRM [19]. However, other
force-based approaches can be used, as well. Furthermore,
we use the concept of corridors in the ECM structure [21]
to let the character avoid static obstacles with a variable
user-controlled amount of clearance.

For a fixed time step, let x be the character’s current
position and jj:jj be the standard Euclidean norm. Three
forces are applied to the character in each step: the steering
force Fs.x/ to let the character move towards its attraction
point, the boundary force Fb.x/ to push the character away
from the boundary of the ECM corridor, and the obstacle
avoidance force Fo.x/ to avoid small local obstacles or
other moving characters.

Let ˛ be the current attraction point and cs be a con-
stant specifying the relative strength of Fs.x/. We then
define Fs.x/ WD cs

˛�x
jj˛�xjj

. We use the parameters cb
and co to scale the effect of Fb.x/ and Fo.x/, respec-
tively. The closer to the boundary or obstacle the char-
acter is, the stronger the repelling force. Let b.x/ be the
closest point on the boundary of the corridor. We define
Fb.x/ WD cb

x�b.x/
jjx�b.x/jj

.

For n being the number of local obstacles or other char-
acters, we let Oj ; 1� j � n, be the current position of the

j th obstacle. We define Fo.x/ WD
Pn
jD1 co

x�Oj
jjx�Oj jj

. We

then let F .x/D Fs.x/CFb.x/CFo.x/ be the final force
exerting on the character at position x.

3.5. Proof of Correctness

Now, we show that our method ensures that the charac-
ter will always find a path to the goal position g—provided
that the goal can be reached and the character is not pushed
away by other forces (e.g., other moving characters) such
that the indicative route becomes invisible. Note that the
latter can always happen whenever the character is pushed
behind an obstacle. In this case, our method ends, and we
continue recomputing a part of the indicative route from
the character’s new position to its goal.

To prove the correctness, we assume that we have a finite
number of polygons that are not infinitesimally small. Note
that this does not imply any restrictions for most practical
applications. In addition, we assume that the character is
moving towards each attraction point directly. Although in
practice, one can use a velocity-based integration scheme
such as Euler integration to compute paths that are proven
to be C 1-continuous [24], we do not assume such an
approach in theory. This is because in theory, the character
might be pushed behind an obstacle due to a too large step
size of the integration scheme. In practice, however, this
is unlikely and can be avoided by adjusting the step size
accordingly.

First, we prove that there is at least one candidate
attraction point we can choose from in each step of the
algorithm.

Lemma 1. Let i be the current step of the algorithm. It
holds that Ai ¤ ;.

Proof . We prove this by induction on i .
For i D 0, we have x0 D r0 D s. The character’s

initial position is the starting point s of the indicative
route. Because of the definition of the visibility intervals
Vj D Œaj ; bj � in Section 3.2, it immediately follows that
�ind .a1/ D x0. Because the character’s position x0 can-
not be the only visible point on the route up to �ind .b1/,
we conclude that a1 ¤ b1 and also �ind .a1/¤ �ind .b1/
(note that the latter does not necessarily follow from a1 ¤

b1 in general, as the route can have self-intersections). By
definition of the set Ai , it follows that �ind .b1/ 2A0. Let
i > 0. By the induction assumption, we have Ai�1 ¤ ;.
Therefore, an attraction point ˛i�1 has been chosen in step
i � 1 and the character moved from position xi�1 to posi-
tion xi , with xi�1; xi and ˛i�1 being collinear. It immedi-
ately follows that the point ˛i�1 is still visible in step i . So
there must be an index j such that ˛i�1 2 Vj D Œaj ; bj �.
By definition of Ai , the points �ind .aj / and �ind .bj / are
both valid candidate attraction point. �

Next, we show that the sequence of reference points
moves forward along the indicative route.

Lemma 2. Let i be the current step of the algorithm. It
holds that there is a future step j > i in which the reference
point rj is ahead of ri along the indicative route.

Proof . Assume by way of contradiction that the oppo-
site holds. Because we define the reference point to be a
point between the last reference point and the last attrac-
tion point, the opposite assumption would mean that there
is a reference point that does not change for all future steps.
So we assume that there is a step i in which the reference
point ri equals rj for all j > i . To simplify the notation,
we skip the index and denote the fixed reference point as
r . It immediately follows that the character does not reach
the goal position g. Otherwise, there would be a step j > i
in which xj is closer to g than to r , thus making g the new
reference point in step j C 1.

Because the character does not reach g but moves
forward in each step because of Lemma 1, it follows
that we have an infinite sequence of character positions
xi ; xiC1; xiC2; : : :. The Euclidean distance between each
xj and xjC1 in this sequence always equals the relative
strength cs of the attraction force Fs.x/ (see Figure 5 and
Section 3.4). When the character moves from xj to xjC1,
there is a corresponding attraction point ˛j colinear with
xj and xjC1 that has been picked as the best point
among all candidate attraction points in Aj . This means

that the weight !.l.˛j ; xj //D
P
T2Tj w.T / � lj

T =dj is
minimal among all candidate line segments in step j .

290 Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

N. Jaklin, A. Cook IV and R. Geraerts Real-time path planning in heterogeneous environments

Figure 5. The distance between xj and ˛j differs from the dis-
tance between xjC1 and ˛j by the amount of the strength cs of

the steering force.

Now, in the following step j C 1, the next candidate
attraction point is computed. The former attraction point
˛j has the same curve length distance dj D djC1 from
the reference point r along the indicative route as in
step j because r stays at the same point because of our
assumption. So, the weight !.l.˛j ; xjC1// differs from
!.l.˛j ; xj // only in the Euclidean distance between the
corresponding points and the terrain segments along the
line. Since the Euclidean distance is smaller (it has been
reduced by cs > 0 ; see Figure 5), the weight for ˛j in
step j C 1 is smaller than the weight for ˛j in step j .
It follows that the attraction point picked in step j C 1

must have a smaller weight than the one picked in step j .
Therefore, following the sequence xi ; xiC1; xiC2; : : : of
character positions, the weight for picking the correspond-
ing attraction points becomes smaller in each step by an
absolute amount.

However, there is a lower bound for the weight. Let
dmin WD min

i�j
jjxj � r jj be the minimal distance between

the fixed reference point r and all character positions
xi ; xiC1; xiC2; : : :. Then, it holds that jjl.˛j ; xj /jj �
dmin. Otherwise, the corresponding attraction point ˛j
would be closer to xj than r , thus becoming the new refer-
ence point in step j C 1. This contradicts our assumption
that r stays the same point for all future steps. Further-
more, the curve length distance dj between the reference
point and the attraction point is never greater than the short-
cut parameter � , that is, dj � � . If we let wmin WD min

T2T
w.T / be the character’s minimum preference value for all
terrain types, the following lower bound for the weight
!.l.˛j ; xj // applies:

!.l.˛j ; xj //D
1

dj

X

T2Tj

w.T / � lj
T �

wmin

�

X

T2Tj

lj
T

D
wmin

�
� jjl.˛j ; xj /jj �

wmin

�
� dmin:

Now, we know that the weights become smaller in each
step, we have an infinite number of such steps, and there is
a lower bound for the weight. It follows that the weights
must asymptotically approximate the lower bound. This

corresponds, however, to an infinite number of asymp-
totically small portions of terrain polygons that the char-
acter crosses. Because we assume that there are a finite
number of polygons that are not infinitesimally small,
we have a contradiction to our assumption, which proves
the lemma. �

Lemmata 1 and 2 ensure that our method makes the char-
acter move forward in each step of the algorithm. Now,
we prove that the character will always reach the goal
position g.

Theorem 1. There is an index i 2N such that xi D g.

Proof . By Lemma 2, it holds that the curve length distance
along �ind from the reference point to g becomes smaller
over time.

Assume by way of contradiction that the character does
not reach its goal, that is, for all steps i , the character’s
position xi does not equal g. Because the reference point
becomes closer to g over time, it follows that the sequence
.ri /i2N of reference points has a limit l 2 �ind . This limit
l cannot be reached. Otherwise, if there was a step j such
that xj D l , by Lemma 1, there would be at least one can-
didate attraction point we could choose from, thus making
the character go beyond l , a contradiction.

Because l is a limit point on the indicative route and the
character moves forward in each step, it follows that there
is a step i in the algorithm where the curve length distance
along �ind between ri and l is smaller than the sampling
distance d . By Lemma 1, we know that there is at least one
candidate attraction point ˛i to choose from. By the defi-
nition of the set Ai and because of the sampling distance
d , this point ˛i either lies beyond l or equals the reference
point ri . If the latter case holds and ri D ˛i , the character
is attracted to its reference point until it reaches that point
or a different attraction point beyond l will be picked. In
any case, an attraction point ˛j beyond l will finally be
picked. The attraction force lets the character go towards
˛j and beyond l , yielding a contradiction. �

4. COMPUTING AN INDICATIVE
ROUTE

We now briefly discuss how to compute an indicative
route with a higher-level path planning approach. The
general idea is to tessellate all navigable space and to per-
form an A* search [20] on the dual graph of the tessel-
lation. Note that the resulting routes are neither smooth
nor natural-looking. They are therefore not used as final
paths. However, they give a rough estimation of the char-
acter’s preferred route and can be used as input for our
MIRAN approach.

The indicative route can be computed by using a small
grid to represent the environment, or by computing a con-
strained triangulation of all traversable regions. We then
let G D .V ;E/ be a weighted dual graph of the tessel-
lation T . Each tessellated polygon (grid cell, triangle or

Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

291

Real-time path planning in heterogeneous environments N. Jaklin, A. Cook IV and R. Geraerts

Figure 6. Example of how to weight edges in the dual graph G.
Here, we show triangles4u;4v 2 T and the straight-line edge

euv .

other) is associated with both a vertex v 2 V and with the
traversable region type. A pair of nodes u; v is connected
by an edge euv 2E if the associated polygons are adjacent
in the tessellation T .

We assign a weight w.e/ > 0 to each edge e 2 E,
based on the character’s terrain preferences, as follows.
Each edge euv 2 E is associated with the two polygons
Pu; Pv 2 T that correspond to the vertices u and v. Each
one of the polygons has a terrain type Tu; Tv in the envi-
ronment. There is a point p on euv where the underlying
polygon in T changes from Pu to Pv . See Figure 6 for
an example with triangles. We can split euv at p into two
curve segments eu and ev . The curve length keuvk of euv
equals keuk C kevk. Let w.Tu/; w.Tv/ 2 R be the char-
acter’s preferences for terrain types Tu and Tv . We then
define the weight w.euv/ WD w.Tu/ � keukCw.Tv/ � kevk.
We can then use an A* search in this weighted dual graph
to compute the indicative route.

In the forest example in Figure 1, we use an A* search on
a grid to compute the indicative routes. For the adult char-
acter, each grid cell is weighted with one of the following
weights: forest D 30, path D 2, puddles D 10, trees D 30,
and panoramic view D 1. For the child, the weights are as
follows: forest D 30, path D 2, puddles D 1, trees D 1,
and panoramic view D 10. The used MIRAN parameters
to follow the routes are � D 80 and d D 20 for the adult.
For the child, we set � D 100 and d D 20.

5. EXPERIMENTS

We performed experiments in a framework using the ECM
data structure [21]. To demonstrate specific features of the
method, we used indicative routes that were manually cre-
ated in 2D polygonal environments containing multiple
terrain types. All our experiments were performed on a PC
running Windows 7, with a 3.2 GHz AMD Phenom™II
X2 CPU and 4 GB memory. We used one CPU core for
the computations. In this implementation, we discretized
the environment. We built the ECM using graphics hard-
ware [21] and extracted all terrain and obstacle information

Figure 7. Output paths for different values of � . The sampling
distance d used in all examples is 20.

from the color buffer during this building process. We used
Bresenham’s line algorithm [25] for checking visibility for
all candidate attraction points. We also used the same algo-
rithm for computing their weights and to let the character
keep clearance from obstacles. In addition, we use Euler
integration in each step after computing the current attrac-
tion point to generate smooth paths. The ECM structure
was also used to implement the IRM [19] and compare it
with our method.

First, we tested the method with a 2D footprint of the
McKenna MOUT training site at Fort Benning, Georgia,
USA (Figure 7). This scene spans an area of 200 � 200
units. It contains one type of terrain and a set of 23 convex
obstacle polygons. These polygons represent buildings,
and they have a total of 96 vertices. Using a fixed sampling
distance of 20 and different settings for the the shortcut
parameter � , we computed five output paths for the same
indicative route �ind . As expected, the smaller the value
of � , the closer the character follows �ind . With higher
values of � , large parts of �ind can be skipped. If the size
of a scene and the length of �ind is known, appropriate
values of � can be easily set to produce the desired behav-
ior. This is because � corresponds to the exact distance
the character may look ahead along �ind . With � D 300,
the character neither follows the loop contained in �ind
nor does it skip it entirely. This results in the path shown
in Figure 7 (light blue). One might argue that this is an
unnecessary detour. However, the MIRAN approach does
not tackle the problem of how to reach a goal destination
along a shortest path. Instead, it generalizes this idea and
shows how to follow an arbitrary route while taking terrain
information into account. Furthermore, the shown behav-
ior can be easily changed if needed by adjusting the value
of � accordingly.

We compared MIRAN with the IRM in the McKenna
scene with an additional road, sidewalk, and some muddy
terrain next to the sidewalk (Figure 8). This scene spans
the same area and contains the same obstacle polygons as
the original scene, but it has 10 additional convex terrain

292 Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

N. Jaklin, A. Cook IV and R. Geraerts Real-time path planning in heterogeneous environments

Figure 8. Comparison of MIRAN (solid red path) and IRM
(dashed purple path) for a pedestrian character.

polygons with 39 vertices. The character is assumed to
be a pedestrian that has a preference for sidewalks. Side-
walks are weighted with a cost of 0:5. The road terrain
is weighted with a cost of 4:0, and the mud has a high
cost of 40:0. The remaining terrain has a weight of 1:0.
For MIRAN, we set the shortcut parameter � to 40 and the
sampling distance d to 10. By running both methods on the
same indicative route, the experiment shows that MIRAN
lets the character stay on the sidewalk as long as possible.
Mud is completely avoided, and no larger parts of the route
are skipped. By contrast, the IRM lets the character stay on
the road for a long time, crosses the mud, and always skips
the last part of the route.

The computation time needed to compute the shown
paths can be seen in Table 1. It shows that the number of
candidate attraction points has a great impact on the com-
putation time. With a shortcut parameter of 1250 and a
sampling distance of 20, the number of candidate attraction
points is large, and this yields higher computation times.
By contrast, with a shortcut parameter of 40 and a sampling
distance of 10, the number of candidate attraction points is
small. The amount of time used for computing the path in
the McKennaC Road scene is therefore small as well.

Table 1. Computation times.

Scene Method � d Time (ms)

McKenna MIRAN 100 20 7:13
McKenna MIRAN 250 20 16:50
McKenna MIRAN 300 20 16:04
McKenna MIRAN 400 20 20:90
McKenna MIRAN 1250 20 63:33
McKenna C Road MIRAN 40 10 4:66
McKenna C Road IRM — — 4:48
Forest (adult) MIRAN 80 20 8:00
Forest (child) MIRAN 100 20 10:52

6. CONCLUSION

We introduced MIRAN, a novel algorithm that enables
advanced path planning in environments that contain
weighted regions. It can be used to compute visually con-
vincing and terrain-dependent paths in real-time applica-
tions, and it solves a variant of the WRP [7]. Those regions
can describe a great variety of terrain types or regions of
variable attractiveness with respect to psychological influ-
ences. The method also overcomes some issues of the IRM
[19] by giving the user control over the desired amount
of smoothing. We presented the details of the algorithm,
proved its correctness, and conducted experiments. The
forest example as well as the comparison with the IRM are
also illustrated in the video accompanying this paper.

MIRAN can be used by level designers to create indi-
vidual predefined routes in heterogeneous virtual environ-
ments. Furthermore, it can be used as part of an artificial
intelligence system when applied to virtual agents or robots
that compute their indicative routes automatically with a
higher-level path planning approach.

One open research question is how to modify MIRAN
to handle a character that is represented as a disk with
variable radius. Furthermore, the automated computation
of indicative routes can be improved. Up until now, we
use a higher-level path planning algorithm such as an A*
search [20] on a grid. Applying MIRAN to the correspond-
ing indicative routes already produces convincing results.
However, improving this preprocessing step could enhance
MIRAN output paths even more.

We believe that MIRAN is a promising and flexible
method that can form the basis for solving many chal-
lenging path planning problems for future simulation,
animation, gaming, and robotics applications.

ACKNOWLEDGEMENTS

This research has been supported by the COMMIT
project (http://www.commit-nl.nl/) and the COMMANDS
project in cooperation with the European Design Center
(http://www.edc.nl/) and the Netherlands Forensic Insti-
tute (http://www.forensicinstitute.nl/). Norman Jaklin and
Roland Geraerts are part of the Institute of Information and
Computing Sciences, Utrecht University, 3584 CC Utrecht,
the Netherlands. Atlas Cook IV is part of the Institute for
Computational Engineering and Sciences at the University
of Texas at Austin, USA.

REFERENCES

1. Latombe J-C. Robot Motion Planning. Kluwer
Academic Publishers, Norwell, MA, USA, 1991.

2. LaValle SM. Planning Algorithms. Cambridge Univer-
sity Press, Cambridge, U.K., 2006. Available at http:
//planning.cs.uiuc.edu/.

Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

293

Real-time path planning in heterogeneous environments N. Jaklin, A. Cook IV and R. Geraerts

3. Choset H, Burgard W, Hutchinson S, et al. Principles
of Robot Motion: Theory, Algorithms, and Implemen-
tation. MIT Press, Cambridge, MA, USA, 2005.

4. Shao W, Terzopoulos D. Autonomous pedes-
trians, In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation, SCA ’05, New York, NY, USA, 2005;
19–28. ACM.

5. Lo W-Y, Knaus C, Zwicker M. Learning motion
controllers with adaptive depth perception, In Proceed-
ings of the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA ’12, Aire-la-Ville,
Switzerland, Switzerland, 2012; 145–154. Eurograph-
ics Association.

6. Kang S-J, Kim Y, Kim C-H. Live path: adaptive
agent navigation in the interactive virtual world. The
Visual Computer: International Journal of Computer
Graphics 2010; 26(6-8): 467–476.

7. Mitchell JSB, Papadimitriou CH. The weighted region
problem: finding shortest paths through a weighted
planar subdivision. Journal of the ACM 1991; 38(1):
18–73.

8. Aleksandrov L, Djidjev HN, Guo H, Maheshwari
A, Nussbaum D, Sack J-R. Algorithms for approxi-
mate shortest path queries on weighted polyhedral sur-
faces. Discrete & Computational Geometry 2010; 44:
762–801.

9. Mata CS, Mitchell JSB. A new algorithm for com-
puting shortest paths in weighted planar subdivisions
(extended abstract), In Proceeding of the 13th Annual
ACM Symposium on Computational Geometry, Nice,
France, 1997; 264–273. ACM Press.

10. Aleksandrov L, Lanthier M, Maheshwari A,
Sack J-R. An �-approximation algorithm for weighted
shortest paths on polyhedral surfaces, In Proceedings
of the 6th Scandinavian Workshop on Algorithm
Theory, Stockholm, Sweden, 1998; 11–22.

11. Aleksandrov L, Maheshwari A, Sack J-R. Determin-
ing approximate shortest paths on weighted polyhedral
surfaces. Journal of the ACM 2005; 52(1): 25–53.

12. Reif J, Sun Z. An efficient approximation algorithm
for weighted region shortest path problem, In Algo-
rithmic and Computational Robotics: New Directions -
The Fourth Workshop on the Algorithmic Foundations
of Robotics, Dartmouth College, Hanover, NH, USA,
2000.

13. Sun Z, Reif J. Bushwhack: An approximation algo-
rithm for minimal paths through pseudo-euclidean
spaces, In Proceedings of the 12th Annual Interna-

tional Symposium on Algorithms and Computation,
Christchurch, New Zealand, 2001; 160–171. Springer.

14. De Carufel J-L, Grimm C, Maheshwari A, Owen M,
Smid M. Unsolvability of the weighted region short-
est path problem, In European Workshop on Compu-
tational Geometry (EuroCG), Assisi, Perugia, Italy,
2012; 65–68.

15. Guo Y, Parker LE, Jung D., Dong Z. Performance-
based rough terrain navigation for nonholonomic
mobile robots. IEEE Industrial Electronics Society
2003; 3: 2811–2816.

16. Yahja A, Singh S, Stentz A. An efficient online
path planner for outdoor mobile robots. Robotics and
Autonomous Systems 2000; 32: 129–143.

17. Harabor D, Botea A. Hierarchical path planning
for multi-size agents in heterogeneous environ-
ments. Computational Intelligence and Games 2008:
258–265.

18. Geraerts R, Overmars MH. Enhancing corridor maps
for real-time path planning in virtual environments.
Computer Animation and Social Agents 2008: 64–71.

19. Karamouzas I, Geraerts R, Overmars MH. Indicative
routes for path planning and crowd simulation, In
4th International Conference on Foundations of Digi-
tal Games, On-board the Disney Wonder cruise ship,
departing from Port Canaveral, Florida, USA, 2009;
113–120.

20. Hart PE, Nilsson NJ, Raphael B. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and
Cybernetics 1968; 4(2): 100 –107.

21. Geraerts R. Planning short paths with clearance using
Explicit Corridors, In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation,
Anchorage, Alaska, 2010; 1997–2004.

22. van Toll WG, Cook IV, AF, Geraerts R. Real-time
density-based crowd simulation. Computer Animation
and Virtual Worlds (CAVW) 2012; 23: 59–69.

23. van Toll WG, Cook IV, AF, Geraerts R. Navigation
meshes for realistic multi-layered environments, In
Proceedings of the International Conference on Intel-
ligent Robots and Systems, San Francisco, California,
USA, 2011; 3526–3532.

24. Karamouzas I. Motion Planning for Human Crowds:
From Individuals to Groups of Virtual Characters,
Ph.D. Thesis, Utrecht University, 2012.

25. Bresenham JE. Algorithm for computer control of
a digital plotter. IBM Systems Journal 1965; 4(1):
25–30.

294 Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

N. Jaklin, A. Cook IV and R. Geraerts Real-time path planning in heterogeneous environments

AUTHORS’ BIOGRAPHIES

Norman Jaklin received his diploma
in Computer Science in 2011 from
the Rheinische Friedrich-Wilhelms-
Universität Bonn, Germany. He is a
PhD candidate at the Department of
Information and Computing Sciences
at Utrecht University since 2011.
His research interests cover compu-

tational geometry, path planning, discrete mathematics,
graph theory, and complexity theory.

Atlas F. Cook IV is a web designer
for the Institute for Computational
Engineering and Sciences at the Uni-
versity of Texas at Austin. Atlas
received his PhD in Computational
Geometry in 2009 from the Univer-
sity of Texas at San Antonio. He
loves path planning research, gaming,

dancing, and smiling.

Roland Geraerts is an assistant pro-
fessor at the Games and Virtual
Worlds group in the Department
of Information and Computing
Sciences at Utrecht University in the
Netherlands. There, he obtained his
PhD on sampling-based motion plan-
ning techniques. In addition, he stud-

ied quality aspects of paths and roadmaps. His current
research focuses on path planning and crowd simulation in
games and virtual environments. Furthermore, he teaches
several courses related to games and crowd simulation.
Roland has organized the Creative Game Challenge and
is one of the cofounders of the annual Motion in Games
conference.

Comp. Anim. Virtual Worlds 2013; 24:285–295 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

295

