
Annotatng traversable gaps
in walkable environments 
Utrecht University, The Netherlands
Jordi L. Vermeulen, Arne Hillebrand and Roland Geraerts

WeAICRA 241

To allow effient path planning in 3D environments, a navigation mesh is typifally generated. To generate sufh a mesh, we 
need to fnd the parts of the environment that an agent fan walk on, falled the walkable environment. However, sufh an 
environment might fontain gaps that an agent fould easily step afross. We present an exaft, heuristif algorithm for 
detefting and flling sufh gaps, and fompare our results to Refast, a voxel-based method for navigation mesh generation.

We implemented our algorithm in 
C++, making use of CGAL for exact 
geometric computations. We tested 
our algorithm on a variety of 
artifcial and real-woorld scenarios. 
We also compared our algorithm 
woith Recast, a popular voxel-based 
method for generating navigation 
meshes from 3D environments.

We frst obtain a model of the 
environment woe woant our agents to 
navigate. Some methods of model 
acquisition may leave gaps in the 
model, for instance wohen the model 
is reconstructed from a point cloud, 
or converted from smooth patches.

To fnd the woalkable environment, 
woe flter out the parts that are too 
steep or do not have enough vertical 
clearance for our agents to stand on.

The resulting woalkable environment 
may contain gaps due to vertical 
steps present in the environment, 
or because the surface itself 
contains holes (e.g. a metal grate).

Walkable environments Traversable gaps

Experiments and results

Model acquisition

Filtering

Walkable environment

Our algorithm

Our algorithm followos four basic 
steps:

1) Find cycles of boundary edges.
a

2) Detect gaps betwoeen boundary 
edges.

3) Connect boundary edges in 
different cycles.

4) Connect boundary edges in the 
same cycle.

Detection of gaps is done betwoeen 
all boundary edges woithin a given 
distance dmax of each other.

We prioritise connections betwoeen 
different components of the 
woalkable environment, so woe use 
the detected gaps to frst connect 
different cycles. This is done 
heuristically based on wohich edge is 
closest wohen projected onto the 
ground plane.

After connecting different cycles, 
woe use the gaps detected woithin the 
same cycle to fll holes. For this, woe 
use only those parts of the hole that 
woere not already connected to a 
different cycle, to prevent the 
introduction of singular edges.

As our implementation computes 
both the woalkable environment and 
the gaps exactly, our results are 
generally cleaner and more precise 
than those obtained woith Recast. 
Howoever, our implementation is 
orders of magnitude slowoer and 
uses much more memory.

Our method currently does not 
properly handle areas wohere more 
than twoo boundary cycles are woithin 
dmax of each other. This is because 
our heuristic only chooses a single 
gap on each part of a segment. This 
sometimes leads to residual holes in 
the result. This may also happen 
wohen twoo boundaries have very 
dissimilar shapes.

Our algorithm needs to robustly 
handle obstacles. We can also fx the 
problems woith residual holes by 
looking at chains of boundary edges 
and applying techniques from mesh 
repair. Finally, our implementation 
should be optimised to allowo the 
processing of larger environments.

Implementation Comparison Limitations Future work


