
Enhancing Corridor Maps for Real-Time Path Planning in Virtual Environments

Roland Geraerts and Mark H. Overmars∗

Institute of Information and Computing Sciences, Utrecht University
3508 TA Utrecht, the Netherlands, roland@cs.uu.nl

Abstract
A central problem in interactive virtual environ-
ments is planning high-quality paths for charac-
ters avoiding obstacles in the environment. Current
applications require a path planner that is fast (to
ensure real-time interaction with the environment)
and flexible (to avoid local hazards). In addition,
paths need to be natural, i.e. smooth and short.

To satisfy these requirements, we need an ad-
equate representation of the free space stored in
a convenient data structure, a fast mechanism for
querying this data structure, and an algorithm that
constructs natural paths for the characters.

We improve an existing data structure, theCor-
ridor Map, which represents the free space by a
graph whose edges correspond to collision-free cor-
ridors. We show that this structure, together with a
kd-tree, can be used for fast querying, resulting in a
corridor that guides the global path of the character.
Its local motions are controlled by force functions,
providing the desired flexibility. Experiments show
that the improvements lead to a method which can
steer a crowd of±10,000 characters in real-time.

1 Introduction

One of the main challenges in virtual environments
is path planning for characters. These characters
have to traverse from a start to a goal position with-
out colliding with obstacles and other characters.
In the past twenty years, many algorithms have
been devised to tackle the path planning problem
[10, 11]. These algorithms were mainly developed
in the field of robotics, aiming at creating a path for
one or a few robots having many degrees of free-
dom. Usually, muchCPU time was available for
computing anice path, which often meant a short
path having some clearance to the obstacles, be-
cause a bad path could be expensive to traverse, and
could damage the robot or environment.

While these algorithms were successfully ap-
plied in fields such as mobile robots, manipulation
planning and human robot planning [10], current
virtual environment applications, e.g. games, pose

∗This research has been supported by theGATE project,
funded by the Netherlands Organization for Scientific Re-
search (NWO) and the NetherlandsICT Research and Inno-
vation Authority (ICT Regie). In addition, part of this re-
search has been funded by the DutchBSIK/BRICKSproject.

many new challenges to the algorithms. That is,
natural paths for many characters traversing in the
ever growing environments need to be planned si-
multaneously and in real-time. Hence, only a (frac-
tion of a) millisecond per secondCPU time may be
spent per character for computing the natural path
(i.e. a path that is smooth, short, keeps some clear-
ance to obstacles, avoids other characters, etcetera).

In short, current environments require a fast flex-
ible planner generating natural paths. A candidate
for the flexible planner is a Potential Field method
[14], because it can be used to evade characters and
to create smooth paths. Due to the method’s local
behavior, it will not always find a path.

Roadmap based methods, such as Visibility
graphs [10], Probabilistic Roadmap Methods [11],
and an A* method operating on a graph-like grid
[16], can usually ensure that a path can be found
if one exists. However, they lack flexibility be-
cause they output a fixed path (extracted from a
one-dimensional graph). In addition, the paths are
unnatural. While some optimization algorithms ex-
ist, they are too slow to be applied in real-time [6].

Recently, the Corridor Map Method (CMM) has
been proposed, which satisfies the requirements
mentioned above [5]. TheCMM directs the global
motions of a character traversing a corridor. Such a
corridor is extracted from thecorridor mapwhich
is a graph with clearance information. Local mo-
tions are controlled by potential fields inside a cor-
ridor, providing the desired flexibility.

In this paper, we improve the corridor map,
which considerably decreases the extraction times
of the paths. We expect that our ideas can also
be applied to similar path planning methods such
as [1, 8, 12, 15]. We show that with these improve-
ments, theCMM can be used to generate natural
paths for thousands of characters in real-time.

Our paper is organized as follows. Section 2 re-
views theCMM. We then focus on creating high-
quality corridor maps and corresponding data struc-
tures in Section 3 and 4. Next, Section 5 shows how
the CMM can be used for simulating a large crowd
of characters. In Section 6 we conduct experiments
to test the improvements and conclude in Section 7
that the method scales well for environments with
many characters, each having an independent goal,
without compromising the real-time behavior.

2 The Corridor Map Method

TheCMM uses an enhanced graph (i.e. the corridor
map), storing a system of collision-free corridors.
Such a corridor consists of a local backbone path
and a set of balls centered around this path. In [5],
a corridorB = (B[t], R[t]) is defined as a sequence
of balls with radiiR[t] whose center points lie along
its backbone pathB[t]. The parametert is an index
ranging between 0 and 1, and the backbone path is
defined as a list of coordinates.

To plan a path for a character, which is modeled
by a ball with radiusr, we need to extract an ap-
propriate corridor from the graph. This corridor,
enclosing the future path of the character, is formed
by concatenating corridors extracted from the map.

While the corridor guides the global motions of
the character, its local motions are led by anattrac-
tion point, α(x), moving on the backbone path of
the corridor toward the goal. The attraction point
is defined such that making a step toward this point
leads the character, located at positionx, toward the
goal. As stated in [5], the attraction point attracts
the character with forceFa. Let d be the Euclidean
distance between the character’s positionx and the
attraction pointα(x). ThenFa(x) = f α(x)−x

||α(x)−x|| ,

wheref = 1
R[t]−r−d

− 1
R[t]−r

.
Additional behavior can be incorporated by

adding extra forces toFa, resulting in a forceF.
The final path is obtained by iteratively integrating
F over time while updating the velocity, position
and attraction point of the character.

In the following two sections, we will show how
to create high-quality corridor maps.

3 The Corridor Map

An important impact on the quality of the paths is
the quality of the corridor map. We will describe a
new approach that creates maps satisfying the fol-
lowing five criteria. First, if a path exists in the
free space then a corridor must exist in the map,
which leads the character to its goal position. Sec-
ond, the map includes all cycles that are present in
the environment. These cycles provide short global
paths and alternative routes which allow for varia-
tion in the characters’ routes. Third, corridors ex-
tracted from the map have a maximum clearance.
Such a corridor provides maximum local flexibility.
Fourth, the map is small with respect to the number
of vertices and edges. Such a map facilitates low
query times. Fifth, the map facilitates efficient ex-

traction of paths. Creating paths efficiently is cru-
cial because we focus on interactive environments.

A good base for a data structure satisfying these
criteria is theGeneralized Voronoi Diagram(GVD).
A GVD is a decomposition of the free space into re-
gions such that all pointsp in a regionR(p) are
closer to a particular obstacle than to any other ob-
stacle in the environment. Such a region is called
a Voronoi region. We are particularly interested in
the boundaries of the Voronoi regions because they
have some useful properties. First, the boundaries
form a connected component if the free space in
which the character moves is also connected [4].
Second, the union of maximum balls placed on
these boundaries results in a complete coverage of
the free space. Consequently, aGVD satisfies the
first two criteria. Third, the points on the bound-
aries have a maximum local clearance to the obsta-
cles, which satisfies the third criterion.

We will show in Section 3.1 how the (boundaries
of the) GVD can be computed efficiently. These
boundaries form the skeleton of the corridor map
which is stored in a graph. Each vertex in the graph
corresponds to a crossing of boundaries. An edge
connects two vertices and traces the boundaries be-
tween two Voronoi regions. Such an edge forms
the backbone path of a corridor. Because a vertex is
placed only at a crossing of boundaries, the corridor
map will have a small number of vertices. In prac-
tice, their number of incident edges is also small.
Hence, the fourth criterion is also satisfied. We will
meet the fifth criterion by appropriately sampling
the boundaries in Section 3.2 and adding data to
the corridor map in Section 3.3.

3.1 Computing the GVD

Approaches for computing theGVD can be divided
into two classes:exactandapproximate. An exact
approach provides an algebraic description of the
GVD. Such an approach poses many challenges in
terms of robustness andCPU speed due to the al-
gebraic complexity and high precision calculations
that are required [13]. Consequently, theGVD is
often approximated in practice.

A promising approach for approximating the
GVD is proposed by Hoffet al. [8]. The authors
describe a brute-force technique that exploits the
fast computation of a 2D/3DGVD using graphics
hardware. This technique computes a 3D distance
mesh, consisting of polygons, for each geometric
obstacle present in the environment. Each of the
meshes is rendered on the graphics card in a differ-

(a) Environment (b) Frame buffer (c) Z-buffer

(d) Boundaries (e) Corridor map (f) Improved map

Fig. 1. Construction of the corridor map.

ent color. A parallel projection of the upper enve-
lope of the arrangement of these meshes gives the
GVD. The diagram can be retrieved from the graph-
ics card’s frame buffer and the clearance values (i.e.
distance values) can be found in its Z-buffer.

We use this approach to create theGVD’s for the
environments because it is fast and gives a good ap-
proximation of theGVD.

Our environments are composed of geometric
primitives such as triangles and polygons. For each
of these primitives, a distance mesh is computed
and rendered in a different color. Because these
primitives are projected onto an array of pixels, we
need to specify its dimensions. Theresolution(i.e.
the number of pixels in each dimension) determines
the accuracy of theGVD as well as the distances.

As an example, consider the environment de-
picted in Fig. 1(a). We decomposed the obstacles
into seven convex parts. (We need convex obsta-
cles as Hoff’s approach does not discover Voronoi
boundaries running into concavities.) These parts
contribute to the Voronoi regions, depicted in Fig.
1(b) as uniformly colored regions in the frame
buffer. Then, the projection of the corresponding
distance meshes fills the Z-buffer with distance val-
ues. In Fig. 1(c), light gray colors correspond to a
large distance while dark gray colors correspond to
a small distance to the obstacles. After computing
the GVD, we proceed to trace its boundaries. In
our example, Fig. 1(d) shows the boundaries corre-
sponding to the frame buffer from Fig. 1(b).

3.1.1 Tracing the boundaries of theGVD

Our goal is to create an annotated graphG =
(V,E). Each vertexν ∈ V in this graph stores
the coordinates corresponding to the position in

the frame bufferF at which three or four adjacent
pixels have a different color, and stores a corre-
sponding clearance value which is retrieved from
the Z-buffer. An edgeǫ ∈ E connects two ver-
tices ν ′, ν ′′ ∈ V and stores the corridor (and its
length). Its backbone path runs fromν ′ to ν ′′ along
theboundariesof two differently colored regions.

Definition 1 (Boundary). Letp1 andp2 be two ad-
jacent integer coordinates of pixels in the frame
buffer or Z-buffer. The space between these two
pixels is a boundary if the corresponding pixels in
the frame buffer (F) have a different color and their
clearance values in the Z-buffer (D) are larger than
zero, i.eFp1

6= Fp2
∧ Dp1

> 0 ∧ Dp2
> 0.

A vertex with coordinatesp1 can have at most
four outgoing edges (i.e. edges heading left, up,
right, down). Letp2 be the coordinates formed by
traveling one pixel in each of these directions, re-
spectively. We consider all directions for whichp2

lies on a boundary. For each direction, we trace
the boundaries in the frame buffer until we hit the
location of a vertex (or obstacle). Because we are
dealing with a discrete list of coordinates, it is more
convenient to use the concept of adiscrete corridor
instead of the continuous corridor defined in [5].

Definition 2 (Discrete Corridor). A discrete cor-
ridor B = (Bi, Ri) is defined as a sequence of
balls with radiiRi whose center pointsBi lie along
its backbone pathB. For the indexi holds that
1 ≤ i ≤ n, wheren denotes the number of balls.

Fig. 1(e) shows an example of a graph that was
extracted by the algorithm. Its vertices and local
backbone paths are displayed as small discs and
curved lines, respectively. The two short vertical
edges do not belong to the Voronoi boundaries.
These artifacts are removed in the next section to
improve the running times in the query phase.

3.1.2 Pruning the graph

Hoff’s approach may introduce edges which are not
part of theGVD, increasing the size of the graph.
This occurs when neighboring pixels near two adja-
cent convex parts have a different color while their
boundary is not part of the actualGVD. We remove
these redundant edges and corresponding vertices,
as follows. We consider all verticesν ∈ V in the
graph with out degree one and determine the posi-
tion (p) of ν in the frame buffer. Next, we consider
the colors of the pixels neighboringp, which cor-
respond to unique obstacles. By using simple geo-
metric calculations, we can compute the two closest

points fromp to these obstacles. If they are equal,
then vertexν and its adjacent edge is removed.

3.2 Resampling the boundaries of the GVD

Since we are dealing with a set of discrete corri-
dors, we have to decide how coarsely such a corri-
dor needs to be sampled. There is a trade-off be-
tween accuracy and efficiency of the algorithm for
different sampling densities of balls centered on the
backbone path. That is, many samples result in a
higher coverage of the free space but they make the
extraction of the final path slower. In contrast, few
samples lead to a lower coverage of the free space
but the reduction of data leads to a faster algorithm.

The number of samples is related to the chosen
distance between adjacent balls. Setting it to zero
would lead to an infinite number of balls. Since
this is not practicable, we set alower boundon the
distance,dmin. We setdmin to the width of a pixel.

To ensure that a path can be found inside the cor-
ridor, we have to find anupper boundon the dis-
tance between two adjacent balls,Bi = (Bi, Ri)
andBi+1 = (Bi+1, Ri+1). This upper bound is de-
pendent on their Euclidean distance,d(Bi, Bi+1),
the radius of the second ball,Ri+1, and the radius
of the character,r, which is going to traverse the
corridor. This dependence can be described by the
following relation:d(Bi, Bi+1) + r ≤ Ri+1.

A discrete corridor isr-valid if this relation holds
for each two adjacent balls in the Corridor:

Definition 3 (r-Valid Discrete Corridor). A dis-
crete corridor B = (Bi, Ri) is r-valid if ∀i :
d(Bi, Bi+1) + r ≤ Ri+1.

Theorem 1(Existence of a path). If a Discrete Cor-
ridor is r-valid, then a path exists within the corri-
dor for a character with maximum radiusr.

This theorem is proved in our extended paper.
The idea is that a character can always be pulled to-
ward the attraction point, which eventually causes
the character to reach the goal.

For an original corridorB holds that ∀i :
d(Bi, Bi+1) = dmin because it consists of samples
placed on adjacent pixel crossings. For efficiency
reasons, we want a coarser sampling of the corridor
such thatd(Bi, Bi+1) = dpref (if possible), where
dpref denotes the preferred distance.

We resample each corridor by removing each
ball which is too close to its neighbors and has
enough overlap to be traversed by the charac-
ter with maximum radiusrmax. That is, we

remove all balls with coordinatesBi for which
d(Bi−1, Bi+1) ≤ min(dpref , Ri+1 − rmax).

We refer the reader to Fig. 1(f) for an example of
a resampled corridor map.

3.3 Adding data to the corridor map

We add information to elements of the corridor map
to speed up the query phase. First, we identify
the connected components for each vertex in the
graph. As a result, we can quickly check whether
two vertices (to which the start and goal are con-
nected) can be connected by a path in the graph.
Second, for all corridors, we compute the maxi-
mum radius a character can have for traversing the
corridor to speed up finding the shortest backbone
path in the map. By rearranging the expression
d(Bi, Bi+1) + r ≤ Ri+1, it becomes clear that the
maximum value forr is determined by the mini-
mum value ofRi+1 − d(Bi, Bi+1) of all adjacent
ballsBi andBi+1. We store this value,clmax, in the
data structure representing the corridor.

4 Querying

In the online query phase, we have to perform the
following four steps to find a path for a character.
First, find the closest ballBs = (Bs, Rs) ∈ ǫs ∈ E
enclosing the character placed at itsstartpositions.
In addition, find the closest ballBg = (Bg, Rg) ∈
ǫg ∈ E enclosing the character placed at itsgoal
position g. Note that edgeǫs (ǫg) is the edge in
the graph containing ballBs (Bg). Second, connect
the start and goal to the graph and find the shortest
backbone path betweenBs andg. Third, compute
the corridor with a backbone path connectingBs to
g. Fourth, compute the path. We will now provide
the details of these steps.

4.1 Finding the closest ball

We need to find the closest ball in the corridor map
(i.e. the ball whose center is closest to the charac-
ter) enclosing the character placed at its start and
goal position, respectively. A brute-force approach
for finding them is to check each ball in each corri-
dor while keeping track of the closest ball, leading
to a query time ofO(n), wheren is the number of
balls in the map. Since this may be too expensive
for large maps, we build a search structure that is
based on akd-tree [2]. Such a tree takesO(n log n)
time to build and usesO(n) memory. We recur-
sively subdivide the space into smaller spaces using

alternating axis-aligned lines, separating two non-
overlapping sets of balls. These balls do not inter-
sect with the line. Balls that do intersect are stored
in an interval tree [2] together with each node in
the kd-tree. Such an interval corresponds to the
segment of the axis-aligned line whose end points
intersect with the bounding box of the ball.

For a character with radiusr and positionq, we
can compute the closest ballBq = (Bq, Rq) in
O(k + log2 n) time, wherek is the number of re-
ported results. (This is proved in the extended pa-
per). For each reported ball, we check whether it
encloses the character. A character is enclosed by
ball Bq if d(q,Bq) < Rq − r. From the enclosed
balls, we compute the one closest to the character.

4.2 Finding the shortest backbone path

We described a data structure for finding ballsBs =
(Bs, Rs) ∈ ǫs andBg = (Bg, Rg) ∈ ǫg, enclos-
ing the start positions and goal positiong, respec-
tively. Because we have stored a connected compo-
nent number for each vertex, we can now determine
in constant time whether there cannot be a path be-
tweens andg. Hence, we can stop searching for
the shortest backbone path if the numbers differ.

Let nows′ andg′ be the two vertices with coor-
dinatesBs andBg, respectively. To find a shortest
path in the graph betweens′ andg, we split edges
ǫs andǫg such that they includes′ andg′. (Note, to
create a shorter backbone path, that the backbone
path starts ats′ and not at positions. This is valid
because boths ands′ are enclosed by ballBs.)

The shortest backbone path is a path connecting
s′ to g with the minimum distance. The distance
between two adjacent vertices can be retrieved from
the map inO(1) time because it has been computed
in the construction phase. If a character with radius
r cannot traverse the corridor corresponding to the
local path between the two vertices, i.e.r > clmin,
the distance is set to∞. Hence, the edge incident to
these vertices will not be part of the shortest path.

The shortest path can be found by e.g. Dijkstra’s
algorithm or the A* algorithm. While their theoret-
ical running times are equal, i.e.O(|V | log |V | +
|E|) time [16], the latter is often faster in practice
because A* cuts down on the subgraph that must be
explored by using a heuristic function guiding the
search toward the goal. A function that often works
well is the Euclidean distance between a vertex and
the goal because virtual environments usually con-
tain many cycles. Consequently, the Euclidean dis-
tance is a good estimator for the graph distance.

4.3 Computing the corridor

The shortest backbone path, connectings′ to g, is a
list of vertices from the graph. Now letǫ1 . . . ǫn ⊆
E be the sequence of edges connectings′ to g. The
backbone pathB[t] is then given byΠǫ1⊕. . .⊕Πǫn

,
where operator⊕ concatenates the local pathsΠǫi

.
Recall that a corridor is composed of a backbone

path and radii of the balls placed on this path. All
radii can be retrieved from the local paths corre-
sponding to the edges, except for the last edge,ǫn,
connectingg′ to g. Now let p be a position onǫn.
Then its radius is given byRg − d(Bg, p), where
d(Bg, p) is the Euclidean distance between center
of the goal ball and the position on the edge. The
distance between the samples on edgeǫn are cho-
sen such thatǫn is r-valid.

4.4 Computing the path

While the global path of the character is determined
by the corridor, its local path is determined by
forces applied to the character. We define forceF

as the sum ofFa and other forces,Fo, i.e. F(x) =
Fa(x) + Fo(x). The forceF causes the character
(positioned atx) to accelerate, pulling it toward the
goal. This phenomenon is summed up by Newton’s
Second Law, i.e.F = Ma, whereM is the mass
of the character anda is its acceleration. Without
loss of generality, we assume thatM = 1. Hence,
the force can be expressed asF(x) = d2x

dt2
m/s2.

Combining the two expressions forF(x) gives us
d2x
dt2

= Fa(x) + Fo(x), which is an equation pro-
viding the positions for the character. Because this
equation cannot be solved analytically, we have to
revert to a numerical approximation.

Many approximation methods are available such
as Euler and Verlet integration [3]. There is a trade-
off between the precision of the method and its effi-
ciency. While basic methods (e.g. Euler) are more
efficient but less inaccurate, more advanced meth-
ods (e.g. Verlet) are slower but more accurate. We
need Verlet’s precision because many forces are go-
ing to be applied to a character (see Section 5).

In this integration scheme, the character’s veloc-
ity is unbounded which may lead to inaccurate cal-
culations and unnatural paths (because the path gets
more curved for higher speeds). Hence, we set a
maximum on the velocity (referred to asvmax).

The final pathΠ can be obtained by iteratively
applying the scheme while updating the character’s
position and corresponding attraction point until
the character is near the goal (i.e. their distance is
within some small thresholdδ).

5 Simulating a crowd

We want to show that theCMM scales well to en-
vironments with many independent characters by
using the method for simulating a large crowd.

Real-time crowd simulation has gained much at-
tention recently [7,12,15]. It requires the modeling
of group behavior, pedestrian dynamics, path plan-
ning and graphical rendering [15]. We focus on the
path planning part.

In our simulation, each character will be as-
signed a random start and goal position which to-
gether fix a corridor. When a character has reached
its goal, a new goal will be chosen,ad infinitum.
Because we are dealing with more than one char-
acter, we have to choose an appropriate forceFc

such that characters evade each other naturally. We
use Helbing and Molnár’s social force model for
collisions avoidance because their simulations have
shown that it exhibits realistic crowd behavior [7].
The model describes three functions, representing
the acceleration toward the desired velocity of mo-
tion, the behavior of characters keeping a certain
distance to other characters and borders, and attrac-
tive effects among characters. ForceFa captures
the effect of their acceleration force and the force
keeping characters away from borders. As collision
avoidance force,Fc, we use the force described in
equation (3) of their paper. Unlike [7], we do not
model attractive effects among characters.

In each iteration of the simulation, we need to
find the set of neighbors for each character. Since
this operation is carried out many times, we have
to revert to an efficient data structure for answer-
ing nearest neighbors queries. We maintain a 2D
grid storing the locations of all characters (with ra-
dius r). Each cell in the grid stores a sorted set
of character id’s. Preliminary experiments have
shown that the cell sizec can be chosen fairly small,
e.g. c = 3 + 2r meter, to obtain realistic colli-
sion avoidance. By including the term2r, we only
have to check 3 by 3 cells for carrying out a near-
est neighbors query. Also, an update corresponding
to a changed position of a character is efficient be-
cause this can be achieved inO(log k) time where
k is the number of characters in the appropriate cell.

The simulation consists of some user defined
number of iterations. For each character, the task
per iteration includes computing the forcesFa and
Fo = Fc, integrating the final forceF, adding the
new position of the character to its path, and possi-
bly choosing a new goal (and corresponding corri-
dor).

(a) McKenna (b) City

Fig. 2. The two test environments. The first row shows
the 3D models and the second row the corresponding
footprints, used for constructing the corridor maps.

6 Experiments

We created corridor maps for two environments and
tested whether they could be used for fast querying.
Then, we checked whether theCMM could produce
high-quality paths for a large crowd in real-time.

6.1 Experimental setup

We implemented two applications in VisualC++
under WindowsXP. The first one was used for
generating the corridor maps and was built on top
of the HAVOC library [8] which provides functions
for computing theGVD. The second one was used
for simulating the crowd and was integrated in our
CMM framework [5].

All the experiments were run on aPC with a
NVIDIA GeForce 8800GTX graphics card and an
Intel Core2 QuadCPU (2.4 GHz) with 4 GB mem-
ory. Our application used one core. We conducted
experiments with the two environments depicted in
Fig. 2. They have the following properties:

McKenna This environment is a model of the
McKennaMOUT facility [17], which is used to train
soldiers for operations in urban environments. The
model measures 200x200 meter and consists of 566
polygons. Its footprint consists of only 46 triangles.

City We modeled a city which is much larger
(i.e. 500x500 meter) than the previous environ-
ment. The geometry is composed of 220K trian-
gles. Its footprint consists of 2122 triangles. There

are many alternative routes, and large ample spaces
as well as narrow passages.

The characters’ radius was 25cm (r = 0.25).

6.1.1 Setup for the corridor maps

We set the minimum distance between sample
points to 12.5 cm, i.e.dmin = 1

8 , so the resolution
of the maps were 1600x1600 and 4000x4000 pixels
for the McKenna and City environments, respec-
tively. We set the preferred distance between sam-
ples as well asrmax to 1, i.e.dpref = rmax = 1.

We carried out the following two experiments.
First, we measured the number of vertices, edges
and samples of the corridor maps in three cases,
studying the impact on the maps of resampling and
pruning. We also recorded the construction times.
Second, we measured the performance of the maps
by recording the costs of A* vs. Dijkstra for 10,000
random queries, and the costs of extracting 10,000
corridors corresponding to 10,000 (valid) queries.

6.1.2 Setup for the crowd simulation

We steered the characters by computing forceF =
Fa + Fc. We integratedF with Verlet integration
with step size∆t = 0.1 and set the maximum
speed,vmax, to 1.2 m/s [9]. The cell size of the
grid was set toc = 3 + 2r = 3.5 meter.

In the experiments, we used the resampled and
pruned maps and measured theCPU-load for a vary-
ing number of characters. We defined theCPU-load
as the totalCPU time / averaged traversed time∗
100%. When theCPU-load was at most 100%, we
considered the performance as real-time.

6.2 Experimental results

6.2.1 Results for the corridor maps

For each environment, we created three corridor
maps. The first one was neither resampled nor
pruned, the second one was only pruned, and the
third one was both resampled as well as pruned.
Table 1 shows the results and Fig. 3 displays the
corridor maps corresponding to the latter case.

The results make clear that pruning reduces the
number of vertices and edges of the underlaying
graph by at least 15%. Also, redundant edges
were successfully removed. When the edges were
pruned, the numbers of samples were reduced by
almost an order of magnitude, leading to faster run-
ning times in the query phase. The construction
times were small (i.e.< 1 s). Approximately 85%

(a) McKenna (b) City

Fig. 3. The two corridor maps (resampled and pruned).

Table 1. Results for the corridor maps.

no resampl. no resampl. resampl.
McKenna no pruning pruning pruning

Nr vertices 72 56 56
Nr edges 77 70 70
Nr samples 17,102 16,885 1,927
Running time (s) 0.05 0.05 0.05

City

Nr vertices 1,814 1,434 1,434
Nr edges 1,986 1,606 1,606
Nr samples 177,626 166,662 25,863
Running time (s) 0.64 0.72 0.64

was spent on computing theGVD and 15% was
spent on resampling and pruning of the map.

In the second experiment, we extracted 10,000
corridors from each environment. The average ex-
traction time for one corridor (excluding the times
for finding the shortest path and locating the query)
was 0.17 ms and 0.87 ms for the McKenna and
City environments, respectively. Table 2 summa-
rizes how much the extraction times were relatively
increased for the two different choices of finding
the shortest path and locating the start and goal.

The results confirmed that A* is faster than Dijk-
stra and that akd-tree performed better than lin-
ear search in our environments. The results suggest
that the differences become larger when a corridor
map increases in size. In the crowd simulation, we
used the optimal choices, i.e. the pruned and resam-
pled corridor maps with A* and thekd-tree. These
choices led to fast extraction times of the corridors,
i.e. averaged 0.19 ms and 1.19 ms per corridor for
the McKenna and City environments, respectively.

6.2.2 Results for the crowd simulation

Fig. 4 shows that±10,000 characters can be sim-
ulated in real-time. For up to 7,000 characters, the
simulation in the McKenna environment cost less
time due to its small map. After this threshold,
McKenna became rather crowded compared to the

Table 2. Average relative increase of time for extracting
a corridor: A* vs Dijkstra andkd-tree vs linear search.

McKenna City

A* Dijkstra A* Dijkstra

Increase of time 9.8% 21.0% 11.5% 138.2%

kd-tree linear kd-tree linear

Increase of time 3.1% 27.7% 1.0% 59.7%

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

cp
u

lo
ad

number of characters

CPU load per traversed second of the crowd simulation

McKenna
City

Fig. 4. The relation between the number of characters
and theCPU-load per second traversed time.

City, decreasing its performance. We conclude that
the CMM can be used for real-time path planning
with many characters.

7 Conclusion

The Corridor Map Method (CMM) is a framework
for real-time path planning in interactive virtual en-
vironments. The strength of theCMM is that it com-
bines a fast global planner with a powerful local
planner, providing real-time performance and the
flexibility to model natural behavior of characters.

In this paper, we focused on creating effi-
cient corridor maps and appropriate data structures
which are used for efficient path planning. As proof
of concept, we showed that theCMM can be used
for simulating a large crowd of characters, each
having an independent goal, without compromising
the real-time behavior.

In future work, we will extend theCMM such that
the method can also deal with three-dimensional
problems (e.g. problems involving a non-flat ter-
rain). In addition, we will study how the method
can be used for creating camera paths, alternative
paths and tactic paths.

References

[1] J. Berg, S. Patil, J. Sewall, D. Manocha, and
M. Lin, “Interactive navigation of individual

agents in crowded environments,” inSymposium
on Interactive 3D Graphics and Games, 2008, pp.
139–147.

[2] M. Berg, M. Kreveld, M. Overmars, and
M. Schwarzkopf,Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, Berlin,
Germany, 2000.

[3] J. Butcher,Numerical Methods for Ordinary Dif-
ferential Equations. Wiley, 2003.

[4] H. Choset and J. Burdick, “Sensor-based ex-
ploration: The hierarchical generalized Voronoi
graph,” International Journal of Robotics Re-
search, vol. 19, pp. 96–125, 2000.

[5] R. Geraerts and M. Overmars, “The corridor map
method: A general framework for real-time high-
quality path planning,”Computer Animation and
Virtual Worlds, vol. 18, pp. 107–119, 2007.

[6] ——, “Creating high-quality paths for motion
planning,” International Journal of Robotics Re-
search, vol. 26, pp. 845–863, 2007.

[7] D. Helbing and P. Molnár, “Social force model for
pedestrian dynamics,”Physical Review, vol. 51,
pp. 4282–4287, 1995.

[8] K. Hoff, T. Culver, J. Keyser, M. Lin, and
D. Manocha, “Fast computation of generalized
voronoi diagrams using graphics hardware,” in
International Conference on Computer Graphics
and Interactive Techniques, 1999, pp. 277–286.

[9] R. Knoblauch, M. Pietrucha, and M. Nitzburg,
“Field studies of pedestrian walking speed and
start-up time,” Transportation Research Record,
pp. 27–38, 1996.

[10] J.-C. Latombe,Robot Motion Planning. Kluwer,
1991.

[11] S. LaValle, Planning Algorithms.
http://planning.cs.uiuc.edu, 2006.

[12] F. Morini, B. Yersina, J. Maı̈m, and D. Thal-
mann, “Real-time scalable motion planning for
crowds,” in International Conference on Cyber-
worlds, 2007, pp. 144–151.

[13] A. Okabe, B. Boots, K. sugihara, and S. Chiu,Spa-
tial Tessellations: Concepts and Applications of
Voronoi Diagrams, 2nd ed. John Wiley, 2000.

[14] E. Rimon and D. Koditschek, “Exact robot naviga-
tion using artificial potential fields,”IEEE Trans-
actions on Robotics and Automation, vol. 8, pp.
501–518, 1992.

[15] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin,
and D. Manocha, “Real-time navigation of inde-
pendent agents using adaptive roadmaps,” inACM
symposium on Virtual reality software and technol-
ogy, 2007, pp. 99–106.

[16] K. Trovato, “A* planning in discrete configura-
tion spaces of autonomous systems,” Ph.D. disser-
tation, Universiteit van Amsterdam, 1996.

[17] US Army Training and Doctrine
Command, “Fort benning,” Internet:
http://www.globalsecurity.org/military/facility/fort-
benning.htm, 2006.

