
Clearance Based Path Optimization
for Motion Planning

Roland Geraerts Mark H. Overmars
Institute of Information and Computing Sciences

Utrecht University, the Netherlands
Email: {roland, markov}@cs.uu.nl

Abstract— Many motion planning techniques, like the proba-
bilistic roadmap method (PRM), generate low quality paths. In
this paper, we will study a number of different quality criteria
on paths in particular length and clearance. We will describe
a number of techniques to improve the quality of paths. These
are based on a new approach to increase the path clearance.
Experiments showed that the heuristics were able to generate
paths of a much higher quality than previous approaches.

I. INTRODUCTION

Motion planning can be defined as finding a path for an
object from a start to a goal configuration without colliding
with obstacles in the environment. It has been used in many
fields such as mobile robots [1], [2], [3], [4], [5], manipulation
planning [6], [7], [8], [9], CAD systems [10], virtual environ-
ments [11], protein folding [12] and humanoid robot planning
[13].

A commonly used technique for planning paths is the
Probabilistic Roadmap Planner (PRM), which was developed
at different sites [14], [15], [16]. Due to the probabilistic
nature, PRM planners generate low quality paths, i.e. paths
that represent many unnecessary motions or do not obey user
defined criteria [17], [18]. Also other planning techniques can
result in ugly and long paths. In this study, we consider a
number of different quality criteria, such as short length and
clearance. We investigate how path clearance can be used by
heuristics to improve paths such that they meet these criteria.

A. Probabilistic Roadmap Method

The probabilistic roadmap method consists of two phases:
a construction and a query phase. In the construction phase, a
roadmap (graph) is built, approximating the motions that can
be made in the environment. First, a random configuration
is created. Then, it is connected to some useful neighbors. A
neighbor is useful if its distance to the new configuration is less
than a predetermined constant. Configurations and connections
are added to the graph until the roadmap is dense enough.

In the query phase, the start and goal configurations are
connected to the graph. The path is obtained by a Dijkstra’s
shortest path query. See e.g. [19] for a more extensive elabo-
ration of the PRM method.

Generally, the paths created with PRM have low quality,
which can be explained as follows. First, for efficiency reasons,
a roadmap that does not contain cycles (the graph is a tree)
can lead to paths containing long detours. Second, the path

consists of straight-line motions between two pairs of nodes
of the graph, leading to first order discontinuities at the nodes.
Third, because of the random nature of the algorithm, the path
contains unnecessary and jerky motions. In this study, we will
focus on the optimization of paths which have been generated
by a PRM, but the techniques apply to other paths as well.

B. Optimization criteria

A path should satisfy certain criteria. In general, most
applications require a short path, because redundant motions
will take longer to execute.

For safety reasons, the path should also keep some minimum
amount of clearance to obstacles. For example, in a nuclear
power plant it is desirable to minimize the risk of heat or
radioactive contamination [20].

Notice that these criteria (short path versus clearance) seem
to contradict each other: a short path will pull the robot to
obstacles while clearance pushes it away.

Minimizing the second order gradient of the motions avoids
large accelerations and jerky motions such as sharp turns,
which increases the controllability. It is also desirable to
minimize the number of maneuvers, because this simplifies
the action for the driver or controller. Furthermore, it avoids
singularities for manipulators [20].

C. Related work

Two different kinds of approaches have been proposed to
obtain improved paths. First, a path that satisfies some criteria
can be chosen from a collection of paths, which we refer to
as preprocessing. Second, a path can be optimized in a post-
processing phase.

In [21], additional edges are added to the graph in the query
phase of the PRM, leading to cycles in the roadmap. In [17],
an augmented version of Dijkstra’s shortest path algorithm is
used to extract the path (from a graph that contains cycles)
satisfying criteria such as length and largest minimum clear-
ance. Unfortunately, there is no guarantee that the extracted
path will be optimal after post processing, because the paths
are generated randomly. In this paper, we will not consider
preprocessing techniques but assume a path in the correct
homotopic class has been found.

Almost all heuristics that can be found post process the
path to reduce its length. The Shortcut heuristic is used most
because it seems to work well in practice and is simple to



implement: two configurations c and c′ are chosen on the
path. If the straight-line motion between c and c′ is collision-
free, that motion replaces the original part. The configurations
can be chosen randomly [22], [10], [23], [24], [25], [26], or
deterministically [6], [9], [27]. Also, variants on this heuristic
have been proposed [6], [9], [27], [23]. Another class of
heuristics creates extra samples around the path [8], [9], [12],
[26]. We will show that the Shortcut heuristic can be improved
considerably. Also we will show how to (simultaneously)
satisfy a clearance criterion.

D. Paper outline

The paper is organized as follows: in section II, we describe
our experimental setup. This includes a description of the paths
we will use in our experiments. In section III, we study a
simple approach that removes all redundant nodes, resulting
in much shorter paths. Clearance is studied in section IV: an
algorithm is proposed that increases the clearance of a path.
We will show that clearance can be used to decrease the path
length for two techniques we propose in section V. In section
VI, we combine length and clearance. Finally, we draw some
conclusions in section VII.

II. EXPERIMENTAL SETUP

All techniques that will be described below were integrated
in a single motion planning system, called SAMPLE (System
for Advanced Motion PLanning Experiments), implemented
in Visual C++ under Windows XP. We used the collision
detection package Solid [28]. The experiments were run on
a 2.66 GHz Pentium 4 processor with 1 GB internal memory.

In this study, we restricted ourselves to free-flying objects in
a three-dimensional workspace, although we give 2D examples
to explain some heuristics. We considered four scenes. In each
scene we created a path with the PRM method in such way
that an optimization step can not change its homotopic class.
In the rest of the paper we show how our different techniques
optimize these paths, see Fig. 1. The scenes and their paths
have the following properties:

Simple corridor This is a simple scene that contains an
ugly path traversed by a small cylinder. Many motions are
redundant. We expect that they can be removed easily.

Corridor This scene forces an elbow shaped object to
rotate. The path was created with Gaussian sampling [29],
which resulted in little clearance to the corridors. Rotations
can only be removed by considering large portions of the path.

Hole The moving object consists of four legs and must
rotate in a complicated way to get through the hole. Only
where the path goes through the hole, the clearance is small.

Wrench This environment features a large moving obstacle
in a small workspace. The path has some clearance and is
relatively short. The moving object is rather constrained at the
start and goal.

To discuss length and clearance we need a distance measure.
We used d = dr + dt where dt denotes the translational
distance of the origin of the object and dr denotes the distance
traveled by the point of the object furthest from its origin while

(a) Simple corridor (b) Corridor

(c) Hole (d) Wrench

Fig. 1. The four test scenes and corresponding paths

performing the rotation. We calculated dr as follows. Let r1

and r2 be two quaternions and θr = arccos(r1 · r2), then
dr = radius ∗ min(θr, 2π − θr). The radii for the Simple
corridor, Corridor, Hole and Wrench scene are 1.5, 3.5, 5.5
and 20 respectively. The diagonals of the (bounding boxes of
the) scenes are 50, 60, 70, and 275 respectively.

In the remainder of the paper, we express path length as a
percentage relatively to the ’optimal’ path length because this
makes the comparison easier between different optimization
techniques. The closer a number approaches zero, the closer to
optimal it is. The optimal path lengths were obtained by taking
the paths having the minimum length over all experiments
conducted and are stated in Table I. Even though we cannot
guarantee that these are indeed the optimal paths, we are
convinced that they are very close to optimal. (See the full
version of this paper for pictures of the optimal paths [30].)

Shortest path length
dr dt d

Simple corridor 0.3 102.2 102.5
Corridor 6.2 175.9 182.1
Hole 2.2 36.3 38.5
Wrench 31.9 143.8 175.7

TABLE I
THE SHORTEST LENGTHS OF THE PATHS

We used Solid for calculating the amount of clearance of the
moving object to the obstacles. When we report on clearance,
we show the minimum, average and bad clearance. The aver-
age clearance gives an indication of the amount of free space in



which the path can be moved without colliding with the obsta-
cles and is calculated as follows. Let π be a path that has been
divided to n samples (denoted as πi) such that the distance
between each two sequential samples equals a predetermined
constant step size s. (We used the 1/150th fraction of the
diagonal size of a scene). Then the average clearance equals to
1/Length(π) ∗

∑n−1

i=0
Clearance(πi). The bad clearance is cal-

culated as follows. Let clmin be the minimum amount of clear-
ance the moving object should have to move safely. The bad
clearance equals to

∑n−1

i=0
clbad(πi). If Clearance(πi) < clmin,

then clbad(πi) = clmin−Clearance(πi), else clbad(πi) = 0.
We set clmin to 0.5.

In Table II, we summarize the relative path length (rota-
tional, translational and total) and absolute clearance (mini-
mum, average and bad) of the paths visualized in Fig. 1. As
can be seen, the paths are far from being optimal.

Relative path length Path clearance
∆dr ∆dt ∆d min avg bad

Simple corridor 85500% 151% 400% 0.16 1.98 3.65
Corridor 4248% 115% 256% 0.00 0.44 269.60
Hole 2173% 63% 184% 0.36 1.58 0.94
Wrench 754% 105% 223% 1.23 4.19 0.00

TABLE II
THE RELATIVE LENGTH AND CLEARANCE STATISTICS OF THE PATHS

III. PATH PRUNING

A very simple technique that decreases the path length
considerably is to remove all redundant nodes. A node πi

of path π is redundant if the straight-line path πi−1πi+1 is
collision-free. See Algorithm III.1 for more details.

Algorithm III.1 RemoveRedundantNodes(path π)
Require: sequence of n nodes that describe path π

1: for all πi, 0 ≤ i < NumberOfNodes(π)−2 do
2: for all πj , i + 2 ≤ j < NumberOfNodes(π) do
3: if πiπj is collision-free then
4: π ← π\πi+1

5: return π

Table III shows the statistics for the paths whose redundant
nodes have been removed. The running times of this technique
were between 6 and 150 ms. It clearly shows that this simple
and fast technique decreases the path length considerably.
For example, for the Simple corridor scene, the path is only
27% worse than the optimal path. Note though that, although
the translational distance has been improved considerably, the
rotational distance is still far from optimal.

We will use these paths as input for the heuristics in the
rest of this paper.

IV. CLEARANCE

For many applications, the moving object must maintain a
minimum amount of clearance to the obstacles. This criterion

Relative path length
∆dr ∆dt ∆d

Simple corridor 6267% 8% 27%
Corridor 1226% 24% 65%
Hole 1655% 19% 112%
Wrench 570% 65% 157%

TABLE III
STATISTICS FOR ’REMOVE REDUNDANT NODES’ HEURISTIC

can be taken into account in each of the two phases of the
PRM algorithm.

In the construction phase, we could create a roadmap that
only contains paths having a minimal amount of clearance
clmin. Consider the following approach: one could increase
the size of the robot by clmin and use the enlarged robot for
collision checking. This has two disadvantages. First, due to
the reduction of free space, the narrow passages will be more
narrow, making it more difficult or even impossible to find a
solution. Second, the roadmap may not be valid for queries
that require a clearance larger than clmin.

In [31], samples are retracted to the medial axis (MA) of
the free (work) space to increase their density in small volume
corridors. Such a sample will have 2-equidistant nearest points
to the obstacles in the scene, resulting in a locally maximum
clearance.

We propose a similar approach, but as a post processing
step, to retract a complete path to the medial axis. We start
with a path whose redundant nodes have been removed. Then,
we retract the path to the medial axis. This can yield redundant
sub branches, e.g. pieces of the path are traversed twice (see
Fig. 2). Those sub branches are removed subsequently. This
approach is stated in Algorithm IV.1.

Algorithm IV.1 IncreaseClearance(path π)
Require: sequence of n nodes that describe path π

1: π′ ← RetractPath(π)
2: π′′ ← RemoveBranches(π′)
3: return π′′

In Algorithm IV.2, we retract a free sample to the medial
axis of the free space. In line 1, we calculate the closest pair
(CPr, CPo) between the moving object c and the obstacles O.
Then we move in direction −−−−−→CPoCPr until the closest point on
the obstacles CPo changes. The step size we use is the distance
between the closest pair (CPr, CPo′). In lines 7 to 13, we use
binary search (with precision δ) to find the sample cmid that
has 2-equidistant nearest points to the obstacles.

We use Algorithm IV.2 as a step in Algorithm IV.3 to retract
a path to the medial axis. In line 1 of Algorithm IV.3, path π
is divided to n samples such that the distance between each
two sequential samples is at most a predetermined constant
step size s. We will retract each sample to the medial axis,
except for the start and goal sample. If the distance between
two sequential samples of the retracted path π′ exceeds s,
we generate extra samples by applying the algorithm on sub



Algorithm IV.2 RetractEquidistancePoints(sample c)
Require: free sample c, obstacles O, precision δ

1: (CPr , CPo)← ClosestPair(c, O)
2: CPo′ ← CPo

3: while CPo′ = CPo do
4: c′ ← c
5: c← c + CPr − CPo′

6: (CPr , CPo′)← ClosestPair(c, O)
7: while Distance(c, c′) > δ do
8: cmid ←

1

2
(c + c′)

9: (CPr , CPo)← ClosestPair(cmid, O)
10: if CPo′ = CPo then c← cmid else c′ ← cmid

11: return cmid

path {c′i−1, c
′

i} until the distance between any two sequential
samples is less than s.

Algorithm IV.3 RetractPath(path π)
Require: sequence of m nodes that describe path π

1: divide π in n samples such that ∀i, d(πi−1, πi) ≤ s
2: π′ ← ∅
3: for all ci ∈ π, 1 ≤ i < n− 1 do
4: c′j ← RetractEquidistancePoints(ci)
5: if Distance(c′j−1, c

′

j) > s then
6: π′ ← π′∪ RetractPath(path {c′j−1, c

′

j})
7: π′ ← π′ ∪ c′i
8: return π′

The path will now follow the medial axis. As we can see
in Fig. 2b, the moving object sometimes traverses the same
point twice. This detour is caused by the injective mapping of
samples and can be found by looking for reversals in a sub
branch of the medial axis. Those redundant motions can be
reduced by first removing all redundant nodes, but cannot be
avoided completely. Algorithm IV.4 removes those redundant
branches in linear time. For each triple {πi−1, πi, πi+1}, we
remove πi if the distance between πi−1 and πi+1 is less than
s. Fig. 2c shows the resulting path which now follows the
medial axis without traversing a sub branch twice.

(a) Query path (b) Retracted path (c) Removed branches

Fig. 2. The path (a) is retracted to the medial axis and (b) branches are
removed (c).

Experiments

In the following experiment, we retract the paths of our four
example scenes to the medial axis by applying Algorithm IV.1

Algorithm IV.4 RemoveBranches(path π)
Require: sequence of n samples along π with step size s

1: i← 2
2: while i < n do
3: if Distance(πi−1, πi+1) < s then
4: π ← π\πi

5: if i > 1 then i← i− 1 else i← i + 1
6: return π

on them. The running times for this technique were 0.4, 1.8,
0.6 and 49.4 seconds. The large running time of the Wrench
scene can be explained as follows: first, the step size s along
the path was small resulting in many calls of Algorithm IV.2.
Second, the geometry of this scene and its moving object is
more complicated than the other environments. Table IV shows
that for all paths the minimum and average clearance was
improved (compared to the original paths mentioned in Table
II). Furthermore, it shows that nearly all bad clearance was
removed, though there is a little amount of bad clearance left
in the corridor scene.

Path clearance
min avg bad

Simple corridor 0.66 3.32 0.00
Corridor 0.25 1.19 7.86
Hole 0.79 2.24 0.00
Wrench 2.11 6.96 0.00

TABLE IV
STATISTICS FOR THE MEDIAL AXIS HEURISTIC

We conclude that the technique is successfully able to
improve the clearance of a path. In the following section, we
show that increasing the amount of clearance can be helpful
when optimizing the path length.

V. PATH LENGTH

We showed in section III that the path lengths were dramat-
ically decreased by pruning the path. They can be decreased
further by creating shortcuts. However, redundant motions
(like unnecessary rotations) are not removed by those two
heuristics. They can only be removed by considering large
portions of the path. But if we consider such a large portion,
some other degrees of freedom are necessary to navigate
around obstacles. Hence, applying the local planner to such
a long portion is not going to succeed.

The standard optimization technique (Shortcut) replaces
pieces of the path by a straight-line segment in the config-
uration space. In this way, all degrees of freedom (DOFs) are
optimized simultaneously. Some of them might be necessary
while others are not. The translational DOFs are in particular
necessary to guide the object around an obstacle while the ro-
tational DOFs might be less relevant. Consequently, applying
the local planner on such part of the path will fail. Calling
the local planner to optimize shorter pieces of the path will
not remove the rotation either because the two positions on



the path will have rather different orientation. Therefore, the
rotation is required, see Fig. 3.

(a) Query path (b) Shortcut (c) Partial shortcut

Fig. 3. Translation is required to navigate around the obstacle but rotation
can only be optimized by considering large portions of the path

We implemented a new technique, called Partial Shortcut,
which takes only one degree of freedom (or a group of DOFs)
into account in each optimization step, see Algorithm V.1. Let
π[0..1] indicate the (continuous) path between c and c′ and let
πi[n] denote the value of the ith DOF at position 0 ≤ n ≤ 1.
We replace π by a new path π′. In this new path all DOFs
behave in the same way as in the original path except for f .

Algorithm V.1 PartialShortcut(path π)
1: loop
2: c, c′ ← two random configurations on the path
3: π[0..1]→ the path between c and c′

4: f ← a random degree of freedom
5: for all n ∈ [0, 1] do
6: for all i 6= f do
7: π′

i[n]← πi[n]
8: π′

f [n]← (1− n)πf [0] + nπf [1]
9: if π′ is collision free then

10: π ← π′

The disadvantage of the method is that it is relatively slow
compared to Shortcut because we often need to check long
parts for collision. This can be improved in a number of
ways: optimize combinations of DOFs, first check whether
a certain replacement improves the path enough before doing
the actual tests, and use coherence in the collision checks.
We implemented the first improvement and are currently
investigating the other two.

Experiments

We first conducted experiments with the Shortcut heuristic.
We must decide how much time this heuristic can spend. The
more time it is allowed to run, the shorter the path will be.
Because we focus on the maximum quality of the path, we
give it more time than is available in real-time applications.
Experiments showed that within 5 seconds, the path converged
to a (local) optimum.

Table V shows that the lengths of the paths decreased
dramatically compared to the paths in Table II and III: the
path lengths are about two times closer to the optimal length

than the length of the Remove redundant nodes heuristic. Note
though that there are still many redundant rotational motions.

Relative path length
∆dr ∆dt ∆d

Simple corridor 4767% 2% 16%
Corridor 665% 1% 24%
Hole 691% 2% 41%
Wrench 197% 23% 55%

TABLE V
RELATIVE LENGTHS FOR THE SHORTCUT HEURISTIC

In the following experiment, we retract the path to the
medial axis before we create shortcuts. The rational is that this
will give the moving object additional space to move, making
it easier to remove redundant motions. Table VI shows the
results. Against our expectations, the method did not perform
much better. The reason is that situations like in Fig. 3 are not
resolved because pushing away does not give enough room.

Relative path length
∆dr ∆dt ∆d

Simple corridor 4233% 2% 14%
Corridor 637% 2% 24%
Hole 595% 2% 36%
Wrench 197% 24% 55%

TABLE VI
RELATIVE LENGTHS FOR THE CLEARANCE+SHORTCUT HEURISTIC

We expect that the Partial shortcut heuristic is able to
remove many of those redundant (rotational) motions. Experi-
ments showed that this technique converged within 50 seconds
for all scenes.

In line 4 of Algorithm V.1, we must choose a particular
degree of freedom. For a free-flying robot, there are two kinds
of DOFs: translational and rotational ones. We considered
rotation as a group, because rotational DOFs are dependent
on each other. For translation, one of the three DOFs was
chosen randomly.

To find out which DOFs we should choose in each iteration
step, we split the optimization time in two halves. In each
halve, we considered either rotation, translation or a random
combination of them. If translation was considered in the first
halve of the time, we expected that the robot would ’touch’
the obstacles, which could narrow the range of the rotational
freedom. Table VII shows that splitting the optimization time
in two halves was worse than choosing them randomly, e.g.
the combinations random–random, translation–random and
rotation–random performed best. This can be explained by
the notion that rotation and translation are dependent on each
other. If translation is optimized first, the moving object will
’touch’ the obstacles, e.g. there is no space left for rotation to
be optimized. On the other hand, if rotation is optimized first,
the resulting translational length after optimizing the path may
be longer than the translational part of the optimal path. In the
following experiments, we chose the DOFs randomly.



Relative path length – division of optimization time
rnd–rnd tra–rot rot–tra tra–rnd rot–rnd

Simple corridor 0.5% 2.4% 1.5% 0.8% 0.6%
Corridor 11.3% 19.3% 20.4% 17.8% 12.2%
Hole 22.9% 17.4% 37.9% 15.1% 22.3%
Wrench 25.9% 30.5% 45.2% 28.6% 28.5%

TABLE VII
RELATIVE LENGTHS FOR THE PARTIAL SHORTCUT HEURISTIC

We applied the Partial shortcut heuristic on the paths. The
results are shown in Table VIII. The heuristic was much better
able to remove the redundant (rotational) motions than the pre-
vious heuristics. Furthermore, the translational lengths of the
paths were close to optimal. Notice that the translational path
length of the Corridor scene was shorter than the translational
path length of the optimal path.

Relative path length
∆dr ∆dt ∆d

Simple corridor 200% 0% 1%
Corridor 392% -2% 11%
Hole 377% 1% 23%
Wrench 142% 0% 26%

TABLE VIII
RELATIVE LENGTHS FOR THE PARTIAL SHORTCUT HEURISTIC

If the path is first retracted to the medial axis, e.g. the path
has more clearance, we expect that the technique will produce
even shorter paths, because then the moving object will not
touch the obstacles which results in more freedom to move.

Table IX shows that indeed the total lengths are shorter
when the clearance is increased in advance. Only the length
of the Simple corridor scene was a little bit deteriorated, which
is probably caused by the fact that the path was already close
to the optimal path. The table also shows that it is harder
to remove rotational motions than translational ones. We will
study this further in future work.

Relative path length
∆dr ∆dt ∆d

Simple corridor 233% 1% 2%
Corridor 129% 1% 5%
Hole 323% 1% 14%
Wrench 89% 0% 16%

TABLE IX
RELATIVE LENGTHS FOR THE CLEARANCE+PARTIAL SHORTCUT

HEURISTIC

VI. CLEARANCE VERSUS SHORT PATHS

In motion planning applications, it is desirable to combine
the clearance and short path criteria. While some minimum
amount of clearance (clmin) to obstacles is wanted, the paths
should not be too long.

We can meet both criteria by finding the shortest path while
preserving clmin. First, we retract the path to the medial axis.

Then, we increase the size of the robot by clmin. Finally, we
run the Partial shortcut heuristic on the path which only allows
changes that are collision-free.

Experiments

Table X shows the results for the Minimal clearance heuris-
tic. We set clmin to 0.5. We want to remark that we do not
know the optimal values for these paths. Compared to the
original paths, the lengths are reasonably short and compared
to the Clearance+Partial shortcut heuristic, the lengths are (of
course) a bit longer. Compared to Table IV, the clearance
decreased a little bit.

Relative path length Path clearance
∆dr ∆dt ∆d min avg bad

Simple corridor 233.3% 3.6% 4.3% 0.53 2.13 0.01
Corridor 769.4% 9.4% 35.3% 0.25 0.84 8.91
Hole 309.1% 5.8% 23.1% 0.60 1.78 0.00
Wrench 105.3% 0.8% 19.8% 0.63 1.77 0.00

TABLE X
STATISTICS FOR THE MINIMAL CLEARANCE HEURISTIC

VII. CONCLUSION

In this paper we investigated techniques to improve path
length and clearance.

We showed that the path length was decreased considerably
if the redundant nodes were removed. The length was further
decreased by creating shortcuts. We proposed a new technique
(Partial shortcut) that was able to remove considerably more
redundant motions. The path length was reduced even further
when clearance was added to the path before applying partial
shortcuts. We added clearance to a path by retracting it
to the medial axis of the work space. This technique was
able to optimize paths close to the optimal ones. In Fig. 4,
we summarize the results of the experiments we conducted
concerning path length. For each path, the absolute values are
plotted.

We combined the length and clearance criteria and showed
that a reasonable short path can be obtained while keeping
some minimum amount of clearance. We believe that these
new techniques will enhance the quality of motion planners.

In future work, we will investigate other robotic systems
such as robotic arms. Furthermore, we want to study the trade
off between the speed of the techniques and path quality. We
will also investigate how additional preprocessing can be used
to save time in the post processing phase.

ACKNOWLEDGMENT

The authors would like to thank Dennis Nieuwenhuisen for
developing the Callisto collision and visualization toolkit.

This research was supported by the Dutch Organization
for Scientific Research (N.W.O.). This research was also
supported by the IST Programme of the EU as a Shared-cost
RTD (FET Open) Project under Contract No IST-2001-39250
(MOVIE - Motion Planning in Virtual Environments).



0

200

400

600

Initial path Redundant
nodes

Shortcut MA +
Shortcut

Partial
shortcut

MA+Partial
shortcut

Optimal

P
at

h
 le

n
g

th

translation

rotation

(a) Simple corridor

0

250

500

750

Initial path Redundant
nodes

Shortcut MA +
Shortcut

Partial
shortcut

MA+Partial
shortcut

Optimal

P
at

h
 le

n
g

th

translation

rotation

(b) Corridor

0

40

80

120

Initial path Redundant
nodes

Shortcut MA +
Shortcut

Partial
shortcut

MA+Partial
shortcut

Optimal

P
at

h 
le

ng
th

translation

rotation

(c) Hole

0

200

400

600

Initial path Redundant
nodes

Shortcut MA +
Shortcut

Partial
shortcut

MA+Partial
shortcut

Optimal

P
at

h 
le

ng
th

translation

rotation

(d) Wrench

Fig. 4. Comparison of the heuristics. For each heuristic, the (absolute)
translational and rotational length is plotted.

REFERENCES

[1] T. Berglund, U. Erikson, H. Jonsson, K. Mrozek, and I. Söderkvist,
“Automatic generation of smooth paths bounded by polygonal chains,”
in Int. Conf. on Computational Intelligence for Modeling Control and
Automation, 2001.

[2] F. Lamireaux, D. Bonnafous, and C. V. Geem, “Path optimization
for nonholonomic systems: Application to reactive obstacle avoidance
and path planning,” in Workshop Control Problems in Robotics and
Automation, 2002, pp. 1–18.

[3] F. Lamiraux and J.-P. Laumond, “Smooth motion planning for car-like
vehicles,” IEEE Transactions on Robotics and Automation, vol. 17, no. 4,
pp. 188–208, 2001.

[4] M. Yamamoto, M. Iwamura, and A. Mohri, “Quasi-time-optimal motion
planning of mobile platforms in the presence of obstacles,” in IEEE Int.
Conf. on Robotics and Automation, 1999, pp. 2958–2963.

[5] G. Song and N. Amato, “Randomized motion planning for car-like
robots with C-PRM,” in IEEE Int. Conf. on Intelligent Robots and
Systems, 2001.

[6] B. Baginski, “Efficient motion planning in high dimensional spaces:
The parallelized Z3-method,” in Int. Workshop on Robotics in the Alpe-
Adria-Danube Region, 1997, pp. 247–252.

[7] B. Baginski, “Motion planning for manipulators with many degrees of
freedom - the BB-method,” Ph.D. dissertation, Technische Universität
München, 1998.

[8] R. Bohlin, “Motion planning for industrial robots,” Ph.D. dissertation,
Göteborg University, 1999.

[9] D. Hsu, J.-C. Latombe, and S. Sorkin, “Placing a robot manipulator
amid obstacles for optimized execution,” in IEEE Int. Symposium on
Assembly and Task, 1999, pp. 280–285.

[10] C. Geem, T. Siméon, J.-P. Laumond, J.-L. Bouchet, and J.-F. Rit,
“Mobility analysis for feasibility studies in cad models of industrial
environments,” in IEEE Int. Conf. on Robotics and Automation, 1999,
pp. 1770–1775.

[11] D. Nieuwenhuisen and M. Overmars, “Motion planning for camera
movements,” Utrecht University, Tech. Rep. 2003-004, 2003.

[12] G. Song and N. Amato, “Using motion planning to study protein folding
pathways,” Journal of Computational Biology, vol. 9.

[13] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots under obstacle and dynamic balance
constraints,” in IEEE Int. Conf. on Robotics and Automation, 2001, pp.
692–698.

[14] N. Amato and Y. Wu, “A randomized roadmap method for path and
manipulation planning,” in IEEE Int. Conf. on Robotics and Automation,
1996, pp. 113–120.

[15] L. Kavraki, “Random networks in configuration space for fast path
planning,” Ph.D. dissertation, Stanford University, 1995.

[16] M. H. Overmars, “A random approach to motion planning,” Utrecht
University, Tech. Rep. RUU-CS-92-32, 1992.

[17] J. Kim, R. Pearce, and N. Amato, “Extracting optimal paths from
roadmaps for motion planning,” in IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 2424–2429.

[18] G. Song, S. Miller, and N. Amato, “Customizing PRM roadmaps at
query time,” in IEEE Int. Conf. on Robotics and Automation, 2001, pp.
1500–1505.

[19] R. Geraerts and M. Overmars, “A comparative study of probabilistic
roadmap planners,” in Workshop on the Algorithmic Foundations of
Robotics, 2002, pp. 43–57.

[20] V. Boor, A. Kamphuis, C. Geem, E. Schmitzberger, and J. Bouchet,
“Formalisation of path quality,” Delivery MOLOG project, 2000.

[21] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” unpublished, 2003.

[22] P. Chen and Y. Hwang, “SANDROS: A dynamic graph search algorithm
for motion planning,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 3, pp. 390–403, 1998.

[23] L. Kavraki and J.-C. Latombe, “Probabilistic roadmaps for robot path
planning,” in Practical Motion Planning in Robotics: Current Ap-
proaches and Future Directions, K. Gupta and A. del Pobil, Eds. John
Wiley, 1998, pp. 33–53.

[24] P. S̃vestka, “Robot motion planning using probabilistic road maps,”
Ph.D. dissertation, Utrecht University, 1997.

[25] G. Sánchez and J.-C. Latombe, “On delaying collision checking in PRM
planning - application to multi-robot coordination,” The international
Journal of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.

[26] S. Sekhavat, P. S̃vestka, J.-P. Laumond, and M. Overmars, “Multilevel
path planning for nonholonomic robots using semiholonomic subsys-
tems,” International Journal of Robotics Research, vol. 17, pp. 840–857,
1998.

[27] P. Isto, “Constructing probabilistic roadmaps with powerful local plan-
ning and path optimization,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2002, pp. 2323–2328.

[28] G. van den Bergen, Collision Detection in Interactive 3D Environments.
Morgan Kaufmann, 2003.

[29] V. Boor, M. Overmars, and A. van der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in IEEE Int. Conf. on
Robotics and Automation, 1999, pp. 1018–1023.

[30] R. Geraerts and M. Overmars, “Clearance based path optimization for
motion planning,” Utrecht University, Tech. Rep. 2003-039, 2003.

[31] S. Wilmarth, N. Amato, and P. Stiller, “MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space,”
in IEEE Int. Conf. on Robotics and Automation, 1999, pp. 1024–1031.


