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Abstract

For the functional programming language Haskell there is no specific tool avail-

able to compare source code for plagiarism. Other, more used, programming

languages like Java do have tool support for checking plagiarism. Especially for

educational institutes it would be convenient to have tool support for checking

large batches of submissions for plagiarism. When checking Haskell submission

for plagiarism it is important first to discover how we can achieve that. What

do we need to compare, how do we compare it and can we automate this pro-

cedure. A possible solution to compare Haskell programs for plagiarism was

already known at the beginning of this thesis. There is a tool called MOSS that

can compare Haskell programs. However it is based on a universal technique

rather then specifically designed for Haskell and therefore doesn’t use the specific

characteristics of Haskell. This thesis focuses on the issue how to detect possi-

ble plagiarism in Haskell submission by using the characteristics of the language.

Therefore we created a tool, based on Helium, that parses the source and applies

various heuristics to compare the sources. This program, called Holmes, consists

of a pre-process that normalises the source and a compare tool that compares

the normalised sources. The implemented heuristics divided in three categories:

structural, semantic and literal. All heuristics are applied to both prepared and

unprepared test sets to both verify and validate the outcome. At the end of this

project the outcome of the heuristics implemented in Holmes showed us that only

a few heuristics give useful results looking for plagiarism in Haskell sources. The

pre-processor turns out to be a very important link in this process. The imple-

mentation shows that we can automatically detect possible software plagiarism

in a functional languages like Haskell.
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Chapter 1

Introduction

The popularity of functional programming grows more and more. Prominent

functional languages, and Haskell in particular, have not only been used within

the context of science but also in industrial and commercial applications. With

the growing popularity of languages like Haskell comes that programmers that

used to work in other languages may switch. Universities and other educational

institutes will be, or are already, teaching functional languages.

This growing popularity comes with a realistic problem. When more people

use functional languages like Haskell, occurrences of fraud by plagiarism will be

present and will be harder to detect. An example is when a programmer, for

example a student, takes other peoples programs and claims to be the author.

1.1 Problem Description

Plagiarism is a serious issue, not only for commercial programs, but also and

perhaps even more, within the education system. In the computer science de-

partment at Utrecht University plagiarism and other forms of fraud are taken

very seriously. Every year there are a handful of cases in courses where Java

is the main language that are considered to be plagiarism. We have no reason

to believe that this will be different for courses where Haskell is the main lan-

guage. For plagiarism detection in Java source code several tools are available.

At Utrecht a tool called Marble has been developed to cross compare Java sub-

missions. In practise it turns out that Marble works quite well for Java, but a

small experiment to compare Haskell submissions with it failed however.

Within the educational system an assignment for Haskell may be handed out

to large number of students. An assessor usually wants to prevent that plagiarised

submissions will be considered valid. Manual inspection for plagiarism on large

amounts of similar submissions is simply infeasible particularly if we have to

5



6 CHAPTER 1. INTRODUCTION

consider submissions over multiple years. For an assessor it would therefore be

convenient to automatically check Haskell submissions for plagiarism.

1.2 Contribution

There are many forms of plagiarising a submission. A student can completely

copy a submission resulting in an identical program or, as happens in many

cases, a student can try to hide plagiarism by changing the original version. In

this thesis we discuss how we tried to detect possible plagiarism in Haskell. We

defined a diverse set of heuristics to inspect Haskell submissions similarly on

various aspects and provide algorithms to compare two Haskell submissions. We

also describe how we should handle a large amount of submissions.

To test the described heuristics we developed a tool called Holmes. Holmes

consists of a pre-processing part and a comparison part. Holmes is based on the

Helium compiler and therefore covers a large subset of Haskell 98. We imple-

mented all heuristics in this tool and validated the scores on actual submission

from the FP (Functional Programming)[1] course.

The intention of this project was not to build a tool that can be widely used.

The tool we built was designed as an instrument to discover if we can detect

plagiarism in Haskell by automatic detect and which heuristics contribute to

doing so. The Holmes system, although useable for Helium compatible programs,

is only a side effect of this project.

1.3 Outline

The thesis is structured as follows. We first discuss the research context the

and notions on plagiarism and fraud in chapter 2. We then explain, in chapter

3, the approach including the requirements we determined for Holmes. The

high level architecture of Holmes is described in chapter 4. Then we discuss

the implementation of the pre-processor in chapter 5 and the comparison process

in chapter 6. Chapter 8 looks into the verification and validation of the heuristics.

Chapter 9 focusses on the concludes and gives points for future work. The user

guide for Holmes discussed in chapter 7.



Chapter 2

Context

2.1 Plagiarism

Plagiarism can be defined in many different ways. It is important to establish

a definition of plagiarism and fraud. We need to know what to look for and

what to do with it. In the Education and Examination Regulations[13] for our

department, it says:

Fraud and plagiarism are defined as actions, or failure to act, on

the part of a student, as a result of which proper assessment of his/her

knowledge, insight and skills, in full or in part, becomes impossible.

Copying other peoples work is considered plagiarism according to the definition.

Courses and assignments are designed to develop and test some specific skills. If

a student directly copies code for a program assignment he or she may not obtain

the skills the assignment was designed for.

2.1.1 Reasons for plagiarism

There can be several reasons for committing plagiarism. For software plagiarism

we can distinguish three different reasons.

1. Reason 1: lack of time

2. Reason 2: lack of programmer experience

3. Reason 3: a combination of Reason 1 and Reason 2

These three reasons are based on earlier findings in the course Imperative Pro-

gramming[2]. Students who committed plagiarism and were caught with the
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8 CHAPTER 2. CONTEXT

detection tool Marble[17] were interviewed about there motivation. We can con-

clude that students who plagiarise typically do not have the knowledge or the

time to cover up there fraud. They are simply not able to change their sub-

mission beyond recognition. Changing the semantics of a submission costs too

much time or is complicated. Often changing the semantics substantially is just

as difficult, or even more difficult than program the assignment from scratch.

2.2 Detecting plagiarism

It is very difficult to conclude if a case of two programs that look similar is

fraud or not. It can be a coincidence that two programs look similar, there is

the possibility that students work together come up with a similar solution, and

depending on the goal of the assignment, some cases can even be legitimate.

For example, if the goal of an assignment is to see if a student can construct a

particular program, it can be possible that a student changed an existing program

so much that he has shown a level of understanding of the code that suits the

goal of the assignment. In this case we can argue about the legitimacy.

Manual inspection by an assessor solves the judgement problem, but in a

collection with n students there are n(n−1)
2 possible cases of plagiarism. In Utrecht

the n often is larger then 100. This makes manual inspection infeasible.

Creating a tool for detecting plagiarism seems like a good idea, but as may

be concluded from above, a tool can never offer conclusive evidence in all cases.

The only thing a tool can do is measure the similarity level of two programs. The

final decision must be made by the assessor. Therefore the goal of a plagiarism

detection tool must be: to give an indication of plagiarism and to dismiss as

many cases as possible where plagiarism is unlikely.

From experience, we know that the main reason for a student is to plagiarise:

Observation 1 A student who plagiarises suffers from a lack of time, a lack of

programmers experience or a combination of both.

A submission for a program assignment will be manually reviewed by an as-

sessor because he has to grade the submission. This mains that the program must

be understandable to the assessor. Using code obfuscators to prevent detection

of plagiarism will not be useful for a student. Obvious transformations to hide

plagiarism for a detection tool will also be noticed. For example: redefining the

standard map function and call it applyOnAll just to prevent detection will be

too obvious. (For those who are not familiar with the map function in Haskell.

The map function applies a given function on all elements in a list and is defined

in the Haskell Prelude) In short:

Observation 2 A submission must be reasonable and human readable.
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When a student commits plagiarism and tries to hide it, he may need to spend

a lot of time on changing a submission. The changes must be substantial to avoid

detection. Because of observation 1, a student will most likely focus on just one

or a few methods of hiding plagiarism. Often a student attacks the plagiarism

detector from only a single side. If the detector compares the program in many

different ways some of the results will continue to score high. For example: if the

student only translates the names of the identifiers and comments, the structure

of the code is still the same. Concluding:

Observation 3 A single hint of plagiarism is enough.

When there is a hint of plagiarism manual inspection is necessary. In our

experience, manual inspection quickly tells us if plagiarism is the case or if there

is another explanation for the level of similarity.

2.3 Refactoring

Refactoring[22, 20] is a technique for changing the structure of a program without

changing the functionality of the program. The goal of refactoring is to improve

the design and structure of the code. Refactoring is a technique that is often

used in object-oriented languages to improve internal structure but it can also be

used for changing the structure of functional programs.

The process of refactoring code has existed as long as programs have been

written. In many programming languages it is obvious that a programmer can

achieve a certain goal in many ways. Some of his options are better than others,

but the result will be the same. When writing a program the code must be

maintainable. That means that readability and reusability are very important.

Refactoring is traditionally used to alter the code of a programmer to increase

maintainability. The changes are purely structural and strictly separated from

changes in functionality.

Refactoring a program can be done by hand or with some sort of tool. Nowa-

days there is tool support for many languages to make it easier to refactor the

code. Regardless of the fact that it can be done with or without tools, refactor-

ing can also be misused. When looking at refactoring from our point of view it

can be used to camouflage plagiarism. If a student copies the code from another

student and refactors it, it may not be that obvious anymore that it is actually

plagiarism. If we take Haskell as an example then we can see that there are some

simple things you can do to change only the structure of a program. You can do

that without understanding what the code does. The most easy and commonly

used technique is to give alternative names to definitions. By just changing some

names, automatic detection or even detection by hand can be avoided. Another

important thing to take into account is that some solutions can be written in
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more than one way. Many languages including Haskell have multiple code con-

structions to express the same outcome. Another issue is that like in Java the

order of the definitions in Haskell does not matter. The choice is up to the pro-

grammer: it depends on his style what structure he likes best. Nevertheless some

of these structures can be easily changed to structures that will produce the same

results, but look very different.

The presence of tool support only makes the problem bigger. If a tool can

automatically refactor certain parts of code, then it typically costs less effort to

do so. The reasons a student will commit plagiarism, as mentioned before, are

lack of time and lack of knowledge. When a tool refactors the code, it will go

much faster then by hand. It also doesn’t require much knowledge on the part of

the student because the refactoring is automatic.

On the next two pages some examples of refactoring can be found. Module A

is the original. In module A′ the identifier names have been changed by translat-

ing them from English to Dutch. Showing module A and module A′ side by side

it is obvious that the similarity level between the two is substantially high. The

structure of the module and the structure of the individual function is exactly

the same. In module A′′ we performed multiple refactoring actions. Besides the

name changing, we relocated every function and converted one function to a lo-

cal definition. We also converted simple recursion to list comprehension in two

functions and changed the pipe structure with only two option into a if-then-else

construction. When comparing module A with module A′′, the similarity is far

less obvious comparing to the earlier example. Moreover, we added two func-

tions to module A′′ that are never used and can be considered garbage. All these

refactoring actions and the addition of unused code are quite easy to apply and

prevent easy detection by manual inspection.
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module A

type Table = (String , [ String ] , [ [ String

] ] )

tableWidth : : Table −> [ Int ]

tableWidth tabe l = maxWidth ( al lWidth

tabe l )

al lWidth : : Table −> [ [ Int ] ]

a l lWidth ( , b , c ) = recordWidth c ++ [

s ingleWidth b ]

recordWidth : : [ [ String ] ] −> [ [ Int ] ]

recordWidth [ ] = [ ]

recordWidth (x : xs ) = [ s ingleWidth x ] ++

recordWidth xs

s ingleWidth : : [ String ] −> [ Int ]

s ingleWidth [ ] = [ ]

s ingleWidth (x : xs ) = [ length x ] ++

singleWidth xs

maxWidth : : [ [ Int ] ] −> [ Int ]

maxWidth [ ] = [ ]

maxWidth (x : xs ) = maxWidth ’ x xs

maxWidth ’ : : [ Int ] −> [ [ Int ] ] −> [ Int ]

maxWidth ’ [ ] = [ ]

maxWidth ’ g roo t s t en [ ] = groo t s t en

maxWidth ’ g roo t s t en (x : xs ) = maxWidth ’ (

g r e a t e s t g roo t s t en x ) xs

g r e a t e s t : : [ Int ] −> [ Int ] −> [ Int ]

g r e a t e s t [ ] [ ] = [ ]

g r e a t e s t [ ] ( : ) = [ ]

g r e a t e s t ( : ) [ ] = [ ]

g r e a t e s t ( x : xs ) ( y : ys ) | x >= y = [ x ] ++

g r e a t e s t xs ys

| otherwise = [ y ]

++ g r e a t e s t xs

ys

module A’

type Matrix = (String , [ String ] , [ [ String

] ] )

matr ixBreedte : : Matrix −> [ Int ]

matr ixBreedte tabe l = maxBreedte (

gehe l eBreedte tabe l )

gehe l eBreedte : : Matrix −> [ [ Int ] ]

gehe l eBreedte ( , b , c ) = r e g i s t e r B r e e d t e

c ++ [ enke lBreedte b ]

r e g i s t e r B r e e d t e : : [ [ String ] ] −> [ [ Int ] ]

r e g i s t e r B r e e d t e [ ] = [ ]

r e g i s t e r B r e e d t e (x : xs ) = [ enke lBreedte x ]

++ r e g i s t e r B r e e d t e xs

enke lBreedte : : [ String ] −> [ Int ]

enke lBreedte [ ] = [ ]

enke lBreedte (x : xs ) = [ length x ] ++

enke lBreedte xs

maxBreedte : : [ [ Int ] ] −> [ Int ]

maxBreedte [ ] = [ ]

maxBreedte (x : xs ) = maxBreedte ’ x xs

maxBreedte ’ : : [ Int ] −> [ [ Int ] ] −> [ Int ]

maxBreedte ’ [ ] = [ ]

maxBreedte ’ g roo t s t en [ ] = groo t s t en

maxBreedte ’ g roo t s t en (x : xs ) = maxBreedte

’ ( g r o o t s t e g roo t s t en x ) xs

g r o o t s t e : : [ Int ] −> [ Int ] −> [ Int ]

g r o o t s t e [ ] [ ] = [ ]

g r o o t s t e [ ] ( : ) = [ ]

g r o o t s t e ( : ) [ ] = [ ]

g r o o t s t e ( x : xs ) ( y : ys ) | x >= y = [ x ] ++

g r o o t s t e xs ys

| otherwise = [ y ]

++ g r o o t s t e xs

ys
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module A

type Table = (String , [ String ] , [ [ String

] ] )

tableWidth : : Table −> [ Int ]

tableWidth tabe l = maxWidth ( al lWidth

tabe l )

al lWidth : : Table −> [ [ Int ] ]

a l lWidth ( , b , c ) = recordWidth c ++ [

s ingleWidth b ]

recordWidth : : [ [ String ] ] −> [ [ Int ] ]

recordWidth [ ] = [ ]

recordWidth (x : xs ) = [ s ingleWidth x ] ++

recordWidth xs

s ingleWidth : : [ String ] −> [ Int ]

s ingleWidth [ ] = [ ]

s ingleWidth (x : xs ) = [ length x ] ++

singleWidth xs

maxWidth : : [ [ Int ] ] −> [ Int ]

maxWidth [ ] = [ ]

maxWidth (x : xs ) = maxWidth ’ x xs

maxWidth ’ : : [ Int ] −> [ [ Int ] ] −> [ Int ]

maxWidth ’ [ ] = [ ]

maxWidth ’ g roo t s t en [ ] = groo t s t en

maxWidth ’ g roo t s t en (x : xs ) = maxWidth ’ (

g r e a t e s t g roo t s t en x ) xs

g r e a t e s t : : [ Int ] −> [ Int ] −> [ Int ]

g r e a t e s t [ ] [ ] = [ ]

g r e a t e s t [ ] ( : ) = [ ]

g r e a t e s t ( : ) [ ] = [ ]

g r e a t e s t ( x : xs ) ( y : ys ) | x >= y = [ x ] ++

g r e a t e s t xs ys

| otherwise = [ y ]

++ g r e a t e s t xs

ys

module A”

type Matrix = (String , [ String ] , [ [ String

] ] )

r e g i s t e r B r e e d t e : : [ [ String ] ] −> [ [ Int ] ]

r e g i s t e r B r e e d t e l i j s t = [ enke lBreedte x |
x <− l i j s t ]

b r e ed t e In f o : : [ String ] −> [ ( Int , String )

]

b r e ed t e In f o l i j s t = [ ( length x , x ) | x <−
l i j s t ]

maxBreedte : : [ [ Int ] ] −> [ Int ]

maxBreedte [ ] = [ ]

maxBreedte (x : xs ) = maxBreedte ’ x xs

where

maxBreedte ’ : : [ Int ] −> [ [ Int ] ] −> [

Int ]

maxBreedte ’ [ ] = [ ]

maxBreedte ’ g roo t s t en [ ] = groo t s t en

maxBreedte ’ g roo t s t en (x : xs ) =

maxBreedte ’ ( g r o o t s t e g roo t s t en x

) xs

gehe l eBreedte : : Matrix −> [ [ Int ] ]

gehe l eBreedte ( , b , c ) = r e g i s t e r B r e e d t e

c ++ [ enke lBreedte b ]

g r o o t s t e : : [ Int ] −> [ Int ] −> [ Int ]

g r o o t s t e [ ] [ ] = [ ]

g r o o t s t e [ ] ( : ) = [ ]

g r o o t s t e ( : ) [ ] = [ ]

g r o o t s t e ( x : xs ) ( y : ys ) = i f x >= y then [

x ] ++ g r o o t s t e xs ys else [ y ] ++

g r o o t s t e xs ys

enke lBreedte : : [ String ] −> [ Int ]

enke lBreedte l i j s t = [ length x | x <−
l i j s t ]

matr ixBreedte : : Matrix −> [ Int ]

matr ixBreedte tabe l = maxBreedte (

gehe l eBreedte tabe l )

dubbelBreedte : : [ String ] −> [ String ] −>
[ Int ]

dubbelBreedte l i j s t l i j s t 2= [ length x | x

<− l i j s t ]
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2.4 Marble

Marble[17] is a plagiarism detection tool created by Jurriaan Hage at the Depart-

ment of Information and Computing Sciences, Utrecht University. The program

was developed because the creator wanted to know on what scale plagiarism was

present within the department. The idea behind the program was to create a tool

that will point out the existence of similarity between classes of Java-code. The

pairs of classes that have the most similarities will end up at the top of the list.

The user of Marble then has to inspect the code of each pair, starting at the top,

and determine by hand if it is actually plagiarism. The detection of plagiarism

in Marble is divided in two phases: normalisation and detection.

2.4.1 Normalisation

The normalisation phase prepares the source files of an assignment that is handed

in. It brings the source files back to a list of tokens. The names of the character

constants, hexadecimal numbers, numbers and identifiers are replaced by a single

letter L,H,N or X. Important keywords, commas, brackets, important methods

etc. are kept. All the tokens are saved in a file on a separate line. In Java, the

order of method definitions is not important. Marble sorts the definitions in a

special way to prevent that order of definition is a big issue.

2.4.2 Detection

In the detection phase, Marble uses the normalised versions to determine similar-

ity. It compares all the assignments of the current incarnation, and it compares

those assignments to the assignments in all previous incarnations. Marble uses a

strict way to order the files and directories to make this possible. For comparing

two normalised files, the standard Unix program diff is used. It compares two

text based files with an algorithm that tries to find the largest common substring.

The result will be the differences between the files. By calculating the length of

the files and the number of lines they differ, a score can be generated. The score

indicates how large the similarity between two files is. This way Marble can cre-

ate a list of pairs with the highest similarity at the top and the pairs with the

lowest similarity at the bottom.

2.4.3 Not sufficient

In practise it turns out that Marble works quite well on Java. With only one

heuristic, structural comparison by lexical analysis, there are between five and

fifteen cases of plagiarism detected every year in courses that use Java as the

primary language. An experiment by applying a variant of Marble to Haskell

programs wasn’t successful. It seems that the single heuristic Marble uses is not
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sufficient when comparing Haskell programs. The reason could be that Haskell

has less structural information like the curly brackets and the semicolon than

Java uses.

2.5 Moss

MOSS is a system created by UC Berkeley in 1994 [14]. MOSS stand for ”Mea-

surement of Software Similarity” and is able to detect plagiarism in many different

programming languages. Widely used languages like C, C++, Java and C# are

implemented in MOSS, but also functional languages like Haskell, ML and Lisp.

2.5.1 Winnowing

The technique MOSS relies on is called Winnowing[15]. The basic concept is to

extract a fingerprint from a piece of text. The form of this fingerprint depends

on the content of the text. By comparing fingerprint from different documents

you can determine if parts of the documents are similar. The fingerprints for a

document, in this case a piece of code, will be created by taking k-grams from

the content. For example: the first two 4-grams of ”haskelliscool” are ”hask”

and ”aske”. By hashing these k-grams and using the winnowing algorithm, a

fingerprint will be created. The fingerprint will be a subset of all the created

hashes from the k-grams.

Winnowing is actually a universal technique that can be applied to many

different programming languages. As mentioned before, MOSS can be used for

many known programming languages including Haskell. The problem we only

face is that this universal technique doesn’t take some of the research questions

into account. Things like refactoring might be very hard to detect. In this case

we know that we are dealing exclusively with Haskell, so we can use the language

characteristics of this language to detect plagiarism.

2.6 Incarnations

It is likely that a certain assignment is given to students unchanged over a period

of years. Therefore when comparing submissions on possible plagiarism, not

only the submissions of that single incarnation need to be cross compared, also

comparison between the incarnations is necessary. Moreover, our experience with

Marble tells us that it is more likely that a student copies the work from someone

in a previous year. A possible explanation is that there are students or former

students who publish there work on the Internet.

It is essential that the detection of plagiarism is scalable. When a new batch

of submissions arrives, these must be compared to each other and to all the
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submission in previous incarnations. These older incarnations do not have to be

cross-compared.

Marble already contains the feature of comparing incarnations as described

above. When comparing Haskell submissions it is crucial that this way of com-

paring is preserved.

2.7 Templates

When source code is automatically compared, the number of false positives must

be reduced to a minimum. We have to avoid comparing boilerplate code as much

as possible because of the negative influence on the results. Something Marble

doesn’t support is the handling of code templates. A code template is a piece of

code given to a student as part of an assignment. Their task is to modify or use

the template code in a way specified by the assignment.

Due to these code template the level of similarity rises unintentionally. Since

many of the assignments handed out in the functional programming course[1] are

based on code templates, dealing with these templates is essential.
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Approach

Our approach in this project was to create a tool. In this tool we implemented

all the ideas we had on how to detect plagiarism between Haskell submissions

and applied it to actual Haskell programs.

3.1 Helium and AG

Before analysing source code we need to parse the Haskell code into abstract

syntax. Our approach was to take Helium[8] and build our tool Holmes on top

of the Helium parser. Helium is a compiler for a subset of the functional pro-

gramming language Haskell. It is especially designed for teaching and learning

Haskell. The compiler is developed and maintained at Utrecht University. The

differences between Haskell and Helium language can be found on the Helium

website [8].

The reason why we borrowed the parser from Helium is that Helium is built

and maintained at the UU so it is easily available to us. Besides, we are familiar

with the Helium system. The reason for developing a tool is to test our heuristics

on Haskell programs. By using Helium we do not have to spend time on writing

a parser but focus more the actual goal of this project. A parser transforms the

literal code into abstract syntax. The abstract syntax in Holmes is described in

the UUAG System [23] (Utrecht University Attribute Grammar System). Also

a lot of the analysis in Helium is done with the UUAG. The choice for Helium

gives us the advantage that we can reuse the UUAG code from Helium.

The UUAG System is an effective tool for abstract syntax tree computations,

also known as syntax directed computations. The UUAG is used to implement

attribute grammars. When working with a tree structure it is often needed to

move data up or down the tree. If we want to know the minimum value of all

17
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leafs in figure 3.1, the values of all the leafs need to be transfered up the tree

to compare them at the top Bin node. The other way around, transferring data

down the tree is also often necessary. In the UUAG System this can be done

by creating synthesised and inherited attributes in a pretty straightforward way.

For more information about the UUAG System, see [23, 21]

Figure 3.1: Simple tree structure

3.2 Heuristics

According to observation 3 in section 2.2 we only need one hint of plagiarism.

This follows from observation 1 that most students will tend to attack a detection

mechanism from one or a few angles. Therefore our approach is to simply come

up with a broad selection of heuristics to measure similarity in Haskell programs.

By implementing these heuristics in a tool and running this tool, it is possible to

decide which heuristics are most useful.

To bring some structure in the heuristics we classify them into three cate-

gories: structural heuristics, literal heuristics and semantic heuristics.

3.2.1 Structural heuristics

The structural heuristics obviously focus on the structure of the program. We

compare two different aspect of the structure for now.

The first thing we compare is the source itself, similar to Marble. This is done

by performing lexical analysis. Lexical analysis is the process of converting a

sequence of characters into a sequence of tokens. All the important information

is represented by tokens and all the non-important information is eliminated. By

defining a correct procedure for tokenizing the Haskell source, we are able to

compare the important parts of programs by comparing the token streams.

The second aspect of structural comparison is comparing the number of

parameters for functions. It is hard to change the number of parameters for a
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substantial amount of functions without notice. According to observation 2 this

is likely to be noticed during manual grading.

3.2.2 Literal heuristics

The literal heuristics in this project focus on text. Literal text refers to the

text that is placed directly in the code. We distinguish two types of literal

text: comments and literal strings. When extracting and comparing both

the collection of strings and the collection of comments, we determine the literal

similarity. Although we know that strings and comments are easily changeable,

it is generally very suspicious when the level of similarity for this type of heuristic

is substantially high.

3.2.3 Semantic heuristics

To compare the semantics of programs we choose to compare the graphs that

represent the calls between functions in a program, the call graph.

A graph [16] is an abstract representation of a set of objects and the relations

between them. The objects are usually called vertices or nodes. A link between

two nodes is called an edge. More formal:

graph A graph is a pair G = (V,E) of sets satisfying E ⊆ V × V ; thus, the

elements of E are 2-element subsets of V . The elements of V are the

vertices(or nodes) of the graph G, the elements of E are its edges

A call graph is a directed graph that represents the relation between functions

or subroutines in a computer program. Every edge is not only a link between the

functions, but it also has a direction.

directed graph A directed graph (or digraph) is the same as a normal graph

with only one difference. The elements of E or not 2-element subsets but

pairs of V

In a call graph the functions are represented by the nodes. The directed edges

between them describe the call relations. There is an edge from node X to node

Y when the code for X includes a call to Y. For example, figure 3.2 is the call

graph representation of the code below.

funct ionA : : String

funct ionA = funct ionB ” foo ” ”bar”

funct ionB : : String −> String −> String

funct ionB s t r 1 s t r 2 = s t r 1 ++ s t r 2
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Figure 3.2: Call graph example

By comparing the call graph we can do analysis on the submission as a whole

regardless of the fact that the program code may be split over multiple files.

When comparing call graphs, we need to find to level of similarity between them.

When the structure of two call graphs are identical regardless of the labelling and

layout the graphs are isomorphic (see figure 3.3). Testing for isomorphism is easy

but slow and not sufficient. A minor change in the structure of one of the graphs

means that the graphs are still quite similar but not ismorph. At this point

there is no available algorithm to calculate approximate isomorphism. Therefore

we compute a metric for each graph, to expresses the similarity between these

graphs and compare graphs by comparing the metrics.

Figure 3.3: Graph isomorphism

3.2.4 Fingerprints

Besides using our own defined heuristics we also use fingerprinting and winnowing.

MOSS [14] uses these techniques and has proven to be effective in many cases.

The reason to implement fingerprinting in Holmes is to compare the results of

the other heuristics against it and to see how well it does when template and

dead code removal are used to pre-process the submissions.
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3.3 Sensitivity Analysis

To see if the heuristics work, we have to devise a suitable set of tests. In sensitivity

analysis we measure how the heuristics act to changes in the program. By taking

a Helium compatible file and perform all sorts of (refactoring) actions on it to

hide similarity, we can verify that the heuristics behave as expected. We also

create programs that combine a number of refactoring actions and compare them

against the original. This way we check how sensitive a heuristic is when multiple

refectorings have taken place.

3.4 Validation

Besides sensitivity analysis, it is important to see how the heuristics do on actual

submissions. To test and validate the heuristics we apply Holmes on a num-

ber of collections of submissions. By using the submissions from the Functional

Programming course we have real data to validate the heuristics with. The im-

portance to test Holmes on real data is that pre-fabricated test material only tend

to test some particular issues. With real data we don’t know what results to ex-

pect. We choose the data from the Functional Programming course because it is

available to us and holds a substantial amount of submissions that can be used

for this validation. The submission were written by students without knowledge

about any plagiarism detection system.





Chapter 4

Architecture

As with Marble [17], plagiarism detection with Holmes is divided into two steps.

At first we have to prepare the submissions for comparison. We extract the

relevant data and store this for later use. This part is called the pre-processing

phase. The second phase is the comparison phase where the submissions are

compared based on the data extracted by the pre-processor.

4.1 Pre-processing

The pre-processor takes a submission and performs the following main tasks

i. Remove all the information that is not useful for, or interferes with the

comparison.

ii. Pre-calculate and store all important information on disk.

Figure 4.1 shows the architectural overview of the pre-processor. The ellipses

represent the input and output of the system. The boxes represent the subsystems

of the pre-processor.

When normalising the program to an abstraction that only contains functions

that are important for comparison, two things need to be calculated. We need

to know which functions are part of the template code (see section 2.7) and we

need to calculate the call graph (section 3.2.1) to see if there are unused functions.

With the outcome of both calculations together we can distinguish between useful

and irrelevant functions and remove the latter. We refer to this as the abstraction

The abstraction is used to calculate all the important program information

which is stored to disk. Note that extraction of comments is done before the ab-

straction is created. The Helium front-end doesn’t support comments; therefore

we created a separate parser that can handle comments. The advantage is that

23
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we didn’t have to edit the current lexer, parser and abstract syntax declaration

which saved a lot of time and makes integration of a newer version of Helium

easier.

All the data necessary for comparison is extracted and saved separate from

the original source. Once this data is stored it can be used multiple times, so

pre-processing has to be done only once.

Figure 4.1: Architectural overview pre-processor

4.2 Comparison

The main task of the comparison tool is to read all the information that was

saved by the pre-processor and compare it with the same information for other

programs. For a complete comparison, it has to compare all the submissions
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within one incarnation and also compare it with the submissions from previous

incarnations. For scalability it is important that all these previous incarnations

are not again compared to each other. Therefore a strict separation between the

new and the older incarnations is required. The comparison of submissions is

done on two different levels.

Submission level Some of the information collect by the pre-processor can only

be used if the submission as a whole is compared. All the information about the

call graph and the call graph itself is an example of information that is only valid

for a complete submission. The information calculated per file is already, or will

be, integrated into a complete submission. Comparing a submission as a whole

means that this way of comparing, when correctly done, is file independent. It

does not matter if somebody put a complete program in a single file or spread

the code over multiple files.

For the submission based comparison we compare the call graph and all the

information generated from the call graph, the unified token stream, unified string

files, unified comment files and the function parameters.

File level Besides comparison at submission level it is still necessary to compare

single modules in a submission. It is possible that a student just copied a single

library or utility file. When the size of a program is substantial this may be

unnoticed during submission comparison. It could be even worse when someone

partially copies a file and appends self written code. Not all forms of comparison

used to compare a complete submission are suitable for comparing individual

modules. Therefore we only compare the individual tokens stream, literal strings

and comments for file to file comparison.
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The Pre-Processor

The pre-processor is the first part of the Holmes system. Every submission that

needs to be checked for plagiarism with Holmes must be prepared (normalized)

by the pre-processor. Sherlock, as the pre-processor is called, normalizes the

source code by extracting only the important information needed to detect pla-

giarism and removes the information that may interfere when comparing different

submissions.

Sherlock is based on the Helium[8] compiler, see section 3.1. To normalize

the source code parsing the Haskell code was unavoidable. By using Helium

we not only avoided the work of writing a new parser for Haskell, we also used

part of the existing analyses implemented in Helium. In fact the compilation

process in Helium contains 10 phases. By using the first four phases in Helium:

lexing, parsing, importing and resolving operators, we can transform a program

to abstract syntax in such a way that have we enough information for the nor-

malization process. On top of this stripped version of Helium we implemented

several analyses to compute the normalized information per module / submission

in Haskell programs.

Normally Helium applies all ten phases recursively over the imports. In phase

10 a so called lvm file will be constructed and saved; lvm files are the object

/ class files of Helium. When a submission contains multiple files, phases 3

(importing) needs the lvm file of the imported module(s) to compile. For Sherlock

we didn’t need all ten phases but we do need the lvm file. Therefore we decided

to force recompilation by Helium to ensure that the lvm files are up to date.

The submissions must be Helium compatible anyway and changing the current

structure to avoid total recompilation would be a waste of time considering the

objective of this thesis.

In appendix F a simple demonstration program with the corresponding output

is published. This is used to illustrate the work and output of the pre-processor.

27
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5.1 Abstraction

The abstraction is the useful source code without irrelevant function as explained

in section 4.1. An abstraction is only computed for the useful part of the call

graph. For this abstraction we simple remove all functions not present in the

abstract call graph and we omit the functions that are part of the template code.

The abstract call graph is created using the declared start points in the config

file (see 7.4.1). All functions reachable from these start points are considered

useful. Note that the more specific the declared start points are, the more useful

the abstract call graph is. We also decided that the abstraction will only contain

functions; data definitions and import declarations are omitted. The functionality

of a program in functional language is specified in the functions so we believe

comparing the functions is sufficient.

When looking at the source of appendix F, knowing that the only start point

of this program is Demo.printTable, the abstraction will contain all functions

except Demo.top10.

5.2 Templates

To obtain only the useful functions, we want to omit template code. We decided

to create an annotation especially for templates. This annotation should not in-

terfere with any compiler or alter the original Haskell code which is why pragma’s

are used [11].

Pragma’s are used to give additional instructions or hints to the compiler.

It could affect the efficiency for example. A normal pragma has the form {-#
type ... #-} where type indicates the type of pragma. For a normal compiler

a pragma looks like ordinary comments which means that the Haskell code stays

untouched. However, it is not convenient to expand the pragma language with

a pragma just for Holmes. Therefore we only took the idea of the pragma and

created our own version, the HolmesPragma. Just like the normal pragma the

HolmesPragma will have the appearance of a comment block. The form of the

HolmesPragma will be like {-H ... H-}. At this time only template code will

be annotated by a HolmesPragma, but the pragma can be expanded for other

uses within the Holmes system.

Template handling in Sherlock is done on the function level. It is possible

to divide the functions in several different template categories: code that may

not be changed, code that may be changed, code that must be changed etc. All

the categories describe a level of possible similarity. We decided to use only two

categories:

• The function MUST be removed before comparison

• The function MUST NOT be removed before comparison
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The creator of the template should decide which functions are useful for compar-

ison. It is clear that predefined function where the code may not change need to

be marked template. Nevertheless, there may be functions where the code can

be changed but the function is still template. An example is a pretty printer:

although the implementation may be different between students, it may not be

part of the real functionality of the program. In that case the pretty printer can

be marked as template. We decided that all functions marked template will be

removed. A function is either useful for comparison or not; the decision is up to

the creator.

5.3 Heuristics

To compare modules and complete submissions we implemented a variety of

heuristics. Part of the normalisation process is to compute the values for all

these different heuristics. We divided the heuristics in three main categories:

structural, literal and semantic heuristics. Per category we discuss how we im-

plemented the particular heuristic.

5.3.1 Structural heuristics

Tokenizing

We tokenize the source code to make sure that easily transformable details that

do not interfere with the meaning of the program are removed. However, we want

to keep language specific symbols like the double colons, arrows, curly brackets,

round brackets etc. White spaces will be removed and literals and identifiers will

be replaced by a symbol. The literal integers, characters, floating points and

strings will respectively be replaced by the characters I, C, F and S. Operators

will be replaced by the character O and the identifier names will be represented

by the character X. For the identifiers there is an exception list containing widely

used identifiers like Int, String, Bool, Maybe, Either, Show, Eq etc. The

initial set of exceptions are all types (with there constructors) and classes defined

in the Prelude. These identifier names will not be replaced. It is possible to alter

the set of exceptions if necessary.

All these actions transform a Haskell source file to list of tokens. These token

lists will be saved in two ways, sorted and unsorted. In Haskell it does not matter

in what order top level functions are declared. This means that the order is easily

changeable. To be independent of this choice we order the token stream. Similar

to Marble, the sorted and unsorted token streams will be both saved to disc

separately.

For the sorted output of a module, the functions in the abstraction are sorted

before feeding it to the tokenizer. The deterministic ordering of the tokens is
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based on three aspects.

i. The number of parameters

ii. The number of tokens (essentially the size of the function)

iii. Alphabetic order of the concatenated list of tokens of that particular func-

tion

If two functions still have the same result, we consider them identical. In that

case the order between those two function is not relevant.

The implementation of the tokenizer is based on the existing pretty printer.

By replacing the literals with the corresponding tokens we are able to print out

the tokens in the right layout. A list of special identifiers is declared containing

all the identifiers which we want to keep. So before an identifier will be printed

it is compared against this exception list. Because the tokenizer is based on the

pretty printer the layout is preserved and all the special characters, e.g., function

arrows, are inserted in the output. This prevents silly mistakes and it is easy to

conclude if the output is correct and satisfying.

The tokens are saved so that every token is printed on a separate line. The

sorted and unsorted tokens are saved in separate files with respectively the .tok

and .tks extension for every Haskell module. For the complete submission only

the sorted tokens are saved in a file called all.tks. Saving the unsorted tokens

for a complete submission would be useless.

In appendix F.2, both token outputs of the demonstration code are published.

We can clearly see the difference. The unsorted token stream (Demo.hs.tok)

starts with the token presentation of the function printTable. The sorted stream

(Demo.hs.tks) however, starts with the token presentation of the function fit

because this function has the largest amount of parameters.

Parameters

The number of parameters is not only used for direct comparison but as described

in section 5.3.1 it is also used for sorting the token stream. Therefore not only

the number of parameters is important but also the corresponding name of the

function.

According to the abstract syntax we use from Helium, only a FunctionBinding

contains potential parameters. With the UUAG we declared a inherited attribute

to collect the parameters. In the code snippet below you can see the rules that

describe how to obtain the parameters.

. . .

SEM FunctionBindings

|Cons l h s . parameters = @hd . parameters
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| Ni l l h s . parameters = error ”Error :

Co l l e c t i n g parameters f a i l e d ”

SEM FunctionBinding

| FunctionBinding l h s . parameters = @le f thands ide .

parameters

SEM LeftHandSide

| Function l h s . parameters = (@name . s e l f ,

length @patterns . s e l f )

| I n f i x l h s . parameters = ( @operator . s e l f

, 2 )

| Parenthes i zed l h s . parameters = @le f thands ide .

parameters

In short, for every FunctionBinding we want the parameters from the lefthandside.

For every alternative of LeftHandSide we describe how to create the tuple that

contains the name of the function and the number of parameters. All elements in

FunctionBindings apply to the same function, so the number of parameters is

equal for every element. Therefore we only need the parameters of the first item.

The list containing the number of parameters per function will be saved to

disc without the names of the functions. The name of a function in this case is

only important for the sort strategy of the token stream. When comparing the

number of parameters directly the function names, also called identifiers, are not

used due to the fact that identifiers are easily changeable.

The parameters are saved, among other value, in the file metadata.hol. An

example can be found in appendix F.3.

5.3.2 Literal Heuristics

Strings

Collecting the literal strings in the source is quite easy: the Helium parser collects

the strings for us. In the Helium abstract syntax a literal string is part of the

Literal data type. Using the UUAG we declared an inherited attribute to

collect the strings. We are not interested in the values of the other alternatives

of Literal.

SEM L i t e r a l

| Int l h s . s t r i n g = [ ]

| Char l h s . s t r i n g = [ ]

| Float l h s . s t r i n g = [ ]

| String l h s . s t r i n g = [ @value ]

Only the literal strings from the abstractions are collected. This way lit-

eral strings from unused functions are not included. For every Haskell file, the

collected literal strings are saved in a file <originalname>.str. Every sting is



32 CHAPTER 5. THE PRE-PROCESSOR

splitted into single words. These words are converted to lower case and filtered

on non-alpha characters Numeric characters, special characters and white spaces

will be omitted to prevent overhead in the string output. The words are first

sorted on length then on alfabetic order and each printed on a separate line in

the file <originalname>.str.

There is no example of a string file in appendix F. The explanation is that the

string file created for the demonstration code is empty. The only literal strings

are declared in the function Demo.top10. Since this function is not part of the

abstraction, no literal string are saved. All other literal strings used to print the

table are filtered because the individual characters do not belong to the alpha

character set.

Comments

The Helium lexer omits comments. There is also no support for comments in the

Helium parser and the abstract syntax. We chose to create a separate lexer and

transform the comment syntax directly into abstract syntax. The reason for this

separate process is the complexity of the existing parsing process. Implementing

the handling of comments in the Helium front-end means changing the lexer,

the parser and the abstract syntax. Creating a separate process for handling

comments not only saved us time but the integration of a modified Helium front-

end will be easier.

The downside is that comments related to unused functions are accepted

as well. On the other hand, we cannot automatically determine if a piece of

comment is related to a particular function so we might as well include them

all. The comments will be saved to the file <originalname>.comm in a similar

format as used for the literal strings. An example of a comment file can be found

in appendix F.4.

5.3.3 Semantic heuristics

Callgraph

Before we can compare the call graph or in our case values that express the

similarity between them, we have to construct the call graph first. The call

graph in Holmes is represented by a list of tuples. Every tuple contains the name

of a function and a list of names for the top-level functions it calls. So for every

declared top-level function we basically collect the function calls.

SEM Dec la ra t i on

| FunctionBindings l h s . c a l l s = @bindings . c a l l s

| PatternBinding l h s . c a l l s = @righthands ide . c a l l s

But when collecting the calls we have to take care of several things. In our

case the call graph only displays the relation between functions on top level.
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Local definitions in a function when using where or let do not end up in the call

graph. For expressions with more then one possible outcome, as the conditional

expressions, we take the calls from the guard and all possible outcome together.

SEM RightHandSide

| Express ion l h s . c a l l s = so lveLoca lScope @express ion . c a l l s

@where . t r a n s i t i o n s

| Guarded lh s . c a l l s = so lveLoca lScope @guardedexpress ions . c a l l s

@where . t r a n s i t i o n s

{
so lveLoca lScope : : Names −> Names −> NameNamesTups −> Names

so lveLoca lScope [ ] = [ ]

so lveLoca lScope done nms t rans = i f newScope == scope then scope else

so lveLoca lScope newDone newScope t rans

where

scope = sort $ nub nms

toReplace = scope \\ done

newDone = done ++ toReplace

newScope = sort $ nub $ ( scope \\ toReplace ) ++

concatMap ( f l i p lookupNNTs trans ) toReplace

lookupNNTs : : Name −> NameNamesTups −> Names

lookupNNTs name nnts = i f replacement == [ ] then [ name ] else

replacement

where

replacement = concat [ c a l l s | (nm, c a l l s ) <− nnts , nm

== name ]

−−$
}

To avoid calls to local definitions in the final call graph we take the calls from

a function and replace the local definitions with its calls in an iterative process.

If a function calls a locally defined function, the call will be replaced by the calls

from the local definition. By iterating this process until the outcome stabilises

gives us only the calls to top level functions. Note that a definition will only

be replaced once (the replaced definitions will be saved) to prevent infinite loops

caused by recursion

We take the function writeTable from appendix F as example to illustrate

this iterative process.
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Solve local scope function writeTable (appendix F)

local definitions = (maxWidth,[columnWidth]),(writeName,[++]),

(writeRecord,[++,fit,maxwidth]), (writeLine,[replicate, foldr, +, maxwidth,++])

Iteration Scope Done Defenitions

Init [writeName, writeRecord write-

Line, ++, concatmap]

[]

1 [++, maxwidth, replicate, foldr,

+, concatMap]

[writeName, writeRecord write-

Line, ++, concatmap]

2 [++, replicate, foldr, +, con-

catMap, columnWidth]

[writeName, writeRecord

writeLine, ++, concatmap,

maxwidth, replicate, foldr, +]

3 [++, replicate, foldr, +, con-

catMap, columnWidth]

[writeName, writeRecord

writeLine, ++, concatmap,

maxwidth, replicate, foldr, +,

columnWidth]

In every iteration we substitute all possible definitions in the scope with the

calls in the particular local definition. All definitions that can not be replaced

will stay in scope. When substituting a definition we first filter the calls that are

already replaced. The results in iteration 3 are equal to the results of iteration

2, so the outcome is stable. We now know all outgoing top level function.

By putting the function name and the calls together in a tuple we basically

have all function calls per function. For the FunctionBindings we only need one

of the entries, because all items in the list are related to the same function.

Full qualification When we have all the function calls per function for every

module we need to make the names fully qualified. Helium does not support fully

qualified names because Helium exports everything it imports. This means that if

module A imports module B and module B imports module C, all functions from

module C are available in module A. Moreover when module A uses a function

imported from module B it can originate in either module B or module C doesn’t

know that the function are declared in module C because it imports all functions

from module B.

To create fully qualified names we added an option to Helium. With the –H-

fullqualification option Helium now outputs an .fqn file for every module. This

file contains the local scope of the particular module. When mapping the list

of function calls per function interactively over the local scopes we end up with

actual fully qualified name. This is only possible because in Helium a function

name can only be declared once, because of the import and export strategy

Helium uses.



5.3. HEURISTICS 35

Abstract call graph The list with calls per function is a representation of the

complete call graph of the program. However we are not interested in the com-

plete call graph. We only want the call graph of the part that may be accessed. In

other words we do not want to have dead or garbage functions in our call graph.

Therefore the user can define one or multiple start points(see section 7.4.1). Only

functions reachable from these start points are considered useful.

Expressing call graphs To calculate the similarity between call graphs we need

a way to express them. At this time there is very little known about computing

approximate isomorphism on call graphs. What we do know is that the complex-

ity of such an operation will be high. Therefore to express a call graph we started

to calculate the degrees: the in-degree, the out-degree and the total-degree. The

in-degree for a single node is the number of incoming edges. Logically the out-

degree concerns the outgoing edges and the total-degree is the sum of incoming

and outgoing edges. More formally:

Let G = (V,E) be a (non-empty) directed graph where E ⊆ V × V .

in−NG(v) = {w|(w, v) ∈ E}
out−NG(v) = {w|(v, w) ∈ E}
NG(v) = in−NG(v) ∪ out−NG(v)

total-degree The total-degree tdG(v) is the cardinality of the neighbours tdG(v) =

|NG(v)|.

in-degree The in-degree idG(v) is the cardinality of the incoming neighbours

idG(v) = |in−NG(v)|

out-degree The out-degree odG(v) is the cardinality of the outgoing neighbours

odG(v) = |out−NG(v)|

For every type of degree we create a sorted list of the number of edges per

node. We also calculate the minimum, maximum and average per degree. Besides

the degree characteristics we also calculate the diameter of a graph. The diameter

is defined as the longest shortest path between any two nodes. Simply calculating

the shortest paths between all possible nodes and selecting the longest path is

sufficient. .

Let d(v) be one of the degrees id(v), od(v) or td(v) of a vertex (v)

minimum degree The minimum degree of (G) is δd(G) := min{d(v)|v ∈ V }

maximum degree The maximum degree of (G) is ∆d(G) := max{d(v)|v ∈ V }

average degree The number x̄d(G) := 1
|V |

∑
v∈V d(v) is the average degree
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diameter The distance disG(x, y) in G of two vertices x, y is the length of a

shortest path from x to y in G; if no such path exist dis(x, y) := ∞. The

diameter of G is diam(G) := max{dis(x, y)|x, y ∈ V, x 6= y}

All values derived from the graph and the graph itself will be stored. Storage

of the call graph itself is in the DOT [3] format. We generate a dot file in which

the nodes and edges are defined separately according to the DOT specifications.

The DOT specification is chosen because of the simple structure. Besides if

the drawing tool dot [5] is installed it is possible to create a visual representation

of the call graph. The pre-process will output this visualisation as a PNG image.

The rest of the information calculated from the call graph will be stored as text

in a separate file for meta data, metadata.hol. In appendix F.5 a complete dot

specification and the visual call graph are published. The meta data file can be

found in F.3

5.4 Fingerprints

The idea of creating document fingerprints is not new [15]. To use it on Haskell

we need to set the proper k-gram and window sizes. Because MOSS [14] sup-

ports Haskell programs we contacted Alex Aiken, creator of MOSS, with these

questions. His answer was:

I’ve generally found that a k-gram value of between 25 and 30 works

well. As for window size it depends entirely on the size of the programs

being compared. For a small batch a window size of 5 gives good

performance; in runs comparing all of the open source code I could

find on the internet I’ve used window sizes of 100.

With this advice the implementation of fingerprinting in Holmes was done

with a k-gram value of 25. A window size of 5 was chosen because in Holmes the

fingerprinting is part of the pre-processing. We do not know beforehand what

the size of the batch is that we need to compare. The suggestion to increase

the window size when the batch increases has two reasons: make it feasible

because more hashes mean more time. The second reason may be that with a

greater window size there wil be fewer false positives. Part of the feasibility is

solved because we compute the fingerprint just once in the pre-phase. Besides

that, MOSS cross compares all entities in a batch, so feasibility is a bigger issue.

Holmes on the other hand will just the compare new programs to the already

existing programs (and to each other).
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5.5 Output

The pre-processor outputs all the data to files located in the root of the submis-

sion. The files are arranged in the following way

directory tokens

orginalname.tok unsorted tokens stream for a module

orginalname.tks sorted tokens stream for a module

all.tks sorted tokens for the complete submission

directory StringComments

orginalname.str literal strings in a module

orginalname.comm comments in a module

directory fingerprints

orginalname.fpr fingerprint output for a module

all.fpr fingerprint output for the complete submission

directory holmesdata

callgraph.dot the dot specification of the call graph

callgraph.png the visual representation of the call graph

metadata.hol file with meta data containing:

- all three sorted degree lists

- the minimum, maximum and average of every

degree list

- the diameter of the call graph

- the sorted list containing the number of parameters

for each top-level function





Chapter 6

Comparing

The compare tool is the second part of the Holmes system. For comparing the

submissions we use the data produced by the pre-processor. Comparison in

Holmes (as the compare tool is called) is done on two different levels: submission

level and file level. For comparison on submission level we take the submission

as a whole and compare it with the other submissions. Comparison on file level

means that every file will individually be cross compared to all files of the other

submissions.

Some of the heuristics can only be applied in a comparison on submission

level. The comparison of the call graph characteristics is an example. For the

heuristics applied on both submission level and file level comparison the exact

same technique will be used to calculate a score. The score for every heuristic is

between 0 and 100 where 100 represents identical and 0 means totally different.

6.1 Reading files

For every submission we need to read several files. Because file IO is an expensive

operation this is only done once. The data is parsed and saved in special datatype.

data ProgData = ProgData FilePath TokenData TokenData Str ingData

CommentData FingerPrintData MetaListData MetaValueData deriving

Show

Because of lazy evaluation in Haskell only the files that are really needed will be

read. For example when only submission level comparison is performed, the files

used for file level comparison will not be read.

39
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6.2 Semantic heuristics

6.2.1 Call graph

We compare the call graph by individually comparing all items extracted from the

call graph by the pre-processor. This heuristic can only be applied on submission

level because the call graph can only be created for the submission as a whole.

Degree lists

The first step is comparing the three different degree lists (indegree, outdegree

and totaldegree). We formulated three different ways to calculate a score for the

similarity level of two degree lists. All three algorithms will be applied to all

three different degree lists.

algorithm 1 By calculating the edit distance we can determine a certain level

of similarity. The Levenshstein distance [9] is a metric for measuring the

amount of difference between two sequences. Usually this is applied to

strings to calculate the so called edit distance. The Levenshtein distance

between two strings is given by the minimum number of operations needed

to transform one string into the other, where an operation is an insertion,

deletion, or substitution of a single character. By implementing the Lev-

enshstein distance for lists, it can be used on Integer lists like the degree

lists. For implementing the Levenshstein distance we choose a dynamic

programming approach. The maximum distance is equal to the length of

the longest list so:

maxlength = max ( length l i s t 1 ) ( length l i s t 2 )

d i s t ance = l ev en sh s t e i nD i s t anc e l i s t 1 l i s t 2

s co r e = 100 ∗ ( maxlength − d i s t ance ) / maxlength

algorithm 2 In algorithm 1, when substituting an item, the difference between

these items is not of importance. This means that the difference between

[1,2,3] and [1,2,6] is equal to the difference between [1,2,3] and [1,2,88]. In

our opinion the difference between these two pairs is substantial. In this

algorithm we transform the degree list. Not the numbers in the list, but

the position will displayed. The numbers represent the amount of time the

position has to be printed. For example: [1,2,3] will be [0,1,1,2,2,2].

position 0 1 2

value 1 2 3

outcome 0 11 222

Now when applying the Levenshstein distance over the transformed degree

list, the value of a degree will also play a role. When we now compare [1,2,3]

and [1,2,6] we calculate the Levenshstein distance between [0,1,1,2,2,2] and
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[0,1,1,2,2,2,2,2,2]. The outcome is 3 instead of 1 (algortihm 1). The larger

difference between the values of the degree the higher the Levenshstein

Distance will be with this algorithm.

algorithm 3 When comparing [1,2,4] and [1,2,6], the list [1,2] is equal which is
2
3 of the list. This leaves us with 4 and 6 which is 1

3 . When looking at the

numbers 4 and 6 we can conclude that both nodes have 4 edges. So, 4
6 is

equal and 2
6 is different. Therefore the similarity is 2

3 + (46 ∗
1
3) = 0.88888

which makes the score 88.888

When comparing lists of different sizes the same principle holds. For ex-

ample when comparing [1,2,2,5,6] and [1,2,3]: The numbers [1,2] are equal

which is 2
5 . The difference is [2,5,6] and [3]. We compare the 3 with the

closest number in the other list. In this case 2. That means for the compar-

ison of those particular nodes that 2
3 is equal and 1

3 is different. Concluding,

the similarity is 2
5 + (23 ∗

1
5) = 0.533333, meaning a score of 53.333

Derived values

Not only the degree lists but also the single values derived from the call graph are

compared. These values are the minimum, maximum and average of every

degree list and the diameter of the call graph. For the comparison of these

individual values we also present the outcome as a number between 0 and 100

using the function compareSingle:

compareSingle : : Double −> Double −> Double

compareSingle a b = 100 ∗ ( ( b i g g e s t − (abs ( a−b) ) ) / b i g g e s t )

where

b i gg e s t = max a b

6.3 Structural heuristics

6.3.1 Token comparison

The comparison of tokens streams is an example of a heuristic that is applied

both at file level and submission level. For the file level comparison both the

sorted and the unsorted token streams will be compared. For comparison on

submission level only the prepared sorted token stream (saved in all.tks) will be

compared.

For all alternatives we use the same method to calculate the score that de-

scribes the similarity between the two streams. We use the diff library for Haskell

[7] to calculate the difference between the two token streams. Our first alternative

was, similar to Marble, to use Unix diff. In Holmes however we need to process

the score afterwards. It is possible to import the score from Unix diff back into

Holmes but it is not convenient. Because the diff library was available to us, we
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decided to use this option. Another important advantage is that we now decrease

the number of IO operations with this option. These operations tend to be time

consuming. The algorithm to calculate the final score is :

t o t a l l e n g t h = ( length f i l e 1 ) + ( length f i l e 2 )

t o k e nd i f f = d i f f f i l e 1 f i l e 2

s im i l a r i t y = 100 ∗ ( t o t a l l e n g t h − t o k e nd i f f ) / t o t a l l e n g t h

6.3.2 Parameters

The arity of all functions in a submission is represented as a sorted list of integers.

Every integer represents the arity for a particular function. This representation

is the same as the representation of the degree lists from a call graph. Therefore

we use the same algorithms to express the similarity between the parameters per

function for a complete submission (see section: 6.2.1).

6.4 Literal Heuristics

Comments and strings are compared in the same way. The output of those

two look like the output of a token stream. Only we cannot use the compare

algorithm for tokens on these literals. A literal in this case can contain more

than one item. It can be a sentence for example. This means we also need to

check on approximate string similarity.

We first implemented a version that uses the Levenshtein distance [9] to cal-

culate the edit distance for every possible string couple from two sources. In this

version the strings were not split into separate words by the pre-processor. This

implementation turned out to be extremely time consuming. Therefore we chose

the option to change the pre-processor output as described in section 5.3.2 and

use the exact same algorithm as for comparing token streams. To illustrate this:

When having the following two set of strings

”lorum ipsum” ”dolor eu”

”dolor sit amet” ”lorum ipbus”

”consectetur” ”exesectetion”

In the first implementation we calculated the Levenshtein distance for all 9 possi-

ble couples to find the closest match for every string. The Levenshtein distance

is a very time consuming operation, especially when the sets are large. Therefore

we in the current implementation we transform the strings into:
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”sit” ”eu”

”amet” ”dolor”

”dolor” ”lorum”

”ipsum” ”ipsub”

”lorum” ”exesectetion”

”consectetur”

In the current implementation we transform the sets into a sorted set of sin-

gle words. We sort on length followed by alphabetic order. Similar to the token

comparison we now apply a diff on the set. This single diff operations saves a lot

of time comparing to the calculation of all the Levenshtein distances.
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Using Holmes

7.1 Helium

Holmes uses Helium[8]. Therefore you must be certain that a proper Helium

version is installed on your system. When installing a Helium version make sure

you use the right source by choosing either of the following option:

• a helium system source repository from the website dated 15 jan 2010 or

later

• the helium svn repository

(https://subversion.cs.uu.nl/repos/staff.jur.heliumsystem/README)

7.2 Compilation

Holmes is based on the Helium compiler. Therefore there are some dependencies

to other parts like LVM[19, 10] and TOP[18, 12]. The Holmes package contains

two programs:

• The pre-processor (preparation / normalisation program) called Sherlock

• The compare program called Holmes

After compilation, both programs can be found in the directory helium/bin. On

a Unix based system please follow the instructions below.

CHECKOUT

Make directory

mkdir holmes

45
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Then type

cd holmes

Now obtain all the components that make up the compiler

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.lvm/trunk

mv trunk lvm

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.holmes/holmes/helium

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.holmes/holmes/compare

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.Top/trunk

mv trunk Top

COMPILATION

The standard way of compiling Helium is as follows:

cd lvm/src

./configure # add -host i686-apple-macosx if you happen to have an Intel Mac.

cd runtime

make depend

cd ../../..

cd helium

./configure

cd src

To make the pre-processor called sherlock

make dependSherlock

make sherlock

To make the compare tool called holmes

make dependHolmes

make holmes

# make sure make is GNU make, use gmake if it does not work.

7.3 File system

To maintain a clear separation between assignments, incarnations and submis-

sions, Holmes will work with the following data layout. As shown below, in every

assignment directory there are multiple incarnation directories. An example of

an incarnation name is ”0809p1” (year 08/09, first period). Every incarnation
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contains multiple submissions.

AssignmentName/

incarnation1/

incarnation2/

studentgroup1/

studentgroup2/

FileA.hs

FileB.hs

studentgroup3/

Main.hs

Lib.hs

incarnation3/

If incarnation3 is the most recent incarnation, the pre-processor only has

to work on this incarnation. The compare tool will compare a submission from

incarnation3 with all the other submissions in incarnation3. It also compares

incarnation3 with incarnation2 and incarntion1. A comparison between

incarnation1 and incarnation2 will be useless because it was already done in

the past. Therefore we are not interested in the result of such a comparison.

7.4 Pre-processor

After compilation the pre-processor named sherlock can be found in the bin direc-

tory. The pre-processor extracts the data needed for comparison for a complete

incarnation.

7.4.1 Config file

First a file called holmes-conf must be created. In this file all possible start

points of a program must be declared. Every declaration must be fully qualified

and on a new line. Normally this configuration file is created in the root of an

incarnation. The start points defined in the configuration file are applied to all

submission in this particular incarnation. It is also possible to define the start

points for a specific submission. This specific configuration file overrules the

configuration file for the complete incarnation and must be saved in the root of

the submission.

There are multiple ways to define the start points inside a configuration file.

This applies to both the incarnation configuration file and the possible submission

configuration file.
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• Individual specific fully qualified start points

Defining all start points individually and fully qualified each on a separate

line.

• Function wildcard

Defining all functions from a module as a start point at once e.g. Main.*

All function declared in Main are considered a start point.

• Module wildcard

Similar to function wildcard, only applied to the module, e.g. *.main.

• Total wildcard

With the total wildcard, *.*, all functions in any module are considered a

start point.

It is possible to use different forms of start point declarations in one configu-

ration file. Logically in some cases a wildcard overrules a specific declaration.

The more specific the start point declarations, the better the outcome of the

heuristics. Start points are used to construct a call graph (see section 3.2.3) and

therefore omit unused functions. When using wild cards it is possible that none or

not all of the unused functions are removed and thereby influence comparison. For

example, a program consisting one module Main has the call graph as specified

in figure 7.1 and the set start points defined as Main.main. In this case only

the black part of the call graph will be generated. For the set of start points

defined as Main.*, the complete call graph (black and gray) will be generated.

This mean that a possible bogus function foo and the whole sub graph attached

to that function is now considered useful.

Figure 7.1: Call graph difference when using wildcard

7.4.2 Template code

For annotating template functions, the HolmesPragma for templates is used.

There are three different ways to define a template function.
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• Line based / function based

By putting the following syntax {-H TEMPLATE H-} directly above the func-

tion, or on the same line as the signature if there is one, the function will

me marked as template code and removed.

• Set based

By declaring a set with function names like {-H TEMPLATESET #function1

#function2 H-}, where every function name has the prefix #, the declared

functions will be marked as template code. The location of this declaration

in the source is not important.

• Wildcard

The set declaration can also be used to mark all function in a file as template

code by using a star {-H TEMPLATESET #* H-}

It is possible to use multiple declarations in one source file. In that case the

final set of template functions will be the union of all declared sets. If a function

is not recognised when e.g. a function name is misspelled or the annotation is

on the wrong line, it will simply be ignored and therefore not be considered a

template function.

7.4.3 Using the pre-processor

The pre-processor is activated by calling sherlock with the location of the incar-

nation to be pre-processed. Typically the path to the Helium libraries must also

be added using the -L flag. The library can be found in the lib folder or use the

library from the Helium compiler. Calling sherlock will be like

sherlock -L ../lib ../../../program/incarnation1/

An overview of the options in the pre-processor:

• -L directory name (location of library directory)

• -C (call graph with template functions)

• -D (de chaining) (see section ...)

• -F (skip fingerprint creation) (see section 5.4)

The output of the pre-processor will be saved per submission in a subdirectory

of the submission.
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7.5 Comparing

The compare program holmes can also be found in the bin directory. This pro-

gram takes the information created by the pre-processor and uses it for com-

parison. The incarnation initially given to holmes will be internally compared.

Afterwards all the programs from the initial incarnation are compared to all the

programs of previous incarnations.

To use the compare tools all the incarnations must be pre-processed. When

calling holmes the only thing needed is the location of the initial (new) incarna-

tion.

holmes ../../../program/incarnation1/

An overview of the options in the pre-processor:

• -F (skip fingerprint comparison)

• -C (create a CSV file of submission output)

• -T t1,t2,t3 (give thresholds for Structural, Literal en Semantic heuristics)

The output of the compare tool will be saved to disc in the root directory

of the initial incarnation. By default the thresholds are set to 50 for each type

of heuristic. With the -T flag the threshold value can be set manually for every

category.
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Verification and Validation

When creating a plagiarism tool with purpose to investigate plagiarism detection

in and for Haskell programs we have to be certain that the outcome of the tool is

reasonably complete and correct. The implementation of the heuristics are based

on assumptions we formulated based on research into similar problems. We need

to both verify and validate the outcome to see if the heuristics are correct and

which heuristics are relevant.

8.1 Verification

Verification is a quality control process. When verifying a process or product it

has to evaluate according to the specifications and regulations. Simply formu-

lated, does the process do what its supposed to do. Applying this on the Holmes

heuristics: is the outcome of the heuristics correct.

There are different ways to verify a program. In our case we did not choose for

a formal proof, but during development we continuously tested and monitored the

input and results. In the final verification tests we measured how the heuristics

act to changes in the program. We took a Helium compatible submission and

applied one or multiple refactoring actions to it. Comparing all these refactored

version with the original submission show us the correctness and sensitivity of

the heuristics.

The following alternative versions are created by applying a single refactor-

ing action to the original source code. The original source code is published in

appendix A
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Single refactorings

Name Abbreviation Description

nameChange nc changed identifier names

translateComments tc translated comments from Dutch to English

relocation rl changed the order of the function declarations

rewrite rw simple transformations like where to let - in

trace trc declared a trace function similar to the Debug

module and let all function call trace

compact cp move single used functions to local scope

unit un declared a unit test function that calls all

functions declared in the module

Note that not necessarily all opportunities to apply a refactoring action need

to be taken. For every refactoring action in this test at least a substantial num-

ber of these opportunities are enforced.

Every transformation is influencing the defined heuristics. Therefore all the

alternatives are separately implemented. Besides that, all alternatives are applied

incrementally to inspect the effect when multiple refactorings are applied. The

alternatives where more than one refactoring action is applied are:

Multiple refactorings

Name Implemented refactorings

nc rw nameChange, rewrite

nc rw tc nameChange, rewrite, translateComments

nc rw tc cp nameChange, rewrite, translateComments, compact

nc rw tc cp trc nameChange, rewrite, translateComments, compact, trace

nc rw tc cp trc un nameChange, rewrite, translateComments, compact, trace,

unit

nc rw tc cp trc un rl nameChange, rewrite, translateComments, compact, trace,

unit, relocation

Note that the names of these multiple refactorings match with the abbreviations

of the single refactorings it contains.

All alternatives are compared to the original submission. In addition to all

the refactored alternatives there is also a version called bogus. This submission

is not a refactored alternative but a completely different program to illustrate the

scores to a non-plagiarised submission. The result of these tests are published in

appendix B. Note that the we used rounded values in this result.

Inspecting the results show us that the scores of most of the heuristics are

as expected. Due to the tokenizer and more specific the orderd token stream we

can conclude that Holmes is practically insensitive for changing identifier names
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(nameChange), relocation of definitions (relocation) and translating or deleting

comments (translateComments). The heuristics concerning the total-degree log-

ically fluctuate when either the in-degree or out-degree is influenced. It seems

that the heuristics for the total-degree are redundant.

The values derived from the degrees may also be redundant because of the

direct comparison of the degree list. We can certainly conclude that the compar-

isons of the minimum degrees (idMinDiff, odMinDiff, tdMinDiff) are com-

pletely irrelevant.

The other refactoring actions influenced the heuristics as expected. As ex-

pected, the scores are getting lower when more refactorings are applied. The

refactoring actions with the highest success rate are trace, unit and compact.

Although trace and unit are easily detectable by manual inspection they influ-

ence both the structural (e.g. tokenstream) and the semantic (the call graph)

aspects of a submission. The same holds for compact because when a function

is transferred from top-level scope to a local scope, both the token stream (more

tokens per functions) and the call graph (less functions) are influenced. A re-

markable heuristic for this particular refactoring is fingerprinting. It seems that

fingerprinting is insensitive for this refactoring action although it focuses, sim-

ilar to the token stream, on the structual aspects of a program. This makes

fingerprinting a valuable heuristics. An explanation for this difference is that

we sort the tokens stream per function. The creation of document fingerprinting

(winnowing) handles the module (or submission) as a whole.

8.2 Validation

Validation is a quality assurance process. With validation you need to establish

evidence that a product or process accomplishes the intended requirements. The

primary objective in our case is to discover plagiarism in Haskell programs. We

need to check which of the implemented heuristics can help achieve that objective.

For this test we selected two assignments from the functional program course

that were Helium compatible or at least could be made Helium compatible with

some minor changes. We cross compared a single iteration containing a sub-

stantial number of submissions for each of the assignments. Selecting the high

score top 5 per heuristic and inspect all couples manually showed us if a par-

ticular heuristic could be considered valid. A couple in these case are the two

submissions scoring high for a particular heuristic when comparing them.

The first assignment we used is called fp-wisselkoers. It contains 62 sub-

mission from the 2006 incarnation. The original number was higher but not

all submission were used due to compatibility problems with Helium. Every

submission contains two Haskell modules: Munten.hs and Wisselkoers.hs. This

submission doesn’t have a specific entry point therefore we specified the entry
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point as *.* in the holmes-conf file.

The second assignment is called fp-cal and it contains 45 submission from

the 2005 incarnation. The difference with the first assignment is that this one

contains only one Haskell module and it has a fixed entry point main. Therefore

the entry point specified in holmes-conf is set to *.main.

For both assignments the names of the submission are anonymised. Normally

the name of a submission contains information of the student (or group). For

the second assignment we picked out one submission, Gr29 and performed the

refactoring steps from the verification process on it. The submission Copy2 con-

tains the refactoring actions: nameChange, translateComments, relocation

and rewrite. We made another submission, Copy29 2 that contains the actions:

trace, unit and compact on top of the action from Copy29. Both Copy29 and

Copy29 2 are placed in a new iteration called: Copy.

The comparison of the submissions took several hours, at least on my old

Pentium 4 2.00 GHz machine. It seems that the algorithms used to compare the

degrees are the most time consuming.

8.2.1 Analysing results

The top 5 selection of both assignments are published in appendices D and C.

When examining the top 5 for both assignments we come to the conclusion that

the heuristics for token comparison and fingerprint comparison give valid results.

The issue in this case is that we have to compare the scores against our own

manual inspection. This doesn’t mean that the rest of the result are incorrect,

but there is simply not enough visual evidence for high similarity by manual

inspection. When looking at the refactoring examples in section 2.3 it can get

difficult to see similarity.

When inspecting fpwisselkoers we see that almost all heuristics score 100 when

the two submissions are identical as in Gr58 vs Gr43. The second in line for token

comparison, Gr58 vs Gr43 is quite similar when comparing by hand but does not

end up high for many other heuristics accept for fingerprinting. The same holds

for Gr47 vs Gr49 where the similarity level is less but still substantial.

When manually inspecting the top 5 of any other heuristic there is not enough

similarity visible to mark it as possible plagiarism. Only the top rated compar-

isons for tokens and fingerprints are reliable for now. The only thing is that all

submission look quite similar, probably due to the characteristics of the assign-

ment.

The comparison results for fpcal are quite similar to the results for fpwis-

selkoers: only the results for token and fingerprint comparison seem to give an

accurate result. The couples Gr34 vs Gr22 and Gr40 vs Gr5, which are the 2

top results in both tokens and fingerprints, are showing many signs of similarity

when compared manually. Even though the result for other heuristics are high
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in the comparison Gr34 vs Gr22, we can not conclude anything from that. If we

look at the results of for example indegree 3 (ID3), then we see that there are

other couples with a higher score. When manually inspecting these cases we can

not conclude a high level of similarity.

The results for the refactored iteration Copy of fpcal (appendix C.1) shows

that both submissions have a substantially high score for the token and fingerprint

comparisons. For both heuristics the comparison between the two refactored

cases (Copy29 and Copy29 2 ) and the original case (Gr29 ) are in the top 3.

When integrating the Copy scores for these two heuristics into the results for the

original submission, the scores for the refactored submissions will still end up in

the top 5. Again we can conclude that the heuristics for tokens and fingerprints

are sufficient to detect possible plagiarism.

Not that in appendices D and C the scores that are derived from other scores,

e.g. minimum indegree, are omitted. This due to publication issues (it does not

fit nicely on a page) and the fact that these scores are not of any value.
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Conclusion

At the end of the project, a tool was created that can compare Helium[8] programs

on different aspects. While Helium is only a subset of Haskell[6] it is still large

enough to prove that we can measure software similarity in Haskell submissions.

The tool contains a substantial number of heuristics divided into three cat-

egories. On top of these heuristics the already existed method of comparing

document fingerprints, as used in MOSS[14], was implemented. Our verification

and validation process showed us that only the heuristics for tokens and finger-

prints are reliable. Different to earlier experiments with Marble[17], comparing

the token streams for Haskell programs does work with a proper normalisation

process. Although the comparison between tokens and fingerprints focuses on

the structural level, they are not the same. It seems that fingerprint comparison

is less sensitive to changing the scope of a function from top level to local scope.

Although Literal String and Comment comparison do not conclusively find

possible plagiarism, it can still be an obvious sign. If both or one of them scores

high it can be wise to perform manual inspection, depending on the other results.

Therefore we still believe that these two heuristics can be valuable.

It turns out that the pre-processing phase is very important. The removal of

unused code by calculation of the call graph and the removal of template code

reduces the number of false positives. Therefore an accurate description of the

entry points of a program and template code increases the effectiveness of the

tool.

The Holmes system proves that the combination of our pre-processing phase

and the heuristics for tokens and fingerprints is an effective way to detected

plagiarism in Haskell programs. Both Marble and MOSS do not have the ability

to remove irrelevant code like Holmes does in the pre-processor. On the other

hand the real value of a tool like Holmes can only be accurately judged after

intensive use over a large period of time. Even so, the results thus far are certainly
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promising

9.1 Future work

The foundation of a tool to detect plagiarism in Haskell is now created. However

there are some features and changes that may improve the use and accuracy of a

tool like Holmes.

At this time Holmes is built on top of Helium, this means that only Helium

compatible source code will be accepted by Holmes. Helium covers only a subset

of Haskell so there will be assignments that Helium will not be sufficient e.g.

when IO computations are necessary. Therefore, for a wider use of the tool, it

would be convenient if Holmes could accept all Haskell files that are compatible

with GHC [4].

There are two more features that may improve the quality of the comparison.

Because there is very little known about calculating approximate isomorphism

between graphs, we are not able to do such a calculation on the call graph of a

submission. Instead we thought that comparing the degree list would be a good

alternative. We now know that the comparison of the degree list is not enough.

Perhaps when there is more known about approximate isomorphism and it can

be implemented, it could add some value to the current system.

Another feature we suggest is the implementation of an Abstract Syntax Tree

(AST) diff. In the current system we transform the syntax to a token stream.

The disadvantage of this method is that we lose information about the structure.

If it is possible to keep the tree structure and do a diff over that structure the

outcome may be more reliable than the diff over a flat token stream.

Both of these features take some implementing.
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Recommendations

To increase the effectiveness of the Holmes system it is wise that the assignments

Holmes needs to check are well suited for the system. Therefore when if you

happen to want to create an assignment with the purpose to use Holmes to check

for possible plagiarism, we advise you to follow these recommendations.

• Strict entry points

When creating an assignment make sure that you demand strict entry

points. If, for example, you demand that the program has to start by

executing a function called main, Holmes is able to do a more effective

check on unused code. Because Holmes calculates the reachable functions

from the given entry points, the more specific these points are, the better

the result of the pre-processing.

• Mark similar functions as template

If an assignment contains functions that will be exactly or almost the same

in every submission, the creator should mark these function as template

code. Template code will be removed in the pre-processing. When ev-

ery submission contains similar function that are not marked template the

structural heuristics will score unnecessarily high.

• Don’t make the assignment too strict

Over-specification of an assignment can lead to unintended similar outcome.

If you want to achieve a certain goal and you specify all sub-functions lead-

ing to that goal as part of the assignment, then the submissions will be

more similar than when you just specify the main goal. Giving a program-

mer some freedom on how to implement the main solution will lead to more

diversity.
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• Don’t make the assignment too short When an assignment is short it is

more likely that the implementation look similar. Especially in combination

with over-specification this results in large numbers of similar implementa-

tion.

At this point the current tool still performs all tests when comparing two sub-

missions. We have concluded that only the heuristics for tokens and fingerprints

are reliable to test for possible plagiarism. To save time during the compare

process it may be wise to remove all other forms of comparison. Especially the

algorithms for comparing the degree lists are very time consuming.
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Appendix A

Fql.hs

−− Naam: hubbie

−− Login : hhubbie

−− Studentnummer : 00000000

module Fql where

−− De f i n i t i e s .

−−−−−−−−−−−−−−
type Table = (String , [ String ] , [ [ String ] ] )

top10 : : Table

top10 = ( ”Top10”

, [ ”Nr” , ” Ar t i s t ” , ” T i t l e ” ]

, [ [ ”1” , ”Mark Ronson f t . Amy Winehouse” , ” Va l e r i e ” ]

, [ ”2” , ”Alain Clark ” , ”Father and Friend ” ]

, [ ”3” , ”Leona Lewis ” , ”Bleeding Love” ]

, [ ”4” , ”Kane” , ”Catwalk Criminal ” ]

, [ ”5” , ”Colb ie Ca i l l a t ” , ”Bubbly” ]

, [ ”6” , ”Anouk” , ” I Don ’ t Wanna Hurt” ]

, [ ”7” , ”Timbaland f t One Republ ic ” , ”Apolog ize ” ]

, [ ”8” , ”Lenny Kravitz ” , ” I ’ l l Be Waiting” ]

, [ ”9” , ”DJ Jean” , ”The Lauch Relaunched” ]

, [ ”10” , ”Rihanna” , ”Don ’ t Stop the Music” ]

]

)

genre : : Table

genre = ( ”Genre”

, [ ” Ar t i s t ” , ”Genre” ]

, [ [ ”Alain Clark ” , ”Pop” ]

, [ ”Anouk” , ”Pop” ]

, [ ”Anouk” , ”Rock” ]
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, [ ”DJ Jean” , ”Dance” ]

, [ ”Kane” , ”Rock” ]

, [ ”Lenny Kravitz ” , ”Rock” ]

, [ ”Lenny Kravitz ” , ” Soul ” ]

, [ ”Rihanna” , ”R&B” ]

]

)

−− Funct ie s voor het gebruiken van 2− tup l e s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f s t 2 : : ( a , b ) −> a

f s t 2 (x , ) = x

snd2 : : ( a , b ) −> b

snd2 ( , y ) = y

−− Funct ie s d i e worden gebru ik t om de breedte van de kolommen in de

tabe l te bepalen .

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Geeft de t o t a l e breedte van de e l k e kolom in de tabe l a l s

r e s u l t a a t .

tableWidth : : Table −> [ Int ]

tableWidth tabe l = maxWidth ( al lWidth tabe l )

−− Geeft de t o t a l e breedte van e l k e kolom van i e d e r record in de

tabe l en de breedte van de namen van de kolommen .

al lWidth : : Table −> [ [ Int ] ]

a l lWidth ( , b , c ) = recordWidth c ++ [ s ingleWidth b ]

−− Geeft de t o t a l e breedte van e l k e kolom van i e d e r record in de

tabe l .

recordWidth : : [ [ String ] ] −> [ [ Int ] ]

recordWidth [ ] = [ ]

recordWidth (x : xs ) = [ s ingleWidth x ] ++ recordWidth xs

−− Geeft de breedte van e l k e kolom in een record .

s ingleWidth : : [ String ] −> [ Int ]

s ing leWidth [ ] = [ ]

s ingleWidth (x : xs ) = [ length x ] ++ singleWidth xs

−− Geeft de maximale breedte van de kolommen in de tabe l .

maxWidth : : [ [ Int ] ] −> [ Int ]

maxWidth [ ] = [ ]

maxWidth (x : xs ) = maxWidth ’ x xs

maxWidth ’ : : [ Int ] −> [ [ Int ] ] −> [ Int ]

maxWidth ’ [ ] = [ ]

maxWidth ’ g roo t s t en [ ] = groo t s t en

maxWidth ’ g roo t s t en (x : xs ) = maxWidth ’ ( g r e a t e s t g roo t s t en x ) xs
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−−Ve r g e l i j k t de waarden van 2 Int l i s t s en g e e f t a l s r e s u l t a a t de

g r oo t s t e g e t a l l e n .

g r e a t e s t : : [ Int ] −> [ Int ] −> [ Int ]

g r e a t e s t [ ] [ ] = [ ]

g r e a t e s t [ ] ( : ) = [ ] −− Dit zou n i e t moeten voorkomen

g r e a t e s t ( : ) [ ] = [ ] −− Idem .

g r e a t e s t ( x : xs ) ( y : ys ) | x >= y = [ x ] ++ g r e a t e s t xs ys

| otherwise = [ y ] ++ g r e a t e s t xs ys

−− Funct ie s voor pr intTable .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− De hoo fd func t i e d i e een tabe l p r i n t .

pr intTable : : Table −> IO( )

pr intTable ( a , b , c ) = do putStrLn ( a++” : ” )

putStrLn tweederege l

putStrLn de rde r eg e l

pr intRecords c g roo t s t en

where groo t s t en = tableWidth ( a ,b , c )

tweederege l = pr intRecord b groo t s t en

de rde r eg e l = b i gS t r i p e g roo t s t en

−− Print a l l e r e co rd s in de tabe l .

pr intRecords : : [ [ String ] ] −> [ Int ] −> IO( )

pr intRecords [ ] = return ( )

pr intRecords (x : xs ) g roo t s t en = do putStrLn r e g e l

pr intRecords xs g roo t s t en

where r e g e l = printRecord x groo t s t en

−− Print een enke l e record .

pr intRecord : : [ String ] −> [ Int ] −> String

pr intRecord [ ] [ ] = ” | ”
pr intRecord [ ] ( : ) = ” | ” −− Dit zou n i e t moeten voorkomen

pr intRecord ( : ) [ ] = ” | ” −− Idem .

pr intRecord (x : xs ) ( y : ys ) = ” | ” ++ x ++ addChar (y−(length x ) ) ’ ’ ++

printRecord xs ys

−− Geeft een −−−−−−− l i j n van een bepaalde breedte a l s s t r i n g .

b i gS t r i p e : : [ Int ] −> String

b i gS t r i p e [ ] = ”−”
b i gS t r i p e ( x : xs ) = ”−” ++ addChar x ’− ’ ++ b i gS t r i p e xs

−− Geeft een aanta l keer een char a l s s t r i n g .

addChar : : Int −> Char −> String

addChar 0 = [ ]

addChar aanta l char = char : addChar ( aantal −1) char

−− Funct ie s voor count .

−−−−−−−−−−−−−−−−−−−−−−−
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−− De hoo fd func t i e d i e het aanta l r e co rd s in de tabe l terug g e e f t .

count : : Table −> Int

count ( , , c ) = length c

−− Funct ie s voor p r o j e c t .

−−−−−−−−−−−−−−−−−−−−−−−−−

−− Hoofd funct i e voor p r o j e c t .

p r o j e c t : : [ String ] −> Table −> Table

p r o j e c t l i j s t ( a , b , c ) = pro j e c t ’ p o s i t i e s ( a , l i j s t , l e g e l i j s t e n ) ( a ,

b , c )

where p o s i t i e s = ge tPo s i t i o n s b l i j s t

l e g e l i j s t e n = emptyLists aanta l

aanta l = count ( a , b , c )

p ro j e c t ’ : : [ Int ] −> Table −> Table −> Table

pro j e c t ’ [ ] t abe l = tabe l

p ro j e c t ’ ( x : xs ) ( a , b , c ) (d , e , f ) = pro j e c t ’ xs ( a , b , voegtoe ) (d , e ,

f )

where voegtoe = addColumn c haalop

haalop = getColumn f x

−− Geeft de p o s i t i e van een s t r i n g in een l i j s t in de vorm van [ 0 , 1 ,

2 , . . . . ]

g e tPo s i t i on : : [ String ] −> String −> Int

ge tPo s i t i on [ ] = 0

ge tPo s i t i on (x : xs ) naam | naam == x = 0

| otherwise = 1 + ge tPo s i t i on xs naam

−− Geeft de p o s i t i e s van meerder s t r i n g s in een l i j s t .

g e tPo s i t i o n s : : [ String ] −> [ String ] −> [ Int ]

g e tPo s i t i o n s [ ] = [ ]

g e tPo s i t i o n s l i j s t ( x : xs ) = [ g e tPo s i t i on l i j s t x ] ++ ge tPo s i t i o n s

l i j s t xs

−− Verwijderd p o s i t i e s d i e buiten de l i j s t v a l l e n .

f i l t e r P o s i t i o n s : : [ Int ] −> Int −> [ Int ]

f i l t e r P o s i t i o n s [ ] = [ ]

f i l t e r P o s i t i o n s ( x : xs ) l eng t e | x < l e ng t e = [ x ] ++ f i l t e r P o s i t i o n s

xs l eng t e

| otherwise = f i l t e r P o s i t i o n s xs l eng t e

−− Voegt een kolom toe aan de r e co rd s in een tab l e .

addColumn : : [ [ String ] ] −> [ String ] −> [ [ String ] ]

addColumn [ ] [ ] = [ ]

addColumn [ ] ( : ) = [ ]

addColumn ( : ) [ ] = [ ]

addColumn (x : xs ) ( y : ys ) = [ x++[y ] ] ++ addColumn xs ys

−− Haalt een kolom up u i t de r e co rd s van een tab l e .

getColumn : : [ [ String ] ] −> Int −> [ String ]
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getColumn [ ] = [ ]

getColumn (x : xs ) p o s i t i e = [ getColumn ’ x p o s i t i e ] ++ getColumn xs

p o s i t i e

getColumn ’ : : [ String ] −> Int −> String

getColumn ’ [ ] = [ ]

getColumn ’ ( x : xs ) p o s i t i e | p o s i t i e == 0 = x

| otherwise = getColumn ’ xs ( p o s i t i e −1)

−− Maakt een l e g e l i j s t met l e g e l i j s t e n . Nodig om kolommen toe te

voegen aan een tabe l .

emptyLists : : Int −> [ [ String ] ]

emptyLists 0 = [ ]

emptyLists aanta l = [ [ ] ] ++ emptyLists ( aantal −1)

−− Funct ie s voor s e l e c t .

−−−−−−−−−−−−−−−−−−−−−−−−

−− De hoo fd func t i e voor s e l e c t .

s e l e c t : : String −> (String −> Bool ) −> Table −> Table

s e l e c t naam p (a , b , c ) = (a , b , r e s u l t a a t )

where r e s u l t a a t = boolRecords p o s i t i e c p

p o s i t i e = ge tPo s i t i on b naam

−− Voert een boolean u i t op een waarde u i t een record .

boo lS i ng l e : : String −> (String −> Bool ) −> (Bool )

boo lS i ng l e naam p = p naam

−− Voert een boolean u i t op een record .

boolRecord : : Int −> [ String ] −> (String −> Bool ) −> (Bool )

boolRecord 0 (x : ) p = boo lS i ng l e x p

boolRecord [ ] = False

boolRecord p o s i t i e ( : xs ) p = boolRecord ( p o s i t i e −1) xs p

−− Voert een boolean u i t op a l l e r e co rd s .

boolRecords : : Int −> [ [ String ] ] −> (String −> Bool ) −> [ [ String ] ]

boolRecords [ ] = [ ]

boolRecords p o s i t i e ( x : xs ) p | i s t r u e = [ x ] ++ boolRecords p o s i t i e xs

p

| otherwise = boolRecords p o s i t i e xs p

where i s t r u e = boolRecord p o s i t i e x p

−− Funct ie s voor j o i n .

−−−−−−−−−−−−−−−−−−−−−−

−− De hoo fd func t i e voor j o i n .

join : : Table −> Table −> Table

join ( a , b , c ) (d , e , f ) | p o s i t i e s == (−1,−1) = error ”Er z i j n geen

gemeenschappe l i jke kolommen”

| otherwise = (a ++ ” ” ++ d , jo inRecord

p o s i t i e 2 b e , jo inTableTable p o s i t i e 1 c
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p o s i t i e 2 f )

where p o s i t i e 1 = f s t 2 p o s i t i e s

p o s i t i e 2 = snd2 p o s i t i e s

p o s i t i e s = compareTables 0 b e

−− Joined een record met een andere record .

jo inRecord : : Int −> [ String ] −> [ String ] −> [ String ]

jo inRecord p o s i t i e record1 record2 = record1 ++ leaveOut p o s i t i e

record2

−− Verwijderd een kolom u i t een record .

leaveOut : : Int −> [ String ] −> [ String ]

leaveOut [ ] = [ ]

leaveOut p o s i t i e ( x : xs ) | p o s i t i e == 0 = leaveOut ( p o s i t i e −1) xs

| otherwise = [ x ] ++ leaveOut ( p o s i t i e −1) xs

−− Joined een record met meerdere r e co rd s .

jo inRecordTable : : Int −> [ String ] −> Int −> [ [ String ] ] −> [ [ String ] ]

jo inRecordTable [ ] = [ ]

jo inRecordTable p o s i t i e 1 record p o s i t i e 2 ( x : xs ) | naam1 == naam2 = [

jo inRecord p o s i t i e 2 record x ] ++ joinRecordTable p o s i t i e 1 record

p o s i t i e 2 xs

| otherwise =

joinRecordTable

p o s i t i e 1 record

p o s i t i e 2 xs

where naam1 =

getValue p o s i t i e 1

record

naam2 =

getValue

p o s i t i e 2 x

−− Joined meerdere r e co rd s met meerdere r e co rd s .

jo inTableTable : : Int −> [ [ String ] ] −> Int −> [ [ String ] ] −> [ [ String

] ]

jo inTableTable [ ] = [ ]

jo inTableTable p o s i t i e 1 (x : xs ) p o s i t i e 2 t abe l = joinRecordTable

p o s i t i e 1 x p o s i t i e 2 t abe l ++ jo inTableTable p o s i t i e 1 xs p o s i t i e 2

t abe l

−− Leest een va r i ab e l e u i t een record .

getValue : : Int −> [ String ] −> String

getValue [ ] = [ ]

getValue 0 (x : ) = x

getValue p o s i t i e ( : xs ) = getValue ( p o s i t i e −1) xs

−− Geeft de p o s i t i e s van de gemeenschappe l i jke kolommen u i t t a b e l l e n .

compareTables : : Int −> [ String ] −> [ String ] −> ( Int , Int )
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compareTables [ ] = (−1,−1) −− a l s e r geen gemeenschappe l i jke

kolommen z i j n .

compareTables s t a r t ( x : xs ) l i j s t | p o s i t i e < l e ng t e = ( s ta r t , p o s i t i e

)

| otherwise = compareTables ( s t a r t

+1) xs l i j s t

where p o s i t i e = ge tPo s i t i on l i j s t x

l eng t e = length l i j s t





Appendix B

Verification table FQL

73



74
A
P
P
E
N
D
IX

B
.
V
E
R
IF

IC
A
T
IO

N
T
A
B
L
E

F
Q
L

Tokens indegree1 indegree2 indegree3 outdegree1 outdegree2 outdegree3

original VS nameChange 100 100 100 100 100 100 100

original VS bogus 3 12 4 12 12 4 12

original VS trace 85 92 46 92 63 72 82

original VS translateComments 100 100 100 100 100 100 100

original VS relocation 100 100 100 100 100 100 100

original VS rewrite 87 85 86 94 79 87 92

original VS compact 86 94 58 94 90 74 93

original VS unit 91 61 60 80 94 64 94

original VS nc rw 87 85 86 94 79 87 92

original VS nc rw tc 87 85 86 94 79 87 92

original VS nc rw tc cp 77 83 62 89 75 75 88

original VS nc rw tc cp trc 74 84 67 92 78 87 91

original VS nc rw tc cp trc un 68 58 58 81 76 70 89

original VS nc rw tc cp trc un rl 68 58 58 81 76 70 89
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totaldegree1 totaldegree2 totaldegree3 idMinDiff idMaxDiff idAvgDiff

original VS nameChange 100 100 100 100 100 100

original VS bogus 12 1 12 100 11 43

original VS trace 62 69 86 100 56 82

original VS translateComments 100 100 100 100 100 100

original VS relocation 100 100 100 100 100 100

original VS rewrite 71 86 91 100 78 86

original VS compact 92 78 93 100 100 99

original VS unit 63 73 86 100 100 81

original VS nc rw 71 86 91 100 78 86

original VS nc rw tc 71 86 91 100 78 86

original VS nc rw tc cp 69 77 87 100 78 86

original VS nc rw tc cp trc 69 81 92 100 62 92

original VS nc rw tc cp trc un 58 70 87 100 62 74

original VS nc rw tc cp trc un rl 58 70 87 100 62 74
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A
P
P
E
N
D
IX

B
.
V
E
R
IF

IC
A
T
IO

N
T
A
B
L
E

F
Q
L

odMinDiff odMaxDiff odAvgDiff tdMinDiff tdMaxDiff tdAvgDiff

original VS nameChange 100 100 100 100 100 100

original VS bogus 100 33 43 100 22 43

original VS trace 100 90 82 100 50 82

original VS translateComments 100 100 100 100 100 100

original VS relocation 100 100 100 100 100 100

original VS rewrite 100 89 86 100 78 86

original VS compact 100 100 99 100 100 99

original VS unit 100 26 81 100 53 81

original VS nc rw 100 89 86 100 78 86

original VS nc rw tc 100 89 86 100 78 86

original VS nc rw tc cp 100 89 86 100 78 86

original VS nc rw tc cp trc 100 100 92 100 55 92

original VS nc rw tc cp trc un 100 26 74 100 53 74

original VS nc rw tc cp trc un rl 100 26 74 100 53 74
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diameterDiff parameter1 parameter2 parameterAvg Strings Comments fingerprinting

original VS nameChange 100 100 100 100 100 98 68

original VS bogus 40 0 0 0 0 0 0

original VS trace 100 97 97 100 98 99 68

original VS translateComments 100 100 100 100 100 11 100

original VS relocation 100 100 100 100 100 100 91

original VS rewrite 100 100 100 100 99 100 78

original VS compact 80 91 91 98 100 100 99

original VS unit 100 100 100 100 100 100 86

original VS nc rw 100 100 100 100 99 98 53

original VS nc rw tc 100 100 100 100 99 11 53

original VS nc rw tc cp 80 91 91 98 99 11 53

original VS nc rw tc cp trc 80 94 94 98 97 11 42

original VS nc rw tc cp trc un 80 94 94 98 97 11 37

original VS nc rw tc cp trc un rl 80 94 94 98 97 9 36





Appendix C

Analyses fpcal

Top 5 for every heuristic applied on fpcal. For publication reasons not all values

are printed.

Explanation of abbreviations
T Tokens

ID1 in-degree algorithm 1

ID2 in-degree algorithm 2

ID3 in-degree algorithm 3

OD1 out-degree algorithm 1

OD2 out-degree algorithm 2

OD3 out-degree algorithm 3

TD1 total-degree algorithm 1

TD2 total-degree algorithm 2

TD3 total-degree algorithm 3

P1 parameters algorithm 1

P2 parameters algorithm 2

S Strings

C Comments

F Fingerprints

79



80
A
P
P
E
N
D
IX

C
.
A
N
A
L
Y
S
E
S
F
P
C
A
L

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

TOKENS

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr40 VS 2005/Gr5 74 94 75 96 84 67 92 89 76 95 76 81 67 35 34

2005/Gr40 VS 2005/Gr33 71 77 50 85 73 32 85 77 49 88 67 91 55 29 30

2005/Gr40 VS 2005/Gr4 70 82 51 86 82 28 87 73 42 85 50 54 56 27 28

2005/Gr5 VS 2005/Gr42 69 89 94 96 77 91 88 73 90 90 73 77 87 40 26

Indegree 1

2005/Gr40 VS 2005/Gr5 74 94 75 96 84 67 92 89 76 95 76 81 67 35 34

2005/Gr40 VS 2005/Gr54 62 94 93 97 84 87 91 87 89 95 77 90 61 31 24

2005/Gr40 VS 2005/Gr7 62 94 91 97 81 85 89 86 87 96 60 64 37 29 29

2005/Gr20 VS 2005/Gr55 58 94 87 97 90 55 95 84 68 94 46 63 34 34 24

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

Indegree 2

2005/Gr54 VS 2005/Gr7 61 92 96 97 83 88 94 80 90 95 64 70 36 49 24

2005/Gr17 VS 2005/Gr45 57 90 95 97 69 71 85 71 80 91 53 74 54 44 26

2005/Gr5 VS 2005/Gr42 69 89 94 96 77 91 88 73 90 90 73 77 87 40 26

2005/Gr40 VS 2005/Gr54 62 94 93 97 84 87 91 87 89 95 77 90 61 31 24

2005/Gr53 VS 2005/Gr64 63 91 92 97 70 68 86 69 76 88 46 53 33 69 29

Indegree 3

2005/Gr54 VS 2005/Gr7 61 92 96 97 83 88 94 80 90 95 64 70 36 49 24

2005/Gr17 VS 2005/Gr45 57 90 95 97 69 71 85 71 80 91 53 74 54 44 26

2005/Gr40 VS 2005/Gr54 62 94 93 97 84 87 91 87 89 95 77 90 61 31 24

2005/Gr53 VS 2005/Gr64 63 91 92 97 70 68 86 69 76 88 46 53 33 69 29

2005/Gr40 VS 2005/Gr7 62 94 91 97 81 85 89 86 87 96 60 64 37 29 29

Outdegree 1

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr20 VS 2005/Gr55 58 94 87 97 90 55 95 84 68 94 46 63 34 34 24

2005/Gr59 VS 2005/Gr64 62 85 81 92 90 78 95 82 84 94 69 79 81 71 29

2005/Gr39 VS 2005/Gr12 57 78 65 88 90 43 92 70 57 86 55 55 29 44 24

2005/Gr54 VS 2005/Gr27 66 85 70 92 89 59 94 85 70 93 57 76 43 53 23

Outdegree 2

2005/Gr5 VS 2005/Gr42 69 89 94 96 77 91 88 73 90 90 73 77 87 40 26

2005/Gr46 VS 2005/Gr34 61 86 86 94 88 90 97 80 92 94 56 92 62 46 22

2005/Gr19 VS 2005/Gr57 59 81 84 92 75 89 86 72 90 91 53 61 85 29 19

2005/Gr47 VS 2005/Gr29 60 78 82 91 85 88 94 68 83 87 39 70 53 42 27

2005/Gr54 VS 2005/Gr7 61 92 96 97 83 88 94 80 90 95 64 70 36 49 24



81

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

Outdegree 3

2005/Gr46 VS 2005/Gr34 61 86 86 94 88 90 97 80 92 94 56 92 62 46 22

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr32 VS 2005/Gr36 59 81 83 94 85 84 95 80 89 93 70 92 31 45 24

2005/Gr4 VS 2005/Gr35 68 86 84 93 86 80 95 81 86 93 61 72 61 32 28

2005/Gr32 VS 2005/Gr54 60 85 84 93 86 79 95 72 83 92 67 85 39 47 23

Totaldegree 1

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr40 VS 2005/Gr5 74 94 75 96 84 67 92 89 76 95 76 81 67 35 34

2005/Gr5 VS 2005/Gr54 62 88 76 95 80 68 87 89 78 96 62 75 61 34 24

2005/Gr40 VS 2005/Gr54 62 94 93 97 84 87 91 87 89 95 77 90 61 31 24

2005/Gr23 VS 2005/Gr19 59 89 48 90 87 45 90 87 59 90 53 59 33 36 27

Totaldegree 2

2005/Gr46 VS 2005/Gr34 61 86 86 94 88 90 97 80 92 94 56 92 62 46 22

2005/Gr47 VS 2005/Gr66 59 89 91 96 78 86 91 80 92 94 50 74 44 26 29

2005/Gr23 VS 2005/Gr66 61 89 87 96 75 85 88 81 91 94 50 63 27 41 30

2005/Gr54 VS 2005/Gr7 61 92 96 97 83 88 94 80 90 95 64 70 36 49 24

2005/Gr5 VS 2005/Gr42 69 89 94 96 77 91 88 73 90 90 73 77 87 40 26

Totaldegree 3

2005/Gr5 VS 2005/Gr36 63 89 85 95 80 81 89 87 89 96 70 80 52 43 27

2005/Gr54 VS 2005/Gr36 61 86 79 94 87 81 93 86 87 96 58 84 51 42 24

2005/Gr40 VS 2005/Gr7 62 94 91 97 81 85 89 86 87 96 60 64 37 29 29

2005/Gr5 VS 2005/Gr54 62 88 76 95 80 68 87 89 78 96 62 75 61 34 24

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

Parameter 1

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr12 VS 2005/Gr0 56 81 44 82 79 26 81 77 18 81 83 83 35 27 25

2005/Gr56 VS 2005/Gr46 62 83 72 93 82 69 93 71 74 91 80 87 38 19 26

2005/Gr39 VS 2005/Gr53 58 81 55 88 84 28 89 73 47 85 79 79 37 12 23

2005/Gr16 VS 2005/Gr64 62 83 53 90 83 52 91 76 61 89 78 94 55 39 29

Parameter 2

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr48 VS 2005/Gr59 52 61 21 62 56 16 61 60 16 62 68 98 20 24 10

2005/Gr44 VS 2005/Gr17 60 89 88 95 77 76 89 74 81 89 70 97 48 41 26

2005/Gr40 VS 2005/Gr17 63 84 47 86 81 47 82 81 60 86 77 96 80 35 27

2005/Gr17 VS 2005/Gr42 61 91 58 91 86 59 89 75 65 86 77 96 60 41 24



82
A
P
P
E
N
D
IX

C
.
A
N
A
L
Y
S
E
S
F
P
C
A
L

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

Strings

2005/Gr7 VS 2005/Gr0 58 84 56 85 83 35 84 66 46 78 25 25 100 20 24

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr56 VS 2005/Gr0 58 85 67 89 76 52 84 62 57 80 23 23 96 35 24

2005/Gr56 VS 2005/Gr7 62 86 60 91 81 38 90 75 54 89 55 85 96 12 25

2005/Gr46 VS 2005/Gr57 63 82 47 85 77 46 81 63 55 80 47 50 92 40 19

Comments

2005/Gr37 VS 2005/Gr6 21 20 7 20 19 6 20 20 4 20 0 0 0 83 7

2005/Gr53 VS 2005/Gr59 67 85 86 93 70 69 87 76 79 92 50 62 39 82 32

2005/Gr6 VS 2005/Gr64 62 82 79 91 84 72 92 73 75 88 62 66 76 80 29

2005/Gr37 VS 2005/Gr59 26 19 7 19 20 7 20 20 3 20 0 0 0 78 8

2005/Gr6 VS 2005/Gr59 63 75 88 89 84 86 93 73 87 90 64 80 63 77 30

Fingerprints

2005/Gr34 VS 2005/Gr22 94 93 76 96 94 57 97 92 69 96 92 100 98 40 42

2005/Gr40 VS 2005/Gr5 74 94 75 96 84 67 92 89 76 95 76 81 67 35 34

2005/Gr53 VS 2005/Gr59 67 85 86 93 70 69 87 76 79 92 50 62 39 82 32

2005/Gr18 VS 2005/Gr66 60 67 21 72 73 22 75 65 28 71 38 42 71 40 32

2005/Gr12 VS 2005/Gr66 54 71 24 72 72 23 73 65 30 70 23 23 80 39 32

C.1 Copy iteration

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

tokens

copies/Copy29 VS 2005/Gr29 93 81 54 90 84 39 91 70 50 87 61 100 74 1 55

copies/Copy29 VS copies/Copy29 2 82 94 75 96 88 64 95 84 72 94 82 82 80 15 84

copies/Copy29 2 VS 2005/Gr29 80 83 66 92 80 55 90 71 65 88 64 82 52 11 52

copies/Copy29 VS 2005/Gr35 62 77 43 83 77 22 85 74 33 84 71 80 58 3 27

copies/Copy29 VS 2005/Gr46 62 88 64 92 80 43 90 79 58 89 68 83 56 2 27

fingerprinting

copies/Copy29 VS copies/Copy29 2 82 94 75 96 88 64 95 84 72 94 82 82 80 15 84

copies/Copy29 VS 2005/Gr29 93 81 54 90 84 39 91 70 50 87 61 100 74 1 55

copies/Copy29 2 VS 2005/Gr29 80 83 66 92 80 55 90 71 65 88 64 82 52 11 52

copies/Copy29 VS 2005/Gr40 60 86 78 92 83 66 90 81 74 93 63 89 92 2 28

copies/Copy29 VS 2005/Gr36 61 91 88 97 77 74 90 80 81 92 58 84 72 2 28



Appendix D

Analyses fpwisselkoers

Top 5 for every heuristic applied on fpwisselkoers. For publication reasons not all values are printed.

Explanation of abbreviations

T Tokens

ID1 in-degree algorithm 1

ID2 in-degree algorithm 2

ID3 in-degree algorithm 3

OD1 out-degree algorithm 1

OD2 out-degree algorithm 2

OD3 out-degree algorithm 3

TD1 total-degree algorithm 1

TD2 total-degree algorithm 2

TD3 total-degree algorithm 3

P1 parameters algorithm 1

P2 parameters algorithm 2

S Strings

C Comments

F Fingerprints
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A
P
P
E
N
D
IX

D
.
A
N
A
L
Y
S
E
S
F
P
W

IS
S
E
L
K
O
E
R
S

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

TOKENS

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr31 VS Gr82 93 78 50 86 91 53 92 78 68 82 82 82 75 27 59

Gr47 VS Gr49 86 78 35 79 79 26 80 79 19 80 74 74 20 17 46

Gr5 VS Gr57 78 76 54 83 72 55 84 74 70 88 91 95 51 28 29

Gr59 VS Gr0 75 81 81 91 83 88 93 80 89 91 88 90 0 0 31

Indegree 1

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr71 VS Gr26 66 93 80 95 88 76 95 84 85 94 72 72 85 33 14

Gr31 VS Gr30 58 90 81 96 76 80 91 76 86 92 84 92 50 4 7

Gr86 VS Gr26 65 89 84 94 77 75 90 75 79 90 89 91 53 33 12

Gr50 VS Gr18 63 89 92 97 79 84 94 68 89 88 76 85 52 0 21

Indegree 2

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr50 VS Gr18 63 89 92 97 79 84 94 68 89 88 76 85 52 0 21

Gr84 VS Gr15 61 83 92 96 84 93 94 76 92 94 91 95 56 17 13

Gr8 VS Gr78 65 72 92 83 84 87 91 66 89 87 65 65 44 34 15

Gr54 VS Gr30 70 84 90 92 74 86 90 68 87 90 81 84 75 0 17

Indegree 3

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr50 VS Gr18 63 89 92 97 79 84 94 68 89 88 76 85 52 0 21

Gr84 VS Gr15 61 83 92 96 84 93 94 76 92 94 91 95 56 17 13

Gr31 VS Gr30 58 90 81 96 76 80 91 76 86 92 84 92 50 4 7

Gr4 VS Gr12 63 86 87 95 76 86 92 74 86 94 91 95 68 14 16

Outdegree 1

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr4 VS Gr15 56 81 85 92 92 88 97 81 90 94 79 89 65 12 13

Gr31 VS Gr82 93 78 50 86 91 53 92 78 68 82 82 82 75 27 59

Gr4 VS Gr82 52 85 78 92 90 82 94 69 76 84 87 87 65 5 11

Gr71 VS Gr26 66 93 80 95 88 76 95 84 85 94 72 72 85 33 14

Outdegree 2

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr10 VS Gr82 70 78 90 87 85 93 95 71 93 85 90 91 43 23 28

Gr84 VS Gr15 61 83 92 96 84 93 94 76 92 94 91 95 56 17 13

Gr71 VS Gr48 62 76 84 87 84 89 94 70 85 89 78 78 44 0 12

Gr4 VS Gr15 56 81 85 92 92 88 97 81 90 94 79 89 65 12 13
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T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

Outdegree 3

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr4 VS Gr15 56 81 85 92 92 88 97 81 90 94 79 89 65 12 13

Gr10 VS Gr82 70 78 90 87 85 93 95 71 93 85 90 91 43 23 28

Gr4 VS Gr84 66 83 89 93 87 88 95 75 87 93 88 94 60 9 21

Gr40 VS Gr42 69 80 85 94 82 86 95 66 85 91 72 77 50 9 17

Totaldegree 1

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr50 VS Gr43 64 86 57 90 86 57 90 90 63 91 84 94 74 2 20

Gr58 VS Gr50 64 86 57 90 86 57 90 90 63 91 84 94 74 2 20

Gr23 VS Gr50 62 79 72 89 73 71 88 87 87 94 84 84 74 5 24

Gr23 VS Gr43 62 84 73 89 73 45 82 87 63 91 84 84 68 25 20

Totaldegree 2

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr10 VS Gr82 70 78 90 87 85 93 95 71 93 85 90 91 43 23 28

Gr9 VS Gr51 71 76 80 90 68 85 89 85 92 97 76 82 78 16 21

Gr84 VS Gr15 61 83 92 96 84 93 94 76 92 94 91 95 56 17 13

Gr4 VS Gr15 56 81 85 92 92 88 97 81 90 94 79 89 65 12 13

Totaldegree 3

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr9 VS Gr51 71 76 80 90 68 85 89 85 92 97 76 82 78 16 21

Gr84 VS Gr15 61 83 92 96 84 93 94 76 92 94 91 95 56 17 13

Gr4 VS Gr15 56 81 85 92 92 88 97 81 90 94 79 89 65 12 13

Gr23 VS Gr50 62 79 72 89 73 71 88 87 87 94 84 84 74 5 24

Parameter 1

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr18 VS Gr14 67 68 24 76 68 25 78 65 12 78 100 100 49 3 21

Gr86 VS Gr81 63 72 42 76 68 22 78 58 22 72 100 100 14 0 10

Gr45 VS Gr66 63 63 22 69 56 17 66 59 6 69 100 100 58 10 18

Gr19 VS Gr82 63 83 82 94 80 87 92 70 85 90 97 99 56 3 12

Parameter 2

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr18 VS Gr14 67 68 24 76 68 25 78 65 12 78 100 100 49 3 21

Gr86 VS Gr81 63 72 42 76 68 22 78 58 22 72 100 100 14 0 10

Gr45 VS Gr66 63 63 22 69 56 17 66 59 6 69 100 100 58 10 18

Gr19 VS Gr82 63 83 82 94 80 87 92 70 85 90 97 99 56 3 12
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A
P
P
E
N
D
IX

D
.
A
N
A
L
Y
S
E
S
F
P
W

IS
S
E
L
K
O
E
R
S

T ID1 ID2 ID3 OD1 OD2 OD3 TD1 TD2 TD3 P1 P2 S C F

Strings

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr24 VS Gr46 60 72 60 83 78 36 85 69 35 80 71 71 100 17 18

Gr4 VS Gr55 61 67 23 70 64 18 70 60 7 69 94 94 97 7 17

Gr4 VS Gr83 65 61 22 62 61 19 62 60 8 62 56 56 97 4 20

Gr83 VS Gr77 49 75 32 78 58 23 70 55 10 71 84 84 96 27 11

Comments

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr54 VS Gr18 67 74 44 80 74 39 79 74 43 78 58 58 56 73 21

Gr25 VS Gr54 73 78 58 91 87 77 93 77 75 92 86 92 63 67 23

Gr69 VS Gr54 63 73 77 85 58 68 80 62 78 87 58 62 61 53 12

Gr25 VS Gr18 64 82 47 83 74 39 81 70 49 79 60 60 51 53 20

Fingerprints

Gr58 VS Gr43 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Gr31 VS Gr82 93 78 50 86 91 53 92 78 68 82 82 82 75 27 59

Gr47 VS Gr49 86 78 35 79 79 26 80 79 19 80 74 74 20 17 46

Gr37 VS Gr54 73 78 52 85 71 53 81 66 62 83 69 69 63 0 36

Gr59 VS Gr0 75 81 81 91 83 88 93 80 89 91 88 90 0 0 31



Appendix E

Compile and Repository

instructions

Hello,

This is instruction file that describes how to obtain and organize the

repositories that make up the Holmes system.

First make sure a new version of helium is installed,

- either a helium system source repository from the website from after 15 jan 2010

- the helium svn repository

(instructions @ https://subversion.cs.uu.nl/repos/staff.jur.heliumsystem/README)

CHECKOUT

Make directory

mkdir holmes

Then type

cd holmes

Now obtain all the components that make up the compiler

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.lvm/trunk

mv trunk lvm

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.holmes/holmes/helium

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.holmes/holmes/compare

svn checkout https://subversion.cs.uu.nl/repos/staff.jur.Top/trunk

mv trunk Top

COMPILATION

The standard way of compiling Helium is as follows:

cd lvm/src

./configure # add -host i686-apple-macosx if you happen to have an Intel Mac.

cd runtime

make depend

cd ../../..

cd helium

./configure

cd src

To make the pre-processor called sherlock

make dependSherlock
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make sherlock

to make the compare tool called holmes

make dependHolmes

make holmes

# make sure make is GNU make, use gmake if it does not work.



Appendix F

Demo

F.1 Source (Demo.hs)

import List

data Table = Table TableName FieldNames Records

type TableName = String

type FieldNames = [ String ]

type Records = [ [ String ] ]

top10 : : Table

top10 = Table ”Top10”

[ ”Nr” , ” Ar t i s t ” , ” T i t l e ” ]

[ [ ”1” , ”Mark Ronson f t . Amy Winehouse” , ” Va l e r i e ” ]

, [ ”2” , ”Alain Clark ” , ”Father and Friend ” ]

, [ ”3” , ”Leona Lewis ” , ”Bleeding Love” ]

, [ ”4” , ”Kane” , ”Catwalk Criminal ” ]

, [ ”5” , ”Colb ie Ca i l l a t ” , ”Bubbly” ]

, [ ”6” , ”Anouk” , ” I Don ’ t Wanna Hurt” ]

, [ ”7” , ”Timbaland f t One Republ ic ” , ”Apolog ize ” ]

, [ ”8” , ”Lenny Kravitz ” , ” I ’ l l Be Waiting” ]

, [ ”9” , ”DJ Jean” , ”The Lauch Relaunched” ]

, [ ”10” , ”Rihanna” , ”Don ’ t Stop the Music” ]

]

pr intTable : : Table −> IO( )

pr intTable = putStrLn . wr i teTable

wr i teTable : : Table −> [Char ]

wr i teTable ( Table nm fn r e c s ) = writeName ++ writeRecord fn ++

wr i t eL ine ++ concatMap writeRecord r e c s

where

maxwidth = columnWidth ( fn : r e c s )

writeName = nm ++ ” : \n”
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writeRecord rec = ” | ” ++ f i t maxwidth rec ++ ”\n”
wr i t eL ine = ( replicate ( foldr (+) 4 maxwidth ) ’− ’) ++

”\n”

f i t : : [ Int ] −> FieldNames −> String

f i t [ ] = ””

f i t ( x : xs ) [ ] = ( replicate x ’ ’ ) ++ ” | ”
f i t ( x : xs ) ( y : ys ) = y ++ spaces ++ ” | ” ++ f i t xs ys

where

spaces = replicate ( x − ( length y ) ) ’ ’

columnWidth : : Records −> [ Int ]

columnWidth r e c s = map maximum $ transpose [map length r e c | r e c <−
r e c s ]
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F.2 Tokens
Demo.hs.tok
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F.3 Meta data

metadata.hol

t o t a l d e g r e e : [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 6 , 7 , 8 ]

i ndeg ree : [ 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 ]

outdegree : [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 5 , 5 , 7 ]

tdMin : 1

tdMax : 8

tdAvg :2 .3529411764705883

idMin : 0

idMax : 2

idAvg :1 .1764705882352942

odMin : 0

odMax : 7

odAvg :1 .1764705882352942

diameter : 3

parameters : [ 1 , 2 , 1 ]

F.4 Comments

Demo.hs.comm

a

a

by

or

to

to

to

f i t

f q l

the

the

the

the

from

l i n e

l i n e

t e s t

print

t ab l e

t ab l e

width

column

column

copied

record

s i n g l e

s i n g l e

s t r i n g

s t r i n g

widths

convert

c o r r e c t

te rmina l

c a l c u l a t e

ass ignment

f i e ldnames
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F.5 Call graph

F.5.1 dot specification

digraph ca l l g r aph {
”Prelude.++” [ l a b e l=”Prelude.++” ]

”Prelude . r e p l i c a t e ” [ l a b e l=”Prelude . r e p l i c a t e ” ]

”Prelude .−” [ l a b e l=”Prelude .−” ]

”Demo . f i t ” [ l a b e l=”Demo . f i t ” ]

”Prelude . l ength ” [ l a b e l=”Prelude . l ength ” ]

”Prelude . $” [ l a b e l=”Prelude . $” ]

”Prelude .map” [ l a b e l=”Prelude .map” ]

”Prelude .maximum” [ l a b e l=”Prelude .maximum” ]

” L i s t . t ranspose ” [ l a b e l=” L i s t . t ranspose ” ]

”Prelude .+” [ l a b e l=”Prelude .+” ]

”Demo . columnWidth” [ l a b e l=”Demo . columnWidth” ]

”Prelude . concatMap” [ l a b e l=”Prelude . concatMap” ]

”Prelude . f o l d r ” [ l a b e l=”Prelude . f o l d r ” ]

”Prelude . ” [ l a b e l=”Prelude . ” ]

”Prelude . putStrLn” [ l a b e l=”Prelude . putStrLn” ]

”Demo . wr i teTable ” [ l a b e l=”Demo . wr i teTable ” ]

”Demo . pr intTable ” [ l a b e l=”Demo . pr intTable ” ]

”Demo . f i t ”−>”Prelude.++”

”Demo . f i t ”−>”Prelude . r e p l i c a t e ”

”Demo . f i t ”−>”Prelude .−”

”Demo . f i t ”−>”Demo . f i t ”

”Demo . f i t ”−>”Prelude . l ength ”

”Demo . columnWidth”−>”Prelude . $”

”Demo . columnWidth”−>”Prelude . l ength ”

”Demo . columnWidth”−>”Prelude .map”

”Demo . columnWidth”−>”Prelude .maximum”

”Demo . columnWidth”−>” L i s t . t ranspose ”

”Demo . wr i teTable ”−>”Prelude .+”

”Demo . wr i teTable ”−>”Prelude.++”

”Demo . wr i teTable ”−>”Demo . columnWidth”

”Demo . wr i teTable ”−>”Prelude . concatMap”

”Demo . wr i teTable ”−>”Demo . f i t ”

”Demo . wr i teTable ”−>”Prelude . f o l d r ”

”Demo . wr i teTable ”−>”Prelude . r e p l i c a t e ”

”Demo . pr intTable ”−>”Prelude . ”

”Demo . pr intTable ”−>”Prelude . putStrLn”

”Demo . pr intTable ”−>”Demo . wr i teTable ”

}
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F.5.2 visual call graph

Figure F.1: visual callgraph
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