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ABSTRACT

A good understanding of Perturbative Quantum Gravity is essential for anyone
who wishes to proceed towards any kind of non-perturbative approach. This
lecture is a brief resummé of the main features of the perturbative regime.

1. INTRODUCTION:
Perturbative Quantum Gravity as a gauge theory.

The Einstein-Hilbert action describing General Relativity is

S =
∫
L(x) d4x ; L(x) =

√−g
(

R

16πG
+ Lmatter

)
. (1.1)

R is the Ricci scalar curvature. g is the determinant of the metric tensor gµν . The rule
is that the matter Lagrangian must be made completely covariant by inserting the metric
tensor gµν(x) or its inverse, gµν(x) whereever needed. gµν , with its proper Minkowski
signature, is promoted to being a dynamical variable. The variational principle with gµν

and the matter fields as dynamical variables gives us the classical field equations obeyed
by these variables. We assume here that the most essential principles of General Relativity
are known[1]; let us recapitulate the most basic features that we need.
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The “gauge transformation” in this theory is the space-time dependent coordinate
transformation,

xµ → xµ + εηµ(x), (1.2)

where ε is infinitesimal, and ηµ(x) is the space-time dependent generator of this trans-
formation. The metric tensor transforms as

gµν → gµν + ε (ηα∂αgµν + gαν∂µη
α + gµα∂νη

a) . (1.3)

The last two terms here tell us that gµν transforms as a tensor. In perturbation theory,
we will write (using Euclidean notation):

gµν = δµν + εhµν , (1.4)

where hµν is taken to be infinitesimal. The transformation rule for hµν can be written as

hµν → hµν + Dµην + Dνηµ , (1.5)

where we used the notion of a covariant derivative:

Dµην ≡ ∂µην − Γα
µνηα . (1.6)

It adds to the two gradients of ην in Eq. (1.3) not only the first term in Eq. (1.3), but
also the extra terms one gets by lowering the index of the ηα field using the metric gαν .

The expressions giving R in terms of the metric tensor gµν are quite non-linear:1

Γαµν = 1
2
(∂µgαν + ∂νgαµ − ∂αgµν) ; Γλ

µν = gλαΓαµν . (1.7)

Rλ
αµν = ∂µΓλ

αν − ∂νΓ
λ
αµ + Γλ

µσΓσ
αν − Γλ

νσΓσ
αµ ; (1.8)

R = gανRµ
αµν . (1.9)

Substituting (1.4) and writing

gµν = δµν − εhµν + ε2hµαhαν + · · · , (1.10)

we can expand the action (1.1) in powers of hµν . This results in an expression that we
can write as

L = 1
2
hαβVαβµνhµν + (higher orders) , (1.11)

where Vαβµν is a fairly complicated expression. The Euler-Lagrange equations following
from varying this Lagrangian do not have unique solutions unless we impose a gauge
condition. To understand what will happen physically, it is best first to consider the
radiation gauge:

3∑

i=1

∂ihiµ = 0 ; µ = 1, · · · , 4. (1.12)

1There is a way to make these equations look nearly linear, by using a more sophisticated choice of
variables[2], but the physics remains the same, and interactions due to non-linearity remain present.
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Choosing

ε =
√

16πG , (1.13)

and going to Fourier space,

f(x) = 1
(2π)2

∫
d4k eikxf̂(k) , (1.14)

one finds for Vαβµν

Vαβµν = 1
2
k2(δαµδβν − δαβδµν) + kµkνδαβ − kβkνδαµ + b2~kβ

~kνδαµ , (1.15)

where ~k is k with its time component replaced by 0, and the parameter b2 is sent to
infinity, so as to impose Eq. (1.12).

These expressions look complicated, but they become a lot more transparent of we
rotate ~k into the z -direction,

~kµ = (0, 0, κ, 0) . (1.16)

To find the propagator in this gauge, we first have to symmetrize Vαβµν with respect to
interchanges α ↔ β , µ ↔ ν and (αβ) ↔ (µν). The propagator P is solved from

V · P = I ; I = 1
2
(δαµδβν + δανδβµ) . (1.17)

The solution to this tensor equation is

Pµναβ =
1

k2

(
δ̂αµδ̂βν + δ̂αν δ̂βµ − 2

n− 2
δ̂αβ δ̂µν

)
+

terms containing only ~k2 in their denominators, (1.18)

where δ̂ is defined as

δ̂µν ≡ diag(1, 1, 0, 0) , (1.19)

and n is the number of space-time dimensions, n = 4 being the physical value. Only the
part explicitly written in Eq. (1.18) represents excitations that actually propagate. One
sees first of all that only the completely transverse components of the field hµν propagate:
µ, ν = 1 or 2. Secondly, the diagonal component (the trace) drops out:

Pµµ αβ = 0 since δ̂µµ = n− 2 . (1.20)

Since traceless, symmetric 2×2 matrices have only two independent components, we read
off that there are only two propagating modes, the two helicities of the graviton. The
propagator (1.18) propagates a graviton with the speed of light.

For practical calculations of Feynman diagrams and divergences, the radiation gauge
(1.12) is not so suitable, since it violates Lorentz invariance. Let us again consider the
quadratic term of the Lagrangian (1.1) prior to fixing the gauge. It can be written as:

L = 1
8
(∂σhαα)2 − 1

4
(∂σhαβ)(∂σhαβ) + 1

2
A2

µ − 1
2
Tµνhµν (1.21)

+ (total derivative) + (higher orders in h) + Lgauge fix , (1.22)
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where

Aµ ≡ ∂σhσµ − 1
2
∂µhσσ , (1.23)

and Lgauge fix = −1
2
C2

σ + Lghost . (1.24)

To fix the gauge, we can choose any non-gauge invariant function Cµ . It obviously is
convenient to choose

Cµ = Aµ , (1.25)

because then the the gauge fixing term cancels out a similar term in the Lagrangian
(1.22), and the remainder is easy to invert in order to obtain a smooth propagator for gµν

that looks renormalizable — the theory however is still not renormalizable because of the
derivatives in the interaction terms.

The ghost Lagrangian is obtained, as usual, by determining how the gauge-fixing term
transforms under a gauge transformation:

Aµ → Aµ + ∂2ηµ + (higher orders) ; (1.26)

this leads to

Lghost = −∂αϕµ∂αϕµ + (higher orders). (1.27)

2. DIVERGENCES.

From this point, one may proceed exactly as in a Yang-Mills theory. Dimensional renor-
malization is quite convenient; we choose a continuously variable number of dimensions,
n , and express the singularities that arise as poles of the form (n − 4)−r , where r is an
integer varying from one to the number of irreducible loops in the diagram. We cancel
these poles by inserting counter terms ∆L in the Lagrangian:

L → L+ ∆L . (2.1)

What kind of counter term Lagrangians can we expect?[3]

From unitarity, causality and dispersion relations, one deduces that ∆L must be a
local Lagrangian. What else can we say?

1. Dimensionality. The expansion parameter here, ε2 , as given by Eq. (1.13), is essen-
tially Newton’s constant, G . It has the dimension of a length squared (after putting
c = h̄ = 1). For purely dimensional rasons then, we expect two extra derivatives at
every consecutive order in G .

2. Gauge-invariance. Because the gauge is fixed by a gauge-fixing term, we do not
expect the infinities to be gauge-invariant, but only physically observable quantities
have to be handled in such a way that the infinities cancel out. There is a trick to
limit the infinities to only gauge-invariant expressions; it is called the background
field method[4]. So, we limit ourselves to gauge-invariant expressions for ∆L .
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3. Only those infinities have to be considered that do not vanish on mass shell, for the
following reason:

There is a theorem: if, at a given order, a term in ∆L vanishes ‘on mass shell’ (which
means that ∆L = 0 whenever the field equations of motion are substituted in the fields
that occur in ∆L), then that term is unphysical at that order, or, to be precise, that term
can be transformed away by a field transformation.[5]

The proof of the theorem goes as follows. The Euler-Lagrange equations read

δL
δϕi

− ∂µ
δL

δ∂µϕi

= 0 , (2.2)

where ϕi simply stand for all conceivable dynamical fields that occur in L , which include
the metric tensor gµν . Assume that ∆L vanishes as soon as these equations are satisfied.
This means that there must exist field combinations that we call δϕi , being functions of
the existing fields ϕ, ∂ϕ, · · · , such that

∆L = δϕi

(
δL
δϕi

− ∂µ
δL

δ∂µϕi

)
. (2.3)

This implies that, at lowest order, we can write the action S as

S =
∫

d4x(L+ ∆L) =
∫

d4xL(ϕi + δϕi) . (2.4)

This is a field redefinition, such as ϕ → Zϕ+F . Such field redefinitions have no physically
observable effects on the predictions of a theory; they just define what our fields ϕ are.
If, after such field redefinitions, an infinity disappears, then this infinity is not in any
observable quantity such as the magnetic moment of a particle.

Knowing all these restrictions, which independent counter terms can one expect to
encounter?

A In the case of pure gravity, L =
√−g R . Consider the counter terms needed for the

infinities in the one-loop diagrams. Conditions 1 and 2 imply that the only possible
terms to expect are

∆L =
√−g (αR2 + βR2

µν + γR2
αβµν) . (2.5)

Here, Rαβµν is the Riemann tensor (1.8), Rµν is the Ricci tensor, which is the
Riemann tensor with two indices contracted, and R is the Ricci scalar (1.9). To
convince oneself that there is only one variety for the last term in Eq. (2.5), one
uses the known symmetry features of the Riemann tensor.

Condition 3 tells us that, since there is no matter field, the first two terms in (2.5)
are unphysical, because R = 0 and Rµν = 0 due to Einstein’s equations. However,
it so happens that the combination

∫
d4x

√−g(R2 − 4R2
µν + R2

µναβ) , (2.6)
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is a topological invariant. Being a pure derivative, the integral (2.6) is completely
determined by the fields on the boundary, and therefore such a term in the La-
grangian does not affect the field equations. This implies that also the third term
in (2.5) is unphysical. We conclude that pure gravity has no infinity at all at the
one-loop level! It is one-loop renormalizable.

B What about pure gravity in two loops? Which independent invariants may we
expect? Dimensional analysis tells us that the terms may be of the form DDDDR ,
RDDR or RRR . Here, D stands for a (covariant) derivative and R stands for a
non-contracted Riemann tensor. The first terms are pure derivaties, so they can be
ignored. Next, one observes that the Bianchi identities may be used to show that
also the second set of terms vanish on shell. The third set is harder. Let us use
representation theory in Euclidean 4-space, writing the various possible components
as representations of SO(4) = SU(2)L ⊗ SU(2)R , we see that a Lorentz index µ
stands for a 2L ⊗ 2R , and an antisymmetric combination of two indices, µν splits
up into a self-dual and an anti self-dual part: 6 = 3L ⊕ 3R . The Riemann tensor
itself, Rµν αβ is a symmetric combination of two 6’s, or

((3L + 3R)× (3L + 3R))Symm . (2.7)

Since in SO(3), (3× 3)Symm = 5 + 1, we can write (2.7) as

5L + 1 + 5R + 1 + 3L × 3R = 21 . (2.8)

One of the 1 representations is the pseudoscalar which vanishes due to a symmetry
equation for the Riemann tensor:

ελναβRµναβ = 0 . (2.9)

This leaves 20 terms. Here, 3L × 3R + 1 are the 10 components of the symmetric,
contracted Ricci tensor Rµν , the 1 being its trace R . These vanish on shell. We are
left with a 5L and a 5R , which are the self-dual and the anti self-dual parts of the
Weyl tensor.

How many invariants are there of the form (5L + 5R)3? In SO(3), we have 52 =
9+7+5+3+1. Only the 5 in here contributes to a scalar in 5L

3 . So, this gives one
scalar. Similarly, we expect one scalar out of 5R

3 . The cross terms cannot be scalar.
The two terms we get are related by parity (they form a scalar and a pseudoscalar)
So, eventually, since our theory is symmetric under parity, we can have only one
infinite counter term from 5L

3 + 5R
3 . Pure gravity without matter only requires one

new counter term at the two loop level. It goes associated with one new constant
of Nature. Considering the accuracy of the order of G3 that we reached, this is an
impressive result. Pure Gravity is pseudo-renormalizable

C Pure gravity plus one scalar field ϕ . The Lagrangian is taken to be

L =
√−g

(
R− 1

2
(∂µϕ)2

)
. (2.10)
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This requires just one counter term at the one loop order, which has been calculated
to be:[5]

∆L =
203

640π2(n− 4)

√−gR2 . (2.11)

Again, having just one extra adjustable parameter seems to be not so bad a price
to pay for a theory with one-loop accuracy.

Thus, perturbative gravity generates new infinities at higher orders, requiring counter
terms whose finite parts are arbitrary, uncalculable coefficients, at each order in G . This
does not seem to be the worst property of the theory. Much worse features are:

• The perturbation expansion in powers of G diverges.

• Therefore, we have absolutely no idea about the behaviour at distance scales com-
parable to, or shorter than, the Planck scale.

There actually are many good features of this theory, when compared with much more
ambitious, so-called non-perturbative theories of gravity.

◦ The gauge-fixing procedure leads to a well-defined foliation of space-time: the def-
inition of time does not lead to new difficulties. Our theory just behaves as any
other non-Abelian gauge theory.[5]

◦ Its symmetry structure completely determines all finite parts of the amplitudes.
There are no unwarranted assumptions.

◦ The theory can be used as a starting point for any more ambitious approach.

◦ The analytic structure of the amplitudes is well-defined. The Wick rotation can
be performed without any difficulty, in spite of the fact that the classical action in
Euclidean space does not seem to be nounded from below!

3. THE WICK ROTATION

Let us concentrate a bit more on this Wick rotation, explain the problem, and its resolu-
tion, as dictated precisely simply by studying perturbative Quantum Gravity. The Wick
rotation corresponds to the replacement

t → iτ , (3.1)

which turns space-time into a Euclidean space. For a scalar theory with action

S =
∫

d4x
(
−1

2
(∂ϕ)2 − V (ϕ)

)
, (3.2)
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the amplitudes in Euclidean space are described by functional integrals of the type

∫
Dϕ(x) exp

∫
d4x

(
−1

2
(∂ϕ)2 − V (ϕ)

)
, (3.3)

which can be approximated by decently convergent Gaussian integrals.

In QED , the Euclidean functional integral is

∫
DAµ(x) exp

(
−1

4

∫
FµνFµνd

4x
)

, (3.4)

and since this integrand is minus a pure square, one here also has properly convergent
Gaussian integrals. In gravity, however, there is no upper or lower bound on the value of∫

d4x
√

gR(x) in Euclidean space (that is, a space where the metric tensor field gµν(x) is
real valued and has signature (+ + ++)), so the functional integral is ill-defined.

Some authors concluded that, therefore, the functional integral will be dominated by
“non-perturbative effects”, sometimes referred to as “space-time foam”[6]. Here, we will
show that the problem not only also shows up in perturbative gravity, but it clearly has
a valid resolution here; no such thing as space-time foam is needed.

First, why does the Wick rotation work so well in theories such as QED? In QED, the
Lagrangian is

L = −1
4
FµνFµν − λ∂iAi + J0A0 . (3.5)

Here, λ is a Lagrange multiplier that fixes for us a radiation gauge condition, ∂iAi = 0.
It is convenient, again, to work in Fourier space, where we again rotate the vector ~k into
the z -direction:

~k = (0, 0, κ) ; ~A = (A1, A2, 0) . (3.6)

The Lagrangian then becomes

L = −1
2
~k2 ~A2 + 1

2
~̇A

2

+ 1
2
κ2 ~A2

0 + J0A0 . (3.7)

The first two terms here describe the two helicities of the photon, and the last just
generates the Coulomb force between the sources J0(~x). The Coulomb force is obtained
by extremizing the action as a function of A0 . In Euclidean space, t = iτ , the action will
be bounded from above if we choose A0 to be imaginary, A0 = −iA4 . Indeed, in that
case, we see that in Euclidean space −1

4

∫
FµνFµν is real and bounded from above. We

find that the Euclidean action integral,
∫

∆A exp(−1
4

∫
FµνFµν) then converges properly.

This is the standard Wick rotation.

In (perturbative) Quantum Gravity, the situation is more complicated. Take the
radiation gauge:

L = −1
2
hαβVαβµνhµν − 1

2
Tµνhµν + (higher orders), (3.8)
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In Eq. (1.15), we again rotate the vector ~k into the positive z -direction, so that

~k =




0
0
κ


 ; hµν =




1
2
h + h1 h2 0 h10

h2
1
2
h− h1 0 h20

0 0 0 0
h10 h20 0 h00


 (3.9)

In this gauge, the kinetic part of the Lagrangian splits up into three parts:

L = LI + LII + LIII , (3.10)

LI = 1
2
(ḣ2

1 + ḣ2
2)− 1

2
κ2(h2

1 + h2
2)− T1h1 − T2h2 ; (3.11)

LII = 1
2
κ2h2

oa + h0aToa ; (3.12)

LIII = −1
8
ḣ2 + 1

8
κ2h2 − 1

2
κ2hh00 − 1

2
h00T00 − 1

4
hTaa . (3.13)

The first Lagrangian, LI , describes the propagating modes, and it allows a Wick
rotation into Euclidean space as usual, just like what we do with scalar fields in flat
space-time. The second Lagrangian yields an instantaneous repulsive force between the
Poynting currents T0a of the form

VP = −T 2
0a/2κ

2 , (3.14)

provided that we integrate h0a along the imaginary axis. This component can be handled
in Euclidean space after Wick rotation without complications (In Euclidean space, h4a

can be taken to be a real valued field)

It is the third term where something unusual happens. In LIII , we see that h00 acts
as a Lagrange multiplier field, yielding the constraint

h = −T00

κ2
. (3.15)

In Euclidean space, this constraint would be obtained from the functional integral

∫
Dh44 exp

(
−

∫
d4x 1

2
h44(κ

2h + T44)
)

. (3.16)

Note that this only gives the correct constraint, (3.15) if either h or h44 are taken to
be imaginary. Normally, one would be inclined to give only real values to the fields in
Euclidean space, but if in Eq. (3.16) all quantities inside the exponent were kept real,
the integral would diverge badly; only complex exponential integrals yield delta functions.
In fact, this is the way in which we encounter the fact that the Einstein Hilbert action,
Eq. (1.1) is not properly bounded when rotated to Euclidean space. Here, we now see
what has to be done: some of the dynamical fields, even after the Wick rotation, are not
allowed to take on real values.

From a perturbative point of view, it is obvious that all functional integrals in Eu-
clidean space-time are duly convergent, provided that the integration contours are chosen
appropriately. The message for any non-perturbative formalism is quite clear: also in a
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non-perturbative gravity theory, the functional integrals must converge. The functional
integrand formed by the Einstein-Hilbert action in Euclidean space is unbounded in the
space of real metrics gµν ; it is the exponent of a quantity that can have any sign. From
Eq. (3.16), we concluded that either h or h44 must be imaginary. These quantities would
form the conformal factor of the metric. Thus, by adjusting the integration contours, par-
ticularly in the space of the conformal factors, one can obtain properly defined functional
integrals in Euclidean space.

There is an even more transparent way to formulate these conditions. Apparently, in
Euclidean space-time, one must always rotate the contours in function space such that the
action stays bounded from above. We can formulate this condition non-perturbatively.
Write

gµν = Ω(x)ĝµν(x) , (3.17)

where we define the extra factor Ω(x) in such a way that the Ricci scalar with respect to
the metric ĝµν vanishes:

R(ĝµν) = 0 . (3.18)

Writing Ω(x) = eiθ(x) , we find that the gravitational part of the action becomes

S =
√

g R → √
g

(
−3

2
(∂µθ)

2
)

. (3.19)

This is bounded from above provided that we choose θ to be real rather than imaginary.
We conclude: the metric cannot be integrated over real values with positive signature;
one must choose a complex conformal factor, or some similar revision of the functional
integration contours.

4. THE SPECULATIVE PART OF QUANTUM GRAVITY.

Clearly, perturbative Quantum Gravity cannot answer the question as to what really
happens at the Planck scale. Whenever the gravitational field becomes so strong that
perturbative procedures no longer apply, new theoretical approaches are required, and
indeed, new laws of physics may have to be searched for. In all other cases, one might
be able to extrapolate from what is already known in perturbative terms. Which are the
fundamentally new situations where the gravitational fields become too strong?

The answer to this is that the gravitational force harbors a fundamental instability. If
large amounts of matter converge into a small region of space, the attractive gravitational
force will cause a further contraction, and eventually this may result into an explosion.
The laws of General Relativity leave little doubt as to what this must lead to: a black
hole. It is the black hole that creates the strongest possible gravitational fields. If we wish
to know how to do non-perturbative gravity, it is the black holes that we must study. The
author’s approach to black holes is described in Refs.[7] Some tendency of pure gravity
to generate string like structures could be observed, although the string action deduced
from gravity does not exactly coincide with the starting points employed in string theory.

10



Applying purely logical arguments takes us very far, but eventually, we have to use
some intuition to make further progress, and it is here that opinions on the way to proceed
diverge most. The suspicion advocated here is that we must involve the discussions
concerning the foundations of Quantum Mechanics. It is quite conceivable that what we
are really searching for is a theory that combines hidden variables with superstrings or
black holes. Such ideas are further displayed in Ref.[8]
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