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Preface

The 1998-1999 Master Class Program in Mathematical Logic

These Lecture Notes contain the material of a series of lectures T gave in the
Spring of 1999, in the Master Class Program in Mathematical Logic. This
program was funded by the Mathematical Research Institute, a cooperation of
the Mathematics Departments of the Universities of Utrecht, Nijmegen, and
Groningen.

In the fall of 1998, students followed basic courses in core subjects of Logic:
Model Theory, Recursion Theory, Proof Theory and Lambda Calculus. More-
over there was a series of introductory talks on varying topics in Logic, includ-
ing Intuitionism, Term Rewriting, Naive Set Theory, the Language of Cate-
gories, the P=NP7-problem, and Provability Logic; the series was called Logic
Panorama.

The second semester featured more advanced courses: Type Theory, Peano
Arithmetic, and the Logic of Sheaves. The students also followed a seminar on
Descriptive Set Theory.

Apart from doing exams for the lecture courses, the students had to write
two essays: one, elementary, on a subject of their choice from the Panorama
series; the other, the so-called “test problem” required them to demonstrate an
ability to read research texts independently, furnish missing details, and solve
a (simple) problem.

I believe that in all, this program provided a balanced and thorough intro-
duction to the subject, and gave would-be research students and excellent basis
on which to start a research career.

Responsability for the Program was taken by the Logic Groups of the Uni-
versities of Utrecht and Nijmegen. Teachers were Henk Barendregt, Wil Dekker,
Herman Geuvers, Teke Moerdijk, Jaap van Qosten, Harold Schellinx and Wim
Veldman. The following teachers (apart from those already mentioned) took
part in the Panorama Program and/or supervised the writing of essays: Ti-
bor Beke, Hans Bodlaender, Francois Métayer, Frik Palmgren, Anne Troelstra,
Albert Visser and Hans Zantema.

The course on Peano Arithmetic (PA)

Naturally divided into two parts, the course treats (Godel’s Incompleteness The-
orems and gives an introduction to the Model Theory of PA. Tn spite of the clear
separation between working in an axiomatic theory and considering models of
the theory, there are themes running through the entire course, giving unity to
the treatment. These are: the formalization of elementary number theory in
PA | the arithmetization of syntax, the natural stratification of sentences in the
arithmetical hierarchy, and the issue of definability, coming up over and over
again.

These themes are in fact central to Logic as a scientific discipline: the student
will meet them everywhere, in different guises. T am therefore convinced that



the study of Peano Arithmetic provides the student with basic skills he will be
using continuously, in every area of Logic.

Many people are of opinion that syntax i1s boring and coding troublesome,
and that these matters should therefore be glossed over in a hand-waving man-
ner. Tt is quite ironic that this belief is shared by many logicians, whereas syntax
is the raw material of Logic itself! Very often the result of a hand-waving treat-
ment is, that students feel insecure about syntactical matters, and have no clear
understanding of the problems involved in formalization. Of course, the prob-
lem of treating syntax needs reflection of a special kind. Tf presented in a well
thought-out way, the theory of coding and syntax can be elegant and reward-
ing in itself (besides being indispensible). T hope that in these notes T have
succeeded in bringing this to light.

Mathematically, Peano Arithmetic is attractive because of the many apph-
cations of Model Theory and Recursion Theory it offers; permitting to see these
subjects ‘at work’.

Now let me briefly outline the contents of the course. The first chapter gives
the definition of PA as an axiomatic theory, and treats the formalization of
elementary number theory in it, up to the representability theorems for recur-
sive and primitive recursive functions. The second chapter gives an account of
Godel’s Incompleteness Theorems. The third and fourth chapters are concerned
with the model theory of PA. Chapter 3 focusses on structural aspects of exten-
sions of models. After a discussion of the ordered structure of (nonstandard)
models and the Overspill Principle, the two basic kinds of extension (cofinal
and end-extension) are treated: existence of proper elementary extensions of
each kind, and Gaifman’s Splitting Theorem. Chapter four is called ‘Recur-
sive Aspects of models of PA’ (T couldn’t think of a hetter name) and deals
with theorems connected to the existence of the partial truth (or ‘satisfaction’)
predicates for ¥, -formulas, and the theory of coded sets. We have the classical
theorems of Ryll-Nardzewski (PA is not finitely axiomatized) and Tennenbaum
(no countable nonstandard model of PA is recursive); and then the heautiful
results of Scott and Friedman.

There 18 lots of scope for follow-up courses in many directions. Among
the topics T specifically regret not having been able to say anything, are weak
subtheories of PA (there is an interesting model theory, and ramifications to
complexity theory), and the algebraic structure of nonstandard models (an easy
fact, recorded in the Appendix, indicates that these have interesting properties).

Prerequisites: these notes have been written for students who have been
through basic mathematical education (the first two years of the university cur-
riculum in mathematics) as well as the basics of model theory and recursion
theory. Specifically, what is required from model theory is: elementary embed-
dings, the method of diagrams, the Omitting Types theorem. From recursion
theory: the recursion theorem, r.e. sets, the arithmetic hierarchy, relative com-
putability.

Literature An outstanding reference for models is Kaye’s Models of Peano
Arithmetic which also has most of the material in chapter 1, and which T have



plagiarized happily. Another very helpful source was Smorynski’s Lecture Notes
on Nonstandard Models of Arithmetic, in Logic Colloquium 82.

For a good overview of the (modal) logical structure of ther Tncompleteness
Theorems, see Smorynski’s Self-Reference and Modal Logic, and for various
number-theoretical aspects, his Logical Number Theory I.

There are many good and accessible treatments of Godel’s First Incomplete-
ness Theorem, but, rather embarrassingly for such a central result, not so many
for the Second. For example, Smullyan’s (Godel’s Incompleteness Theorems does
not give a proof of the Second Tncompleteness Theorem! There is a good expo-
sition in Girard’s Proof Theory and Logical Complexity.
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1 The Formal System of Peano Arithmetic

The system of first-order Peano Arithmetic or PA| is a theory in the language
Lpa = {0,1;4+, -} where 0,1 are constants, and +, - binary function symbols. Tt
has the following axioms:

1) Ve-(z+1=0)

2) Yayle+1l=y+1—=12=y)

W

Ve(e+0=2)

A

o

V(-0 = 0)

o

Vay(e-(y+ 1) = (vy) + )

)
)
)
) Vay(z+(y+1)=(x+y)+1)
)
)
7)

Yal(e(0, %) AVy(e(y, 7) = o(y +1,7))) = Yye(y, 7)]

Ttem 7 is meant to be an axiom for every formula ¢(y, #). These axioms are
called induction arioms. Such a set of axioms, given by one or more generic
symbols “©” which range over all formulas, is called an ariom scheme; in our
case we talk about the induction scheme.

So, PA is given by infinitely many axioms and we shall see that this infinitude
1s essential.

Clearly, the set IN together with the elements 0,1 and usual addition and
multiplication, is a model of PA,| which we call the standard model and denote
by N. Tt is easy to see that PA has also non-standard models. First define, for
every n € IN, a term W of Lpa by recursion: 0 = 0 and n+1 =m+ 1 (mind
you, this is not the identity function! E.g., 3= ((0+1) + 1) + 1). Terms of the
form 7w are called numerals and we shall use them a lot later on. Now let ¢ be
a new constant, and consider in the language Lpa U {c} the set of axioms:

{axioms of PA}U {=(¢c=7)|n € N}

Since every finite subset has a straighforward interpretation in IN, this is a
consistent set of axioms and has therefore a model M, which has a nonstandard
element M.

The theory PA is surprisingly strong: it can represent (in a suitable sense,
soon to he made precise) all recursive functions, and most elementary number
theory can be carried out in this system. Tronically though, it is exactly this
strength that lies at the basis of its being incomplete as Godel was the first
to show. Since we wish to arrive at these famous Incompleteness Theorems,
our first aim is to develop some elementary number theory in PA. Our first
proposition establishes basic properties of addition and multiplication.

Proposition 1.1
i) PARVYz(e=0V3ylzx =y+1))



i) PAFVYryz(z+ (y+2)=(r+y)+2)

iii) PAFYay(zr+y=y+x)

iv) PARYayz(z+z=y+z—o2=y)

v) PAFVayz(e-(y-z) = (vy)-2)

vi) PAFVay(ey=yz)

vii) PAFYayz(e-(y+z) = (v-y) + (2-2))
viii) PAFVayz(=(z = 0) Awz=yz = 2 = y)

Proof. All of these are proved using the induction axioms. For i), let ¢(2) be
=0V 3y(z =y +1). Clearly, PA F ©(0) AVyp(y + 1), so PA F Vap(z).

For ii), use “induction on z” that is, let ¢(z) be the formulaVay(z 4 (y+2) =
(2 4+ y) + z). Then PA I ©(0) by axiom 3, and PA F ¢(z) — ¢(z + 1) by axiom

4, since
p)F++2))+l=s+(y+2)+1)=v+ @+ (z+1))

The proof of the other statements is a useful exercise (sometimes, as in iii), you
will need to perform a double induction).

Exercise 1. Prove statements iii)-viii) of proposition 1.1.

Proposition 1.2 el p(x,y) be the formula 3z(x+(z4+1) = y). Then in PA, ¢
defines a discrete linear order with least element which satisfies the least number
principle, 1.e.

i) PAF —p(x,x)

) PAE o(z,y) Aoy, 2) = o(x, 2)

i) PAF o, y)Ve=yVoely )

iv) PAFz=0Ve(0,x)

v) PAEo(z,y) = (y=z+1Ve(x+1,y)

vi) PAE Jwi(w) = y((y) AVa(e(r,y) = —¢(x)))
vii) PAF oz, +1)
Exercise 2. Prove proposition 1.2

The scheme vi) of proposition 1.2 is called the least number principle TNP.

Exercise 3. Prove that NP is equivalent to the scheme of induction, in the
following sense: let PA’ be the theory with the first 6 axioms of PA  and the
statements of proposition 1.2 as axioms. Then PA and PA’ are equivalent the-

ories.



The order defined in proposition 1.2 is so important that we introduce a
new symbol for it: henceforth we write < y for z(z + (z + 1) = y). We shall
also use the abbreviations 32 < y and Vo < y for Jz(z < y A ...) and Va(z <
Yy — ...), respectively. We shall write 2 < y for 2z =yV e <y, and 2 # y for
—(2 = 0). This process of introducing abbreviations will continue throughout;
it is absolutely essential if we want to write meaningful formal statements (but,
especially later when we shall also introduce function symbols, we shall have to
make sure that the properties of the meant functions are provable in PA).

Exercise 4. Prove the principle of well-founded induction, that is:
PA F Vu (Yo < wip(v) — ¥(w)) = Ywip(w)

Exercise 5. Prove:

PAFVYayly £0— 2 < 2vy)

1.1 Elementary Number Theory in PA

The starting point for our treatment of elementary number theory in PA is the
theorem of Fuclidean division.

Theorem 1.3 (Division with remainder)
PAFVeyly #0 = Jab(z =ay+bA0<b < y))
Moreover, PA proves that such a,b are unique.

Proof. By induction on z. Clearly, 0 =0-y+0;iffz =a-y+bA0 < b <y then
by 1.2v), b+ 1 <yVb+1 =y Mb+1 <y, z+1=ay+(b+1)andifb+1 =y,
r+1=(a+1)y+0.

For uniqueness, suppose # —a-y+b—=a’-y+ ¥ with 0 < b ¥ <y. fa <a
then a + 1 < @’ hence

ady>ay+ty>ay+b=u=x

with a contradiction. So @’ < a and by symmetry, a = a’. Then b = ¥’ follows

by 1.1iv). [ |

In the notation of theorem 1.3, we call b the remainder of x on diwvision by y,
and a the integer part of x divided by y.
Again, we introduce shorthand notation:

rly = Fz(zz=1y)
irred(z) = Vo<azwlz—=v=1Vv=n12)
prime(z) = x> 1AVyz(z|(y-z = x|y V 2|2)

Furthermore, since PA F Vay3lz((z = 0Az < y) Vo = z+y), we may introduce
a function symbol — to the language, with axiom

Vey((e <yAz—y=0)V(z=y+(z—1y)))



T hope the notations are familiar. The notions “irreducible” and “prime” element,
are from ring theory.

Proposition 1.4
PA FVa(z > 1 = (irred(2) < prime(x)))

Proof. Tf prime(x) and v|2z so v-z = 2 then either 2|v whence v = z, or |z
whence v = 1. So irred(z). Conversely suppose irred(z) and 2 > 1. TLet P(v)
be the formula

Vyz <wo(y-z <wvAzx|(yz) — zlyVelz)

We show Vw(Vo < wP(v) — P(w)), so by well-founded induction we may
conclude Yw P(w) which clearly implies prime(z).

So suppose Yo < wP(v) and y, z < w such that y-z < w, z|(y-2), 2 ty, x 1 z.
Then y,z > 1 and using 1.3 we may assume y < x since otherwise replace y by
its remainder on division by z. Again using 1.3, let 2 = a-y 4+ b with 0 < b < y.
If b = 0 then by irreducibility of z, y = 1 Vy = x, a contradiction in both cases.
If b > 0 we have

bz=(x—ay)z=2z—ayz

so z|(b-z), 21 b, x4 z and b-z < y-z < w; contradiction with Yo < wP(v).
Therefore P(w), and we are done. [ |

Proposition 1.5 PA F Va(z > 1 — Ju(prime(v) A v|z))

Proof. Tf 2 > 1, since 2|z we have Jw(w > 1 Aw|z). By LNP, there is a least
such w. The least such w is irreducible, hence prime by proposition 1.4. [ |

Exercise 6. Prove that “PA proves the existence of infinitely many primes”,
i.e. the statement
VaIy(z < y A prime(y))

[Hint: first prove, by induction in PA, Va3y > OVi(l < i < z — ily). Given
such y, consider y + 1 and apply proposition 1.5]

We define two predicates, “x is a power of the prime v” and “x is a prime power”
respectively:

pow(z,v)
pp(7)

x> 1 Aprime(v) AVw < 2(w > 1T Aw|le — v|w)
Fo < 2 pow(x,v)

Exercise 7.
a) PAFVaev(pow(z,v) — pow(a-v,v))
b)  PA F Vayv(pow(x,v) Apow(y,v) = x|y V y|z)

¢)  PAEVayv(pow(z,v) Apow(y,v) Ax <y — (20)|y)



For prime(v), we want to define for each number y > 0 its v-part, that is the
highest power of v that divides y. We denote this by y | v, and we assume as
axiom:

pow(y [v, ) Ay [ o)y Ayl v)ovty

Of course, to be able to do this we have to prove that
PA FVYyu3lz((z = 0A (y = 0V —prime(v))) V pow(z,v) A z|ly A z-v { y)

If pow(y,v) take z = y. Otherwise, Jw < y(wly A v { w) hence Iz < yIw <
y(ly = w-z Avtw), so by LNP there is a least such z. Then pow(z,v) and z|y.
If zw|ly so y = w'-z-v = w-z, then w'-v = w, contradiction with v { w. So 2
exists; 1ts uniqueness follows from the Exercise above.

The following lemma states that x|y iff every prime power which divides =
also divides y.

Lemma 1.6
PA FVay(zly & Yo < 2(pp(v) Av|e — vly))

Proof. The direction from left to right is trivial, as is the case y = 0V e = 1 1in
the other direction. For a contradiction, let # > 1 be least such that

Jy > 1(Vv < 2(pp(v) Av|le = v|y) Aety)

and take the least such y. Tts remainder on division by x satisfies the same
property, so we may assume y < z. Let z = a-y+ b with 0 < b <y If0 < b we
have a contradiction with the minimality of y. So b = 0 and # = a-y. Suppose
a > 1. Then a has a prime divisor v by 1.5. Since pp(v) and v|2, v|y. But now
we have

pp((y Tv)v) Ay [o)vleA(yv)vty

which 1s a contradiction. [ |

We can now define the least common multiple and greatest common divisor of
two numbers, and prove their basic properties in PA.

Tet z,y > 1. Since z|z-y and y|z-y there is a unique least w > 0 with x|w A y|w;
we denote this w by lem(z,y). Clearly, lem(z,y) < 2-y.

Writing 2-y = a-lem(a, y)+b, 0 < b < lem(z, y) we see that z|bAy|bsoifb > 0
we get a contradiction with the minimality of lem(z,y). So 2y = a-lem(x,y)
for a unique a, which we denote by ged(x,y). Writing lem(2,y) = y-z, we have
ry =ged(,y)y-z so 2= ged(z,y)-z and ged(z, y)|2; similarly, ged(2, y)|y.

Exercise 8. Define yourself the function symbols max(z, y) and min(x, y) and
prove their basic properties in PA. Prove furthermore:

a) PAF prime(v) = lem(z,y) [ v = max(x [ v,y [ v)

b) PAF prime(v) = ged(2,y) v =min(z [ v,y [ v)



Proposition 1.7
a) PAFVeyu(z,y> 1T AzjuAylu—lem(z, y)|u)

b) PAFVayu(x,y>1AuleAuly — ulged(z,y))

Proof. For a), consider the remainder of u on division by lem(z,y); if it is
non-zero, it is < lem(z, y) and still a common multiple of 2 and y.

For b), use proposition 1.6. Tet pow(z,v) A z|u. Then z|(2 [ v) A z|(y | v)
so z|(ged(2,y) [ v) (by the Exercise), so z|ged(x,y). By 1.6, u|ged(z, y).

Exercise 9. Prove:
a) PAFVay > 1Va'y (e = 2" -ged(2,y) Ny = v -ged(z,y) — ged(2',y') = 1)
b) PAFRVayably=ax+bA0<b<x— ged(x,y) = ged(z, b))

Theorem 1.8 (Bézout’s Theorem for PA)

PA FVay > 13a <y, b < x(az = by+ ged(z,y)))

Proof. By induction on x. For x = 1 take a = 1,5 = 0.

Fora > 1let y =cx+d, 0 <d< 2. Dividing this equation by ged(z,y) we
have y' = e’ +d’ with d' < 2’ < 2 and ged(2’,d') = 1; by induction hypothesis
we have

wd =vax +1

for suitable u, v; so v-#’ = u-d’ — 1. Squaring both sides gives
a2 =bv-d +1
for some a’, b’; multiplying by ged(xz, y) gives
(@ +b-c)x =by+ged(z,y)

Finally, let (o' +b"¢) = y+a”, 0<a” <y. Then

1"

a’-x = (b — x)y+ ged(z, y)

with a” <y and since (b’ — '-2)-y < a2 < -y, we have (V' — '-2) < x. [ |

Theorem 1.8 plays a central role in the development of a rudimentary coding of
sequences in PA, which was in fact (Godel’s first crucial idea for the proof of his
Incompleteness Theorems.

For a good understanding of what follows, it is useful first to see the algebraic
trick underlying it. Suppose we are given a sequence of numbers zq, ..., 2, 1.

Let m = max(xq, ..., 2,_1,n). Then for all i, j with 0 < i < j < n we have
that the numbers m(i + 1) + 1 and m(j + 1) + 1 are relatively prime, for if p
is a prime number which divides both of them, it divides their difference which
is m(j — ). Since p is prime, it follows that p|m, but also p|(i + 1)m + 1, a



contradiction. Since x; < (i—|—1 )m—|—1 for all 7, we have by the Chinese remainder
theorem a number a such that

a=x; modm(i+1)+1

for all i. The number a, or rather the pair (a, m), codes the sequence 2, ..., 2,_1
n a sense.

The following theorem establishes three essential properties of this coding
in PA: for every x, there is a sequence starting with x; every sequence can be
extended; and a technical condition necessary later on.

We use the following abbreviations: rm(z,y) denotes the remainder of 2 on
division by y, and (a, m); denotes rm(a,m-(i 4+ 1)+ 1).

Theorem 1.9
i) PAFV2da,m((a,m)y=x)
ii) PAFVyramIbn(Vi < y((a,m); = (b,n);) A (b,n), = z)
i11) PAF Yami((a,m); < a)
Proof. For i), take m = 2 and a = 22 + 1; then
rma,m-0+ 1)+ 1)=rm2z+ 1,2+ 1) ==
i) is trivial, so we are left to prove ii). Let us observe:

PA F Vyzam3Iu(Vi < y((a,m); <u) Az <uAy < u) (1)

PAFVYudo > Vi< u(i>1—iv) (2)

PA FVuo (Vi <u(i > 1 —ilv) =
Vijl<i<j<u—=ged((G+1)v+1,(G+1)o+1)=1)) (3)

((1) is proved by induction on y, (2) by induction on u, and (3) by formalizing
the informal argument given above, using the properties about gcd that we
know)

So, given y, z, a, m, take successively u satisfying (1) and v satisfying (2) for
u; put n = v. We have:

Vi< y((a,m); < (i+T1)n+1)
r<(y+1)n+1
Vij(0<i<j<y—ged((i+1)yn+1,(i+1)n+1)=1)
and we want to find b such that
(¥i < yl(a,m); = (b,m)i) Az = (byn),

To do this we employ induction. Suppose for k < y there is §’ satisfying

(Vi < k((a,m); = (,m))) Az = (),



We want to find b satisfying
(i < k{(,m)s = (b)) A x = (b,m),
Now it is easy to show that for all k < y,
FJuw((y+ D)n+ HwAVi < k(GE+1)n+ Hw)Aged(w, (k+1)n+1)=1)

(use induction on k and the properties of n). Take such w. Then by 1.8, there
is u < (k+1)-n 41 such that

rm(uw, (k+1)n+1) =1

Put b = b + ww-(b'n-(k + 1) + (a,m)k). Then (b,n), = (b, n), = x since
(y+ 1)n+ 1w, and i < k — (b,n); = (V',n); = (a,m); since ( + 1)n+ 1|w.
Finally,

(bn)e = (b, (k+1)n+1)
= (b’+b’ (k—|—1)—|—(r1,m)k,(k—|—1)-n—|—1)
= rm(b’ ((k+1)yn+ 1)+ (a,m)g, (k+1)n+1)
= (a,m)
which completes the induction step and the proof. [ |

We shall shortly see (in Theorem 1.13 below) how to use theorem 1.9 to define
every primitive recursive function in PA | after the necessary definitions to make
precise what this means. But to give the idea already now, let’s “define” the
exponential function 2,y — 2¥. Let 6(x,y, z) be the formula

dam((a,m)g = 1 AV <y((a,m)iz1 = z-(a,m);) A (a,m)y, = z)

Exercise 10. Prove that PA F Vayalz0(x, y, z). Introduce a function symbol
exp to Lpa, with axiom Vayf(x,y, exp(x,y)). Prove:

PA F Vzyy (exp(z,y + ') = exp(z, y)-exp(z,y'))
PA FVayy (exp(z,y-y') = exp(exp(z,y),v'))
PA FVav(pow(z,v) — Jy < z(x = exp(v,y)))

And try your hand at:

Exercise 11. Formulate and prove in PA the theorem of unique prime factor-
ization.

1.2 Representing Recursive Functions in PA

Definition 1.10 An Lpa-formula ¢ is called a Ag-formula if all quantifiers are
bounded in ¢, that is of the form Vz <t or A2 < ¢, for a term 7 not containing
the variable x. A formula ¢ 1s a Xi-formula if it 18 of the form Fy; ... y:¢p with
¥ a Ag-formula. We also write ¢ € Ay, ¢ € X.



Exercise 12. Prove the Collection Principle in PA:
PA R Vi <tdvyp — FoVi <iFu < v

and deduce that if ¢ is equivalent to a Xi-formula, so is Vi < 1.

We now discuss the so-called “Yj-completeness” of PA: the statement that PA
proves all ¥-sentences which are true in the standard model A'. Recall the
definition of the numerals @ from page 1.

Exercise 13. Prove:

PAFad+m=kentm=k%k forall n,m, k € IN
PAFmm=kSnm=k forall n,m, k € IN
PAFn<men<m for all n,m € IN

PARVr(z<me2xz=0V...Vz=n—1) foralln>0

From this exercise we can see by induction on the Lpa-term (2, ..., x) with
variables x1,...,zp: if #V is its interpretation in the model A, as function
IN* = N, then for all nq,...,n; € IN:

PA bt ) = X (ny, e

Exercise 14. (Xy-completeness of PA) Prove that for every Ag-formula ¢ with
free variables x¢,... 2, and all ny, ... ng € IN:

and deduce that the same equivalence holds for ¥;-formulas. Conclude that a
Y-sentence is provable in PA if and only if it is true in V.

Warning. The equivalence does not hold for negations of Xy-formulas, as we
shall soon see!

Definition 1.11 Tet A C IN* a k-ary relation. An Lpa-formula p(zq,...  2z)
of k free variables is said to represent A (numeralwise) if for all ny,... ng € N
we have:

(ni,...,n) €A = PAFo(my,...,n5) and

(n17"'7nk)¢’4 = PAF_‘QD(W7“‘7W)
Let F: IN®* = IN a k-ary function. An Lpa-formula @(z,... 25, 2) of k4 1
free variables represents ' numeralwise if for all nq, ..., ng € IN:

PAF o(ny,... 75, F(nq,...,n,)) and

PA +3lzp(ny, ..., 0, 2)

Exercise 15. If F : IN® — IN is numeralwise represented then so is its graph,
considered as k + T-ary relation.

We say that a relation or function 18 Xy-represented if there is a X¢-formula
representing it. Later, we shall see that if a function is represented at all, it
must be Xq-represented, and recursive (and vice versa).



Definition 1.12 A function F : IN* — IN is called provably recursive in PA if
it is represented by a Xi-formula (21, ..., 2, z) for which

PAFVae . oagTlzp(eq, ... 2k, 2)
Theorem 1.13 Fuvery primitive recursive function is provably recursive in PA.

Proof. We prove this by induction on the generation of the primitive recur-
sive function. The basic functions Axq - - -xp.2;, Ax.x + 1 and Ax.0 are clearly
provably recursive.

If F(Z) is defined by composition from G, Hy, ..., Hy,, so

F(F) = G(HV(F). ..., Hon())

suppose by induction hypothesis that G, Hy,..., H,, are represented by the
Y-formulas ¥, xy1, ..., Xm respectively. Then F'is represented by the formula

which is equivalent to a Xy-formula; that PA F VZ3lzp(#, z) follows from the
corresponding property for ¥, x1,..., Xm-

The crucial induction step is primitive recursion; it 1s here that we use theo-
rem 1.9. Suppose that F (&, y) is defined by primitive recursion from G and H |
SO

F(#,0) = G(%) and F(Z,y+1) = H(Z F(Z,y),y)

By induction hypothesis, G and H are Xy-represented by ©(&, z) and x (%, u, v, w)
respectively. Then F is represented by the formula o(Z, y, u) defined as

Jam((Z, (a,m)o) AVI < yx(¥, (a,m);, 1, (a,m)iz1) A (a,m)y = u)

To be sure, this should really be seen as an abbreviation, since there is no term
(a,m); in Lpa, so e.g. ¥(Z, (a,m)g) is shorthand for

de,d<ala=c(m+1)+dA0<d<m+1TAYE )

but still one sees that the formula ¢ 1s equivalent to a ¥;-formula. The proof
that PA F V¥, yJlup(F, y, u) is done by induction (in PA!) on u, where one uses
the properties listed in theorem 1.9. The details of this proof, as well as the
proof that ¢ represents F', are left to the reader. [ |

Exercise 16. Carry out the filling in of missing details in the proof of theo-
rem 1.13.

The study of the class of all functions which are provably recursive in PA,
is important for the proof theory of PA. Tt is an old result that the provably
recursive functions in PA are the gg-recursive functions. This refers to an ordinal
hierarchy of total recursive functions, and &g is the least ordinal o such that there
exists a recursive binary relation < on IN with the properties:
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e (IN, <) is a well-order of order-type a;

e PA does not prove the scheme
Va(Vy < 29(y) — ¢(x)) = Vay(z)

(where, of course, we use a ¥i-formula representing < in PA)

There are several equivalent definitions of gy; another oneis: the least ordinal
which is closed under the operation § — w?.

We do not enter this study in this course, but just point out that there are
lots of provably total functions which are not primitive recursive. To give the
simplest possible case:

Exercise 17. Prove that the Ackermann function:

A0,2) = z+1
An+1,0) = A(n,1)
An+1,24+1) = A(n, A(n+1,2))

is provably recursive in PA.
Theorem 1.14 Fuvery total recursive function is Yy -represented in PA.

Proof. By basic recursion theory, there is a primitive recursive predicate T, a
primitive recursive function U such that for every k-ary recursive function F we
have a number e such that:

F(ni,...,ng)=m< y(Tle,n, ... ,ng,y) AU (y) = m)
The set {(n1, ... ,ng,y,m) | T(e,n1,... ,ng,y) AU(y) = m} is primitive recur-
sive and so, by 1.13, represented by a Xy-formula ¢(z1, ..., 2, y, w), which we

can write as
E|Z1 ZIP(T17 y Ty Yy Wy 205 - - 721)

for a Ag-formula P.
If R(z, #,w) is the Ag-formula Jy < 2321 < z---3z; < 2P, then clearly

PA + Jywe(Z, y, w) « JzwR(z, F, w)
Finally, let S(z, #, w) be the Ag-formula
w < 2 A R(z, %, w) AVu < z2=30 < uR(u, #,v)

Then PA - JzwR(z, %, w) < 3zFwS(2
T claim that the ¥;-formula 325(z
for my,... ,ni € Nis

w) by LNP.

¥
) )
,,w) represents the function F. First,

HZS(Z7W7 SR 7%7 F(TI,], SR 7nk‘))
a true Yi-formula, hence provable in PA by ¥ -completeness. To show that

PA + Flw3zS(z, 07, ... g, w)

11



let @ € IN such that S(@,ny,...,7%, F(n1,...,ng)) is true. By unicity of z in
S we have
PA FVYzw(S(z, 7, ... g, w) > z=aAw<a)

and since PAFVw <a(w=0V---Vw=a— 1), we have

PAF F(ny,... ng) <

a and
PAF - g(ﬁn_ by forallb<a, b F(ng, ... ng)
since S € Ag. So, PAF Fw3IzS(z, 77, ..., 0y, w). [ |

Exercise 18. In the next chapter we shall see that there are X;-sentences
which are false in A" but consistent with PA. Use this to show that the following
implication does not hold: for a Xy-formula ¢(w) with only free variable w, if

Flwe(w) is true in N, then PA F Flwep(w).
Exercise 19. Prove that every recursive set is Xj-represented in PA.

Exercise 20. Tet Dy, Dy, D3, ... be a sequence of definitions of primitive re-
cursive functions with the properties that for every k, the function f; defined
by Dy, is either a basic function or defined from functions f; with [ < k, and
every primitive recursive function is fi for some k.

Introduce, for every &, a new function symbol Fj, and an axiom ¢y, corre-
sponding to the definition Dy of f.

Tet PA’ be the theory in the langnage Lpa U {Fy, Fy, ...}, axiomatized by
the axioms of PA, together with the axioms ¢y, and the scheme of induction
extended to the full new language.

Prove that there is a mapping (-)* from Lpa:-formulas to Lpa-formulas,
which 1s the identity on Lpa-formulas, such that

PA'F ¢ < (p)*
PA' b = PA F ()"

for all Lpar-formulas . Conclude that PA’ is conservative over PA.

Exercise 21. Devise a coding of the definitions 1y in the previous exercise, and
show that a recursive sequence 1y, Do, ... exists with the required properties.
Can it be primitive recursive?

1.3 A Primitive Incompleteness Theorem

The representability of recursive functions allows us to prove already that PA
is not a complete theory (this, however, is not quite Godel’s theorem; the latter
gives more information). We have to leave one detail to the reader’s imagination
(it will be fully treated in the next chapter, but it is easy): for every Lpa-formula
o(w) with exactly one free variable w, the set

{n e IN|PAF o(m)}

18 recursiwely enumerable.



Now we do know, that for every recursively enumerable set X C IN| there is
a Xy-formula p(w), such that for all n € IN:

n € X & PAFE o(n)

(Use the characterization of r.e. sets as projections of recursive sets, repre-
sentability of recursive sets in PA, and ¥-completeness of PA)

Now, let X be a nonrecursive, r.e. set and suppose the ¥i-sentence ¢ defines
X in thissense. TLet Y = {n € IN|PA I —p(m)}. Then since PA is consistent, X
and Y are disjoint r.e. sets and since X is not recursive, Y is not the complement,
of X. Take m ¢ X UY. Since PA F ¢(m) implies m € X and PA F —p(m)
implies m € Y, we see that none of these can hold; therefore, () is a sentence
which 1s independent of PA.

The following exercise is a result which will be needed in the next chapter.
We call a formula p(1, ... ,25) Ay, or a Ay-formula, if both ¢ and —¢ are
equivalent (in PA) to a 3;-formula.

Exercise 22. Show that the proof of theorem 1.13 can be adapted to give the
following stronger result: for every primitive recursive function 7 : IN¥ — IN
there is a Ay-formula op(x,... 2541) which represents F and is such that

PA Ve, apIeppiop(er, .. 2pp1)



2 Godel Incompleteness

2.1 Coding of Formulas and Diagonalization

Let us recall a primitive recursive coding of pairs and sequences from basic

recursion theory.
. +m)2+3n+m,
Let j(n,m) = ("m)f"m
Exercise 23. Prove that j defines a bijection: IN? — IN. and that there are
J il )

primitive recursive functions jo, 71 : W — IN such that = = j(jo(2), j1(2)),
Jo(i(x,y)) =2 and ji(j(z,y)) =y

We have primitive recursive bijections 77 : IN” — IN for m > 1, defined
recursively by

41 (

.7.1 (T) =r ] Ty ... 7.77m,+]) = 7(777’7(,,,1 PRI 7mm,)7mm,+1)

and primitive recursive j7 (1 < i < m) such that

ST @), @) =2 and PG a) = 1

Moreover, the function

Fr,y,2) = ) else

{ 0 fy=0o0ry>=nx
Jy (=

is primitive recursive.
Tet IN<® be the set of finite sequences of natural numbers. We have a
bijection (-) : N<* — N given by

() =0 (empty sequence)
<.’If()7 s 7.’Ifm,,]> = 7(7’77 - ]7.7'777,(’,,707 s 7’7’3777,71)) for m >0

We call (xq, ..., 2m_1) the code of the sequence xq, ..., #,_1. There are prim-
itive recursive functions Th and (-);, such that for every x, Th(x) gives the length
of the sequence coded by 2, and (x); is the i-th element of the sequence coded

by x:
0 2=0
Ih(z) = {,71(m1)+1 2 >0
Jh(z) . .
(r); = .77;+(1 )(.72(.77 — 1)) x>0and 0<i<lh(z)
0 else

We use sequence encoding to assign to any formula ¢ of Lpa a code "™ € IN
and this in such a way that all relevant operations on formulas translate into
primitive recursive functions on codes.

We assume that in our language, variables are numbered vg, v, .... Consider
the following “code book” (from now on we take < as a primitive symbol of Lpa ):

1T v + - = < AV —- = V¥V 4

0
012 3 4 5 6 7 8 9 10 11 12
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For each term i define its code "1™ by recursion on 4: 07 = (0), T17 = (1),
Tt =(2,4); T4 s = (3,717, TsTY, TsT = (4,717, TsT).

Tt is now immediate that the properties “x is the code of a term”, “x codes
a constant”, “the variable v; occurs in the term coded by 27, etcetera, are all
primitive recursive in their arguments.

Likewise, we define codes for formulas: "t = s7 = (5,747, "s™), "t < 57 =
<67'_7‘,_‘,'_S_‘>, o A YT = <77'_g0_‘7'_ —\>7 o vyl = <8,'_g0_‘,'_1/)_‘> and so on:
Ve = (11,4, and T30 = (12,4, T ™).

And we have that the properties “x codes a formula”, “the main connective
of the formula coded by x is A7, “the variable v; occurs freely in the formula
coded by 2”7 and so forth, are primitive recursive in their arguments.

Exercise 24. Verify this for some of the mentioned properties.

Exercise 25. Verify that the property “x codes a formula ¢ and y codes a term
t and t is free for v; in ©” is primitive recursive in x, y, 7; and show that there is
a primitive recursive function Sub, such that

A

. Tols/v;]7 ify="vland x ="s
bl i) = { T

Exercise 26. Convince yourself that the properties “x is the code of a Ay-
ormula” and “x codes a Y;-formula” are primitive recursive.
f la” and “ d ¥ la” t

Having done this work, we now arrive at the second main idea of (Godel, the
Diagonalization Lemma.
We say that ¢ is a TTy-formula if it is of the form Yy, - - -Vy, ¢ with ¢ € A,.

Lemma 2.1 (Diagonalization Lemma) For any Lpa-formula ¢ with free
variable vy there 1s an Lpa-formula ¢ with the same free variables as ¢ er-
cept vy, such that

PAE ¢ & o[ ¢ /ug]
Moreover, if @ € Tly then ¢ can be chosen to be Tl too.

Proof. Recall the function Sub(z, y, ) from Exercise 25. Tt is primitive recursive
hence so is Azy.Sub(z,y,0); let S be a ¥y-formula representing this function
in PA. Let T be a ¥;-formula representing the primitive recursive function
n — "m . Then we have

Ynm € IN.PA + S(m,m, Sub(n, m,0)) (1)
¥n € IN.PA - T(m,™0") (2)

PA F Vay3lzS(x, y, 2) (3)

PA FVa3lyT (2, y) (4)

Now let ¢ have vy free. Define the formula C by

C =Vay(T(vy, 2) AS(x,v9,y) — ly/v0])



and let ¥ be defined by
v =C[TC 7 vg) (5)
Clearly, if ¢ € TTy then so are (' and ¢. Now we have by (2) and (4),

PAFVYy(Fa(T(CCT, 2) AS(2,"Cy)) & S(CTTCT,TC y))
and (1) and (3) give us

PAEVYy(S(TTCT,TCy) & y="C1"CV )T
By (5) then,

PA FYy(Fe(T(C, 2)AS(2,"Cy)) &y

I
4
=
i
—

SO

Remark. One should compare the proof of Lemma 2.1 with the proofs of very
similar theorems, such as the recursion theorem, or the fixpoint theorem in
A-calculus.

T include the following corollary, which is analogous to Smullyan’s “simul-
taneous recursion theorem”, or Bekié¢’ LLemma in Domain Theory, for its own
interest. We shall not apply it.

Corollary 2.2 (Simultaneous Diagonalization) et ¢ and ¢ be formulas
both having the variables vg, v1 free. Then there are formulas 6 and x, such that
6 has the same free variables as ¢ minus vy, vy, and ditto for x and o, such that
PAF O & o[ 07 /vy, Tx /0]
PAF x & [ 07/ v, "X /1]
And, if o, € Tly, so are 8, x.

Proof. Tet T be the same formula as in the proof of LLemma 2.1, and S|

similar, that is: S7 now represents substitution for the variable v;. So PA F
g1 (’_e S ar

o Tols/n]” ), ete. Tet ¢ and 1 be given. First, apply Lemma 2.1 to
find 64 such that

PAF 6y < YVey(T(vi,2) ASi(2,70 7, y) = @ly/va, v1])
and then y such that
PA x4 Vay(T(TX7,2) A S (2,707, y) = ¢ly/ve, X7/ wi])
Put = 6,["y7/v1]. Then as in the proof of Lemma 2.1, we have:

PA T(r A I_I_X_\_\) A S1 (FI_X_\_\7F01_\7FH1 [:-Xj/m]—\)
PA FYy(3z2(T(Tx ", 2) AS1 (2,701 Ly)) < y="0"

PAI—F)HFM[’_ ] = o[ 07, X

and so, also PA F y < 1/)['_9_‘, “x7. n



2.2 Coding of Proofs and Godel’s First Incompleteness
Theorem

Just as we have coded formulas, we can code proofs in PA by natural numbers.
Since the idea is essentially the same, we give only a sketch. First, we have to
decide which proof system we use; let’s use natural deduction. Again we make
a code book, now of construction steps for natural deduction trees (T have not
tried to make the system as economical as possible!):

Ass 0 VIi—1r H vE 10 — 15
Al 1 vi—1 6 ar 11 -—= 16
AE —1r 2 -k 7 dE 12
AE—1 3 -1 8 =1 13
VvVE 4 vl 9 -E 14

We view natural deduction proofs as labelled trees; every node is labelled by a
formula, and by a rule. Most connectives have an introduction and an elimina-
tion rule, sometimes more than one, for example the rule AE — r (conjunction
elimination to the right) infers ¢ from ¢ A . The rule =F infers — from ¢, —¢;
the rule — infers ¢ from —, the rule == infers ¢ from ——t. The rule Ass (as-
sumption) is the only starting rule: it allows one to construct a one-node tree,
labelled with a formula ¢. T hope that the meaning of every rule is now clear.

Now every tree has a set of so-called open (or undischarged) assumptions.
An assumption is a formula which labels a leaf of the tree. Assumptions are
discharged with the steps — I, =1, VE and dE. We follow the so-called erude dis-
charge convention: that is, whenever we introduce ¢ — ¢ by — I, we discharge
all assumptions ¢ above this application.

Let us outline the coding of trees. The tree with one node, labelled ¢, gets
code (0,7 ¢™); suppose Dy, Dy are trees with roots labelled by ¢, ¢ respectively;
the tree resulting from Dy and Ds by applying AT gets code (1,7 D17, 7Dy "o A
¥y, where "Dy 7 denotes the code of Dy. Tf Dy results from Dy by applying
AF — 7, so the root of Dy is labelled ¢ A 9 and the root of Dy is labelled o, we
have "Dy = (2,7 D7, "™y, Tf Dy results from Dy, Dy, D3 by V-elimination,
that 1s: the root of Dy 1s labelled ¢ V ¢, Dy and Dz have y at the root,
and D4 also has y at the root, whereby in s, all open assumptions ¢ are
discharged and in D3 all open assumptions ¢ are discharged, we have "), =
<47 Dy, T DT, T DS FX—\>_

I hope the process is now clear: the length of "7 is n 4+ 2 where n is the
number of branches from the root (in fact, always n < 3), the first element of
"7 s the code of the last rule applied, and the last element of "D is the
formula which labels the root of 1. Tn this way, we can easily recover the whole
tree 1 from its code " D7, We can also define a primitive recursive function OA,
which, given " D7 gives a code for the set of undischarged assumptions of 1.
Therefore, we can, primitive recursively, check whether 1) is in fact a correct
proof tree (for example, when introducing Yup(u) by VI from ¢(v), we need to
know that the variable » does not occur in any undischarged assumption, and so
on). The conclusion is that we have a primitive recursive predicate NDT(z, y):
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NDT(x,y) says that y is the code of a formula and # is the code of a correct
natural deduction tree with root labelled by the formula coded by y.

In order that # codes a proof in PA,| we need to know that all open assump-
tions of the tree coded by x are axioms of PA | or axioms of the predicate calculus
governing the equality sign =: the axioms u =u, v = v Av =w — u = w and
t = s Ap[t/u] — ¢[s/u] (subject to the well-known conditions).

Exercise 27. Show that the predicate Ax(z): x is the code of an axiom of PA
or the predicate calculus, 1s primitive recursive.

Let Prf(z,y) be the predicate: y is the code of a formula, and 2 is the code
of a correct proof in PA of the formula coded by y:
Prf(z,y) < NDT(2,y) AVz € OA(2)Ax(2)

Let Prf, NDT and Ax be Aj-formulas representing the predicates Prf, NDT,
Ax in PA.

The predicate Prf is defined by a course-of-values recursion, and we can as-
sume that PA proves this course of values recursion for the representing formula
Prf. That is,

PA F Prf(z,y) < Co(z,y) V-~V Crs(x, y)

(referring to our code book of natural deduction rules), where Cy(z,y) is the
formula

r=(0,y) A Ax(y)
Cy (2, y) will be the formula
Jabvw < x(y = (7,0, w) A Prf(a,v) APrf(b,w) Az = (1,a,b y))

and so on. In some cases, where open assumptions are discharged, we have to
write conditions; e.g., Cg (corresponding to — T) will read:

Javw < 2(x = (8,a,y) Ay = (9, v, W) ANDT(a, w)AVz € OA(a)(Ax(2) V2 = v))

(slightly abusing notation: “z € OA(a)” means of course the intended formal-
ization)
Tt 1s now straightforward to see that we have the following proposition:

Proposition 2.3
i) PAF = PAFIePrf(z,7p7)

ii) PAFYey(Prf(z,To = 7)) APrf(y, T7) = Prf((7,2,y, 07, "¢7))
We introduce an abbreviation: T for Hmﬁ(m, T¢7). Proposition 2.3 now says:

DI PAF o= PAFOp
D2 PAFOp AO(p — ) — Oy



Theorem 2.4 (Godel’s First Incompleteness Theorem) Apply Lemma 2.1
to the formula =3xPrf(x, vg), to obtain a TIy-sentence G such that

PAF G & -0OG
Then (G is independent of PA.

Proof. Since W(T, y) is Ay, clearly GG can be chosen to be TTy. Tf PA F (& then
by D1, PA F OG, so PA F =G by the choice of (7. So PA is inconsistent, quod
non.

On the other hand, if PA F = then PA I O by the choice of (G. Then OG
is true in A, which means that there is a proof of 7, i.e. PA F (7, and again PA
18 inconsistent. [ |

Remarks.

i) The sentence (7 is the famous “Gdodel sentence”. Roughly speaking it says
“T am not provable”, and it has therefore been compared with several liar
paradoxes (see the work by Smullyan and Smorynski).

i1} The sentence G is true in A, because if it were false, then =G would be a
true Yq-sentence, hence provable in PA by ¥;-completeness.

iii) Tn the proof of Theorem 2.4, we have used the reasoning: “if PA F ¢
then N |= ¢” (in fact, we only used this for the ¥q-sentence —=(7). This
is not satisfactory, because we would like to extend (Godel’s method to
consistent extensions of PA| which need not have this property, even for
¥ -sentences (for example, PAU{—=G} is such a theory). A way of avoiding
this reasoning was found by Rosser, a few years after Godel. Tet ¢(vg) be
the formula

Ya(Prf(x, vg) — Ty < 2Prf(y, (10,v0)))

Check that ¢(vg) is equivalent to a TTy-formula! Apply Lemma 2.1 to
©(vg), to obtain a TTy-sentence R such that

PA F R & Va(Prf(z,"R7) = Jy < 2Prf(y,"=R7))

We can show that R is independent of PA| just using that PA is consistent
and Yi-complete. Suppose PA + R. By consistency of PA, PA I =R,
whence the sentence

Jz(Prf(x,"R7) AVy < =Prf(y,"=R"))

is a true Yy-sentence, hence by Yq-completeness provable in PA. But this
sentence is equivalent to —R, contradiction. Conversely, if PA F =R
we have for some n € IN that PA F Prf(n,"=R7) and PA F Vy <
nﬁﬁ(y,ﬁ), since these are true Yj-sentences. Tt follows that PA
Ya(Prf(x,"RT) — 3y < #Prf(y,"=R7)), that is PA F R. Again, a contra-
diction with the consistency of PA.
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iv) The sentence —=O— is called the sentence expressing the consistency of
PA, and often written as Conpa. [t is an easy consequence of D2 that
PA + O— — O for any 9, so we have PA F (G — Conpa. In the next
section, we shall see that in fact, PA F (G <> Conpya, from which it follows
that PA I Conpa. This is Godel’s Second Tncompleteness Theorem: PA
does not prove its own consistency”.

A number of exercises to finish this section:
Exercise 28. Show that for any formula ¢(v) with one free variable v, the set

{n € N|PA F p[n/v]}

is recursively enumerable. Conclude that if a function is numeralwise repre-
sentable in PA | it 1s recursive, hence ¥q-representable.

Exercise 29. Define a function F : IN — IN by:
F(n) = max{um A" |= 6[n, jo(m), 1 (m)] [0 € O(n)} + 1
where ©(n) is the set of all Ag-formulas 8(u, v, w) such that

TO(u,v,w)” < n and Jy < nPrf(y, "VuToIw(u, v, w)”)

(and the maximum of the empty set is 0).
i) Show that F is total recursive;
it) show that F' cannot be provably recursive.

Exercise 30. (Tarski’s theorem on the non-definability of truth). Apply
Lemma 2.1 to show that there 1s no formula of Lpa which defines the set of
true Lpa-sentences, i.e. if

A ={n €WN|nis the code of a sentence ¢ such that A }= ¢}
then there is no formula ¢ (v) such that for all n € IN:

n€ Ao NEYn]

2.3 Formalized Y -completeness and Godel’s Second In-
completeness Theorem

As we said in the preceding section, Godel’s Second Tncompleteness Theorem
asserts that “PA does not prove its own consistency”. More formally: PA F/
Conpa (recall that Conpya is the sentence —[0—).

Recall that we had derived (proposition 2.3) the following rules governing
the operation [:

DI PAF ¢ = PAFOp
D2 PAFO(p — ¥) AQp — O
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Exercise 31. Prove that for any operation O, satisfying D1 anfd D2, one has:

PA F O(p A ) & Op AT

Our aim in this section is to prove that we have a third rule:
D3 PA F Op — OO

Let us see that this implies what we want:

Theorem 2.5 For any operation [ satisfying D1 D3 and any G such that PA +
G < -0OG, we have
PAF G« —-0O-

Proof. Since PA F — — , by DI and D2 we have PA F O— — 0O, so
PAF G - -0G — -0-.

For the converse implication, we have from D2 and the assumption on G,
PA F OG — O(-OG); by D3 we have PA + OG — OOG. Combining the two,
we have PA - 0OG — O—, so PA F =G — OG — O—, whence PA F—-0—- — G.
||

Corollary 2.6 (Godel’s Second Incompleteness Theorem)
PA |71 COHPA

Proof. Immediate. [ |

The rule D3, which we want to prove, is in fact a consequence of a more general
theorem, which is known as “Formalized ¥ -completeness”. This is because T
18 a Yq-sentence.

Theorem 2.7 (Formalized Y;-completeness of PA) For every Y1 -sentence
of PA,
PAF ¢ —O¢

The rest of this section 1s devoted to the proof of theorem 2.7. TLet us recall
how we proved ordinary Yi-completeness. We proved that for any Ag-formula
©(vo, ... ,vk_1) and for every k-tuple of natural numbers ng, ... ng_q:

(T) N ': @[nm s 777’14*1] = PAL @[%/?)07 s 7@/7%71]

We follow a similar line in the formalized case. We now assume that Lpa 1s
augmented with function symbols (-, ... ), Th, (-); for the manipulation of se-
quences. We also take a function symbol 7', representing the primitive recursive

'_ﬁ_\'

function n — ; and we want function symbols Sy and S, representing the
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primitive recursive substitution operations on formulas and terms, respectively:

“olsa/va, ... sk_1/vk_1]" ifyis a code for ¢,
_ Th(z) =k, and for each i < k
Sply,x) = (2); is a code for s;
0 else
“t[sa/va, ..., sk_1/vk_1]" Ty is a code for ¢,
_ Th(z) = k, and for each i < k
Sily,x) = (2); is a code for s;
0 else

As before, we may assume that PA proves the recursions for these functions. Tn
particular, we may assume that the sentences

T(x+1
Se((3,717, 75T, ) = (3,
Se((4, 4,77 ’_9_‘>,T) = (4,
Sp((5,717,7s7T), ) = (5,

are provable in PA. The formalization of statement (1) above is:

Lemma 2.8 For every Ag-formula o(vy, ..., vg_1) we have:
PA Voo -2, 1 (p(F) — JyPrf(y, Sp (T, (T(x0), ..., T(xx_1)))))
The proof of Lemma 2.8 goes via the auxiliary lemmas 2.9, 2.10 and 2.11 below.

Lemma 2.9

PA + meﬂzﬁ(z, B, T(x+y), gf( oo + 1, (T(x), T(y))))
PA F Vay3zPrf(z, (5, T(zy), Sf( vy L {T(2), T(y)H)))

Proof. Check, that these statements are formalizations of the statements that
PAFn+m=n+mand PAFn-m=n-m.
By the recursion equations for S; we have that

Se(Too + o1 (T(x), T(y)) = (3, T(x), T(y))
so we must prove
zPef(z, (5, T(x 4+ ), (3, T(x), T(y)))
which we do by induction on y. For y =0, T(y) = (0) and we observe that
(5,T(x), (3,T(x),(0))) = Ss(Tvo = vo + 07, (T(x)))

Since Yug(vg = wg + 0) is the universal closure of a PA-axiom, we have by one
step (VYE), o
AzPrf(z, St (Tvo = vo + 07,(T(2))))
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For the induction step, assume
AePrf(z, (5, T(x 4+ ), (3, T(x), T(y))))

Then by applying a substitution axiom for equality, also

F2Prf(z, (5, (3, T(a +y), (1)), (3, (3, T (), T()), (1))))

By an application of the axiom Yuv((u 4+ v) + 1 =u+ (v + 1)) we have

32Prf(2, (5, (3, (3, T(2), T(y)), (1)), (3, T(x), (3, T(y), (1))

But (3, T(y )<__>> T(y + 1) by the recursion equations for T', which also give

3, T(x+y), >> T(x+ (y+1)) = T((x+y) + 1), so by applying transitivity
of equality we get

FzPrf(z, (5, T(x + (y+ 1)), (3, T(x), T(y + 1))))

as desired.
The proof of the second statement is similar (and uses the first!). [ |

The proof of lemma 2.9 was, of course, quite unreadable, but the point is that
one has a precise idea of what one is doing. One cannot write, for example, that
3, T(x), T(y)) = "T(x)+ T(y)"; but, T(x ) and T'(y) are, “in PA” | codes for
terms & and g, so that “(3,T(x), T(y)) = "% + ¢ but again this is imprecise,
because our coding acts on real terms only. The following notational convention
gives a precise way of getting some clarification: for any formula (v, ... vp_1),

we lef,
-

(T, )
be an abbreviation for S ('_ AT (x0), ..., T(xK-1))). We write

(s, - 727)
for AzPrf(2,"@(Zq, ..., Zx_1)"). With these conventions, Lemma 2.9 becomes:

PAFVey Gl (z +y=7+7)
PA FVzy Ol (zy = 7-9)

Tt is now straightforward (by induction on the term) to show that for any term
tH(vo, ... ,vp_1) we have:

PA Vg2, Ot(xo, ... xp_1) =t(rg, ..., 2 1)
Exercise 32. Carry out this proof.
The following lemma is an immediate consequence.

Lemma 2.10 For terms i(vg, ... ,v_1) and s(vg, ... ,v5_1) we have

PAFVaq- - ap_1(1(F) = s(F) — D(t(ﬁ, e ,1/‘;1,/1) = s(@, e T5)))
PAFVag - ap_ 1 (1(F) < s(F) = O (zo, ... ,26-1) < s(xq, ... ,T6_1)))




We are now ready for the final induction.

Lemma 2.11 Let & be the set of formulas p(vy, ... ,vg_1) for which

PA FVazq-- "771471(@(1‘07 .- 7'771<71) — D@(ES, .- Jfkq))

Then ® contains all formulas of formt = s and t < s, and & is closed under
conjunction, disjunction and bounded quantification.

Proof. That & contains all formulas t+ = s and ¥ < s, is lemma 2.10. The
induction steps for A and V are easy.

Now suppose ¢(vg, ..., v5_1) has the form Jug < v (vg, ..., vg), for ¢ € .
Then Yaq -2 1(p(F) = De(To, ... ,Tx_1)) is equivalent (in PA) to
Voo ap(es < 2o AY(zo, .. o) = B(Fue < T (To, ..., 251, 08)))

Since ¥ € @, vy < vg € & and by the induction step for A, we have
PAFVag---zp(er < 2o AY(xo, ... o) = B(xe <29 Ap(Zo, ..., 7))

so the desired conclusion follows by an application of 3l.
Now suppose ¢ is Vo < vgt(vg, - .. ,v,) with ¢ € &. We prove the implication:

Vo < zot(xo, ... 21, 08) = OV, < Zo(To, ..., Te_1, vk))

by induction on xy. For xq it holds trivially; for the induction step we observe
that

Yo < 2o+ T > Yop < 2o A(zo, ..., 251, 20)
so that
Vor < votp — O(Yor < 208 (To, .., Zg_1, ) Ap(Tg, ..., Tr_1,T0))

We also have Van O (29 + 1 = 25 + 1) and
Voo O (Yog(vg < 2o+ 1 ¢ v < 2o Vg = Ig))
so we obtain the desired implication

Vo < 2o+ 19 = Vs < Zov(To, - .., Tr_1, V%)

Exercise 33.

i) Show that lemma 2.11 is sufficient to prove Lemma 2.8. That is, show
that the set ® contains all Ag-formulas;

it) show that, in turn, Lemma 2.8 implies Theorem 2.7.
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Remark The proof of Godel’s Incompleteness Theorems can be carried out
for any recursively enumerable extension of PA. By this we mean: a theory,
formulated in a language which is coded in a recursive way, and with axioms
whose codes form an r.e. set. In fact, we don’t need the full force of PA here. Any
recursively enumerable theory T which has enough arithmetic to represent (and
prove the recursion equations of) the necessary primitive recursive functions,
can formulate its own consistency Conp, and if T"is consistent, then T'F Conrp.

An important example is ZFC: set theory with the axiom of Choice. Here
is an example of an application of Godel’s Second Tncompleteness Theorem to
7ZFC. A cardinal number & is called strongly inaccessible if k£ > Vg, & 1s regular,
and YA < k(2% < x). One can prove, in ZFC, that if & is strongly inaccessible,
then Vi is a model of ZFC. Therefore, in ZFC, if & is strongly inaccessible, ZFC
is consistent. By Godel’s Second Incompleteness Theorem, ZFC H T where T is
the statement: there is a strongly inaccessible cardinal. But one may wish to
know whether ZFC-+T is consistent. The question becomes: assuming Congpc,
can we prove Congzrcar? Again no, for we have seen that ZFC + T F Congpc,
so if ZFC 4+ Congre F Congrayr, then ZFC + T F Congrear which contradicts
the Second Tncompleteness Theorem, applied to the theory ZFCHI.

Another application of Theorem 2.6 to an extension of PA is L.6b’s Theorem.
1.6b’s theorem says that although the formula Op — ¢ is true in A, it is
provable in PA only if ¢ is provable in PA:

Theorem 2.12 (Lob’s Theorem) If PA F Oy — o, then PAF .

Proof. If PA I/ ¢ then PA + =y is consistent, so by the Second ITncompleteness
Theorem, applied to PA4+—p, PA+-¢ I Conpa 4-,. But now, in PA, Conpay-,
is equivalent to =[p. So we have PA 4+ = I =, whence PA H Op — . B

Exercise 34. Prove Lob’s Theorem directly from TLemma 2.1, by taking a
sentence 1t such that

PAF ¢ < O — )
Use the properties D1 D3.

Exercise 35. As before, but now take ¢ satisfying

PAF ¢ < (O — o)



3 Models of PA: Introduction

3.1 The theory PA™ and end-extensions

From now on, we take the symbol < as part of the language Lpa, so every
Lpa-structure M carries a binary relation <M.

T repeat that the symbol A will always denote the standard model.

We shall find it useful to consider some Lpa-structures that are not models
of PA, but of a weaker theory PA™, which we therefore now introduce.
Definition 3.1 PA™ is the {+,;<;0, 1}-theory with axioms stating that:

1

+ and - are commutative and associative and - distributes over +;

2) Ya(z0=0Azl=2A2z+0=2)

W

< is a linear order satisfying V2 (0 < z) and V2 (0 < 2 & 1 < z)

A

Vaeyz(x <y —=r+z<y+2)

o

Veyz(0 < 2 Az <y =2z <yz)

)
)
)
)
)
)

6) Vaylx <y—3Jz(z+z=y))

So, every model of PA™ is a linear order. If My and My are Lpa-structures and
M is a substructure of Mo, we say that M, is an initial segment of M, or
M is an end-extension of My, ifforallme Myandne My, it MaEm<n
then m € M. Notation: My C, M.

Tf M is any model of PA™ | the function n — ™ : IN — M is an embedding
of Lpa-structures.

Exercise 36. Prove this, and prove also that this mapping embeds A as initial
segment in M.

If 7 is a class of formulas, and M, a Lpa-substructure of My, we say that
My is a 7 -elementary substructure of My, notation: My < My, if for every
o(v,...,vx) €7 and all k-tuples my, ... ,my € My,

My plma, . omg] & Mo | elma, o my]

Exercise 37. TLet My C. My and My, My models of PA7. Show that
My <a, M.

Exercise 38. Show that for any inclusion My C M of models of PA, that
My <, Mo implies My <A, M.

Exercise 39. Show that PA™ proves all true Yj-sentences.

Exercise 40. Show that for Lpa-structures My and My: if My C, M4 and
Moy is a model of PA™ | then M is a model of PA™.
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3.2 Cuts, Overspill and Underspill

Let M be a model of PA. A cut of M is a nonempty subset I C M such that
x<yandy &l impliesz e, and z € I implhiesxz+1€& I. A cut I is proper if
I # M. The following easy lemma is of fundamental importance in the study
of nonstandard models of PA.

Lemma 3.2 Let M be a model of PA, and T C M a proper cut. Then
I 1s not definable in parameters from M, that is: there is no Lpa-formula
©(v1, ..., v641) such that for some my, ... my € M:

f:{mEM|M':gp[m1,,mk,m]}

Proof. Since T is nonempty, 0 € I. Moreover, m € I impliesm + 1 € I. Were

I definable by ¢ in parameters mq,...,my as in the LLemma, then since M
satisfies induction, we would have T = M. [ |
Corollary 3.3 (Overspill Lemma) Let M be a model of PA and T C M a
proper cut. If my,... mi € M and M = o[mi,... mg,b] for every b € T,
then there is c € M\ T such that

MYy <cplma, . my, ]
Proof. Certainly, for all ¢ € T we have M |=Vy < cp[mq, ..., mk,yl; so if such

e € M\ T would not exist, we would have

[:{('|M':VUS('QD[7’TI]777’TI]¢7U]}

contradicting the non-definability of T of Lemma 3.2. [ |
Corollary 3.4 Again let M be a model of PA and I C M a proper cut. Suppose
that for ¢, my,... ,mi € M we have: for all x € I there is y € T with

My >wnplm, . my ]

Then for each ¢ € M\ T there isb &€ M\ T with
M ':b< C/\sp[mh'-- 7mk7b]
Proof. Apply Corollary 3.3 to the formula

Fy(e <y <eAplmi,. .. mgyl)

Corollary 3.5 (Underspill Lemma) et M a model of PA and T C M a
proper cut.

i) Ifforallce MN\T, M ¢[my,...,mg, ], then there is b € T such that
M ':VTZ})QD[TTI],’TTI]?,T]’

it) if foralle € M\T there is & € M\ T with M |E 2 < cAe[mq, ... mg, x],
then for allbe I thereisye T with MEb<yAg[mi,... ,mg, y].

Exercise 41. Prove Corollary 3.5.
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3.3 The ordered Structure of Models of PA

We study now the order-type of models of PA; that is, their {<}-reduct.

If A and B are two linear orders, we order the set A x B lexicographically,
that is: (a,b) < (a/,b) iffa<a’ ora=a Ab<b. Ax Bisthen also a linear
order, and the picture is: replace every a € A by a copy of B. By A+ B we
mean the ordered set which is the disjoint union of A and B, and in which every
element of A is below every element of B.

Theorem 3.6 et M be a nonstandard model of PA. Then as ordered set,
M =N+ A x 7 where A is a dense, linear order without end-points. Therefore,
if M 1s countable, M =ZN+Q x 7

Proof. M has N as initial segment, so M = N+ X for some linear order X. For
nonstandard a € M, let 7 (a) the set of elements of M which differ from a by a
standard element: o' € Z(a) iff forsomen € N, M Ed +m=aVa+m=a'. Tf
a,b € M are nonstandard elements and a ¢ 7(b), then Z(a) N 7Z(b) = B, and if
moreover a < b, we have x < y for every 2 € Z(a) and y € Z(b). Since clearly,
every 7(a) is order-isomorphic to 7., we have M = N+ A x 7., where A is the
collection of all sets 7 (a), ordered by: Z(a) < Z(b) iff a < b.

Now A is dense, for given a,b nonstandard, if Z(a) < Z(b) then Z(a) <
Z([4E2]) < Z(b) (check!).

A has no endpoints: for every nonstandard a we have 7([§]) < Z(a) <
Z(a + a) (check this too!).

The final statement of the theorem follows from the well-known fact that
every countable dense linear order without end-points is order-isomorphic to Q.

We shall now see some examples of proper cuts of a nonstandard model M.
For us, the interesting cuts are initial segments, that 1s: cuts which are closed
under the operations +,- in M (such cuts are then Lpa-substructures of M,
and hence models of PA™ | if M is).

Examples.

1) Tet M be a nonstandard model of PA, and @ € M nonstandard. By a"
we mean the set

{m e M |forsomen e N, M Em<a"}

Convince yourself that a is closed under the operations +, - of M. More-
over, a € aV. Tt is easy to see, that a® is the smallest initial segment of
M that contains a. Tt is also easy to see, that a¥ £ M, for a® ¢ a". By

N is not a model of PA.

the same token, a
2) TLet a € M be nonstandard as before. By a'’/N we mean the set
{meMl|foralln e N, M Em” < a}

Again, a'/V is closed under +, - and is a proper initial segment since a ¢
a'/N Since N C a'/N for every n € N we have M E n"” < a; by
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the Overspill Lemma, there 18 a nonstandard element ¢ € M such that

M ¢ < a. Clearly then, ¢ € a'/NV\ N.

The following exercises both require use of the Overspill Lemma.

Exercise 42. Show that for a« € M nonstandard, m € M\ a" if and only if
a® < m for some nonstandard ¢ € M.

Exercise 43. et a € M be nonstandard.

a) Show that for each n € N there is b € M such that M E b < a <
(b+ 1)+ Show that for each such b, M |=b" > a;

b) show that a'/N is not a model of PA, by showing that there is ¢ € a'/N
with M | ¢ > a.

The following exercise explains the name “cut”.

Exercise 44. Let M be a countable nonstandard model of PA and 7 C M a
proper cut which is not the standard cut N. Suppose that T is closed under +.
Then under the identification M =2 N+Q x 7 of 3.6, T corresponds to N+ A x 7.,
where A C Q is a Dedekind cut: a set of form {g € Q|¢ < r} for some real
number r.

Exercise 45. TLet M be a nonstandard model of PA; by theorem 3.6, write
M =2 N4+ A x 7 as ordered structures, with A a dense linear order without
end-points. Show that A cannot be order-isomorphic to the real line R [Hint:
let. m € M be nonstandard and consider the set {Z(m-n)|n € N} as subset of
Al

Theorem 3.7 et M be a countable, nonstandard model of PA. Then M has
280 proper cuts which are closed under + and -.

Proof. Define an equivalence relation on the set of nonstandard elements of M
by: a ~ b iff for some n € N,

a<b<aorb<a<b”

Clearly, this is an equivalence relation, and the set A of ~-equivalence classes of
M\ N is linearly ordered by [a] <4 [b] iff @ < bin M. Suppose [a] <4 [b]. Then
a™ < b for each n € N. So for each n € N, there is & with a” < & < 2”72 < b;
that 1s, the formula

Jr(a¥ <z < 2¥T2 < b)

is satisfied (in M) by all standard elements y. By the Overspill Lemma, there
is a nonstandard ¢ such that for some » € M,

a“ <xr <zt <hb
Tt follows that [a] <a [2] <a [b]. So the ordering (A, <4) is dense, and by a

similar overspill argument one deduces that it has no end points.
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Therefore, since M was countable, there is an isomorphism (A4, <4) = (Q, <)
and hence a surjective, <-preserving map

MA\N = (Q,<)

The inverse image of each Dedekind cut in @) defines a proper cut in M, which
is closed under + and -. Since there are 2% Dedekind cuts in @, the theorem 1s
proved. [ |

3.4 Cofinal extensions; MRDP Theorem and Gaifman’s
Splitting Theorem

Initial segments are one extreme of inclusions of models; the other extreme 1s
the notion of a cofinal submodel. Tf My C M4 are models of PA™ | we say that
M s cofinal in My, or M 18 a cofinal extension of My, if for every m € M,
there is m’ € M, such that m < m’ in M. Notation: My Cer Mo.

We extend the notions of ¥y and TI;-formulas to arbitrary n, by putting
inductively: a formula is X, 41 iff it is of form Jyu with ¢ € Tl,,; a formula
is T, ¢ iff it is of form Vg with ¢ € X,. Clearly, every formula is (up to
equivalence in predicate logic) ¥, for some n. Tn the definition of ¥,, and TT,,
we allow the string ¢ to be empty, so that every 3, -formula is automatically
Yp41 and Tl,41. First an easy lemma which gives a simplified condition for
when an extension is ¥,,-elementary.

Lemma 3.8 Let My C My be an inclusion of Lpa-structures. If n > 0 and
for each ¥, -formula 8(F) and every tuple @ of elements of My we have

Mo b= 0] = My E 0[]
then M, <%, M.

Proof. For the converse direction, let 6(#) = 3gp(Z,§) (with ¢ € TT,,_4) and

-

suppose M | 0[d] so M | ¢[d, b] for some tuple b of elements of M. Since
—p is trivially ¥, we cannot have My | —¢[d, b]; so Mo = o[d, b] hence
Mo = 4ld].

Theorem 3.9 et My Cor Mo be a cofinal extension of models of PA™ such

that My <a, M. If My 1s a model of PA then My < M.

Proof. First we prove, using the criterion of lemma 3.8, that M <x, Mas; and
then that for n > 2,if My <5, My then My <5, M.

Let (%) be a Xo-formula, 6(F) = IGVZY(Z, i, Z) with ¢ € Ay, and suppose
for @ € M, that My | 0[d], so there is b = bi,..., by in My such that
Mo | VZY[a, b, 2. Now My Cop Mo, so there is b € My with by, ... by < b;
then Mo |= 37 < bVZY[a, i, Z]. Then certainly for all ¢ € My we have



This is a Ag-formula, so becanse My <a, Mo we have
My EVudyg < V2 < wila, y, Z]

Now we use the assumption that M is a model of PA and satisfies therefore
the Collection Principle: 1t follows, that

(since its negation Y§ < b3z—1) implies, by Collection, JwVy < 32 < w—¢h)
In particular, My = 3GVZY[a,7,Z]. By lemma 3.8 we may conclude that
My <5, M.

For the inductive step, now assume My <5 Mo for n > 2. Then since M,
is a model of PA and M, <5, Mo, the pairing function is a bijection from M2
to My (because this is expressed by a TTs-formula which is true in My). This
has for effect that we can contract strings of quantifiers into single quantifiers,
so for a TT,, 41-formula ¢ (#) we may assume it has the form ¢ = VyIzp(Z, y, 2)
with ¢ € T, 4.

Suppose for @ € My that My E ¢[@]. Tn order to show M- | ¢[d], we
show that for each b € My, My = Yy < b3zp[ad,y, 2], which suffices since
My Cor M.

Recall Theorem 1.9; since M, |= Vydze and M, is a model of PA, by the

induction axioms of PA we have

My EJa, mVy < WVz(z = (a,m)y — ld, y, z])
But this is ¥, (check!), so

My EJa, mVy < WVz(z = (a,m)y — ld, y, z])

Since certainly Moy | Va, mVy3z(z = (a,m),) (because this is a TTo-formula),

we have that M- | Vy < bAze[d, y, 2], as desired.
We have proved: My E ¢[d] = Ms E ¢[d] for every T, 1i-formula (%)
and every tuple @ from My; so My |E ¢[d] = My E ¢[d] for every T, 44-
||

formula ¢ (&) and every tuple @ from M, ; by lemma 3.8, we are done.

The following result we need, although very easy to state, is quite deep, and we
won’t prove it. It is the famous Matiyasevich-Robinson-Davis-Putnam Theorem,
which was used to show that Hilbert’s 10th Problem cannot be solved (there
is no algorithm which decides for an arbitrary polynomial P(¥) with integer
coefficients and an arbitrary number of unknowns, whether the equation P(Z) =
0 has a solution in the integers).

Theorem 3.10 (MRDP Theorem) For every Xy -formula o(Z) there is a
Jformula Y(Z) of form Iy (¥, §) with x quantifier-free, such that

PA F Vi(p(#) & (7))
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The MRDP Theorem means we can eliminate bounded quantifiers from ;-
formulas. The following exercise gives its relevance to Hilbert’s 10th Problem.

Exercise 46. Show that for every quantifier-free Lpa-formula p(y, Z) there are
polynomials P(y, #) and Q(y, ¥) such that for all tuples i of natural numbers:
N | Fyely, 7] if and only if the equation P(y,7) = Q(y,7) has a solution in
IN.

Corollary 3.11 Any inclusion between models of PA 1s Ag-elementary.

Proof. Tet A(F) be Ay. Since both # and —f are ¥, by the MRDP Theorem
there are quantifier-free formulas ¢ and 1 such that

PA F VE(O(F) < Igo(7, 7))
PA I VE(=0(F) < I2%(7, 7))

Now let. My C My be an inclusion of models of PA. Tf, for @ € My, M, | 0]d]
then for certain b € My, My | ¢[d, . Since ¢ is quantifier-free, My = o[, b]
and so My | 6[d], since M5 is a model of PA. The argument in the other
direction uses the equivalence for —f, and is the same. [ |

Theorem 3.12 (Gaifman’s Splitting Theorem) et My C Ms be an in-
clusion of models of PA. Then there is a unique model K with My Coy K C,
M. Moreover, My < K, so K is a model of PA too.

Proof. Clearly, there is at most one K with My Cs K C, My; we have to
take
K ={m & M, |for somen &€ My, m< n}

Then K is a Lpa-substructure of Mo, as well as an initial segment of it, so K
is a model of PA™ and K <A, Ms. Since My <a, My by Corollary 3.11, also
My <a, K (check this!). Theorem 3.9 now gives My < K. [ |

Corollary 3.13 Fuvery nonstandard model of PA has proper elementary cofinal
ertensions.

Proof. Tet M be a nonstandard model of PA. T.et. £’ be Lps augmented with
constants m for every m € M, as well as a new constant ¢. Tet b € M be
nonstandard and consider the theory

ThM)U{c£m|me M}u{c<b}

By compactness, this theory has a model M’ which is an elementary extension
of M; applying theorem 3.12 to the inclusion M C M’ gives M Cos K C. M’
with M < K. Moreover, ¢ € K \ M, so the extension is proper. [ |



3.5 Prime Models and Existence of Elementary End-ex-
tensions

In this section we shall ultimately see that every model M of PA has a proper
elementary end-extension. For countable M, this is a relatively easy Omitting
Types argument, given below; but the general case needs a more sophisticated
approach. We shall review the theory of prime models of complete theories
extending PA, and then, by a rather tricky argument, find a proper elementary
end-extension of any given model M as a particular prime model. First, let us
do the countable case. From now on, Lpa (M) always denotes the language Lpa
augmented with constants from the model M. Let ¢ be a new constant, and
consider, in the language Lpa (M) U {c}, the theory T (e):

Tam(e) ={0 € Loa(M)|M EBO}U{c>m|me M}
For every a € M, let ¥,(x) be the type
Y.xy={e<atU{z£blbe M}

Every model of Th(¢) is a proper elementary extension of M, and it is an end-
extension if and only if it omits each ¥,(2). Since M is countable, we may, by
the Extended Omitting Types Theorem, conclude that there 1s such a model,
provided we can show that T (e) locally omits each X, ().

Suppose that there is an Lpa (M)-formula ¢(u, v) such that:

(1) Tam(e)Folu,e) s u<a
(2) Forallbe M :Tay(e)F olu,c) = u#b

By definition of Ty (e), (1) implies that there is ny € M such that
(3) MEVYe>nVule(u,z) = u <a))

And similarly (2) implies that for every b € M there is n, € M such that
M EVa > ngVu(e(u, z) — u # b)). By induction in M, it follows that

(4) M EVY23Ve > yVu(e(u, ) — u > z))

Tf ny is such that M = Va > naVu(p(u, 2) = u > a)), then for n = max(nq, ns)
we have

M E Va > nVu—p(u, z)

and therefore, Ty (¢) F Vu—p(u, ¢). So we see that our assumption leads to the
conclusion that ¢(u, ¢) is inconsistent, with Ty (¢), which therefore locally omits

Y. (x).

Since the Omitting Types theorem is false for uncountable languages and for
uncountably many types (see, e.g., Chang & Keisler), the general case turns out
to be more complicated.



3.5.1 Prime Models
Tet M be a model of PA and A C M. By K(M; A) we denote the set of

elements of M which are definable over A. That is, those elements a for which
there is a formula 6,(2,uy, ... ju,) of Lpa and elements aq,... ,a, € A such
that,

MEVYe(O,(z,ar,... a,) < 2=a)

Tet Lpa(A) the language with constants from A added, and Th(M)4 the
Lpa(A)-theory which is true in M.

Theorem 3.14

i) K(M;A) is an Lpa(A)-substructure of M, and A C Lpa(A) < M as
Lpa (A)-structures;

it}  For every model M’ of Th(M)a there is a unique Lpa(A)-elementary
embedding from K(M; A) into M’;

iti) K (M; A) has no proper Lpa(A)-elementary substructures and no nontriv-
ial Lpa(A)-automorphisms.

Proof. i) Certainly A C K(M; A) since every a € A is defined over A by the
formula 2 = a. Tf a and b are defined by Lpa(A)-formulas 6,(x) and 0,(x)
respectively, then a + b is defined by Jzw(6,(2) A 8(w) A 2 = z + w); similarly
a-b is defined over A. So K(M; A) is an Lpa(A)-substructure of M. To see
that K(M; A) < M we employ the Tarski-Vaught test. Let Jzp be an Lpa (A)-
sentence which is true in M. Since M satisfies the least number principle, we
have

M E Fa(p(2) AVy < 2—(y))

The formula p(2) AVy < 2-¢(y) now defines an element of K(M; A) which
satisfies ¢, so K(M; A) E Jzp

i) For every a € K(M; A) let §,(x) be an Lpa (A)-formula defining a. For a
model M’ of Th(M) 4, send a to the unique element a’ of M’ such that M’
6,(a’). This defines a mapping h : K(M; A) — M’. This does not depend on
the choices for ,, because if a is also defined by (,, then M and M’ satisfy
the formula Ve (f,(2) < (.(2)). One sees that h is an embedding of Lpa (A)-
structures, and the proof that it is elementary, is by a similar application of the
Tarski-Vaught test as in i). Finally, h must be unique with these properties,
since h(a) must satisfy 6, (x).

ii1) Since every Lpa (A)-automorphism of K (M; A) is an Lpa (A)-elementary
embedding, there can he at most one such by ii); so the identity function is the
only one.

Tt M < K(M; A) is a proper Lpa(A)-elementary substructure, by ii) there
is a unique Lpa(A)-elementary embedding h : K(M; A) — M’'. Composing
with the identity gives an elementary embedding of K'(M; A) into itself. By ii),
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there is only one such, which 1s the identity. But this cannot factor through a
proper subset, of course. [ |

From the proof of theorem 3.14 we see that if M’ is a model of Th(M)4 and
A" C M’ is the set, of interpretations of the constants from A, then the unique
h @ K(M; A) = M’ takes values in K(M'; A"). By symmetry, we must have
that the models K(M; A) and K(M/'; A"} are isomorphic. Therefore, the model
K (M; A) is determined by the theory Th(M) 4, and does not depend on M or
A.

A =10, we write K(M) for K(M; A). Tn view of the remark above, for
every consistent, complete Lpa-theory T extending PA we have a prime model
Kp which we can take to be K(M) for any model M of T

Exercise 47. This exercise recalls some notions from Model Theory. Given
a complete theory T in a countable language £, we say that an L-formula

o(x1, ... ,2,) is complete in T if it is consistent, with T and for any other £-
formula (1, ..., 2,), either T EVaq -2, (o(F) — ¥(F)) or

T Yy a2, (@(&) = —(F)) (Equivalently, T U {@(er, ..., en)} is a complete
LU{eq, ..., en}-theory, where ¢1,... ¢, are new constants). The theory T is

called atomic if for every L-formula o(#) which is consistent with T, there is a
complete formula (%) such that T+ VE((F) — o(¥)).
Show that every complete extension of PA is atomic.

Exercise 48. Tet T be a complete, consistent extension of PA in a language
Lpa UC, where (' is a new set of constants. Let M be a model of T"and A C M
the set of interpretations of the constants from . Assume that for ¢ # ¢/ €
Tt ¢ % ¢'. Show that for every Lpa U C-type X(2) which is consistent with T,
K (M; A) realizes X(x) if and only if T locally realizes ().

3.5.2 Conservative Extensions and MacDowell-Specker Theorem

The MacDowell-Specker Theorem asserts what we announced as our main result
for this section: every model of PA has a proper elementary end-extension. The
way we shall prove it, it comes out as a corollary of another theorem.

If My C My is an inclusion of models of PA | we say that M is a conservative
ertension of My, if for every subset X of Ms,, if X is definable in M- in
parameters from Moy (that is: there is @(x,u1,...  u,) and ay,... a0 € My
such that X = {m € My | M- E 6(x,a1,... ,a,)}) then X N M, is definable
in My in parameters from M.

The theorem we shall prove, is:

Theorem 3.15 Fuvery model of PA has a proper elementary conservative ex-
tension.

Let us see that this implies what we want:

Lemma 3.16 Fvery conservative extension is an end-extension.



Proof. TLet M; C M- a conservative extension; let @ € My, b € My and
suppose b < a. The set {m € My |m < b} is clearly definable in My with
parameter b, so {m € My |m < b} is definable in parameters from M, say

{meMi|m<bl={me M| My EOm,a, ... a,)}

Since a € My and b < a we have My EVe(f(x,a1,...,a,) = 2 < a). By the
least, number principle in M, there is a least a’ € M such that

My EVY2(0(x,a1,... ,0,) = 2 < d)

Tt follows that My | f(a’,ar,... a,), so a’ <b. But if o’ < b then o’ +1<b
whence My E6(a’ +1,aq,... ,a,), but of course My £ a’ + 1 < a’. Therefore
we must have a’ = b, so b € M, as desired. [ |

Hence, for the record:

Corollary 3.17 (MacDowell-Specker) Fvery model of PA has a proper ele-
mentary end-extension.

We now embark on the proof of theorem 3.15. We introduce the abbreviation
Qr o(x) for Yydaz(z > y A p(2)) (“there exist unboundedly many x satisfying

w(2)7).

Lemma 3.18 et M be a model of PA, o(z) an Lpa(M)-formula such that
M E Qre(z), and 0(x,y) an arbitrary Lea(M)-formula. Then there is an
Lpa(M)-formula () with the properties:

i) ME Q)
i) M EVa(h(z) = o)
iii) M = Vy=(Qu () A 0(x,y)) A Qu(t(x) A—b(r,y)))

Proof. An equivalent for item iii) is:

M EYy3z(Vr > z((x) = 0(x,y)) VVZ > z(0(x) — —=0(z, v)))

The idea of the proof is as follows. We shall construct an Lpa (M)-formula
x(y, x) such that

(1) M EVa(x(0,2) & (p(x) A (6(x,0) < Quip(v) Ab(v,0))))
(2) MEYyz(x(y+1,2) < x(y,2) A0z, y+1) < Quix(y,v) Ab(v,y +1))))

For the moment, assume that x(y, 2) has been defined. Tt follows, by induction

in M, that M |E VYyQuex(y,z); for Qzx(y,z) implies Qz(x(y, ) A f(x,y +
1))V Qx(x(y,z) A —f(xz,y+ 1)), so Qex(y + 1,2). We note also, that M E

Vya(x(y, #) —= (@) Ao < yx(v,z)).
Tn order to define ¥(x) from y(y, ) we use theorem 1.9. We write (s);
instead of (a,m); as in that theorem, putting s = j(a, m):

(8)i = m(ji(s), (i 4+ 1)ja(s) + 1)
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Let us also write & = pzp(z) for p(x) AVy < 2—p(y).
Since YyQzx(y, z) holds in M, we have by induction on z and theorem 1.9
that the sentence

Vz3s((s)o = pax (0, 2) AV < 2((s)j41 = pe(e > (s); Ax(i+1,2))))
is true in M; write this as Vz3s®(z, s). Define
(3) Y(x) = Fs(P(x,s) ATFi < x(s); = )

Then M E Qui(x), so statement i) of the Lemma is satisfied. Statement ii),
that Va(¢(2) — ¢(x)), follows from Yyx(x(y, ) = ¢(2)). As to statement, iii),
first note that if w < z A ®(z,5) A ®(w, 1), then Yo < w((s), = (1),). So for all
z >y, if ®(z,s) then Yu(y < w < z = x(y, ($)w). Soif Oy, s) Ap(x) Az > (s)y
then 8(y, z) & 6(y, (s)y), which ensures that statement iii) holds.

Tt remains to define the formula x(y, 2) and prove the equivalences (1) and
(2). Again, we use the sequence coding (s);. TLet P(s,y) be the formula

Vi < y((s)u = 0 & Qz(p(2) AB(z, u) AV < u(B(z,7) & (5), = 0))
and define y(y, 7) as

(P (s,) AV < y(B(z,u) & (s), = 0) A p(a))
Since P(s,0) < ((s)o = 0 < Qz(¢(2) A 8(z,0))), we have

(0, 2) & (x) A (2, 0) & Qz(p(2) A B(=,0)))

so (1) holds.
For (2), first note that P(s,y) A P(1,y) implies Vu < y((s), =0 « (1), = 0);
from this and the definition of x(y, ) it follows directly that

(4) P(s,y) = Vu < yvVe(v(u, z) &
o(z) AV < u(f(x,v) < (s), =0))

holds. We prove the equivalence of (2):
—: Suppose x(y + 1,2), so

Pls,y+ ) AVu <y+ 1(0(x,u) & (s)y = 0) Ap(z)
for some s. Applying (4) with y + 1 for y we have
Va(x(y +1,2) & o(z) AVo <y+ 1(0(z,v) & (s), =0))

so p(x) A (O(z,y+ 1) & (s)y41 = 0). Combining this with the definition of
P(s,y+ 1), the fact that y(y, 2) implies p(2) AVv < yx(v, ), and applying (4)
again (inside the part Qz(...)), we get

(5) Xy, 2) AN (B(z,y+1) & Qz0(z,y+ 1) A x(y, 2))
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+: Conversely, assume (5) and P(s,y). By theorem 1.9 there is ¢ such that
YV < y(($)u = (1), and

(Dt =0 6 Q2(plz) A8,y +1) AV < 5(B(20) © (s}, = 0)
Then P(i,y+ 1) holds. We have to show:
Vu <y+ 1(0(z,u) < (1), =0) Ap(x)

Since x(y,x) we have (2), and for u < y this is clear, since P(s,y). For
u=1y+ 1 we have:

Olz,y+1) < Qz(0(z,y+1)Ax(y, 2))
& Qzlp(2)ANb(z,y + 1) AV <y
(0(z,v) < (t)y = 0))

& (Hyer =0

(the first equivalence by (5); the second by (4); the third by definition of 1) We
have proved the equivalence (2), and hence the lemma. [ |

We finish the proof of Theorem 3.15. Fix an enumeration o (e, 7)), 8, (¢, 7)), . ..
of all formulas of Lpa U {e} (so 97(1‘,1](7)) is an Lpa-formula and §) is the
list. of free variables of 6;(c, 1]())) We construct a sequence of Lpa-formulas
wo(2),o1(2),... in one free variable 2, such that M | Qup;(z) for all i, as
follows. Put ¢g(2) = 2 = 2. Given gp,( :) such that M | Quy;(x), we a,pply
lemma 3.18 to find ;11 (T) such that:

M Qr §07+1( )

M leT(g07+1( ) = i)

M E VT2 (Ve > 2(pip (1) — 0 (2, 7))V
Va > z(piyr (2) = =i (2, 7))

Consider the Lpa (M) U {c}-theory T given by the axioms

10(2) € Loa(M) | M = 6(@)}U
{e>alae M}U{pi(c)|ie N}

Since every finite subset of this has an interpretation in M, T is consistent.
Tet M’ be a model of T and let K = K(M'; MU {c}). We have M < M’
as Lpa(M)-structures, M C K and K < M’ as Lpp (M) U {c}-structures; it
follows that M < K as Lpa (M)-structures. Also, ¢ € K\ M, so K is a proper
elementary extension of M. We want to show that the extension M C K is

conservative.

Suppose s subset S C K is defined by S = {k|K |E 6(k,by,...b,)} with
bi,...,b, € K. By definition of K, every b; is defined in M’ by a formula
ni(v, a1, ..., ag,¢) with ar,... ap € M. Now the formula

n
37)1 "'vn(/\ 7777(7)777.1/17"' 711147'77) /\9(?/07“17--- 77)77,))
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is an Lpa-formula, so occurs in our enumeration as 6;(z, 7)), with 77 =
Yo, ---, Y- We claim:

deMnsS e
M EFuve > wlpj () = 0; (e, dyar, ... ag)))

so that M N S 1s definable in M over M. Observe, that for d € M, d € S if
and only if K = 0(d,by,...,by), ifand only if K E60;(c,d,aq,..., ax).

By construction of ¢;41, we have either
1) MEJuve > w(pjp(x) = 0;(x,d,ar, ... ag))

or

i) M E JuvVe > w(pip(x) = -0 (e, d,aq, ... ar))

These are formulas with parameters in M, so since M < K, each one is satisfied
in M if and only if it holds in K. So, i) is the case if and only if K |
Bi(c,d,ar,... a), if and only if d € S| as desired.
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4 Recursive Aspects of Models of PA

4.1 Partial Truth Predicates

A truth predicate for PA is a formula Tr(y, 2) such that for all formulas
@(?)07 .- 7%71)1

(Tr) PAFVYs(Tr("¢™, s) < o((s)o, -, (8)s=1))

where (s); refers, again, to sequence coding as used in the proof of lemma 3.18.

Exercise 49. Arguing in a similar way as in the proof of Tarski’s theorem on
the undefinability of truth (exercise on page 20), show that a truth predicate
for PA cannot exist.

However, we do have partial truth predicates: for each n > 1 we have a ¥,,-
formula Tr, (y, 2), such that the statement (Tr) holds for Tr, and ¥, -formulas
. These partial truth predicates are very useful, and the rest of this section
is devoted to their construction. In order to have a concise presentation, we
shall freely employ recursion inside PA| using the fact that primitive recursive
predicates and functions are Aj-representable in PA by formulas for which PA
proves the recursive definition. We shall have to be explicit about the way we
define our primitive recursive functions, though, and this takes some time.

We start by defining (in PA) a function Eval(t, s), such that for all terms

7"(”07 s 77)1671)7

(Eval) PA F Vs(Bval(Tt7, s) = t((s)o0,-- -, (s)s_1)
For this, we need the recursion for the predicate “x is the code of a term”.

Proposition 4.1 There is a Aq-predicate Term(x) such that

PA FVe(Term(z) & 2 =(0) Va2 = (1)
Vi< ez =(2,1)
V Juv < 2(Term(u) A Term(v) A 2 = (3, u,v))
V Juv < 2(Term(u) A Term(v) A 2 = (4, u,v))

Exercise 50. Prove Proposition 4.1.
Proposition 4.2 There is a Aq-predicate Val(y, x, z) such that

PA FVayz(Val(y, 2, z) & [(z = 0 A =Term(y))
\ 0YAz=0)
)

V Juv < yJab(y = (3, u, v) A Val(u, z, a)A
Val(v,2,b) Az = a + b)

V Juv < yJab(y = (4, u, v) A Val(u, z, a)A
Val(v, 2,b) A z = a-b)

40



Exercise 51. Prove that the quantifiers Jab in the recursion for Val can in fact
be bounded. Prove proposition 4.2. Prove also:

PA F Yyxz3zVal(y, z, 2)

In view of this we introduce a function symbol Eval, so that
VyaVal(y, 2, Eval(y, 2))

Tt is now easy to prove the equation (Eval), by a straightforward induction on
the term 1.

Exercise 52. Carry this out.

Our next step is the recursion for AgForm(z): “z is the code of a Ag-formula”.
We define an abbreviation: [Ju, < s.u] stands for the term

(T2, k,(9, (6,(2, kY, 5, u))

so that for a term ¢ and formula ¢,

Foe < T = T (ve <t A )"

We have a similarly defined abbreviation [Vu, < s.u]. The following proposition
should be obvious.

Proposition 4.3 There is a Aq-predicate AqgForm(z) such that

PA F Va(AgForm(x) ¢ Juv < (Term(u) A Term(v)A
(2 =(Bu, 0y Ve =(6,u,v)))
V Juv < 2(AgForm(u) A AgForm(v)A
(z ={(T,u,v) Ve = (8 u,v)Vae=/{10,u)))
V Juks < x(AgForm(u) A Term(s) A 2 = [Fog < s.u])
T

s) A
V Juks < 2(AgForm(u) A Term(s) Az = [V, < s.ul))

Proposition 4.4 There is a Aq-predicate Tro(y, x) such that for all Aqg-formulas
@(7)07 - 77)1671)’

(Trg) PAEVs(Tro("e ™, s) < o((s)oy- -, (8)k—1))

Proof. The function V, which for codes of formulas gives the largest index
of a variable which occurs in the formula, is of course primitive recursive and
provably recursive in PA. Sloppily, we define:

V() = 0 if =Form(y)
A Form(y) Ak = max{l|v occurs in y}
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By a recursion analogous to the ones we have already seen, there is a Aj-
predicate Tro(y, ) such that

PA F Vyx[Tro(y, z) <
AgForm(y)A
[Fuv < y(y = (5, u, vy A Eval(u, 2) = Eval(v, 2))

V Juv < y(y = (6, u,v) A Eval(u, 2) < Eval(v, x))

V 3uw < y(y = {7, u,v) A'Trg(u, 2) A Tro(v, x))

V 3uw < y(y = (8, u, v) A (Tro(u, 2) V Tro(v, 2)))

V3u < y(y = (10,1 >/\ =Tro(u, x))

V Juks < y(y = [HW < s.u] A3i < BEval(s, 2)3w
Vi<V(y)(j#k—(w); =(2);) A(w) =i ATrg(u,w)))
V Juks < yly = Vo < s.u] AVi < BEval(s, z)3w

(97 < VG # & — (); = (2)3) A (1) = # A Trofoe,0))) ]

Exercise 53. Prove that

PA F VaikuTw((w); = u AV < k(j #i— (w); = ();))

Prove also, that

PA FVyazo(Vi < V(y)((2); = (v);) = (Tro(y, 2) < Tro(y, v)))

Using this, we see that in the recursion for Trg, the quantifier 3w might as
well have been Vw. The rest of the quantifiers are bounded, so Trg is Ay. The
statement (Trg) follows by induction on ¢. [ |

In the final inductive definition of Tr,, we define simultaneously formulas Tr,,
and Tr;, that work for ¥, and TI,,-formulas, respectively.
First, the recursions for the predicates saying that = codes a ¥, or TI,-
formula. For clarity, we write [Fug.u] for (12, k, u) and [Vog.u] for (11, k, u).
We have, for each n, Aj-predicates %, Porm( :) and TT,, Form(xz): let

YoForm(2) = MTyForm(z) = AgForm(z)

Tf 3, Form(2) and TT,, Form(z) are defined, define ¥,, 11 Form(x) and TT,, ;1 Form(z)
recursively, so that

PA + X, 11 Form(a) < T, Form(z)V

Fku < z(x = [Fug.u] A X, 11 Form(u))
PA + 11, 41 Form(z) & X, Form(z)V

Fku < x(x = [Vog.u] AT, 11 Form(u))

We now come to the final definition of the predicates Tr, and Tr,. For n = 0,
we let Try = Tro, which we have already defined. Tn the definition of Tr, 1 and
Tr) ,; we use the function V(y) defined in the proof of proposition 4.4.

Let Fnyi(o,j,y) be the formula

T, Form((a)g) AVi < j3k < (0)ip1((7)ig1 = Fug-(o)i]) A(o); =y
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From the recursion for ¥, 1 Form(y) one proves by well-founded induction that
PA FVYy(X, 1 Form(y) « Jo3jFp1 (0,4, y))
Let Tr,11(y, 2) be the formula

doj( n+1( 7, y) AJw(Tr, ((0)o, w)A
Vy)(VE < j((@)ier # Boi(o)]) = (w)i = (#)i)))

Similarly, let. G,, 11 (o, ,y) be the formula
Y. Form((a)o) AV < j3k < (0)ip1 ((0)ig1 = [Vor. (o)) A(o); =y
and define Tr , (y,x) as

M, 1 Form(y) AVoVi(Gruai (o, 5, y) —
Y (Vi < V(y)(VI < j((a)ix1 # [Yvi-(o)]) = (w); = (2);) —
Try (7)o, w)))

Exercise 54. Check that the predicates ¥, Form, T, Form, F, 41 and
(G, 41 are Aq; hence by induction on n, that Tr, is X, and Tr is TT,,. Convince
yourself that these formulas have the claimed property w.r.t. ¥, -formulas and
IT,,-formulas, respectively.

Our first application of the partial truth predicates Tr, is, that “the arithmetical
hierarchy does not collapse”. That is, for each n there is a 3, -formula which is
not equivalent to a TT,-formula.

Proposition 4.5 (Kleene) The formula Tr, is, in PA, not equivalent to a
11, -formula.

Proof. This is similar to the Hierarchy Theorem in Recursion Theory. Tt 1s
easy to define, in PA| a provably recursive function [] such that ([2])g =
Now if Tr,, were equivalent to a TI,-formula, there would be a En;formula,
6(vg) such that
PA FVa(0(x) < —Tr(z, [2]))

Tt follows, that

PA F0[707 /vg] & Trp,(T07,[707]) & =0[707 /vo]

which contradicts the consistency of PA. [ |

Exercise 55. Show that in fact, for no model M of PA| Tr, is, in M, equivalent
to a I1,,-formula.
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4.2 PA is not finitely axiomatized

In this section we apply the partial truth predicates Tr,, to show that PA, or in
fact every consistent, extension of PA, is not finitely axiomatized.

Let M be a model of PA and A C M. By K" (M; A) we mean the subset of
M consisting of elements which are ¥,,-definable in M in parameters from A:
those a € M such that for some ¥, -formula (2, y1,... ,yx) and ay,... jay € A,

MEVYz(6(x,ar,...,a,) &2 =a)

Exercise 56. Show that for n > 0, K" (M; A) is a substructure of M which
contains A.

We have the following analogue of Theorem 3.14.

Proposition 4.6 Let M be a model of PA and A C M. Then for alln > 1,
K?(M; A) <5, M as Lpa(A)-structures.

Proof. We write K for K”(M; A). Tet us first show that K <A, M. Since
K 18 a substructure of M, equations between terms in parameters from K will
hold in K if and only if they hold in M. Furthermore, if ¢1,¢2 € K and ¢ < ¢4

in M, and 8 (,d) and 5(y, b) are X,,-formulas defining ¢; and e5 in parameters
from A, the formula

-

(6 (2,) A ba(y, B) A+ (= +1) = )

is ¥, and defines a unique element 5 of K for which ¢1 + (e3 + 1) = 25 s0
c1 < ey in K. The converse is easy, so the equivalence K |= ¢ < M | ¢ holds
for all quantifier-free sentences ¢ with parameters from K. Now suppose the
equivalence holds for ¢ € Aq, and consider 2 < tp. Tf M | Tz < (@) p(x, d)
then by the least number principle in M,

M E Fe(z < i(d) Ap(z,d) AVy < 2-p(y, 7))

This formula contains parameters from K. Replacing those by their X, -definitions
we get a Y,-formula with parameters in A, defining an element ¢ of K; then

K E e <t(@) Ap(e,d) AVy < cmp(y, d)

by the assumption on ¢ and what we have proved about quantifier-free formulas,
so K | 3z < i(d)e(x,d). The converse is, again, easy, so K <a, M.

We now prove for 0 < k < n that K <y, M implies K <x,,, M. Since
the bijection j7 : M™ — M is Ag-definable and has Ag-definable inverses 5
(1 < i < m), it restricts to a bijection K™ — K; hence for a ¥g i -formula ¢
we may assume that ¢ = Ay with ¢ € Tl,. f M = ¢ then again by LLNP,
M E Fy(d(y) AVw < y=p(w)). This formula contains parameters from K
replacing those by their ¥, -definitions we get

M = FyTey - -m(/\ 05 (v;) Ay, 7) AVw < y—=p(w, 7))

i=1
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The part following Ay 18 3, in parameters from A so defines an element ¢ of
K. Since K <y, M, K E ¢(¢), and hence K = . Using proposition 3.8, we
conclude that K <yx, , M, which concludes the induction step and therefore
the proof. [ |

Proposition 4.7 Let M be a model of PA, A a finite subset of M and n > 1.
If K™ (M; A) contains nonstandard elements, it is not a model of PA.

Proof. Since A is finite, A = {aq,...,ar} for some k. There is, in K =
K" (M; A), a function ¢ — [d@, ¢] where [@, ¢] is such that

Vi < ([, )i = agn A (17, D = o
(This is ¥q-definable in M, and K <y, M) Since every ¢ € K is X,-definable

nay,...,ag, there is for each ¢ € K an e € IN such that
M ETr,(e,[d@,c]) AVy(Tr, (e, [d, y]) = y=rc)

This is a conjunction of a ¥, and a I1,,-formula, so it holds in K too. Therefore,
for each nonstandard d € K we have

K | Yede < d(Tr, (e, @, o) A Vy(Tra (e, [@,3]) — y = o))

Were K a model of PA, it would satisfy the Underspill Principle; then there
would be a standard d for which this formula would hold. But it is not hard to
see that in that case, K would be finite. This is impossible for models of PA I

Exercise 57. Show that even K'(M; @) may contain nonstandard elements.

Theorem 4.8 (Ryll-Nardzewski) No consistent ertension of PA is finitely
artomatized.

Proof. Suppose T is a finitely axiomatized, consistent extension of PA. Let M
be a nonstandard model of 7" and pick a € M nonstandard. Since T is finitely
axiomatized, all axioms of T are X, for some n. But then K" (M; {a}) <x, M,
so K™(M;{a}), containing the nonstandard element a, is a model of T. This
contradicts proposition 4.7. [ |

4.3 Coded Sets

An important tool for the study of models of PA is the theory of coded sets.
Let M be a model of PA. A subset S C IN is said to be coded in M if there is
¢ € M such that
S={neWN|ME(c¢), =0}

For each S C N, let pg(x) be the type {(2); =0|ie S}U{(x); #0]i¢& S}. So
S is coded in M if and only if M realizes pg.

We call {§ C IN|S is coded in M} the standard system of M, and denote
it by SSy(M).

Clearly, for the standard model A, SSy(N) consists of precisely the finite
subsets of IN, but. for nonstandard models M, SSy(M) turns out to have inter-
esting structure.
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Proposition 4.9 For nonstandard M, SSy(M) contains every recursive subset

of N.

Proof. Tet S C N be recursive. By theorem 1.14, there is a ¥-formula (z)

such that:
n €S =PAFH(n)

n ¢S = PAF —0(m)

In M, the formula 32Vi < y((2); = 0 <> 6(4)) is true for every standard y. By
Overspill, there is a nonstandard ¢ for which it holds. Since M is a model of
PA, we have

neSeME(e),=0

The following converse shows that the property of being coded in every non-
standard model is in fact equivalent to being recursive:

Proposition 4.10 For every nonrecursive set S there is a nonstandard model

M in which S is not coded.

Proof. Tet T be the theory PAU{¢ > n|n € IN}. We wish to find a model of
T which omits pg. By the Omitting Types theorem, it suffices to show that T
locally omits ps. Suppose for the contrary that (e, 2) is a formula, consistent,
with 7', such that for all i € IN:

i€S=TkEYx(p(e,2) = (2); =0)
i¢gS=TkFYx(p(c,2) = (2); #0)

Tt follows that, in fact,

ieSeTEYx(p(e,2) = (2); =0)
igSeTEYx(p(e,2) = (2); #0)

since ¢(c, ) is consistent, with T. Therefore to decide whether i € S, we can
look for the shortest proof in T' (which is a recursively axiomatized theory) of

either Va:(o(e, 2) — (2); = 0) or Va(p(e,2) — (2); # 0). So S is recursive after
all. i

Our next theorem says that no standard system can consist of exactly the re-
cursive sets.

Proposition 4.11 For every nonstandard model M there is a nonrecursive set

which is coded in M.

Proof. By a similar Overspill argument as in the proof of 4.9, there is a non-
standard ¢ € M such that for all 1 € IN,

M E (¢); =0 & T Form(e) AV (e) = 0 AT (4,[0])
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so the set S coded by ¢ is the set of codes of TTi-formulas ¢(vg) with at most vy
free, such that ¢(0) is true in M. Were S recursive, the theory

T=PAU{p| o e StU{-¢|leellh AV(Te") =0A"T¢" &S}

would be a consistent, recursively axiomatized extension of PA and by Godel’s
First Incompleteness Theorem there is a TTy-sentence ¥ which 1s independent of
T'; but this is impossible since either "7 € S or —¢p € T [ |

The following proposition characterizes SSy(M) in terms of the M-definable
subsets of IN:

Proposition 4.12 Let M be a nonstandard model of PA. Then S € SSy(M) if
and only if for some formula p(x,y1,...,yx) and parameters ay, ... ay € M:

S:{TIEN|M ':gﬁ(n7(],17...7(],k)}

Proof. Clearly, if S is coded by ¢ € M, the formula (¢), = 0 defines S in the
parameter ¢. The converse uses a similar Overspill argument as in the proof of
proposition 4.9. For any standard =,

MEIWi<2((y)i =0 o(i,ar,... a5))

so by Overspill this holds for some nonstandard b € M; but then for n € IN
we have M | ¢(n,ay, ... ag) if and only if M = (b), = 0, so the set {n €
IN|ME ¢(n,ar,...,a5)} is coded in M. ||

Exercise 58.
a) Tf My <a, Ms then SSy(M) C SSy(Ms);
b) if My C. M5 and M, is nonstandard, then SSy (M) = SSy(Mo).

Exercise 59. Let M be anonstandard model of PA. Prove that if S € SSy(M),
there is @ € M such that n € S iff M = p,la, where p, is the n-th prime
number.

The following famous theorem applies proposition 4.11. To some extent, it
explains why it 18 hard to give “concrete” nonstandard models of PA. Tt asserts
that “nonstandard models cannot be recursive”. A countable model of PA
is called recursive if it is of the form (IN;®, ®, <, ng,nq) with $,® recursive
functions and < a recursive relation.

Theorem 4.13 (Tennenbaum) No countable nonstandard model of PA is re-
cursive.

Proof. Tet M = (IN;®,®, <, ng,n1) be a countable nonstandard model. We
show that & is not recursive.

By proposition 4.11, M codes a nonrecursive set S; and by the exercise
above we may assume that for some a € M, S = {n € N|M [ p,la}. The
function n — p,, is recursive, and so M | p, = Pn, which is

ny @D ny
N —

pn times
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If M 1s a model of PA| it satisfies division with remainder, so for each n there
are k € IN and i < p,,, such that

a=kD-- - PkPn D ---Dny

pn times 7 times

Were @ recursive, we could, recursively in n, find k and 7 (simply by enumerating
and computing the terms in question) and hence, by checking whether i = 0,
decide the question n € 57, so S is recursive; contradiction. [ |

Exercise 60. Tf a € M is such that S = {n € IN| M E p,la}, then b = 2°
satisfies S = {n € IN| M | Jz(«P> = b)}. Use this for an alternative proof of
theorem 4.13, now showing that ® is not recursive.

Since the proof of theorem 4.13 (and the exercise you have just done) in fact
shows that for any countable model M = (IN;®,®, <, ng,n1), every set S €
SSy (M) is recursive in each of &, ®, we have the following corollary, stated as
exercise:

Exercise 61. Let M = (IN; @, ®, <, ng, n1) be a countable nonstandard model
of PA.Tf N < M, then neither of @&, ® is arithmetical.

4.4 Scott sets; Theorems of Scott and Friedman

A Scott set (or completion closed, or c-closed set) is a subset X of P(IN) such
that the following conditions hold:

i) 0 € X and X is closed under binary intersections and complements;
i) X is closed under ‘recursive in”: if Y € X and X <p VY, then X € X;

i) if X contains an infinite binary tree T, then X contains an infinite path
n 7.

To explain requirement, iii): here we consider every natural number as the code
of a unique finite sequence of natural numbers, as in section 2.1. We write 2z C y
if Th(z) < lh(y) AVi < Th(z)((2); = (y);). A subset T of IN is a binary tree if
Ve e TYi < lh(z)((z); < 1) and Vaey(lye TAz2Cy—>2€T).

X is a branch of T if X is a subtree of T and Veay € X(z CyV y C ).

Exercise 62. Show the following consequence of the definition of Scott sets:
if Xq,..., X, are elements of a Scott set X and Y is recursive in Xq,..., X,
then YV € X.

Konig’'s Lemma says that every infinite binary tree has an infinite branch. One
defines an infinite sequence of elements 2, of T, such that Ih(x,) =n and {y €
T |z, Cy} isinfinite: 2q = (), and if 2, is defined satisfying the requirements,
then let x,411 = a, * (0) if {y € T|x, * (0) C y} is infinite; otherwise, let
Tpg1 = @y x (1).

This result fails if one relativizes everything to recursive sets:
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Lemma 4.14 (Kleene) There is an infinite, primitive recursive binary tree
which does not have a recursive infinite branch. Therefore every Scott set con-
tains nonrecursive sels.

Proof. Recursion theory tells us that there are infinite partial recursive func-
tions, taking values in {0, 1}, which cannot be extended to total recursive func-
tions (e.g., the function 2 — sg({2}(x)) is such a function). TLet f be the code
of such a function and let

T={x|Vi<h(@)((2); <1TAYu <Th(x)(T(f,i,u) = U(u) = (x);))}

T is primitive recursive and infinite, since the function coded by f is infinite; but
every infinite branch through 7' is a total function N — {0, 1} which extends
the function coded by f, and is therefore nonrecursive.

T is in every Scott set, because T' <7 ), so by requirement, iii) of Scott sets,
every Scott set contains a nonrecursive set. [ |

Scott sets are intimately related to standard systems of nonstandard models of

PA.

Proposition 4.15 Let M be a nonstandard model of PA. Then SSy(M) is a
Scott set.

Proof. We check the conditions for a Scott set.

i): Since PA F V232Vi < 2((z); # 0), there is d € M such that M = (d); £ 0
for all standard i; so d codes the empty set.

Tf b codes S and ¢ codes T then there is (using Overspill) a d such that for all
standard i, M = (d); = (b)? + (¢)?; so d codes SNT. The case of complement
is left to you.

it): Suppose YV is coded by b and X <y V. One can show, in asimilar way as
we showed the representability of recursive functions, that there is a 37 -formula
©(vg, v1) such that

X:{HEH\HM 'ng(ﬁvb)}

So X is parametrically definable in M, hence in SSy(M) by 4.12.

iii): Suppose T is an infinite binary tree, coded by b € M. Then for all
standard m,

M |=3eVi <m(Th((2);) =i AV <i((2); C (2)i) A (D)), = 0)

(T apologize for the use of the same notation for two different ways of coding,
in the same formulal)

By Overspill, there is a nonstandard m satisfying this formula; but then for
any x doing it for m, x codes an infinite path in 7. [ |

For the following lemma, we need the notion of a recursive language. A first
order language L is recursive 1f there are recursive subsets Ry, Fr and (¢ of
IN, bijections between R, and the set of relation symbols of £, Fr and the
set of function symbols of £, and 'z and the set of constants of £, such that
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the functions arg : Ry — IN and arp : Fr — IN, which give, modulo these
bijections, the arity of a relation and function symbol, are recursive.

Don’t get confused: all interesting languages are recursive. The point 1s,
that we have, just as for Lpa, an effective coding of all £-formulas, sentences,
proofs . ..

Let £ be a recursive language. By this effective coding, we can say that
X CIN codes an L-theory T: for some axiomatization A of T, X = {"¢ | p €
A}. Suppose X codes the theory T'. We have, just as is section 2.2, a predicate
Prfp(x,y): 2 codes a proof of the formula coded by y, and all undischarged
assumptions of this proof have codes in X. Clearly, the predicate Prip(2,y) is
recursive in X.

Lemma 4.16 Let T be a consistent theory in a recursiwe language L, and X
a Scott set. If T 1s coded by some X € X, then there is a complete consistent
extension of T coded by some X' € X.

Proof. Fix an effective enumeration ¢g, ¢1, ... of all L-sentences.

With every finite 01-sequence z we associate a sentence ¢,: if @ = () then
¢, = Fv(v = v), and if Th(z) = n+ 1 then ¢, = ¢ A ¢, if @ = 2’ x (0), and
Gr = G A —y, if 2 = 2" % (1). The map x — "¢, is clearly recursive. Let V
be the binary tree

{2V < Th(@)((x); < 1) AV < Th(z)=Prip(k, "=, )}

Since T is consistent, Y 1s infinite; moreover, Y is recursive in X. So YV €
X. Since X is a Scott set, X' contains an infinite path P through Y. But
then {¢. |z € P} axiomatizes a complete consistent extension of 7', and X’ =
{"¢. | = € P} is recursive in P, so an element of X. | |

Theorem 4.17 (Scott) Let X be a countable Scott set. Then X = SSy(M)
for some model M of PA.

Proof. Enumerate X' as Xy, Xy, ...

Fix a set €' ={cn,c1,...} of new constants. Tet £,, be the language Lpa U
{co,...,en_1}. Every L, is recursive. Let £ =[] L,. We build a complete
L-theory T in stages.

Stage (0. Since Lpy 1s recursive and PA a recursively axiomatized theory, hence
coded by an element of X', we apply Lemma 4.16 to pick a complete consistent
extension Ty of PA in Lpa, which is coded by some element of X.

Stage 2n 4+ 1. Let

Tont1 = Top U{(cn)m =0|m e X} U{(cn)m #0|m e X, }

So Ty, 41 makes sure that ¢, codes X,,. Note that Ty, 11 18 recursive in Ty, and
X, hence in X.

Stage 2n+42. Since Ty, 41 1s coded in X', we apply Lemma 4.16 again, to obtain
a complete consistent extension of Th,41 1n L, 41, which is coded in X'. We let
this be T2n+2.
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Tet T = Un T.. Then T is consistent since every T, is, and T'is a complete £-
theory since every L-sentence is already an L,,-sentence for some n, so provable
or refutable in 75, 15

Let M be a model of T"and A C M be the set of interpretations of the
constants from C. Tet K = K(M; A). K is a model of T, hence of PA, and we
claim that X = SSy(K).

Since ¢M € K and ¢M codes X,,, clearly X C SSy(K). For the converse,

using 4.12, let, X € SSy(K) so for some (z, kq,..., k),

Here the kq,... k. are parameters from K, so they are M-definable in ele-
ments from A. Replacing the k; by their definitions and reminding ourselves
that M models the complete theory T, we see that there is an L-formula
©*(v,¢q, ..., ¢m) such that

X:{T”EN|T|_QD*(T”7€07---7Cmr)}

But TF o*(n,co, ... cm)ifand only if Toqo b @*(n,cn, ..., em). We conclude
that X is recursive in Ty (not just r.e.; since Thy,,po is complete), which is
coded in X'; hence X € X since X 1s a Scott set.

Tt 1s possible to strengthen theorem 4.17 to Scott sets of cardinality at most Ny.
The consequence is:

Corollary 4.18 If the Continuum Hypothesis holds, then for every X C P(IN):
X is a Scott set if and only if X = SSy(M) for some nonstandard model M of
PA.

But as far as T know, it 1s still an open problem whether the Continuum Hy-
pothesis can be eliminated from this result.

The following lemma is another application of the partial truth predicates Tr,.
We shall need it for the proof of Friedman’s Theorem that every countable
nonstandard model of PA is isomorphic to a proper initial segment of itself.
But the Lemma is interesting in its own right. It states a saturation property
for nonstandard models of PA.

Lemma 4.19 Let M be a nonstandard model of PA.
a) For any n-tuple aq, ... an_1 of elements of M, the set
{70(vo, .. vn 1) |0 €N, M f(an, ... ,an—1)}
is in SSy(M);

b) for any type O(vy, ..., vpym—1) consisting of Eg-formulas, and any m-
tuple bo, ... (b1 € M, if {7670 € O} € SSy(M) and the type

[0(00, . 1. bos- b 1) |0 € O}

15 consistent with M, it is realized in M.
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The same results hold with Tl instead of Y.

Proof. a) We have for 8(vg, ... ,v,_1) € Eg:

ME Oan, .. an 1) & M= Tre (07, [ag, .., an 1))

so the statement follows from proposition 4.12. .
b) TLet d € M code the set {7670 € ©}. Let 2 — [x,b] be a definable

function such that
Vi < ([, 8)i = (#)i) AVi <n+m(n <i— ([2,b])i =bi_n)

Then if {8(vy, ..., vp_1,b, ... bm_1) |0 € O} is consistent with M, we have
for each standard number y, that

-

Vi < y((d)i =0 — Tre (i, [2,5]))

is true in M. By Overspill, there 18 a nonstandard y for which this sentence 1s
true. Suppose 2 € M satisfies this for nonstandard y. Then for a; = (z); we

have
M 'Z 9(”’07 SR 7(]'77,717})07 SR 7})77’7,71)
for all # € ©.
The statements for TT;, follow simply from replacing Trg by Tr. [ |

Theorem 4.20 Let M, M’ be countable nonstandard models of PA. Then the
following two statements are equivalent:

i) M is isomorphic to an initial segment of M’
i1} SSy(M) = SSy(M’) and Thy, (M) C Thy, (M)
where Thy, (M) is the set of ¥q-sentences true in M.

Proof. We do the implication ii) = i), leaving the other direction as an exercise.
Suppose SSy(M) = SSy(M’) and Thx, (M) C Thy, (M’). We are going
to construct an isomorphism between M and an initial segment of M’ by a
back-and-forth construction.
Fix enumerations o = (ag, a},...) of M and g = (b, b}, ...) of M’. At each
stage n, we assume we have defined a partial embedding

{(]’07"'7(]'77n,*1}_>{b07"' 7})777;,*1}
of M into M’, satisfying
(*) Th21(-/\/l7(]’07"' 7(]’7:7,,71) gTh(M/7b07"' 7})7:7,,71)

For n = 0 we let iy = 0, and we use the assumption that Thy, (M) C Thy, (M’').

Now suppose (ag, ... ,a;, 1) = (bg, ..., b; _1) is defined, satisfying (). Tet
a;, be the first @’ in the enumeration a that is not among ag,...,a;, _1, and
consider the type

7o ={0(v;, ,v0,... 05, 1) €EX1 | M E0(a;

wy A0y - 7(]'777;,*1)}
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By Lemma 4.19 a), 7, is coded in SSy(M), hence also in SSy(M’). Moreover,
the type {8(v;, , bo, ... b, —1) |0 € 7, } is consistent with M’ since for any finite
#,...,0, €1, we have

Foi, (\ 0;(vi, a0, ... ai,—1)) € Thy, (M, a0, ... a;, 1)
=1

so by (%), 31)7;71(/\;:1 05 (vi,, bo, ... b, —1)) holds in M.
By Lemma 4.19 b), {0(v;,  bo, ..., bi, 1)|0 € 7, } is realized by some b;, €
M’ Clearly now,

Ths, (M, aq,...,a;,) C Thg, (M’ by, ... b))

Now, if there is no b € M’ \ {bg, ... ,b; } such that b < by for some k < 4,,, we
put 2,41 =i, + 1 and we proceed to the next stage.

Otherwise, we pick the first such b in the enumeration (3, fix &k, and consider
the type

an = {0(i 41,00, .., 0;,) ET | M E0(bbo, ... b )}

Again, o, is coded in SSy(M’), hence in SSy(M).
Moreover, {8(v; 41,a0,...,a;, )]0 € o,} is a Tlj-type consistent, with M for
the following reason: for any finite #4,... 08, € oy we have

M/ ': 3?)7jn+1 < bk /\ 9'7' (?)7;"’4_1 s })07 . 7})7jn)
J+1

which is a TTy-sentence, and since Thy, (M, ag, ..., a;,) C Thy, (M’ bo,... b))
we have Thy, (M’ by, ..., b; ) C Thy, (M, aq, ..., a;,) (check!). So

r
M Fvi, 0 < ap N\ Oi(vi g1, 00, a;,)
j+

By Lemma 4.19 b), let a € M realize {0(v; +1,a0,...,a; )]0 € o, }.
Put a;, 41 = a, bj 1 = b. Check that

Thgh(./\/l,(],(), P 7(1,7jn_|_1) g Thzh(./\/l/,})(), P 7})7jn+1)

We put i,41 = 2, + 2, and proceed to the next stage.
The second part, of each stage (when applied) will eventually make sure that
we map onto an initial segment of M’. | |

Exercise 63. Prove yourself the direction i) = ii) of Theorem 4.20.

Tet us see how Theorem 4.20 easily implies (a simple form of) Friedman’s
Theorem:

Theorem 4.21 (Friedman) Let M be a countable nonstandard model of PA.
Then M is isomorphic to a propser initial segment of itself.
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Proof. By the MacDowell-Specker Theorem, or rather the simple Omitting
Types argument, at the beginning of section 3.5 (bearing in mind that the Omit-
ting Types Theorem produces countable models), M has a countable proper
elementary end-extension M.

We have seen that for M C. M’ SSy(M) = SSy(M'). Also, since M < M|
Thy, (M’) C Thy,(M). By Theorem 4.20, M’ is isomorphic to an initial
segment of M. But M was also a proper initial segment of M’. Composing
the two embeddings, we obtain the statement of the theorem.
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Appendix

In this chapter T put two, unrelated, results which T find interesting. One 1s
Skolem’s original construction of a nonstandard model for PA; the other is a
theorem about the residue rings of infinite (nonstandard) primes in nonstandard
models.

Skolem’s Construction

Up to now, we haven’t really seen a concrete nonstandard model of PA: all our
existence theorems rely on the Completeness Theorem (or ultraproducts). Tn
the first paper where nonstandard models were introduced, by Skolem in 1934,
he gave a construction which is rather different.

Let F be the set of arithmetically definable functions from IN to IN. Using
the denumerability of F, we construct a function G : IN — IN such that for all
fgeF:

F(G(2) < g(G(@)) ae., or [(G{x)) = g(Gx)) ae or [(G(x)) > g(G(a) ae.

where “a.e.” means almost everywhere, i.e. from a certain n € IN on.

The function (7 i1s defined as follows: enumerate F as fy, f1,... We define a
sequence Ag D Ay D --- of infinite subsets of IN| with the property that for all
k1 <mn,

(%) Va € A (fi(x) < fi(x)) or Ve € An(fr(x) = fi(x))
orVa € A, (fu(x) > fi(x))

Then we can define G as follows: let G(0) be the least element of Ay, and
G(n + 1) the least element of A, 11 which is above G(n).

Put Ag = IN. Suppose A, is defined satisfying (), and infinite. The re-
strictions of fy, ..., f, to A,, form, by pointwise ordering, a linearly ordered set
go < --- < gx for some k < n. Then

A = Ul € A | fasr () = gi(2)}
Ufz e Ay fogr(2) < go(x)}
Uz {2 € An lgi(2) < fagr (2) < giga (2)}
U{z € Ay lgr(®) < fagi(z)}

This is a finite union of sets, so since A, is infinite, one of these sets is; pick
an infinite member of this union, and call it A, . Clearly, A,y satisfies (x).
This completes the definition of the sets A, and hence the definition of .
Now define an equivalence relation on F: f = ¢ iff f(G(z)) = g(G(x)) a.e.
Tet M = F/ =. The operations of pointwise addition and multiplication on F
are well-defined on M too. Letting 0™ = [Az.0], 1™ = [Az.1] (we write [f] for
the =-class of f), and [f] < [¢] iff f(G(2)) < g(G(x)) a.e. (this is well-defined

on equivalence classes), we have that M is an Lpa-structure.

Theorem 4.22 M is a proper elementary extension of N.
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Proof. One proves by induction, that for formulas ¢(vy,..., vg) and

[fi], - [kl €M,
MEo(fil,.. ., [fe]) ifand only if N E o(f1(G(n)),. .., fr(G(n))) ae.

This is immediate for atomic formulas, and the induction steps for the propo-
sitional connectives are easy. The step for 3 goes as follows:

I M 'Z Elyg@([ﬁ], SR 7[f1~”]) so for some g € f7 M 'Z @([qL [.f1]7 SR 7[fk‘])7
then by induction hypothesis N = ¢(g(G(n)), f1(G(n)), ..., fx(G(n))) a.e. so
certainly N | Jyp(f1 (G(n)), ..., fx(G(n))) a.e.

For the converse, if N = Jyo(fi(G(n)),..., fiu(G(n))) a.e., let h be the
arithmetically definable function such that h(m) is the least a satisfying
ol(a, fi(m), ..., fu(m)) (and put h(m) = 0 if no such a exists). By assumption
then,

N E o(h(Gm), Fi(Gn)),. .. fu(G(n)) ae.

so by induction hypothesis M | o([h], [fi1],-- -, [fx]) whence

Now if we have parameters from A, and M | Jyp(ny, ... ,7%), then N |
e(m,my,...,7g) for some n € IN. So M E o(m,77,...,7%) (remember that
aM = [A\z.n]). By the Tarski-Vaught test, M is an elementary extension of N

Residue Fields in Nonstandard Models

Here we treat an easy fact which belongs to the folklore of the subject: it was
never written down by anyone, but certainly known. Nevertheless, T feel it is
interesting enough to include it here.

Let M be a nonstandard model of PA,| and p a nonstandard prime number
in M. By Euclidean division and Bérout’s Theorem in M, the set of elements
< p in M has the structure of a field, which we denote by F,. Since p is
nonstandard, none of the elements 1, 1+1, 1+ 141, ... 1s divisible by p, so the
characteristic of IF, is 0 and TF, contains the field ) of rational numbers as a
subfield.

What is the relation between @ and 17,7 We recall a few definitions from
elementary algebra. We say for fields K C I. that I 1s algebraic over K if for
each 2 € L there is a polynomial P € K[X] such that P(2) = 0. Otherwise,
I, is transcendent over K. A transcendence basis of I, over K is a minimal
subset A of I such that L is algebraic over K(A) (the least subfield of . which
contains K and A). The transcendence degree of I over K is the cardinality of
a transcendence basis of I over K. We can now state:

Theorem 4.23 et M be a nonstandard model of PA, and p € M a nonstan-
dard prime number. Then T, s a field of infinite transcendence degree over

Q.

Proof. We show that for any finite number of elements 1, ..., 25 of F,, F, is
not algebraic over Q (1, ..., #1). Clearly, and element z of 7, satisfies P(x) =0
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in T, for a polynomial P with coefficients in Q(x1, ..., 2), if and only if there
are polynomials Py, Py with coefficients in IN[2y, ..., zg] (the set of polynomials
in aq,..., 2, with coefficients in IN) such that Pi(x) = Pa(2) in TF,, that is:
Lpa-terms 11,15 in parameters xq, ..., 2 and free variable v, such that

M 'Z T'm(f] (.’If] y oo Tk T)7p) = rm(tQ(m1 yooe o Tk T)7p)
Tet 7(wy, ..., wg,v,u) be the type of all formulas of the form:
rm(ty (W, v), u) = rm(ta(wW, v), u) = Vz < ulrm(ty (¥, 2), u) = rm(t2 (10, 2), u))

for all pairs (11,42) of Lpa-terms in variables wy, ... wy,v.

The set of codes of elements of 7 is recursive, hence, by 4.9, in SSy(M).
Also, 7 consists of Ap-formulas. And the type (21, ..., 2, v,p) is consistent
with M since every polynomial can have at most finitely many roots, unless
it is the zero polynomial, and T, is infinite. So 7(1,..., 25, v,p) is finitely
satisfied in M. By Lemma 4.19, 7(21,...,25,v,p) is realized by an element
a € M. One sees that rm(a,p) is an element of T, which is not a zero of a
nontrivial polynomial with coefficients in @(a1, ..., 25). This holds for any k,
so the theorem is proved. [ |
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Miscellaneous Exercises
Exercise 64. The scheme of strong Ag-collection is the scheme:
Va, z3iVe < 2Vy(f(z,y, a) — Jw < 16(x, w, a))

where # 1s a Ag-formula. Let S be the theory PA™ together with the scheme of
strong Ag-collection. Prove that in S, the scheme of induction for ¥;-formulas
is provable.

Exercise 65. Give a formal proof in PA of the following sentence:

Vey(e <y Aged(z,y) > 1= Fng(1 < v <yAva=qy))

Exercise 66. For this exercise, we assume that we have symbols for the ma-
nipulation of (coded) sequences in PA: we have functions lh(z) (the length of
the sequence coded by ), (2) (the sequence with one element z), (2); (the
i-th element of the sequence coded by z), () (the empty sequence), and z x y
(concatenation of sequences).

Let R(x) be the formula

=)V (h(x) < (()0)” + 1)

Prove that PA proves the following principle of well-founded induction: for each
formula ¢(v),

PA F Var(R(x) AVy(R(x x (4)) = ol () = () = Va(R(r) — o(x))

Exercise 67. Recall that we abbreviate Oy for FxPrf(x,Tp7). The following
“derivability conditions” hold:

DI PAF ¢ = PAF Op
D2 PAFOp AO(p — ) — Oy
D3 PA F Op — O

i) Use these rules to show that PA F O(p A ¢) < Op A O,

ii)  Show that PA does not prove the implication
(Op = O¢) = O(p = ¢)

for all ¢ and ¢ [Hint: you may assume that PA f O0—. Use D1 D3 and
apply the Diagonalization Lemmal.

Exercise 68. Tet ¢ be a sentence in the language of PA. Prove that the
following two statements are equivalent:
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1) ¢ is preserved under end-extensions, that is: if M C, M’ is an end-

extension of models of PA and M [ ¢, then M’ £ ¢;
2) s, in PA| equivalent to a Xy-sentence.

Exercise 69. Tf M is a model of PA and a € M, write M, for {m € M| M
m < a}. M, is an abelian group under addition modulo a.

Recall that an abelian group is cyelic if there is an element ¢ such that every
element of the group can be written as

g+---Fgor (=g +--+(-g)

n times n times
for some n € IN. The element g is called a generator of the group.

i) Prove that there is no formula ¢(vg, v1) of Lpa such that for every model

M of PA and a,b e M:

M E p(a,b) & M, is cyclic with generator b
it)  Prove that in fact, M, cannot be cyclic if a is nonstandard.

Exercise T0. Let M be a model of PA and a,b € M. Tet us say that b is
a witness for a if b codes the type of a in M: that is, (b), = 0 if and only if
n = Tp(vg) " for some ¢ such that M = ¢(a).

i) Show that every model M of PA has an elementary extension M’ such
that every a € M has a witness in M’;

it)  Show that every model M of PA has an elementary extension M’ such
that every a € M’ has a witness in M’;

iii) Show that the relation “bis a witness for a” is not definable in the language

of PA.

Exercise T1. For this exercise we assume the theorem (due to Hilbert and
Bernays) that there is a complete extension T of PA such that the axioms of T'
form a AS-set. Prove that there is a model M of PA such that every element

of SSy(M) is a Ad-set.

Exercise 72. Show that the collection of all AY-sets is not a Scott set [Hint:

relativize L.emma 4.14 to functions partial recursive in K, the halting set].
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