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A well-known representation of monoids and its
application to the function “vector reverse”
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Utrecht University

(e-mail: w.s.swierstra@uu.nl)

Abstract

Vectors—or length-indexed lists—are classic example of a dependent type. Yet tutorials stay well
clear of any function on vectors whose definition requires non-trivial equalities between natural num-
bers to type check. This paper demonstrates how to write functions, such as vector reverse, that rely
on monoidal equalities to be type correct without having to write any additional proofs. These tech-
niques can be applied to many other functions over types indexed by a monoid, written using an
accumulating parameter, and even be used decide arbitrary equalities over monoids ‘for free.’

1 Introduction

Many tutorials on programming with dependent types begin by defining the type of length-
indexed lists, also known as vectors. Using a language such as Agda (Norell, 2007), we
can write:

data Vec (a : Set) : Nat → Set where

Nil : Vec a Zero

Cons : a → Vec a n → Vec a (Succ n)

Many familiar functions on lists can be readily adapted to work on vectors, such as
concatenation:

vappend : Vec a n → Vec a m → Vec a (n + m)

vappend Nil ys = ys

vappend (Cons x xs) ys = Cons x (vappend xs ys)

However, not all functions on lists are quite so easy to adapt to vectors. How should we
reverse a vector? There is an obvious—but inefficient—definition:

snoc : Vec a n → a → Vec a (Succ n)

snoc Nil y = Cons y Nil

snoc (Cons x xs) y = Cons x (snoc xs y)
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slowReverse : Vec a n → Vec a n

slowReverse Nil = Nil

slowReverse (Cons x xs) = snoc (slowReverse xs) x

The snoc function traverses a vector, adding a new element at its end. Repeatedly traversing
the intermediate results constructed during reversal yields a function that is quadratic in the
input vector’s length. Fortunately, there is a well-known solution using an accumulating
parameter, often attributed to Hughes (1986). If we try to implement this version of the
reverse function on vectors, we get stuck quickly:

revAcc : Vec a n → Vec a m → Vec a (n + m)

revAcc Nil ys = ys

revAcc (Cons x xs) ys = {revAcc xs (Cons x ys)}0
Goal: Vec a (Succ (n + m))

Have: Vec a (n + Succ m)

Here we have highlighted the unfinished part of the program in green, followed by the type
of the value we are trying to produce and the type of the expression that we have written
so far. Each of these goals that appear in the text will be numbered, starting from 0 here.
In the case for non-empty lists, the recursive call revAcc xs (Cons x ys) returns a vector
of length n + Succ m, whereas the function’s type signature requires a vector of length
(Succ n) + m. Addition is typically defined by induction over its first argument, immedi-
ately producing an outermost successor when possible; correspondingly, the definition of
vappend type checks directly—but revAcc does not.

We can remedy this easily enough by defining a variation of addition that mimics the
accumulating recursion of the revAcc function:

addAcc : Nat → Nat → Nat

addAcc Zero m = m

addAcc (Succ n) m = addAcc n (Succ m)

Using this accumulating addition, we can define the accumulating vector reversal function
directly:

revAcc : Vec a n → Vec a m → Vec a (addAcc n m)

revAcc Nil ys = ys

revAcc (Cons x xs) ys = revAcc xs (Cons x ys)

When we try to use the revAcc function to define the top-level vreverse function, however,
we run into a new problem:

vreverse : Vec a n → Vec a n

vreverse xs = {revAcc xs Nil}1
Goal: Vec a n

Have: Vec a (addAcc n Zero)

Once again, the obvious candidate definition does not type check: revAcc xs Nil produces
a vector of length addAcc n Zero, whereas a vector of length n is required. We could try
another variation of addition that pattern matches on its second argument, but this will
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break the first clause of the revAcc function. At this point, we seem to have reached an
impasse: how can we possibly define addition in such a way that Zero is both a left and a
right identity?

2 Monoids and endofunctions

The solution can also be found in Hughes’s article. Rather than work with natural num-
bers directly, we choose an alternative representation of natural numbers that immediately
satisfies the desired monoidal equalities. Just as Hughes represents a list as the partial
application of append, we can represent a number as the partial application of addition.

J K : Nat → (Nat → Nat)

J n K = λ m → m + n

reify : (Nat → Nat) → Nat

reify f = f Zero

We have some choice of how to define the reify function. As addition is defined by induc-
tion on the first argument, we choose reify to partially apply the second argument. This
choice ensures that the desired ‘return trip’ property between our two representations of
naturals holds definitionally:

reify-correct : ∀ n → reify J n K≡ n

reify-correct n = refl

Note that we have chosen to use the type Nat → Nat here, but there is nothing specific
about natural numbers in these definitions. These definitions can be readily adapted to
work for any monoid—an observation will explore further in Section 6. Indeed, this is
an instance of Cayley’s theorem for groups (Armstrong, 1988, Chapter 8), or the Yoneda
embedding more generally (Boisseau & Gibbons, 2018; Awodey, 2010).

While this fixes the conversion between numbers and their representation using func-
tions, we still need to define the operations on this representation. Just as for difference
lists, the zero and addition operation correspond to the identity function and function
composition respectively:

zero : Nat → Nat

zero = λ x → x

⊕ : (Nat → Nat) → (Nat → Nat) → (Nat → Nat)

f⊕ g = λ x→ g (f x)

Somewhat surprisingly, all three monoid laws hold definitionally using this functional
representation of natural numbers:

zero-right : ∀ x → reify x≡ reify (x⊕ zero)

zero-right = λ x → refl

zero-left : ∀ x → reify x≡ reify (zero⊕ x)

zero-left = λ x → refl

⊕-assoc : ∀ x y z → reify (x⊕ (y⊕ z))≡ reify ((x⊕ y)⊕ z)

⊕-assoc = λ x y z → refl
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As adding zero corresponds to applying the identity function and addition is mapped to
function composition, the proof of these equalities is immediate.

To convince ourselves that our definition of addition is correct, we should also prove the
following lemma, stating that addition on ‘difference naturals’ and natural numbers agree
for all inputs:

⊕-correct : ∀ n m k → J n + m K k≡ (J n K⊕ J m K) k

The proof relies on the associativity of addition; the definition of reverse we will construct
will not use this property.

3 Revisiting reverse

Before we try to redefine our accumulating reverse function, we need one additional aux-
iliary definition. Besides zero and the ⊕ operation on these naturals—we will need a
successor function to account for new elements added to the accumulating parameter.
Given that Cons constructs a vector of length Succ n for some n, we choose to define
the following successor operation at first:

succ : (Nat → Nat) → (Nat → Nat)

succ f n = Succ (f n)

With this definition in place, we can now fix the type of our accumulating reverse function:

revAcc : (m : Nat → Nat) → Vec a n → Vec a (reify m) → Vec a (reify (J n K⊕m))

As we want to define revAcc by induction over its first argument vector, we choose that
vector to have length n, for some natural number n. Attempting to pattern match on a
vector of length reify m creates unification problems that Agda cannot resolve easily—it
cannot decide which constructors of the Vec datatype can be used to construct a vector
of length reify m. As a result, we index the first argument vector by a Nat; the second
argument vector has length reify m, for some m : Nat → Nat. The length of the vector
returned by revAcc is expressed using the ⊕ operator, in an attempt to avoid the problems
we encountered in the introduction. We can now attempt to complete the definition as
follows:

revAcc m Nil ys = ys

revAcc m (Cons x xs) ys = {revAcc (succ m) xs (Cons x ys)}2
Goal: Vec a (reify (J Succ n K⊕m))

Normalised Vec a (m (Succ n))

Have: Vec a (reify (J n K⊕ succ m))

Normalised Vec a (Succ (m n))

Unfortunately, the desired definition does not type check. While the right-hand side of the
definition is type correct, it produces a vector of the wrong length. To understand why,
compare the normalised types of the goal and expression we have produced. Using this
definition of succ creates an outermost successor constructor, hence we cannot produce a
vector of the right type.
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Let us not give up just yet. We can still redefine our successor operation as follows:

succ : (Nat → Nat) → (Nat → Nat)

succ f n = f (Succ n)

This definition should avoid the problem that arises from the outermost Succ constructor
that we observed previously.

If we now attempt to complete the definition of revAcc, we encounter a different
problem:

revAcc : (m : Nat → Nat) → Vec a n → Vec a (reify m) → Vec a (reify (J n K⊕m))

revAcc m Nil ys = ys

revAcc m (Cons x xs) ys = revAcc (succ m) xs {Cons x ys}3
Goal: Vec a (reify (succ m))

Normalised Vec a (m (Succ Zero))

Have: Vec a (Succ (reify m))

Normalised Vec a (Succ (m Zero)

Once again, the problem lies in the case for Cons. We would like to make a tail recursive
call on the remaining list xs, passing succ m as the length of the accumulating parameter.
This call now type checks—as the desired length reify ((Succ n)⊕m) and computed length
reify (J n K⊕ succ m) coincide. The problem, however, lies in constructing the accumulat-
ing parameter to pass to the recursive call. The recursive call requires a vector of length
reify (succ m), whereas the Cons constructor returns a vector of length Succ (reify m).

We seem to be no further than before. We might try to define an auxiliary function of
the following type:

cons : (m : Nat → Nat) → a → Vec a (reify m) → Vec a (reify (succ m))

Unfortunately, there is no way to produce a vector of the desired length, m (Succ Zero),
without knowing anything further about m. If we appeal to the reader’s suspension of
disbelief and pretend that we are provided with a cons function of the right type, we can
complete the definition as expected:

revAcc : ∀m → (∀ {n} → a → Vec a (m n) → Vec a ((succ m) n)) →
Vec a n → Vec a (reify m) → Vec a (reify (J n K⊕m))

revAcc m cons Nil acc = acc

revAcc m cons (Cons x xs) acc = revAcc (succ m) cons xs (cons x acc)

But how are we ever going to call this function? We have already seen that it is impossible
to define the cons function in general.

Yet we do not need to define cons for arbitrary values of m—we only ever call the
revAcc function from the vreverse function with an accumulating parameter that is initially
empty. As a result, we only need to concern ourselves with the case that m is zero—or
rather, the identity function—and the Cons constructor suffices after all:

vreverse : Vec a n → Vec a n

vreverse xs = revAcc zero Cons xs Nil
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Note that this definition is only type correct because the equations reify J n K≡ n and
J n K⊕ zero≡ J n K hold definitionally. A different choice of J K function, for example,
mapping n to λ m → n + m would break the first property.

4 Using a left fold

The version of vector reverse defined in the Agda standard library, however, uses a left fold.
In this section, we will reconstruct this definition. A first attempt might use the following
type for the fold on vectors:

foldl : (b→ a→ b)→ b→Vec a n→ b

foldl step base Nil = base

foldl step base (Cons x xs) = foldl step (step base x) xs

Unfortunately, we cannot define vreverse using this fold. The first argument, f, of foldl

has type b → a → b; we would like to pass the flip Cons function as this first argument,
but it has type Vec a n → a → Vec a (Succ n)—which will not type check as the first
argument and return type are not identical. We can solve this, by generalising the type of
this function slightly, indexing the return type b by a natural number:

foldl : (b : Nat→ Set)→ (∀ {n}→ b n→ a→ b (Succ n))→ b Zero→Vec a n→ b n

foldl b step base Nil = base

foldl b step base (Cons x xs) = foldl (b� Succ) step (step base x) xs

At heart, this definition is the same as the one above. There is one important distinction:
the return type changes in each recursive call by precomposing with the successor con-
structor. In a way, this ‘reverses’ the natural number, as the outermost successor is mapped
to the innermost successor in the type of the result. The accumulating nature of the foldl is
reflected in how the return type changes across recursive calls.

We can use this version of foldl to define a simple vector reverse:

vreverse : Vec a n→Vec a n

vreverse = foldl (Vec ) (λ xs x→ Cons x xs) Nil

This definition does not require any further proofs: the calculation of the return type follows
the exact same recursive pattern as the accumulating vector under construction.

Reasoning about left folds

This definition does, however, have one notable drawback: it is rather difficult to prove
properties of functions defined using foldl. In particular, we may want to try and prove that
the definition of vreverse above and the quadratic version from the introduction produce
identical results for all inputs:

reverse-correct : (xs : Vec a n)→ vreverse xs≡ slowReverse xs

While the base case for the empty list holds trivially, we immediately get stuck in the
case for non-empty vectors: we cannot use our induction hypothesis, as the definition of
vreverse assumes that the accumulator is always the empty vector, Nil. After processing
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the head of the vector, however, the accumulator will no longer be empty in subsequent
recursive calls—and correspondingly we cannot use our induction hypothesis. Although
this can be fixed—generalising the definition of vreverse to start with an arbitrary initial
accumulating argument—doing so requires a very careful treatment of equality between
vectors (of potentially different lengths) and exposes the hidden complexity behind this
simple definition.

Foldl and foldr on vectors

The subtle nature of the left-fold on vectors becomes even more apparent when we define
foldl in terms of foldr, a restricted version of the elimination principle of vectors where the
return type may only depend on the length of the vector:

foldr : (b : Nat→ Set)→ (∀ {n}→ a→ b n→ b (Succ n))→ b Zero→Vec a n→ b n

foldr b c n Nil = n

foldr b c n (Cons x xs) = c x (foldr b c n xs)

Defining foldl in terms of foldr poses an interesting challenge. The definition in Haskell
typically uses the foldr to construct a function, which is then applied to the initial value of
the accumulator:

foldl :: (a → b → a) → a → [b] → a

foldl step base xs = foldr (λ x rec acc → step (rec acc) x) id xs base

How can we adapt this definition to work with vectors? In particular, we will need to
account for the changes in size as we recurse over the argument vector and construct the
resulting function.

The first choice we must make is the type of the argument b that we pass to foldr. We
clearly want to accumulate a function of the form λ n → b ... → b .... The question is
how to account for the natural numbers involved. One obvious choice for the type is:

(λ n → ∀m → b m → b (n + m))

that is, given any initial accumulating value b m, we can use the n elements from our input
vector to produce a value of type b (n + m). Once we have made this choice, the remainder
of the function closely follows the Haskell implementation above:

foldl : (b : Nat→ Set)→ (∀ n→ b n→ a→ b (Succ n))→ b Zero→Vec a n→ b n

foldl b step base xs =

let result = foldr (λ n → ∀m → b m → b (n + m))

(λ x rec m acc → step (rec m acc) x)

(λ m x → x)

in {result xs Zero base}4
Goal: b n

Have: b (n + Zero)

Unfortunately, we have run into a familiar problem: once we kick-off the foldl, we produce
a value of type b (n + Zero) rather than the desired b n. To address this, we introduce an
auxiliary function that counts using our difference naturals.
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foldlAcc : (b : Nat → Set) → (m : Nat → Nat) →
(step : ∀ n→ b (m n)→ a→ b (m (Succ n)))→
Vec a n→ b (reify m) → b (m n)

foldlAcc b m step xs =

foldr (λ k → b (reify m) → b (m k)) (λ x rec acc → step (rec acc) x) (λ x → x) xs

In essence, here we once again assume the existence of an ‘impossible’ step function for
combining our recursive results that somehow commutes Succ and addition with the dif-
ference natural m in the arguments to b. When we call foldlAcc, however, we instantiate m

to be the identity and the step function we are provided suffices:

foldl : (b : Nat→ Set)→ (∀ n→ b n→ a→ b (Succ n))→ b Zero→Vec a n→ b n

foldl b step base xs = foldlAcc b zero step xs base

The foldl function on vectors is a useful abstraction for defining accumulating functions
over vectors. For example, as Kidney (2019) has shown we can define the convolution of
two vectors in a single pass in the style of Danvy & Goldberg (2005):

convolution : ∀ (a b : Set) → (n : Nat) → Vec a n → Vec b n → Vec (a× b) n

convolution a b n = foldl (λ n → Vec b n → Vec (a× b) n)

(λ {k x (Cons y ys)→ Cons (x , y) (k ys)})
(λ {Nil → Nil})

5 Beyond vectors

In this section, we will explore another application of this representation of monoids. We
begin by defining a small language of boolean expressions:

data Expr (n : Nat) : Set where

Var : Fin n → Expr n

Not : Expr n → Expr n

And : Expr n → Expr n → Expr n

Or : Expr n → Expr n → Expr n

The Expr data type has constructors for negation, conjunction and disjunction. Variables
are represented using the finite type, Fin n, that has exactly n inhabitants.

Indexing expressions by the number of variables they contain, allows us to write a total
evaluation function. The key idea is that our evaluator is passed an environment assigning
a boolean to each of the n possible variables; we can represent this environment as a vector
of booleans:

Env : Nat → Set

Env n = Vec Bool n

The evaluator itself is easy enough to define; it maps each constructor of the Expr data type
to its corresponding operation on booleans.

eval : Expr n → Env n → Bool

eval (Var x) env = lookup env x
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eval (Not e) env = ¬ (eval e env)

eval (And e1 e2) env = eval e1 env∧ eval e2 env

eval (Or e1 e2) env = eval e1 env∨ eval e2 env

The only interesting case is the one for variables, where we lookup the value of a variable
in the current environment.

For a large fixed expression, however, we may not want to call eval over and over again.
Instead, it may be preferable to construct a decision tree associated with a given expression.
The decision tree associated with an expression with n variables is a perfect binary tree of
depth n:

data DecTree : Nat → Set where

Node : DecTree n → DecTree n → DecTree (Succ n)

Leaf : Bool → DecTree Zero

Given any environment, we can still ‘evaluate’ the boolean expression corresponding to
the tree, using the environment to navigate to the designated leaf:

treeval : DecTree n → Env n → Bool

treeval (Leaf x) Nil = x

treeval (Node l r) (Cons True env) = treeval l env

treeval (Node l r) (Cons False env) = treeval r env

We now like to write a function that converts a boolean expression into its decision tree
representation, while maintaining the scope hygiene that our expression data type enforces.
We could imagine trying to do so by induction on the number of free variables, repeatedly
substituting the variables one by one:

makeDecTree : (n : Nat) → Expr n → DecTree n

makeDecTree Zero e = evaluate e Nil

makeDecTree (Succ k) e =

let l = makeDecTree k (subst True e) in

let r = makeDecTree k (subst False e) in

Node l r

But this is slightly unsatisfactory: to prove this function correct, we would need to prove
various lemmas about substitutions; it is inefficient, as it repeatedly traverses the expression
to perform substitutions.

Instead, we would like to define an accumulating version of makeDecTree, that carries
around a (partial) environment of those variables on which we have already branched. As
we shall see, this causes problems similar to those that we saw previously for reversing a
vector. A first attempt might proceed by induction on the number of free variables in our
expression, that have not yet captured in our environment:

makeDecTreeAcc : (n m : Nat) → Expr (n + m) → Env m → DecTree n

makeDecTreeAcc Zero m expr env = Leaf (eval expr env)

makeDecTreeAcc (Succ k) m expr env = Node l r

where
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l = makeDecTreeAcc k (Succ m) {expr}4 (Cons True env)

r = makeDecTreeAcc k (Succ m) {expr}5 (Cons False env)

Goal: Expr (k + Succ m)

Have: Expr (Succ (k + m))

This definition, however, quickly gets stuck. In the recursive calls, the number of variables
in the environment grows, but this growth is not captured in the type of the corresponding
expression. The situation is similar to the very first attempt at defining the accumulating
vector reverse function, revAcc: the usual definition of addition is unsuitable for defining
functions using an accumulating parameter.

To remedy this, we could use the accumulating version of addition instead:

makeTreeAcc : (n m : Nat) → Expr (addAcc n m) → Env m → DecTree n

makeTreeAcc Zero m expr env = Leaf (eval expr env)

makeTreeAcc (Succ n) m expr env = Node l r

where

l = makeTreeAcc n (Succ m) expr (Cons True env)

r = makeTreeAcc n (Succ m) expr (Cons False env)

Although this definition now type checks, just as we saw for one of our previous attempts
for revAcc, the problem arises once we try to call it:

makeDecTree : (n : Nat) → Expr n → DecTree n

makeDecTree n expr = makeTreeAcc n Zero {expr}6 Nil

Goal: Expr (addAcc n Zero)

Have: Expr n

Just as we saw previously, calling the accumulating version fails to produce a value of the
desired type—in particular, it produces a tree of depth addAcc n Zero rather than depth n.
To address this problem, however, we can move from regular vectors to ‘difference vectors’
that accumulate the values of the variables we have seen so far:

DEnv : (Nat → Nat) → Set

DEnv m = ∀ {n} → Env n → Env (m n)

Note that we use the Cayley representation of monoids in both the type and the value
associated with these difference vectors.

We can now complete our definition as expected, performing straightforward induction
without ever having to prove a single equality between natural numbers:

makeTreeAcc : ∀ n m → DEnv m → Expr (reify (J n K⊕m)) → DecTree n

makeTreeAcc Zero m denv e = Leaf (eval e (denv Nil))

makeTreeAcc (Succ n) m denv e = Node l r

where

l = makeTreeAcc n (succ m) (denv · Cons True) e

r = makeTreeAcc n (succ m) (denv · Cons False) e

Finally, we can kick off our accumulating function with a pair of identity functions,
corresponding to the zero elements of the natural numbers and lists:
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makeDecTree : (n : Nat) → Expr n → DecTree n

makeDecTree n e = makeTreeAcc n zero (λ env → env) e

Interestingly, the type signature of this top-level function does not mention the ‘difference
naturals’ or ‘difference lists’ at all.

Can we verify that definition is correct? The obvious theorem we may want to prove
states the eval and treeval functions agree on all possible expressions:

correctness : ∀ n (e : Expr n) (env : Env n) →
eval e env≡ treeval (makeDecTree n e) env

A direct proof by induction quickly fails, as we cannot use our induction hypothesis; we
can, however, prove a more general statement that implies this result:

correctnessAux : ∀ n m (denv : DEnv m) (e : Expr (reify (J n K⊕m))) (env : Env n) →
eval e (denv env)≡ treeval (makeTreeAcc n m denv e) env

This proof of this lemma is entirely straightforward.

Monoids indexed by monoids

Where proving the monoidal laws for natural numbers or lists is a straightforward exer-
cise for students learning Agda, the monoidal laws for vectors are more of a challenge.
Crucially, if the lengths of two vectors are not (definitionally) equal, the statement that the
vectors themselves are equal is not even type correct. For our difference vectors, however,
this is not the case. Just as we saw previously for the difference natural numbers, we can
show that all the desired monoidal equalities hold definitionally.

To establish this, we begin by defining the monoidal operations on our difference
vectors:

vzero : DEnv zero

vzero = λ x → x

++ : (xs : DEnv n) → (ys : DEnv m) → DEnv (n⊕m)

xs ++ ys = λ env → ys (xs env)

We have elided some implicit arguments that Agda cannot infer automatically, but it should
be clear that the monoidal operations on difference vectors are no different from the differ-
ence naturals we saw in Section 2. Once again, we can formulate the monoidal equalities
and establish that these all hold trivially.

vzero-left : (xs : DEnv n) → (vzero ++ xs)≡ xs

vzero-left xs = refl

vzero-right : (xs : DEnv n) → (xs ++ vzero)≡ xs

vzero-right xs = refl

++-assoc : (xs : DEnv n) → (ys : DEnv m) → (zs : DEnv k) →
(xs ++ (ys ++ zs))≡ (xs ++ (ys ++ zs))

++-assoc xs ys zs = refl
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6 Solving any monoidal equation

In this last section, we show how this technique of mapping monoids to their Cayley repre-
sentation can be used to solve equalities between any monoidal expressions. To generalise
the constructions we have seen so far, we define the following Agda record representing
monoids:

record Monoid (a : Set) : Set where

field

zero : a

⊕ : a → a → a

zero-left : ∀ x → (zero⊕ x)≡ x

zero-right : ∀ x → (x⊕ zero)≡ x

⊕-assoc : ∀ x y z → (x⊕ (y⊕ z))≡ ((x⊕ y)⊕ z)

We can represent expressions built from the monoidal operations using the following data
type, MExpr:

data MExpr (a : Set) : Set where

Add : MExpr a → MExpr a → MExpr a

Zero : MExpr a

Var : a → MExpr a

If we have a suitable monoid in scope, we can evaluate a monoidal expression, MExpr, in
the obvious fashion:

eval : MExpr a → a

eval (Add e1 e2) = eval e1 ⊕ eval e2

eval (Zero) = zero

eval (Var x) = x

This is, however, not the only way to evaluation such expressions. As we have already
seen, we can also define a pair of functions converting a monoidal expression to its Cayley
representation and back:

J K : MExpr a → (MExpr a → MExpr a)

J Add m1 m2 K = λ y → J m1 K (J m2 K y)

J Zero K = λ y → y

J Var x K = λ y → Add (Var x) y

reify : (MExpr a → MExpr a) → MExpr a

reify f = f Zero

Finally, we can normalise any expression by composing these two functions:

normalise : MExpr a → MExpr a

normalise m = reify J m K

Crucially, we can prove that this normalise function preserves the (monoidal) semantics of
our monoidal expressions:

soundness : ∀ (x : MExpr a) → eval (normalise x)≡ eval x
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Finally, we can use this soundness result to prove that two expressions are equal
under evaluation, provided their corresponding normalised expressions are equal under
evaluation:

solve : ∀ (x y : MExpr a)→ eval (normalise x)≡ eval (normalise y)→ eval x≡ eval y

What have we gained? On the surface, these general constructions may not seem par-
ticularly useful or exciting. Yet the solve function establishes that to prove any equality
between two monoidal expressions, it suffices to prove that their normalised forms are
equal. Yet—as we have seen previously—the monoidal equalities hold definitionally in
our Cayley representation. As a result, the only ‘proof obligation’ we need to provide to
the the solve function will be trivial.

Lets consider a simple example to drive home this point. Once we have established that
lists are a monoid, we can use the solve function to prove the following equality:

example : (xs ys zs : List a) → ((xs ++ []) ++ (ys ++ zs))≡ ((xs ++ ys) ++ zs)

example xs ys zs =

let e1 = Add (Add (Var xs) Zero) (Add (Var ys) (Var zs)) in

let e2 = Add (Add (Var xs) (Var ys)) (Var zs) in

solve e1 e2 refl

To complete the proof, we only needed to find monoidal expression representing the left-
and right-hand sides of our equation—and this can be automated using Agda’s meta-
programming features (Van Der Walt & Swierstra, 2012). The only remaining proof
obligation—that is, the third argument to the solve function—is indeed trivial. In this
style, we can automatically solve any equality that relies exclusively on the three defining
properties of a monoid.

7 Discussion

I first learned of that the monoidal identities hold definitionally for the Cayley representa-
tion of monoids from a message Alan Jeffrey (2011) sent to the Agda mailing list. Since
then, this construction has been used (implicitly) in several papers (Allais et al., 2017;
McBride, 2011) and developments (Kidney, 2020; Ko, 2020)—but the works cited here
are far from complete. The observation that the Cayley representation be used to nor-
malise monoidal expressions dates back at least to Beylin & Dybjer (1995), although it
is an instance of the more general technique of normalisation by evaluation (Berger &
Schwichtenberg, 1991).
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