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• Tomita’s talk, 1967

• Haag-Hugenholtz-Winnink: On the equilibrium states in quan-
tum statistical mechanics, CMP 1967.
Building on Araki-Woods 1963, Araki-Wyss 1964.

• Takesaki book: Tomita’s Theory of Modular Hilbert Algebras
and Its Applications, 1970

• 70’s - 80’s Araki, Connes, Haagerup...
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Huzihiro Araki 1932-2022
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• The theory is multifaceted and can be described from many
different starting points.

• We will choose an unusual one, the entropic starting point.

• Historically, it emerged as one of the conclusions:
Araki, H: Relative entropy of states of von Neumann alge-
bras I, II, 1976/77.

• The entropic perspective on modern non-equilibrium quan-
tum statistical mechanics is the main theme of these lec-
tures.
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IN THE BEGINNING THERE WAS ENTROPY

God picking out the special (low-entropy) initial conditions of our universe.

Penrose (1999).
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A finite alphabet, P probability on A,

S(P ) = −
∑

P (a) logP (a).

0 ≤ S(P ) ≤ log |A|, S(P ) = log |A| iff P = Pu,
Pu(a) = 1/|A|.

S(P |Pu) = log |A| − S(P )

=
∑

P (a) log
P (a)

Pu(a)
≥ 0.
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RELATIVE ENTROPY

S(P |Q) =
∑

P (a) log
P (a)

Q(a)
.

S(P |Q) ≥ 0 and S(P |Q) = 0 iff P = Q.

Relative Renyi α-entropy

Sα(P |Q) =
∑

P (a)

[
P (a)

Q(a)

]−α

∂αSα(P |Q)|α=0 = −S(P |Q)

∂αSα(P |Q)|α=1 = S(Q|P ).
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Radon-Nikodym derivative dP
dQ(a) = P (a)/Q(a),

S(P |Q) =
∫
A
log

dP

dQ
dP

Sα(P |Q) =
∫
A

[
dP

dQ

]−α

dP =
∫
A
e
−α log dP

dQdP

In this formulation relative entropies generalize to any measur-
able space A and any two equivalent probability measures P,Q

on A.

The key: Radon-Nikodym derivative that leads to the entropy
function log dP

dQ.

7



NON-COMMUTATIVE SETTING

Finite dim Hilbert space H, states = density matrices ρ, ν.

Entropy: S(ρ) = −tr(ρ log ρ).

Relative entropy: S(ρ|ν) = tr(ρ(log ρ− log ν)).

Relative Renyi entropy: Sα(ρ|ν) = tr(ρ1−ανα).

But what is the Radon-Nikodym derivative now? How to ex-
tend these formula to the general non-commutative setting of
von Neumann algebras?

Modular structure enters here!
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O = B(H) is Hilbert space with inner product ⟨X,Y ⟩ = tr(X∗Y ).
Superoperators B(O).

GNS representation: O is identified with the left multiplication
map in B(O),

O ∋ X 7→ AX ∈ O.

π(A)(X) = AX,

O ∋ A 7→ π(A) ∈ B(O).

π(A)∗ = π(A∗), π(AB) = π(A)π(B), ∥A∥ = ∥π(A)∥.

π′(A)X = XA. Commutant of π(O) in O is π′(O).

π(O) ∨ π(O)′ = B(O), π(O) ∩ π(O)′ = C1.
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Relative modular operator ∆ρ|ν : O → O,

∆ρ|νX = ρXν−1.

This is the non-commutative RN-derivative. It is not in π(O)!

∆ρ|ρ = ∆ρ

is the modular operator of the state ρ. It is non-trivial, and this
non-triviality is central to the richness of quantum statistical me-
chanics.
Connes’s cocycle

[Dρ : Dν](X) = ∆ρ|ν∆
−1
ν (X) = ρν−1X.

is in π(O). Chain rule

[Dρ1 : Dρ2][Dρ2 : Dρ3] = [Dρ1 : Dρ3].
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Hilbert space O comes with:

(a) Natural cone: P = {X ∈ O |X ≥ 0}.

(b) Modular conjugation J : O → O, J(X) = X∗.

Jπ(O)J = π′(O)

P = {XJ(X) |X ∈ O}
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To any state ρ one associates Ωρ = ρ1/2 ∈ P, the so-called
vector representative of ρ in the natural cone.

ρ(A) = tr(ρA) = tr(ρ1/2Aρ1/2) = ⟨Ωρ, π(A)Ωρ⟩

(O, π,Ωρ) = GNS representation of O induced by ρ(> 0).

Define anti-linear map S : O → O by

Sπ(A)Ωρ = π(A)∗Ωρ.

Its polar decomposition is

S = J∆
1/2
ρ .
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ENTROPIES

log∆ρ|ν(X) = log ρX −X log ν.

S(ρ|ν) = tr(ρ(log ρ− log ν)) = ⟨Ωρ, log∆ρ|νΩρ⟩.

S(ρ|ν) ≥ 0 with equality iff ρ = ν.

Sα(ρ|ν) = tr(ρ1−ανα) = ⟨Ωρ,∆
−α
ρ|νΩρ⟩.

We have achieved our goal—the non-commutative Radon-Nikodym
structure that allows to define directly relative entropies in the
general setting (to which we will come at the end of these lec-
tures).

And we got much more.
13



EQUILIBRIUM STATISTICAL MECHANICS

Dynamics: generated by Hamiltonian H on H, Heisenberg flow

τ t(A) = eitHAe−itH .

π(τ t(A)) = eitLπ(A)e−itL,

L(X) = HX −XH.

L-the standard Liouvillean of τ t. eitLP = P.

A state of thermal equilibrium at inverse temperature β is

ρβ = e−βH/Z(β),

where

Z(β) = tr(e−βH).
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Pressure P (β) = logZ(β). Gibbs variational principle:

P (β) = max
ρ

(S(ρ)− βtr(ρH))

with unique maximizer ρ = ρβ.
Proof:

S(ρ|ρβ) = tr(ρ(log ρ− log ρβ))

= −S(ρ) + βtr(ρH) + P (β).

GVP follows from S(ρ|ρβ) ≥ 0 with equality iff ρ = ρβ.

β-KMS-characterization: ρβ is unique state satisfying β-KMS
boundary condition

tr(ρBtA) = tr(ρABt+iβ),

Bt = τ t(B). ρ is β-KMS state.
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To any ρ one associates modular dynamics

σtρ(A) = eit log ρAe−it log ρ

For Hamiltonian log ρ, ρ is (−1)-KMS state. The corresponding
standard Liouviellan is

Lρ = log∆ρ.

ρ is β-KMS for dynamics generated by H iff

Lρ = −βL.

In general setting of von Neumann algebras this is known as
Takesaki theorem.
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NON EQUILIBRIUM QUANTUM STATISTICAL MECHANICS

Dynamics generated by H. Shrödinger flow ρt = e−itHρeitH .

Fix initial state ρ, ρt ̸= ρ.

Chain rule:

[Dρt+s : Dρ] = τ−t([Dρs : Dρ])[Dρt : Dρ].

ℓρt|ρ = log∆ρt|ρ − log∆ρ.

ℓρt|ρ ∈ π(O), ℓρt|ρ(X) = (log ρt − log ρ)X.

ℓρt+s|ρ = τ−t(ℓρs|ρ) + ℓρt|ρ.
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Entropic cocycle ct = τ t(ℓρt|ρ) = log ρ− log ρ−t,

ct+s = cs + τs(ct)

S = − log ρ entropy observable. Heisenberg picture ⇒

ct = St − S.

Entropy production observable = quantum phase space contrac-
tion rate =

σ =
d

dt
ct
∣∣∣
t=0

= i[log ρ,H].

Entropy production along the trajectory

ct =
∫ t

0
σsds.
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It has positive and negative eigenvalues (tr(ct) = 0).

Entropy balance equation–genesis of the second law

S(ρt|ρ) = ρ(ct) = tr(ρct) =
∫ t

0
ρ(σs)ds ≥ 0.

If the system is time-reversal invariant (TRI) with time reversal ϑ
(complex conjugation wrt which H and ρ are real), then

ϑ(ct) = c−t, ϑ(σ) = −σ,

and so the eigenvalues of ct are symmetric wrt 0!

FROM NOW ON WE ASSUME TRI
19



EXAMPLE: OPEN QUANTUM SYSTEMS

Small Hamiltonian system S coupled to two thermal reservoirs.
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Hilbert space HR1
⊗HS ⊗HR2

.

Hamiltonians: H0 = HS +HR1
+HR2

,

H = H0 + V.

Initial state:

ρ =
1

Z
e−β(HS+V )−β1HR1

−β2HR2.

Xj = β − βj (thermodynamical force).

Φj = i[Hj, H] the energy flux out of the j-th reservoir.
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Entropy production observable is

σ = X1Φ1 +X2Φ2.

∫ t

0
ρ(σs)ds = X1

∫ t

0
ρ(τs(Φ1))ds︸ ︷︷ ︸

Energy change of R1

+X2

∫ t

0
ρ(τs(Φ2))ds︸ ︷︷ ︸

Energy change of R2

≥ 0 ⇐⇒ heat flows from hot to cold
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(QUANTUM ) OBJECTIONS

The exposed theory parallels the classical one, with modular
structure replacing classical measure theory/probability. We will
refer to it as the direct modular quantization.

There are however several objections from the physical per-
spective.

(a) Finite time fluctuation relation fails.

(b) The observational status of
∫ t
0 σsds and of the fluctuations of

entropy production along the state trajectory is questionable.

(c) Ruelle’s counterproposal how should one define entropy pro-
duction of open quantum systems.
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FLUCTUATION RELATION FAILS

Spectral decomposition

ct =
∑

s∈sp(ct)
sPs

The spectral measure for ρ and ct is

Qt(s) = ρ(Ps), s ∈ sp(ct).

We have

S(ρt|ρ) = ρ(ct) =
∫

sdQt(s)

=
∑

s∈sp(ct)
sρ(Ps) ≥ 0.
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Time reversal ⇒ sp(ct) is symmetric wrt to zero. ρ favours pos-
itive eigenvalues (second law, direction of time).

However, the fluctuation relation (the fine form of the second
law)

Qt(−s)

Qt(s)
= e−s

fails except in trivial cases.

Break with classical theory.
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RUELLE’S PROPOSAL

”How should one define entropy production for nonequilibrium
quantum spin systems?” Rev. Math. Phys. 14,701-707(2002).

Back to open quantum systems – small Hamiltonian system S

coupled to two thermal reservoirs.
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Hilbert space HR1
⊗HS ⊗HR2

.

Hamiltonian generating flow: H0 = HS +HR1
+HR2

,

H = H0 + V.

For convenience we take the initial state to be

ρ =
1

Z
e−β1HR1

−β2HR2

where S is in the infinite temperature state 1/dim(HS). This
choice has no effect on the thermodynamics of the system (after
the thermodynamic limit in which reservoirs became infinitely
extended and the large time limit).
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MUTUAL INFORMATION

ρ(t) = e−itHρeitH ,

ρS(t) = trHR1
⊗HR2

ρ(t),

ρR1
(t) = trHS⊗HR2

ρ(t),

ρR2
(t) = trHR1

⊗HS
ρ(t).

The open quantum system mutual information is

I(t) = S(ρ(t)|ρR1
(t)⊗ ρS(t)⊗ ρR2

(t))

= −S(ρ(t)) + S(ρR1
(t)) + S(ρS(t)) + S(ρR2

(t)).
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Note that S(ρ(t)) does not depend on t and that I(0) = 0.
Ruelle is interested in d

dtI(t).

Note first that (# ∈ {R1, S,R2})

trH#

(
ρ#(t)

d

dt
log ρ#(t)

)
=

d

dt
trH#

(ρ#(t)) = 0.

This gives that

d

dt
S(ρ#(t)) = −trH#

(
log ρ#(t)

[
d

dt
ρ#(t)

])
= itrH

(
ρ(t)[H, log ρ#(t)⊗ 1]

)
,

and we arrive at the Ruelle’s formula

d

dt
I(t) = −itrH

(
ρ(t)[H, log ρR1

(t)⊗ ρS(t)⊗ ρR2
(t)]

)
,
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or equivalently to the Ruelle’s mutual information balance equa-
tion

I(t) = −i
∫ t

0
ρ(s)

(
[H, log ρR1

(s)⊗ ρS(s)⊗ ρR2
(s)]

)
ds.

Since

trH#
(ρ#(t)[H#, log ρ#(t)]) = 0,

we also have

d

dt
I(t) = −itrH

(
ρ(t)[V, log ρR1

(t)⊗ ρS(t)⊗ ρR2
(t)]

)
and

I(t) = −i
∫ t

0
ρ(s)

(
[V, log ρR1

(s)⊗ ρS(s)⊗ ρR2
(s)]

)
ds.
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This should be compared with the previous formula for the aver-
age entropy production over the time-interval [0, t] (the entropy
balance equation)

S(ρ(t)|ρ) = −i
∫ t

0
ρ(s)

(
[H, log ρR1

(0)⊗ ρS(0)⊗ ρR2
(0)]

)
ds

= −i
∫ t

0
ρ(s)

(
[V, log ρR1

(0)⊗ ρS(0)⊗ ρR2
(0)]

)
ds.

Note the identity

S(ρ(t)|ρ) = I(t) +
∑

#=R1,S,R2

S(ρ#(t)|ρ#).

This gives the inequality S(ρ(t)|ρ) ≥ I(t).
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The Ruelle’s proposal has not been systematically studied and
is a part of our current research program. An important open
question is when this proposal is equivalent to the direct modu-
lar quantization of the entropy production. Ruelle made a sug-
gestion:

In any case we are interested in a double limit where
first the reservoirs are allowed to be infinite and then,
perhaps, the boundaries between the small system and
the reservoirs are allowed to move to infinity. This dou-
ble limit is more or less imposed by physics, but seems
hard to analyze mathematically.
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TWO-TIME MEASUREMENT AND MODULAR THEORY

Radically different proposal for quantum mechanical entropy pro-
duction based on the two-time measurement of the entropy ob-
servable S = − log ρ.

ρ =
∑

λPλ.

First measurement at t = 0, − logλ is observed with probability
tr(ρPλ). State reduction

ρ 7→ ρPλ/tr(ρPλ).

Reduced state evolves to

e−itH [ρPλ/tr(ρPλ)] e
itH .

The second measurement at time t gives − logµ with probabil-
ity

tr
(
e−itH [ρPλ/tr(ρPλ)] e

itHPµ

)
.
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The probability that the pair (− logλ,− logµ) is observed is

pt(λ, µ) = tr
(
e−itHρPλe

itHPµ

)
.

The entropy production random variable is

E(λ, µ) = − logµ− (− logλ).

The distribution Qt of E wrt pt is

Qt(s) =
∑

E(λ,µ)=s

pt(λ, µ).

Qt is physically natural and experimentally accessible (in princi-
ple).
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Basic fact ∫
R
e−αsdQt(s) = ⟨Ωρ,∆

α
ρ−t|ρ

Ωρ.⟩

= Sα(ρt|ρ)
= S1−α(ρt|ρ).

Qt = spectral measure of − log∆ρ−t|ρ for Ωρ.

The characteristic function of Qt is the Renyi’s relative entropy
of the pair (ρt, ρ). Observational status of the modular structure!

TRI gives Qt(s) ̸= 0 ⇔ Qt(−s) ̸= 0.
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Comparison with the direct modular quantization (Qt spectral
measure for ρ and ct) under TRI.∫

R
sdQt(s) =

∫ t

0
ρ(σs)ds = S(ρt|ρ) =

∫
R
sdQt(s),

∫
R
s2dQt(s) =

∫
R
s2dQt(s).

However, the third moments of Qt and Qt are typically different.

Qt = Qt only in trivial cases.
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Crucial observation (Kurchan, Tasaki, Tasaki-Matsui): the fluc-
tuation relation hold for Qt. Under TRI,

Qt(−s)

Qt(s)
= e−s.

Qt - two times measurement entropy production (2TMEP) - is
mathematically beautiful and physically natural proposal for the
quantization of the entropy production.

But there are objections.
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(a) The experiments are done only on the models with small
dimH. The 2TMEP is obviously only a thought experiment if
dimH is large. But in the thermodynamic limit dimH → ∞!

(b) The conceptual difficulty regarding the role of quantum mea-
surements in development of quantum statistical mechanics.

We will discuss recently proposed solution to (a). We will not
discuss the point (b) for which we refer to
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Recent series by Benoist, Bruneau, J, Panati, Pillet:

A note on two-times measurement entropy production and mod-
ular theory, Lett. Math. Phys. 2024.

On the thermodynamic limit of two-times measurement entropy
production, to appear in Rev. Math. Phys.

Entropic fluctuations in statistical mechanics II. Quantum dy-
namical systems, preprint

Entropic fluctuation theorems for spin-fermion model, preprint.
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ENTROPIC ANCILLA STATE TOMOGRAPHY

The ancilla’s Hilbert space is C2 and its initial state is a density
matrix

ρa =

[
ρ++ ρ+−
ρ−+ ρ−−

]
,

with ρ+− ̸= 0.

The Hilbert space of the coupled system is Ĥ = H⊗C2 and its
initial state is ρ̂ = ρ⊗ ρa.
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The coupling between the system and the ancilla is given by the
Hamiltonian

Ĥα = e
α
2 log ρ⊗σz (H ⊗ 1) e−

α
2 log ρ⊗σz,

parametrized by α ∈ iR.

If H = H0 + V with [H0, ρ] = 0, then

Ĥα = H ⊗ 1+ Ŵα,

Ŵα =
1

2
Wα ⊗ (1+ σz) +

1

2
Wα ⊗ (1− σz),

Wα = ρα(V )− V.
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The ancilla’s state at time t is given by

ρa(t) = trH(e−itĤαρ̂eitĤα) =

[
ρ++ Ft(α)ρ+−

Ft(α)ρ−+ ρ−−

]
.

where

Ft(α) =
∫
R
e−αsdQt(s).

Ancilla state tomography (projective measurements on C2) gives
the access to ρa(t)!

This is of fundamental theoretical and experimental importance
and resolves objection (a).
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BMV ENTROPY PRODUCTION

Direct quantization:

ct =
∫ t

0
σsds = St − S,

S = − log ρ, St = eitHSe−itH . Qt- spectral measure for ρ and
ct,

Fdirect
t (α) =

∫
R
e−αsdQt(s)

= tr(ρe−α(St−S))

= tr(e−Se−α(St−S))

Fluctuation relation fails (TRI assumed) ⇔ the relation

Fdirect
t (α) = Fdirect

t (1− α)

cannot hold for all α.
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Two-time measurement of S = − log ρ gives statistics Qttm
t ,

Fttm
t (α) =

∫
R
e−αsdQttm

t (s)

= tr(ρe−αSteαS).

Fluctuation relation holds ⇔ the relation

Fttm
t (α) = Fttm

t (1− α)

holds for all α.

direct → ttm amounts to

e−α(St−S) → e−αSteαS.
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Playing the game further, one can replace

ρe−α(St−S) = e−Se−α(St−S) → e−S−α(St−S)

= e−(1−α)S−αSt

and introduce

FBMV
t (α) = tr(e−(1−α)S−αSt).

TRI ⇒

FBMV
t (α) = FBMV

t (1− α).

This brings us to Bessis-Moussa-Villani1975 conjecture, resolved
by Stahl in 2011.
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A,B self-adjoint matrices. Then there exists Borel measure
µA,B on R such that for α ∈ R,

tr(eA−αB) =
∫
R
e−αsdµA,B(s).

Except in trivial cases, µA,B has a continuous component.

Hence, there exists QBMV
t such that

FBMV
t (α) =

∫
R
e−αsdQBMV

t (s),

and
dQBMV

t (−s)

dQBMV
t (s)

= e−s.
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FBMV
t has been useful in study of the structure of non-equilibrium

quantum statistical mechanics.

Important open question: direct physical interpretation of QBMV
t .

Is this measure experimentally accessible?

But there is more to this story. Golden-Thompson inequality
gives that for α ∈ R,

FBMV
t (α) ≤ Fttm

t (α).

Can FBMV
t be connected naturally to Fttm

t ?
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ENTROPIC INTERPOLATION

For p ∈ [1,∞),

F(p)
t (α) = tr

(
e
−1−α

p S
e
−2α

p Ste
−1−α

p S
)p/2

= tr

(
ρ
1−α
p ρ

2α
p
t ρ

1−α
p

)p/2
.

• F(2)
t (α) = Fttm

t (α).

• F(∞)
t (α) = limp→∞F(p)

t (α) = FBMV
t (α).
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• F(p)
t (α) = F(p)

t (1− α)

• F(p)
t (0) = F(p)

t (1) = 1.

• α 7→ F(p)
t (α) is convex.

•

∂αF(p)
t (α)|α=0 = −S(ρt|ρ)

∂αF(p)
t (α)|α=1 = S(ρt|ρ).

No p-dependence! The second derivatives are p-dependent.
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• [1,∞] ∋ p 7→ F(p)
t (α) is decreasing (strictly): (Araki)-Lieb-

Thirring.

-0.5 0.5 1.0 1.5
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1

2

3
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• Interpolating functionals motivated works in quantum infor-
mation: Audenaert-Datta: α-z-relative Renyi entropies.

Sp,α(ν, ζ) = log tr
(
ν
1−α
p ζ

2α
p ν

1−α
p

)p/2
.

Obtaining a single quantum generalization of the classical
relative Renyi entropy, which would cover all possible oper-
ational scenarios in quantum information theory, is a chal-
lenging (and perhaps impossible) task. However, we be-
lieve Sp,α is thus far the best candidate for such a quantity,
since it unifies all known quantum relative entropies in the
literature.

Lots of works on the convexity/concavity properties of the
map

(ν, ζ) 7→ Sp,α(ν, ζ).
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• Quantum transfer operators. Act on B(H). Specific norm:

∥X∥p =
(
tr(|Xρ1/p|p)

)1/p
.

Up(t)X = e−itHXeitHe
1
pS−te

−1
pS.

Properties:

Up(t1 + t2) = Up(t1)Up(t2)

Up(−t)π(A)Up(t) = π(eitHAe−itH)

∥Up(t)X∥p = ∥X∥p.

(1)

Basic fact:

F(p)
t (α) = ∥Up/α(t)1∥

p
p.
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• Non-commutative extensions of Ruelle’s transfer operators
in classical dynamical system theory based on Araki-Masuda
non-commutative Lp-spaces and modular theory.

• If dynamics is generated by Hamiltonian H,

Up(t) = e−itLp,

Lp(X) = HX −X∆
1
p−

1
2

ρ H∆
1
2−

1
p

ρ .

L2 = L, the standard Liouvillean that implements the dy-
namics and preserves the natural cone. In open quantum
system with H = H0 + V , [H0, ρ] = 0,

Lp = L0 + π(V )− J∆
1
p−

1
2

ρ π(V )∆
1
2−

1
p

ρ J
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• The p-th cone is

P(p) = {A ∈ B(H) |A = Xρ
1
2−

1
p , X ≥ 0}.

P(2) = P, the natural cone.

• Up(t)P(p) = P(p) and together with (1) this uniquely de-
termines the group Up.

• All p’s are important!

Fttm
t (α) =

∫
R
e−αsdQttm

t (s) = ⟨Ωρ, e
−itLpΩρ⟩

with p = 1/α. This formula is of central computational and
conceptual importance.
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REMARKS

1. The entropic non-equilibrium algebraic quantum statistical
mechanics remains only partially understood.

2. The results obtained so far hint at structure of great mathe-
matical beauty centred around modular theory.

3. The equilibrium theory is also centred around the modular
theory via KMS condition. The non-equilibrium theory can be
viewed as the deformation of the equilibrium one (think about
open quantum systems with β1 = β2 (equilibrium) and β1 ̸= β2
(non-equilibrium)).

4. The role time plays in two theories is completely different.
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The last two remarks cannot be fully understood in the current
setting. To proceed one needs to pass from finite system setting
to infinitely extend system setting.

This is already necessary in equilibrium to develop the theory of
phase transitions and define phases, and to study dynamically
ergodic properties of the system. Although the understanding
of the dynamical theory of phases (approach to equilibrium, dy-
namical justification of the zeroth law of thermodynamics) re-
mains in its infancy, the Gibbs variational principle and KMS-
condition allow to bypass this fundamental problem.
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In non-equilibrium case the idealization of infinitely extended
system is necessary to have mathematically sharp definition
of entropy production per unit time (constant in time heat flow
from hot to cold requires idealization of infinite reservoirs en-
ergy). However, to achieve this one needs also to control the
large time limit of entropy production and, on a deeper level, in-
troduce Non-Equilibrium Steady States to which infinitely ex-
tended system relaxes in the large time limit and which sustain
constant entropy production. The large time limit is needed to
define the key objects of the theory and the fundamental relax-
ation problem cannot be bypassed like in equilibrium theory.
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THERMODYNAMIC LIMIT

or passage to infinitely extended systems. Extensively studied
in early days of rigorous statistical mechanics (1960’s and 70’s).

The physical considerations lead to a sequence of finite dimen-
sional systems with Hilbert spaces HΛ and Hamiltonians HΛ.
The size of the system is characterized by the parameter Λ. For
lattice quantum spin systems Λ is a finite subset of an infinite
countable set G (an example is G = Zd) describing possible
spin sites.

That will be our concrete example: lattice quantum spin sys-
tems.
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Let G be a countably infinite set. The collection of all finite sub-
sets of G is denoted by Gfin. Let h be the finite dimensional
Hilbert space of a single spin. To each x ∈ G we associate a
copy hx of h, and to each Λ ∈ Gfin the Hilbert space

HΛ =
⊗
x∈Λ

hx.

To any X ∈ Gfin one associates self-adjoint Φ(X ) ∈ B(HX).
that describes the interaction of the spins located at the sites in
X . The local Hamiltonians are

HΛ =
∑
X⊆Λ

Φ(X ).

This defines the net (HΛ, HΛ)Λ∈Gfin
. One is interested in the

finite systems quantum mechanical properties in the limit Λ ↑ G.
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Examples (in equilibrium theory) are specific pressure and en-
ergy at inverse temperature β,

P (β) = lim
Λ↑G

1

|Λ|
log tr(e−βHΛ),

E(β) = lim
Λ↑G

1

|Λ|
tr(HΛe

−βHΛ)

tr(e−βHΛ)

Conditions on Φ are needed to ensure the existence of these
limits and to develop thermodynamics. We will return to this
latter.
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David Ruelle in 2001 was first to consider open quantum lattice
spin systems that correspond to
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Disjoint decomposition

G = GR1
∪GS +GR2

.

GS finite, GRj
’s infinite. Φ is such that

Φ(X ) = 0 ifX ∩GR1
̸= ∅ and X ∩GR2

̸= ∅.

One considers only Λ’s such that GS ⊂ Λ,

Λ1 = Λ ∩GR1
̸= ∅, Λ2 = Λ ∩GR2

̸= ∅.

For fixed Λ, HS = HGS , HR1
= HΛ1

, HR2
= HΛ2

.
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The reservoirs are connected to the small system S by VΛ,1 and
VΛ,2 given by

Vj =
∑

X⊂GS∪Λj,X∩GS ̸=∅,X∩Λj ̸=∅
Φ(X ).

Hence,

HΛ = H0 + VΛ,

H0 = HS +HΛ1
+HΛ2

, V = VΛ,1 + VΛ,2.
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Initial states:

ρΛ =
1

Z
e−β(HS+VΛ)−β1HΛ1

−β2HΛ2

or

ρΛ =
1

Z
e−β1HΛ1

−β2HΛ2,

and we are in the setting of open quantum systems.

Set

EpΛ(t) = tr(ρΛc
t
Λ) =

∫ t

0
tr(ρΛe

isHΛσΛe
−isHΛ)ds.

Qdirect
Λ , Qttm

Λ , QBMV
Λ , F(p)

t,Λ (α) are defined as before.

We are interested in the limit Λ ↑ G.
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Regularity assumption: For some λ > 0,

sup
x∈G

∑
X∋x

∥Φ(X )∥eλ|X | < ∞.

To avoid dealing with possible reservoirs phase transitions, we
also assume that β1, β2 are sufficiently small (high temperature
regime); otherwise one needs to take Λ ↑ G along subnets and
face some additional technical issues. Then

Ep(t) = lim
Λ↑G

EΛ(t),

w − lim
Λ↑G

Q# = Q#,

# ∈ {direct, ttm, BMV}, and for α ∈ iR,

lim
Λ↑G

F(p)
t,Λ (α) = F(p)

t (α).

66



Proof is relatively straightforward; see BBJPP On the thermo-
dynamic limit of two-times measurement entropy production, to
appear in Rev. Math. Phys.

The large time t → ∞ is much more delicate, as expected. One
would like to prove that

Ep+ = lim
t→∞

1

t
Ep(t) > 0,

followed by the weak convergence of the families Q#
t (t·) to

δEp+, then to establish Central Limit Theorem and the Large
Deviation Principle, then to study the existence and regularity of
the limits

F(p)
+ (α) = lim

t→∞
1

t
logF(p)

t (α).
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These are very hard problems in physically interesting models.

One important example, however, allows for direct computations
and explicit formulas.
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OPEN XY SPIN CHAIN

Λ = [A,B] ⊂ Z, Hilbert space HΛ =
⊗

x∈ΛC2.
Hamiltonian

HΛ =
1

2

∑
x∈[A,B[

Jx

(
σ
(1)
x σ

(1)
x+1 + σ

(2)
x σ

(2)
x+1

)

+
1

2

∑
x∈[A,B]

λxσ
(3)
x .

σ
(1)
x =

[
0 1
1 0

]
, σ

(2)
x =

[
0 −i
i 0

]
, σ

(3)
x =

[
1 0
0 −1

]
.
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RL

N

C RR

−M −N M

Central part C (small system S): XY-chain on ΛC = [−N,N ].

Two reservoirs RL/R (L = 1, R = 2):
XY-chains on ΛL = [−M,−N − 1] and ΛR = [N +1,M ].

N fixed, thermodynamic limit M → ∞.
Easily embedded in the spin system language (exercise).

Decoupled Hamiltonian H0 = HΛL
+HΛC +HΛR

.
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The full Hamiltonian is

H = HΛL∪ΛC∪ΛR
= H0 + VL + VR,

VL =
J−N−1

2

(
σ
(1)
−N−1σ

(1)
−N + σ

(2)
−N−1σ

(2)
−N

)
, etc.

Initial state:

ρ = e−βLHΛL ⊗ ρ0 ⊗ e−βRHΛR
/
Z,

ρ0 = 1/dimHΛC.

Fluxes and entropy production:

ΦL/R = i[HL/R, H],

σ = −βLΦL − βRΦR.
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First the thermodynamic limit M → ∞, and then t ↑ ∞ limit.

Araki-Ho, Ashbacher-Pillet ∼ 2000, J-Landon-Pillet 2012:

Ep+ =
∆β

4π

∫
R
|T (E)|2

E sinh(∆βE)

cosh βLE
2 cosh βRE

2

dE > 0.

∆β = βL − βR. Landauer-Büttiker formula.
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Idea of the proof – Jordan-Wigner transformation reduces the
study of t ↑ ∞ limit to the scattering problem for the Jacobi
matrix

hux = Jxux+1 + Jx−1ux−1 + λxux, u ∈ ℓ2(Z).

Decomposition

ℓ2(Z) = ℓ2(]−∞,−N−1])⊕ℓ2([−N,N ])⊕ℓ2([N+1,∞[),

h0 = hL + hC + hR,

h = h0 + vL + vR,

vR = JN(|δN+1⟩⟨δN |+ h.c)
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The wave operators

w± = s− lim
t→±∞

eithe−ith01ac(h0)

exist and are complete.

The scattering matrix:

s = w∗
+w− : Hac(h0) → Hac(h0)

s(E) =

[
A(E) T (E)
T (E) B(E)

]
.
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T (E) =
2i

π
J−N−1JN⟨δN |(h−E− i0)−1δ−N⟩

√
FL(E)FR(E)

FL/R(E) = Im ⟨δL/R|(hL/R − E − i0)−1δL/R⟩,

δL = δ−N−1, δR = δN+1.

T (E) is non-vanishing on the set spac(hL) ∩ spac(hR).

If Jx = const,λx = const (or periodic) them |T (E)| = 1 for
E ∈ sp(h).

Assumption: h has no singular continuous spectrum

Open question: What happens if h has some singular continu-
ous spectra? Transport in quasi-periodic structures.
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Beyond computing Ep+, the following was was establised in
JPL 2012.

Fdirect
+ (α) = lim

t→∞
1

t
logFt(α)

=
∫
R
log

(
det(1 +Kα(E))

det(1 +K0(E))

)
dE

2π
,

Kα(E) = ek0(E)/2eα(s
∗(E)k0(E)s(E)−k0(E))ek0(E)/2,

k0(E) =

[
−βLE 0

0 −βRE

]
, s(E) =

[
A(E) T (E)
T (E) B(E)

]
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F(p)
+ (α) = lim

t→∞
1

t
logF(p)

t (α)

=
∫
R
log

(
det(1 +Kαp(E))

det(1 +K0(E))

)
dE

2π
,

where

Kαp(E)

=
(
ek0(E)(1−α)/ps(E)ek0(E)2α/ps∗(E)ek0(E)(1−α)/p

)p/2
.
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The maps

α 7→ Fdirect
+ (α), α 7→ F(p)

+ (α),

are real-analytic.

The map

[1,∞] ∋ p 7→ F(p)
+ (α)

is continuous and decreasing. It is strictly decreasing unless h

is reflectionless:

|T (E)| ∈ {0,1} ∀E.
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If h is reflectionless, then F(p)(α) does not depend on p and

F(p)
+ (α) = Fdirect

+ (α) =

1

2π

∫
sp(h)

cosh((βL(1− α) + βRα)E/2)× (L → R)

cosh(βLE/2) cosh(βRE/2)
dE.

Phenomenon: ”Entropic triviality.”

If h is not reflectionless,

Fdirect
+ (1) > 0 = Fdirect

+ (0).
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The Law of Large Numbers, Central Limit Theorem and the
Large Deviation Principle hold for measures Q#

t (t·) in the limit
t ↑ ∞.

Q#
t → δEp+,

Gärtner-Ellis theorem yields LDP

Q#
t (tB) ≃ e−t infς∈B I#(ς)

I#(ς) = − inf
α∈R

(
ας + F#

+ (α)
)

Fluctuation relation implies celebrated symmetries

I#(−ς) = ς + I#(ς),

for # = ttm,BMV. The symmetry fails for # = direct un-
less h is reflectionless.
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HEISENBERG SPIN CHAIN

The Hamiltonian H of the open XY spin chain is changed to

HP = H + P

where

P = K
1

2

∑
x∈[−N,N [

σ
(3)
x σ

(3)
x+1.

The central (system S) part is now Heisenberg spin chain

1

2

∑
x∈[−N,N [

Jxσ
(1)
x σ

(1)
x+1 + Jxσ

(2)
x σ

(2)
x+1 +Kσ

(3)
x σ

(3)
x+1

+
1

2

∑
x∈[−N,N ]

λxσ
(3)
x .
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The thermodynamic limit M → ∞ is not difficult.

Assumption For all x, y ∈ Z,∫ ∞

0
|⟨δx, eithδy⟩|dt < ∞.

Denote

ℓN =
∫ ∞

0
sup

x,y∈[−N,N [
|⟨δx, eithδy⟩|dt,

K̄ =
66

76
1

24N

1

ℓN
.

If |K| < K̄, then Ep+ exists and is analytic function of K. In
particular, Ep+ > 0 apart from possibly discrete set of K ’s.
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The t ↑ ∞ limit of Q#
t and F(p)

t has not been studied and re-
mains an important open problem. Technical suggestion: clus-
ter expansion.

For the Pauli-Fierz systems, the t ↑ ∞ limit of Qttm
t and Fttm

t ,
including the Large Deviation Principle, was analyzed in

de Roeck, W: Large deviation generating function for currents in
the Pauli-Fierz model. Rev.Math. Phys. 21, 2009.

BBJPP: Entropic fluctuation theorems for spin-fermion model,
preprint.

The quantum transfer operators played a key role in these works.
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FULL DESCRIPTION OF QUANTUM SPIN SYSTEMS

Full quantum mechanical passage to Λ ↑ G limit.

Local pairs (HΛ, HΛ) lead to (OΛ, τΛ), where

OΛ = B(HΛ), τ tΛ(A) = eitHΛAe−itHΛ.

Since HΛ =
⊗

x∈Λ hx, if Λ ⊂ Λ′ we have natural inclusion
OΛ ⊂ OΛ′ which gives that

Oloc =
⋃

Λ∈Gfin

OΛ

is a normed ∗-algebra with the C∗-property ∥A∗A∥ = ∥A∥2.
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Oloc is the algebra of local observables of the quantum spin
system with set of sites G and single spin Hilbert space h.

Its completion, O, is the C∗-algebra of observables of extended
quantum spin system. The algebra O is unital, simple and sep-
arable.

We now turn to the description of the full dynamics assuming
that for some λ > 0,

sup
x∈G

∑
X∋x

∥Φ(X )∥eλ|X | < ∞.

85



For A ∈ Oloc set

τ tΛ(A) = eitHΛAe−itHΛ

and

τ t(A) = lim
Λ↑G

τ tΛ(A).

The limit exist uniformly for t in compacts. τ t is a norm-continuous
group of ∗-automorphisms of Oloc and as such uniquely ex-
tends to O. τ t defines Heisenberg time evolution on O. The
pair (O, τ t) is a C∗-dynamical system.

We now turn to the description of the states.
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O∗ - dual of O. By the Banach-Alaoglu theorem, the unit ball in
O∗ is weak compact.

Physical states of our quantum spin system are described by
mathematical states on O, that is, positive normalized linear
functionals in O∗. A state ω evolves in time as ωt = ω ◦ τ t.

The number ω(A) is the expectation value of the observable A

if the system is in the state ω.
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β > 0 inverse temperature. Thermal equilibrium states are
characterized by the β-KMS condition: for all A,B ∈ O, the
map

R ∋ t 7→ FA,B(t) = ω(Aτ t(B))

has analytic continuation to the strip 0 < Im z < β that is
bounded and continuous on its closure and satisfies

FA,B(t+ iβ) = ω(τ t(B)A).

KMS states are stationary.

This definition extends to β < 0.
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If ω is β-KMS, the quantum spin system described by (G, h,Φ)

in thermal equilibrium at inverse temperature β is described by
the quantum dynamical system (O, τ t, ω).

Any weak limit point of the net of states

ωβ,Λ(A) =
tr(Ae−βHΛ)

tr(e−βHΛ)

is β-KMS. These specific states are called thermodynamic limit
point β-KMS states.
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EQUILIBRIUM STAT MECH OF SPIN SYSTEMS

In equilibrium statistical mechanics one commonly consider the
case G = Zd where the translational invariance plays a role.
The translational invariance connects Λ and Λ+ x and leads to
a group of ∗-automorphisms φx of O. The interaction is trans-
lation invariant if φx(Φ(X)) = Φ(X + c), and a state ν is
translationally invariant if ν ◦ φx = ν. If ν is translationally in-
variant, its specific entropy

s(ν) = lim
Λ↑Zd

1

|Λ|
− tr(νΛ log νΛ),

νΛ = ν ↾ OΛ, exists by sub-additivity and takes values in
[0, log dimh].
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We consider translationally invariant interaction Φ satisfying our
regularity assumption. The pressure

P (β) = lim
Λ↑Zd

1

|Λ|
log tr(e−βHΛ)

exists and is finite.

The specific energy observable is defined by

E =
∑
0∈X

1

|X|
Φ(X).

It is a self-adjoint element of O satisfying

lim
Λ↑Zd

∥∥∥∥∥∥HΛ −
∑
x∈Λ

φx(E)

∥∥∥∥∥∥ = 0.
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In particular, for any translationally invariant state ν,

lim
Λ↑Zd

1

|Λ|
ν(HΛ) = ν(E).

Energy, pressure, and entropy are connected by the corner-
stone of the equilibrium statistical mechanics: the Gibbs varia-
tional principle

P (β) = sup
ν

(s(ν)− βν(E)) .

The set of maximizers is a non-empty convex compact subsets
of the set of all states. The maximizers are equilibrium states or
phases of interaction Φ at inverse temperature β.

Another fundamental result: the set of phases is precisely the
set of translationally invariant β-KMS states! (Modular theory
enters crucially here).

92



BEYOND SPIN SYSTEM

At this point, the setting can be abstracted. The C∗-dynamical
system is a pair (O, τ t), where O is a unital C∗-algebra. The
states and β-KMS states are defined as before. The triple (O, τ, ω),
where ω is a β-KMS state is called a thermal system. The set
of KMS-states is denoted Sβ.

The two basic questions of quantum equilibrium statistical me-
chanics are:

QI Describe properties of KMS-states and structure of
the sets Sβ.

QII Elucidate dynamical and in particular ergodic prop-
erties of thermal quantum dynamical systems.
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QI and QII have trivial answer in the finite setting: The set of
phases is a singleton and no thermal system is ergodic. It is this
triviality that forces consideration of infinitely extended systems
from the outset in study of QI and QII.

From the general perspective, a great deal of progress has been
made on QI and QII in 1970’s. The general link between KMS-
condition and Tomita-Takesaki modular theory, which we
yet have to describe, has played a central role in these
developments. From the perspective of concrete physically
relevant quantum spin systems, the progress has been much
slower and comparatively little is known on mathematically rig-
orous level.
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NON-EQUILIBRIUM STAT MECH OF SPIN SYSTEMS

Back to Ruelle’s 2001 open quantum lattice spin systems de-
scribing

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
S

R

1

R

2

V

2

V

1

with G = GS ∪GR1
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.
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We take

ρΛ =
1

Z
e−β1HΛ1

−β2HΛ2

and the corresponding local entropy production observable σΛ.
The entropy production observable of the extended is system

σ = lim
Λ↑G

σΛ =
2∑

j=1

∑
Y⊂Rj

∑
X∩S∩Rj ̸=∅

−iβj[Φ(Y ),Φ(X)].

The initial state of the extended system is any weak-limit point
of the net ρΛ. Note that the extended system C∗-algebra has
the structure

O = OS ⊗OR1
⊗OR2

,

where OS = B(HGS), and ORj
is the quantum spin system

C∗-algebra over GRj
.
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The individual dynamics τ tj of Rj is generated by the restricted
interaction Φj = Φ ↾ Gfin,j where Gfin,j is the collection of all
finite subsets of GRj

. Any weak-point of the net ρΛ has the form

ω = ωS ⊗ ωR1
⊗ ωR2

,

where ωRj
is βj-KMS state of (ORj

, τ tj).

Ruelle also introduced the key concept of Non-Equilibrium Steady
States (NESS). They are weak-limit points of the net{

1

T

∫ T

0
ωtdt

}
T>0

as T ↑ ∞. The set of NESS is non-empty and any NESS is
stationary.
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The NESS are non-trivial only for extended quantum spin sys-
tems.

The key result of Ruelle is that for any NESS ω+,

ω+(σ) ≥ 0.

The argument goes by proving directly (without using relative
entropy but repeating the argument that leads to its non-negativity)
that

EpΛ(t) =
∫ t

0
tr(ρΛe

isHΛσΛe
−isHΛ)ds ≥ 0,

which yields the results by taking the first the limit Λ ↑ G and
then T ↑ ∞ along suitable subnets.

Ruelle also develops the structural theory of NESS. He does not
make use of modular theory.

99



In the same year 2001, J-Pillet have developed the non-equilibrium
statistical mechanics in the general C∗-algebraic setting beyond
quantum spin systems. They rely heavily on the modular theory.
The original 2001 setting is the following.

Let (O, τ, ω) be a C∗-quantum dynamical system whose refer-
ence state ω is not τ -invariant. The NESS of (O, τ, ω) are the
limit points of the net{

1

T

∫ T

0
ω ◦ τ tdt

}
T>0

as T ↑ ∞. The set S+(ω) of NESS is non-empty and its ele-
ments are stationary.
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To introduce entropy production observable, one assumes that
ω is (−1)-KMS state for some C∗-dynamics ςtω (such states
and dynamics are called modular). Let δω be the generator ςω,
ςtω = etδω. We further assume that the generator δ of τ t has the
form

δ = δfr + i[V, · ]

where V is a self-adjoint element of O and δfr generates a ”free”
C∗-dynamics τ tfr such that ω ◦ τ tfr = ω.

If V ∈ Dom(δω), the entropy production observable of LP sys-
tem is defined by

σ := δω(V ).
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The starting point of the 2001 JP theory is the entropy balance
equation

S(ωt|ω) =
∫ t

0
ωs(σ)ds (2)

where S(·|·) is the Araki’s relative entropy of two states on O.
The proof relies heavily on the modular theory. This cannot be
proven by ”naive” thermodynamic limit arguments since the en-
tropy map is not continuous (it is lower-semicontinuous).

The sign of relative entropy then gives that

ω+(σ) ≥ 0

for any NESS ω+ ∈ S+.

102



The Ruelle’s results are deduced by restricting to open quantum
spin system setting. We already have defined V ,

τ tfr = τ tS ⊗ τ t1 ⊗ τ t2.

and

δω = −β1δ1 − β2δ2.

The thermodynamic limit Λ ↑ G leading connecting the finite-
dimensional entropy balance equation to (2) is essential for phys-
ical foundation of the extended systems theory (but can be proven
only once we have the limiting balance equation established
separately!)

JP obviously applies to abstract open quantum systems.

A more general approach to JP theory is based on Araki-Connes
cocycles (recall finite setting) and will be described latter.
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The above discussion leads to the two basic questions of non-
equilibrium quantum statistical mechanics:

QIII Describe properties of NESS and structure of the
set S+.

QIV Elucidate the dynamical mechanisms that ensure
the strict positivity ω+(σ) > 0 of the entropy produc-
tion of NESS ω+ and apply them to concrete physically
relevant models.

Much work has ben done since 2001 with theory going far be-
yond the basic questions QIII and QIV and the entropy produc-
tion observable. The emerging non-equilibrium theory exhibits
richness far beyond its equilibrium counterpart (and the classi-
cal non-equilibrium counterpart).
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We have described some of these developments in the finite di-
mensional setting, emphasizing the fundamental role the mod-
ular role plays.

To proceed, one needs to have the the full description of modu-
lar theory!
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FULL DESCRIPTION OF MODULAR THEORY
sketch of a sketch

M von Neumann algebra on a Hilbert space H. M ⊂ B(H) and
M = M′′.

Ω ∈ H reference unit vector. Cyclic (MΩ = H) and separating
M′Ω = H for M. Reference state

ρ0(A) = ⟨Ω, AΩ⟩.

ρ0-normal states = states represented by density matrices on
H. Nρ0.

The map

SAΩ = A∗Ω, A ∈ M,

106



extends to a closed antilinear operator on H with polar decom-
position

S = J∆
1
2

where ∆ ≥ 0 and J is antilinear involution.

∆-modular operator of ρ0/Ω. J is the modular conjugation.
Basic facts:

(1) JMJ = M′.

(2) Natural cone P: Closure of {AJAJΩ |A ∈ M}.
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(3) For any normal ρ ∈ Nρ0 there exists unique Ωρ ∈ P such
that

ρ(A) = ⟨Ωρ, AΩρ⟩.

Ωρ is cyclic iff it is separating.
(4)

∥Ωρ1 −Ωρ2∥
2 ≤ ∥ρ1 − ρ2∥ ≤ ∥Ωρ1 −Ωρ2∥∥Ωρ1 +Ωρ2∥.

(5) The map

SAΩρ1 = A∗Ωρ2, A ∈ M

extends to a anti-linear closed operator on H with polar decom-
position

S = J∆
1
2
ρ2|ρ1

.
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∆ρ2|ρ1 is the relative modular operator of the pair (ρ1, ρ2).
∆ρ = ∆ρ|ρ the modular operator of ρ.

(6) σtρ = ∆it
ρ ·∆−it

ρ preserves M. Modular dynamics

(7) ρ is (−1)-KMS state for its modular dynamics.

(8) Connes cocycle:

[Dρ1 : Dρ2]α = ∆iα
ρ1|ρ2∆

−iα
ρ2

is a family of unitaries in M satisfying

[Dρ1 : Dρ2]α[Dρ2 : Dρ3]α = [Dρ1 : Dρ3]α.
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(9) Araki’s relative entropy:

S(ν1|ν2) = ⟨Ων1| log∆ν1|ν2Ων1⟩.

(10) Renyi’s relative entropy

Sα(ν1|ν2) = ⟨Ων1,∆
−α
ν1|ν2

Ων1⟩.

(11) For any W ∗-dynamics τ t on M there exists unique self-
adjoint L, called standard Liouvillean of τ t, such that

τ t(A) = eitLAeitL, e−itLP ⊂ P.

(11) Koopmanism: ν ◦ τ = ν iff LΩν = 0. (M, τ, ν) is ergodic,
i.e.

lim
T→∞

1

2T

∫ T

−T
ν(B∗τ t(A)B)dt = ν(B∗B)ν(A)

iff 0 is a simple eigenvalue of L.
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(12) ν is a β-KMS state,

ν(τ t(B)A) = ν(Aτ t+iβ(B)),

iff

Lν = −βL

where Lν is the standard Liouvillean of σν.

(13) and much much more: Pα-cones, 0 ≤ α ≤ 1/2 (natural
cone is α = 1/4), non-commutative Lp-spaces, p = 1/2α ∈
[1,∞), etc....and we need all of it!
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EQUILIBRIUM STATISTICAL MECHANICS

Quantum spin systems on lattice Zd. Equivalence of:

(1) β-KMS condition

(2) Gibbs variational principle

(3) Araki-Gibbs condition (quantum analog of Dobrushin-Lanford-
Ruelle theory, Araki theory of perturbation of KMS structure).

Modular theory (and Araki’s perturbation theory of it) play a key
role.
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NON-EQUILIBRIUM STATISTICAL MECHANICS

More general starting point then JP 2001 – Araki-Connes cocy-
cle.

One starts with quantum dynamical system (O, τ t, ρ).
(Hρ, πρ,Ωρ) – the GNS representation of O induced by ρ with
Ω separating for M = π(O)′′.
The dynamics and the states ρt extended to M.

One further assumes that

[Dρt : Dρ]α ∈ π(O).
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Chain rule:

[Dρt+s : Dρ]α = τ−t([Dρs : Dρ]α)[Dρt : Dρ]α.

Leads to:

ℓρt|ρ = log∆ρt|ρ − log∆ρ

ℓρt+s|ρ = τ−t(ℓρs|ρ) + ℓρt|ρ
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ct = τ t(ℓωt|ω).

ct+s = cs + τs(ct)

σ =
d

dt
ct
∣∣∣
t=0

ct =
∫ t

0
σsds

S(ρt|ρ) = ρ(ct) =
∫ t

0
ρ(σs)ds ≥ 0

One continues with NESS and development of non-equilibrium
qsm. Direct quantization of the classical theory.
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Two-times measurement entropy production: spectral measure
Qt for − log∆ρ|ρ−t

and Ω.

∫
R
sdQt(s)ds =

∫ t

0
ρ(σs)ds = S(ρt|ρ) ≥ 0

r(s) = −s, Q̄t = Qt ◦ r,

dQ̄t

dQt
(s) = e−s.

One then proceeds with structural study of the statistics of the
family Qt in view of applications to concrete models.

Ancilla state tomography: see

BBJPP Entropic fluctuations in statistical mechanics II. Quan-
tum dynamical systems, preprint.
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The structural theory of p-functionals F(p)
t and associated quan-

tum transfer operators relies heavily on Araki-Masuda theory of
Lp-spaces, p ∈ [1,∞],

Araki-Masuda: Positive Cones and Lp-Spaces for von Neumann
Algebras, 1982.

J-Pillet-Ogata: unpublished.

Regarding F(∞)
t , the algebraic BMV conjecture is open!
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ALGEBRAIC BMV CONJECTURE

The setting is:

Pair (M,Ω) on a Hilbert space H. Dynamics

τ t(A) = eitLAe−itL

where L is the standard Liouvillean. The vector state

ρ(A) = ⟨Ω, AΩ⟩

is β-KMS.

V ∈ M self-adjoint, perturbed dynamics

τ tV (A) = eit(L+V )Ae−it(L+V )
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Perturbed β-KMS vector

ΩV = e−
β
2(L+V )Ω.

ρV (A) = ⟨Ω, AΩV ⟩/∥ΩV ∥2

β-KMS state for τV .

The Pierls-Bogoluibov and Golden-Thompson inequality hold:

e−β⟨Ω,VΩ⟩/2 ≤ ∥ΩV ∥ ≤ ∥e−βV/2Ω∥.

All these results are part of Araki’s theory of perturbation of the
KMS/modular structure.
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Conjecture: There exists measure Q on R such that for α ∈ R,

∥ΩαV ∥2 =
∫
R
e−αsdQ(s).

Finite systems:

∥ΩαV ∥2 = tr(e−β(H+αV ))/tr(e−βH),

and we are in the BMV-Stahl setting.

Finite dimensional result implies the algebraic one in the ther-
modynamic limit setting. Is the algebraic one consequence of
the modular theory?
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NON-EQUILIBRIUM TAKE HOME MESSAGE (AGAIN)

To remember.

Finite t theory provides only the setting/language.

The non-equilibrium structure emerges only in the limit t → ∞!

Equilibrium parallel: Phase transitions via Gibbs variational prin-
ciple and thermodynamic limit.
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TOPICS NOT DISCUSSED

(1) Weak coupling limit in open quantum systems (Davies 1974,
Lebowitz-Spohn 1978, J-Pillet-Westrich 2014)

(2) TTM entropy production and hypothesis testing of arrow time.
Foundational topic shared by the classical theory.

J-Ogata-Pillet-Seiringer: Hypothesis testing and non-equilibrium
statistical mechanics.

(3) Stability of TTM entropy production wrt initial state, full Fluc-
tuation Theorems via resonances of quantum transfer opera-
tors: recent BBJPP series.
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(4) Adiabatic (time-dependent) thermodynamics of open quan-
tum systems. Realization of quasi-static processes in qsm. Re-
lated discussion of the Landauer principle: the energy cost of
erasing quantum bit of information by action of a thermal reser-
voir at temperature T is ≥ kT log 2 with the equality for quasi-
static processes.

J- Pillet C-A: A note on the Landauer principle in quantum sta-
tistical mechanics, 2014.

Benoist-Fraas-J-Pillet C-A: Full statistics of erasure processes:
Isothermal adiabatic theory and a statistical Landauer principle,
2017

Benoist-Fraas-J-Pillet C-A: Adiabatic theorem in quantum sta-
tistical mechanics, in preparation

Related works: Abou Salem – Frohlich.
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(5) Non-equilibrium statistical mechanics of repeated quantum
measurement processes.

Benoist-J-Pautrat-Pillet: On entropy production of repeated quan-
tum measurements I. General theory, 2018.

Cuneo- Benoist-J- Pillet: On entropy production of repeated
quantum measurements II. Examples, 2021
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(6) Work in progress on following topics:

Ruelle’s mutual information in open quantum systems, param-
eter estimation, role of Fisher entropy, entropic/information ge-
ometry...
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