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Previously, we defined what a stack on a site is, and ended with a note on how to think of stacks
as geometric objects. This time we pursue this much further, by asking the question what a sheaf
on a stack ought to be. Specifically, we are interested in quasi-coherent sheaves on algebraic
stacks. This is a generalisation of quasi-coherent sheaves on stacks. Once we have defined these
notions, we then explain how to study such quasi-coherent sheaves by using comodules over
Hopf algebroids. Lastly, we end with a sketch of how to apply these ideas to the moduli stack of
formal groups.

Except for in §1, we take the functor of points perspective toward schemes. That is, we write
Spec : CRingop → Fun(CRing, Set) for the Yoneda embedding. A functor in the image of Spec we
call an affine scheme; thus Spec is an equivalence onto the full subcategory Aff of affine schemes. A
scheme is a functor CRing → Set that is a Zariski sheaf and that can be covered (Zariski locally) by
affine schemes. We write Sch for the full subcategory on schemes.

We draw heavily from the lecture notes by Meier [Mei20] in most places, which contains useful
further references. The notes by Vistoli [Vis08] are once again a good source for facts about stacks.
Furthermore, for those who speak a little French, the book [LaMo] is a good exposition, containing
remarks that other sources do not. Also, since we will be introducing Hopf algebroids in this
lecture, the parts about stacks in the notes by Hopkins [Hop99] should be more accessible from
now on. The last section uses parts from Lurie’s lectures (lecture 11, to be specific).

1 Reminder: quasi-coherent sheaves on schemes

Let us for now not yet take the functor of points perspective for schemes. In other words, for now
a scheme is a particular kind of locally ringed space (X,OX), with X a topological space and OX
a sheaf of rings on X. (Later on we will give a definition of the structure sheaf OX of a scheme
from the functor of points perspective.)

Definition 1. Let X be a scheme.

(1) A sheaf of OX -modules on X (or an OX-module for short) is a sheaf of abelian groups F on
X, together with, for every open subscheme U ⊆ X, the structure of an OX(U)-module on
the group F(U). A morphism of OX-modules F → G is a morphism of sheaves of abelian
groups, such that for every open U ⊆ X, the map F(U) → G(U) is OX(U)-linear.
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(2) A quasi-coherent sheaf on X is a sheaf of OX-modules F on X such that for all open affine
subschemes V ⊆ U ⊆ X, the natural map

F(U)⊗OX(U) OX(V) −→ F(V)

is an isomorphism. A morphism of quasi-coherent sheaves is a morphism of OX-modules.
We write QCoh(X) for the category of quasi-coherent sheaves on X.

Example 2. The structure sheaf OX is quasi-coherent; if U is an affine scheme, we have more or
less by definition that the map

OU(U)⊗OU(U) OU(V) −→ OU(V)

is an isomorphism. ▲

Thus if F is a quasi-coherent sheaf, and U ⊆ X is an affine open, then the sheaf F
∣∣
U can be

reconstructed from the global sections F(U) alone. Moreover, since a scheme can be covered by
affine opens, this shows that if {Ui ⊆ X }i is an affine open cover of X (i.e., a Zariski cover of X
by affine schemes), then we can reconstruct F from the collection { F(Ui) }i (where for every i, we
view F(Ui) as an OX(Ui)-module). In particular, if X ∼= Spec A is affine, then a quasi-coherent
sheaf on X is the same as an A-module.

Loosely speaking therefore, a quasi-coherent sheaf on X is completely captured by its value on
affine schemes. However, one should be careful with the interpretation of the preceding sentence:
the value on an affine scheme depends on how the affine is embedded in X. In the case of stacks,
we will essentially turn this observation into a definition.

2 Stacks

Before we continue, we need some more facts about stacks. Recall that a stack on a site C is a
pseudo-functor Cop → Grpd satisfying the descent condition.

Suppose now that F : Cop → Set is a functor. Every set X may be viewed as a discrete groupoid,
meaning the category whose objects are the elements of X, with only the identity morphisms. If C
is a site, then F : Cop → Set is a sheaf if and only if F : Cop → Grpd is a stack.

In this way, we can think of objects of C as pseudo-functors Cop → Grpd. Namely, X represents
the functor hX : Cop → Set, and this we may view as a pseudo-functor to groupoids. We may
abuse notation and write X instead of hX going forward.

There is a notion of a morphism of stacks (or more generally of pseudo-functors), and a morphism
between such morphisms.

Definition 3. Let C be a category, and F and G be two stacks on C.

• A pseudo-natural transformation F : F → G consists of:

(i) for every X ∈ C, a map FX : F (X) → G (X);
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(ii) for every morphism f : X → Y in C, a natural transformation

F (Y) G (Y)

F (X) G (X)

FY

f ∗ f ∗

FX

satisfying a number of coherence conditions.

• Let F, G : F → G be two pseudo-natural transformations. A 2-morphism η from F to G
consists of, for every X ∈ C, a natural transformation ηX : FX → GX of functors, such that
the necessary squares commute.

The pseudo-natural transformations F → G form a category, denoted Hom(F , G ).

Remark 4. The conditions become less laborious to write down when working with fibered
categories instead: see, e.g., [Vis08, §3.5].

We say two pseudo-functors F and G are equivalent if there exist pseudo-natural transformations
F : F → G and g : G → F such that G ◦ F is isomorphic to idF in Hom(F , F ), and similarly
F ◦ G is isomorphic to idG . We say such F and G are equivalences. It turns out that a pseudo-
natural transformation F is an equivalence if and only if FX is an equivalence for every X ∈ C (see,
e.g., [Vis08, Prop. 3.36]).

Theorem 5 (2-categorical Yoneda lemma). Let C be a category, F a pseudo-functor Cop → Grpd,
and X ∈ C. Write hX : Cop → Set for the functor represented by X. Then we have a natural equivalence of
categories

Hom(hX , F )
≃−→ F (X).

Proof. See, e.g., [Vis08, §3.6.2]. ■

This result recovers the usual Yoneda lemma when we take F to be an actual functor Cop → Set.
It moreover justifies our immanent abuse of notation of writing X for hX .

Lastly, we need the notion of a pullback of pseudo-functors.

Definition 6. Let C be a category, let F , G , and H be pseudo-functors Cop → Grpd, and let
f : F → H and g : G → H be morphisms. We define the 2-pullback of F and G to be the
pseudo-functor (F ×H G ) : Cop → Grpd as follows. Its value on X ∈ C is the groupoid with

• objects are triples (x, y, α) with x ∈ F (X), and y ∈ G (X), and α : f (x) → g(y) a morphism
in H (X);

• a morphism (x, y, α) → (x′, y′, α′) is a pair (φ, ψ) with φ : x → x′ a morphism in F (X) and
ψ : y → y′ a morphism in G (X), such that the square

f (x) f (x′)

g(y) g(y′)

α

φ

α′

ψ

commutes.
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Be warned that the diagram (where X ∈ C)

(F ×H G )(X) G (X)

F (X) H (X)

gX

fX

does not commute; instead, one can write down a canonical natural transformation from one
composite to the other. The diagram should rather be thought of as a commutative diagram in the
2-category of groupoids, i.e., a diagram with a chosen natural transformation from one composite
to the other.

For ease of language, we shall refer to the 2-pullback simply as the pullback.

3 Sheaves on stacks

Definition 7. Let C be a site and let F : Cop → Grpd be a pseudo-functor. The site associated to
F , denoted C/F , is the category whose

• objects are maps X → F , where X ∈ C;

• morphisms are commutative triangles

X Y

F ;

• covers of an object X → F are covers of X in the sense of C (in other words, by forgetting
the map to F ).

We shall also refer to objects of C/F as morphisms in C overF .

By the Yoneda lemma, a morphism X → F is equivalent to an element of F (X). As such, C/F
is equivalent to the following category. The objects are pairs (X, x) with X ∈ C and x ∈ F (X).
A morphism (X, x) → (Y, y) is a pair ( f , φ) where f : X → Y is a morphism in C and φ is an
isomorphism f ∗(y) → x in F (X).

Remark 8. The category C/F goes by many names: it is also called the category of elements of F ,
and is also denoted by

∫
C F or Elt(F ). It is the category that features in the equivalence between

pseudo-functors Cop → Grpd and fibred categories E → C. The projection C/F → C sends
X → F to X (or from the other viewpoint, sends (X, x) to X).

Example 9. Let X : Affop → Set be (the functor of points of) a scheme. Then the category Aff/X
consists of all maps Spec R → X from an affine scheme to X. In particular, this category contains
the inclusions of all affine open subschemes U ⊆ X into X. ▲

Definition 10. Let C be a site and let F be a stack of groupoids on C. A sheaf of sets on F is
a sheaf of sets on the site C/F , i.e., a functor (C/F )op → Set satisfying the sheaf condition. A
morphism of sheaves of sets is a natural transformation of functors. We write Shv(F ) for the
category of sheaves on F .

4



Remark 11. Technically speaking, the category Shv(F ) may not be locally small. There are
standard ways to deal with any issues that might arise, so we will not worry about it.

The category Shv(F ) naturally has a symmetric monoidal structure: to compute the product, first
one takes the value-wise product, but this will generally not be a sheaf, so one then has to sheafify.

If f : F → G is a morphism of stacks, then we get a functor C/F → C/G given by postcompos-
ition. Thus on sheaves, the direction is reversed, and we get a functor f ∗ : Shv(G ) → Shv(F ).
Moreover, this functor is symmetric monoidal.

Similarly, one can look at sheaves of abelian groups instead of sheaves of sets. The category of
Ab-valued sheaves also has a natural symmetric monoidal structure, given by the sheafification of
the value-wise tensor product.

4 Quasi-coherent sheaves

Henceforth, unless otherwise noted, we consider Aff to have the so-called fpqc topology (see [Vis08,
§2.3.2]). We can define the notion of a quasi-coherent sheaf on an fpqc stack Affop → Grpd.

Definition 12. Let X : Affop → Grpd be an fpqc stack of groupoids.

(1) The structure sheaf of X is the fpqc sheaf of rings OX on X (i.e., a sheaf of rings on Aff/X )
given by sending Spec R → X to R, and by sending a morphism Spec R → Spec S over X to
the morphism S → R. This is a ring object in the symmetric monoidal category of sheaves of
abelian groups on X .

(2) A sheaf of OX -modules on X (or an OX -module for short) is a module object over OX in
the category of Ab-valued fpqc sheaves on X .

(3) A quasi-coherent sheaf F on X is an fpqc sheaf of OX -modules such that for every morphism
Spec R → Spec S over X , the natural map

F(Spec S → X )⊗S R −→ F(Spec R → X )

is an isomorphism. We denote the category of quasi-coherent sheaves on X by QCoh(X ).

More concretely, if M is an OX -module, then the abelian group M(Spec A → X ) will be equipped
with the structure of an A-module.

Remark 13. Compared to the definition of quasi-coherent sheaves on schemes given at the begin-
ning, there seems to be missing data in this new definition. For we only record its value on affines,
whereas in the original case we also recorded, e.g., the global sections F(X). The reason we do
not lose data is that the global sections can be recovered from this definition. Indeed, we can
cover a scheme X by open affine subschemes Spec Ai → X, which is a Zariski cover of X. Given a
quasi-coherent sheaf F on X in the new sense, we define the global sections F(X) by

F(X) := lim
i

F(Spec Ai → X).

This limit is independent of the cover chosen on X, precisely because F is a sheaf in the fpqc
topology on Aff/X, so in particular a Zariski sheaf.

5



Remark 14. A priori, this definition seems to be asking too much compared to the classical
formulation from §1. Namely, originally we only asked for a Zariski sheaf, whereas right now
we are asking for the much stronger condition of an fpqc sheaf. Grothendieck showed that
quasi-coherent sheaves over schemes also satisfy fpqc descent, i.e., that they also define fpqc
sheaves. This is a special case of Theorem 26 below, although that theorem is formulated in a
slightly different way.

Remark 15. We can motivate the definition for the structure sheaf OX further in the case where
X = X is a scheme. In the non-functor of points definition of schemes, then if Spec A ∼= U ⊆ X
is an open affine scheme, we have OX(U) ∼= A. Note that if we embed Spec A as an open affine
subscheme V ⊆ X in a different way, we still have OX(V) ∼= A. Now if Spec R → X is any map
of schemes, then étale locally this map factors through the inclusion of an open affine subscheme
of X. Even in the non-functor of points perspective therefore, we could extend OX by defining
OX(Spec R) to be the limit

OX(Spec R) := lim
i
OX(Ui),

with Ui ⊆ X the affine open subschemes such that Spec R → X factors through the Ui on an étale
cover of X. In the end, this would result in an isomorphism OX(Spec R) ∼= R for any choice of
factoring.

If f : X → X ′ is a morphism of stacks, then the functor f ∗ : Shv(X ′) → Shv(X ) is symmetric
monoidal, and hence induces a functor on module objects. It preserves the quasi-coherence
condition, and thus we get a functor f ∗ : QCoh(X ′) → QCoh(X ).

Proposition 16. Let A be a commutative ring. Then we have an equivalence of categories

QCoh(Spec A) ≃ ModA.

Proof. We construct an equivalence ModA → QCoh(Spec A) as follows. If M is an A-module,
then let FM be the sheaf on Aff/ Spec A defined by

FM(Spec R → Spec A) := M ⊗A R.

If Spec R → Spec S is a morphism over Spec A (i.e., a map S → R of A-algebras), then FM sends it
to the map

M ⊗A S −→ M ⊗A R

given by the tensor product with idM. We equip FM with the obvious OX-module structure. The
sheaf FM is quasi-coherent because the natural map

(M ⊗A S)⊗S R −→ M ⊗A R

is an isomorphism.

In the other direction, let QCoh(Spec A) → ModA be given by sending F to the A-module
F(idSpec A). It is immediate that the composite ModA → QCoh(Spec A) → ModA is equivalent
to the identity, so we only have to check the other composite. Let F ∈ QCoh(Spec A), and write
M = F(idSpec A). By definition of a quasi-coherent sheaf, the natural map

M ⊗A R −→ F(Spec R → Spec A)

is an isomorphism for every map Spec R → Spec A, proving the claim. ■
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Going forward, we shall use the previously constructed equivalences when identifying ModA
with QCoh(Spec A).

Remark 17. There is a different, more categorical manner of defining QCoh, for which the techno-
logy of ∞-categories is very helpful. We wish to define QCoh as a functor Funsh(Affop, Set) → Cat,
which we can do by defining it as a functor to Cat∞ that lands in 1-categories. On representable
functors, we define QCoh to send Spec A to ModA (turning Proposition 16 into a definition rather
than a theorem). We can then take a right Kan extension to extend it to the entire category of
sheaves on Aff.

Affop Cat∞

Funsh(Affop, Set)op
QCoh

Note that this would not result in the right functor QCoh if we had worked with 1-categories:
taking limits in Cat∞ is different from taking limits in Cat. One can then show that his has nice
properties, and coincides with the above definition. See [Pst21, §4] for more information.

5 Hopf algebroids

Definition 18. Let C be a category with pullbacks. A groupoid object in C is a pair (X, Y) of
X, Y ∈ C, together with

(i) two maps s, t : Y → X called the source and target map, respectively;

(ii) a map e : X → Y called the unit map;

(iii) a map Y ×X Y → X (the pullback being formed using the maps s and t) called composition;

(iv) a map Y → Y called the inverse map,

satisfying a number of compatibility axioms. We call X the objects, and Y the morphisms of the
groupoid object.

If C is a category with pushouts, then a cogroupoid object in C is a groupoid object in Cop.

If (X, Y) is a groupoid object, and if A ∈ C, then we get a groupoid whose set of objects is
HomC(A, X) and whose set of morphisms is HomC(A, Y). This is a functorial assignment, yielding
a (pseudo-)functor

[X/Y]′ : Cop −→ Grpd, A 7−→ (HomC(A, X), HomC(A, Y)).

We say that this is the functor corepresented by the cogroupoid object (X, Y).

Now suppose C is a site, and that this topology is subcanonical (i.e., representable functors are
sheaves). In general, [X/Y]′ need not be a stack, but it will always be a prestack (i.e., one can
glue morphisms locally): this is essentially because HomC(−, Y) is a sheaf (by assumption of
subcanonicity of C). We can turn the prestack [X/Y]′ into a stack by stackification, and we denote
the resulting stack by [X/Y].

Definition 19. A Hopf algebroid is a cogroupoid object in CRing.

For a Hopf algebroid, the following notation and terminology is often used for the structure maps:
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(i) the left and right unit maps ηL, ηR : A → Γ;

(ii) the counit or augmentation ε : Γ → A;

(iii) the comultiplication ∆ : Γ → Γ ⊗A Γ;

(iv) the conjugation c : Γ → Γ.

Remark 20. If the left and right unit coincide, then the Hopf algebroid is called a Hopf algebra.

A Hopf algebroid (A, Γ) gives rise to a stack

[A/Γ] : CRing ≃ Affop −→ Grpd.

Conversely, if we begin with a stack on Aff, we can ask if there is a Hopf algebroid corepresenting
it in this way. This is not true in general, but in cases we are interested in (i.e., the moduli stack of
formal groups) it does hold. While we could focus on this stack alone, the procedure will be the
same for any so-called algebraic stack.

6 Algebraic stacks

An algebraic stack is one that is ‘close’ to being a scheme. Roughly speaking, an algebraic stack is
to schemes what an orbifold is to manifolds. We will make this precise by defining an algebraic
stack to be a stack X which admits a ‘cover’ Spec A → X from an affine scheme. To make this
precise, we need to put requirements on this cover; this we do as follows.

Definition 21. Let X ,X ′ be stacks on Aff (or more generally, pseudo-presheaves of groupoids).

• A map f : X → X ′ is called representable if for every map S → X ′ with X a scheme, the
pullback S ×X ′ X is equivalent to a scheme.

• Let P be a property of morphisms of schemes that is closed under pullback. Then we say
that a representable morphism X → X ′ satisfies P if S ×X ′ X → X satisfies P for every map
S → X ′ with S a scheme.

We can thus make sense of when a map between stacks is affine or fpqc.

Definition 22. An algebraic stack is an fpqc stack of groupoids X on Aff, such that there exists an
affine fpqc map Spec A → X for some ring A. Such a map Spec A → X is called a presentation
of X .

Remark 23. There are other niceness conditions on stacks around. Most common are Artin stacks
and Deligne–Mumford stacks; the latter of the two is the strongest assumption. For Artin stacks, one
ought to work with the smooth topology instead of the fpqc topology, and for Deligne–Mumford
stacks one should work with the étale topology. Algebraic geometers often use the term ‘algebraic
stack’ to mean an Artin stack. We cannot afford this luxury however, because the moduli stack of
formal groups is not an Artin stack, but only an algebraic stack in the sense above.

If Spec A → X is an affine fpqc map to an algebraic stack, then we can pull it back against itself.
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By assumption, the pullback will itself be an affine scheme again:

Spec Γ Spec A

Spec A X .

⌟

Then the pair (Spec A, Spec Γ) forms a groupoid object in the category Aff, with the following
maps.

• The source and target maps Spec Γ → Spec A come from the two projections in the pullback.

• The unit map Spec A → Spec Γ is the diagonal.

• The composition is the map

Spec Γ ×Spec A Spec Γ ≃ Spec A ×X Spec A ×X Spec A −→ Spec A ×X Spec A ≃ Spec Γ

given by the projection onto the first and third coordinate.

• Lastly, the inverse is the switch map Spec A ×X Spec A → SpecA ×X Spec A.

Pulling this through the equivalence Aff ≃ CRingop, we find that the pair (A, Γ) is a Hopf
algebroid. Because X is algebraic, it turns out that the stack [A/Γ] is equivalent to X : see [Nau07,
§3.3].

Definition 24. Let (A, Γ) be a Hopf algebroid. A (left) comodule over (A, Γ) is an A-module M
together with a map M → Γ ⊗A M satisfying counitality and coassociativity. A map of comodules
is a map intertwining the coaction maps. We write coMod(A,Γ) for the category of (left) comodules
over (A, Γ).

Example 25. The A-module A is naturally a left (A, Γ)-comodule: take A → Γ ⊗A A ∼= Γ to be
the counit map ηL. ▲

If we buy the intuition that an algebraic stack X is a scheme Spec A quotiented by some type of
group action, then it seems reasonable to expect that a quasi-coherent sheaf over X should be
the same as a quasi-coherent sheaf over Spec A (i.e., an A-module) together with a type of group
action on the sheaf, compatible with the action on X . A comodule over (A, Γ) looks exactly like
the datum of such a quasi-coherent sheaf with a group action.

Let X be an algebraic stack and Spec A → X an affine fpqc map, and write (A, Γ) for the resulting
Hopf algebroid. If F is a quasi-coherent sheaf on X , then M := F(Spec A) is an A-module. We
can give it the structure of a (left) (A, Γ)-comodule as follows. In the diagram

M ⊗A Γ F(Spec Γ) Γ ⊗A M

M

∼= ∼=

M⊗ηL

the solid vertical arrow is given by tensoring M with the left unit ηL. The horizontal map on
the left is induced by ηL, and the horizontal map on the right is induced by ηR. These two
horizontal maps are isomorphisms because F is a quasi-coherent sheaf. Thus there is a unique
dashed arrow making the diagram commute. This we take to be the coaction that turns M into an
(A, Γ)-comodule.
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Theorem 26 (Faithfully flat descent, Grothendieck). Let X be an algebraic stack, and let p : Spec A →
X be an affine fpqc map. Write (A, Γ) for the corresponding Hopf algebroid. The lift of the functor
p∗ : QCoh(X ) → QCoh(Spec A) ≃ ModA described above is an equivalence.

coMod(A,Γ)

QCoh(X ) ModAp∗

≃

If (A, Γ) is a Hopf algebroid, then the category coMod(A, Γ) is an abelian category with enough
injectives, and thus we can define Ext-groups in that category. Thus, we can do the same in
QCoh(X ).

Definition 27. Let X be an algebraic stack, and let F be a quasi-coherent sheaf on X . We define
the n-th sheaf cohomology group of F by

Hn(X ; F) := Extn
QCoh(X )(OX , F).

If (A, Γ) is a Hopf algebroid representing X , and M the comodule corresponding to F, then we
have an isomorphism

Hn(X ; F) ∼= Extn
(A,Γ)(A, M).

The group H0(X ; F) = HomQCoh(X )(OX , F) is also called the global sections of F. It is a module
over the global sections of OX , i.e., over the ring HomQCoh(X )(OX ,OX ).

7 Complex bordism

Let E be a flat homotopy commutative ring spectrum, i.e., one for which E∗E = π∗(E ⊗ E) is a flat
π∗E-module. Then the maps

(i) π∗E → E∗E induced by smashing with S → E on the left/right;

(ii) E∗E → π∗E induced by multiplication;

(iii) E∗E → π∗(E ⊗ E ⊗ E) ∼= E∗E ⊗π∗E E∗E induced by smashing with S → E in the middle;

(iv) E∗E → E∗E induced by the switching,

turn (π∗E, E∗E) into a graded Hopf algebroid (i.e., a cogroupoid object in graded rings). Moreover,
for every spectrum X, the homology E∗X will get the structure of a left (π∗E, E∗E)-comodule.

Henceforth we will study the case E = MU. We actually already computed the Hopf algebroid
associated to MU: this is the graded Hopf algebroid (L, L[b1, b2, . . . ]), where L is the Lazard ring.
From an algebro-geometric point of view, this is the Hopf algebroid associated to the moduli stack
Ms

FG of strict formal groups. We can compare this to the non-strict version MFG as follows.

Recall that a grading is the same as a Gm-action (see, e.g., [Mei20, Prop. 3.26, Ex. 4.45]). As
such, we can package the evenly graded Hopf algebroid (L, L[b1, b2, . . . ]) as the Hopf algebroid
(L, L[b±0 , b1, b2, . . . ]). By “package”, we mean that we get an equivalence of categories

coMod(L, L[b±0 , b1, b2, . . . ]) ≃ coModgr, ev(L, L[b1, b2, . . . ])
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between comodules on the left, and evenly graded comodules on the right.

Recall that we have equivalences of stacks

Ms
FG ≃ [Spec L/ Spec L[b1, b2, . . . ]] and MFG ≃ [Spec L/ Spec L[b±0 , b1, b2, . . . ]].

In conclusion, we find that

QCoh(Ms
FG) ≃ coMod(L, L[b1, b2, . . . ]) and QCoh(MFG) ≃ coMod(L, L[b±0 , b1, b2, . . . ]).

Now for our applications, recall that in the Adams–Novikov spectral sequence for a spectrum X,
the E2-page consists of Ext-groups of the form

Exts,t
MU∗MU(MU∗, MU∗(X)).

Here the second index t was the internal degree, coming from the fact that we are dealing with
graded groups. We can rewrite this into stack-theoretic terms as follows. Let Fi(X) denote the
graded object MU2∗+i(X). (Thus F0 is the even part of MU∗(X), and F2 is a shift of F0, etc.)
This is an (MU∗, MU∗MU)-comodule with a compatible grading, and so we can view it as a
module over MFG. We write ω for the quasi-coherent sheaf F2. In the end, the E2-page of the
Adams–Novikov spectral sequence becomes

Es,t
2

∼= Hs(MFG; Ft(X)).

People often express this differently, as follows. Write ω for the quasi-coherent sheaf F2. This
turns out to be an invertible sheaf (a.k.a. a line bundle), which means that negative powers of ω
also make sense. Distiguishing between when t is even or odd, we get

Es,2a
2

∼= Hs(MFG; F0(X)⊗ ω⊗a),

Es,2a+1
2

∼= Hs(MFG; F1(X)⊗ ω⊗a).

See [Mei20, §4.6] for more information. The upshot is that understanding MFG and quasi-coherent
sheaves thereon will give us a lot of information about the stable homotopy category.

Remark 28. The line bundle ω is an inverse to the Lie algebra sheaf on MFG. Specifically, the quasi-
coherent sheaf ω−1 is equivalent to the quasi-coherent sheaf which sends G : Spec R → MFG (i.e.,
a formal group G over R) to the Lie algebra of G. For this reason, ω is called the sheaf of invariant
differentials on MFG.
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