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The goal of this lecture will be to introduce the notion of a stack of groupoids on a site. Our main
example of a stack will be vector bundles on topological spaces. First we motivate the notion of
a stack by studying the behaviour of gluing vector bundles. We introduce the language of sites
and sheaves, after which we are ready to define what a stack is. We end with a more geometric
interpretation of what a stack is. The introduction is inspired by the notes by Groechenig [Gro14],
and the rest has been adapted from the notes by Vistoli [Vis08] and Meier [Mei20]. Especially
the notes by Vistoli serve as a good follow-up for further reading about stacks (from an algebro-
geometric perspective).

1 Introduction: gluing and descending vector bundles

The running theme of this talk is the notion of gluing objects. Consider the example of vector
bundles. If X is a topological space and E a vector bundle over X, then we can find an open cover
{Ui ⊆ X }i such that Ei := E

∣∣
Ui

is a trivial vector bundle on Ui. One might ask, can we go back?
In other words, if one is given a trivial vector bundle on Ui for every i, can one glue these to form
a vector bundle on E?

One cannot do this as stated; there is additional data that is needed. As discussed in any course
introducing vector bundles, the bit of data that is needed are transition functions φij : Ui ∩ Uj →
GL(n, R) for every i and j. Equivalently, such a transition function is an automorphism of the
trivial vector bundle on Ui ∩ Uj. We will use this formulation of the φij for the remainder of the
talk. These transition functions should moreover satisfy the cocycle condition

φik = φjk ◦ φij

when restricted to Ui ∩ Uj ∩ Uk. One can then show that given such transition functions, one can
glue these trivial bundles to a bundle on E.

We will now describe a different formulation for this data. Write Y for the disjoint union
⊔

i Ui,
and p : Y → X for the map induced by the inclusions. Then Ẽ := p∗E is a trivial bundle on Y.
Observe that

Y ×X Y ∼=
⊔
i,j

Ui ∩ Uj.

The transition functions φij now combine to yield a morphism

p∗2 Ẽ −→ p∗1 Ẽ
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of vector bundles over Y ×X Y, where p1 and p2 denote the two projections Y ×X Y → Y. Also
observe that

Y ×X Y ×X Y ∼=
⊔
i,j,k

Ui ∩ Uj ∩ Uk.

The cocycle conditions on the φij now combine to yield the identity

p∗13 φ = p∗23 φ ◦ p∗12 φ

as maps of vector bundles on Y ×X Y ×X Y. Here p12 denotes the projection away from the third
component, and similarly for p13 and p23.

Let us now consider a different, but similar situation to gluing vector bundles: that of descending
vector bundles. One could do this for a general covering map p : Y → X, but let us for simplicity
focus on a specific example, namely that of the double cover of the circle, i.e., Y = X = S1, and
p : Y → X wraps the circle around itself twice. We may identify the fibres of p with the group
C2, where C2 acts on Y by the antipodal action. In this way we can identify the map p with the
quotient Y → Y/C2 ∼= X. Now, if E is a vector bundle over X, we can pull it back to a vector
bundle Ẽ := p∗E on Y. The question again is: what data do we need to go back?

Let Ẽ be a vector bundle over Y. In order to descend this to a bundle on X, it turns out we need a
C2-action on Ẽ that is compatible with the action of C2 on Y, and that is fibre-wise linear. Indeed,
if we have such an action, then we can define E := Ẽ/C2, and the conditions on the action ensure
that this is indeed a vector bundle on X.

We can rephrase this situation too. Observe that we have a homeomorphism

C2 × Y
∼=−→ Y ×X Y, (σ, y) 7−→ (σ · y, y),

and under this identification, the two projection maps become

p1 : C2 × Y −→ Y, (σ, y) 7−→ σ · y,

p2 : C2 × Y −→ Y, (σ, y) 7−→ y.

Similarly, we have a homeomorphism

C2 × C2 × Y
∼=−→ Y ×X Y ×X Y, (σ, τ, y) 7−→ ((στ) · y, σ · y, y),

under which we can identify the projections with the maps

p12 : C2 × C2 × Y −→ C2 × Y, (σ, τ, y) 7−→ (σ, τ · y),

p13 : C2 × C2 × Y −→ C2 × Y, (σ, τ, y) 7−→ (σ ◦ τ, y),

p23 : C2 × C2 × Y −→ C2 × Y, (σ, τ, y) 7−→ (τ, y).

Tracing through these maps, one can show that a C2-action on Ẽ of the above form is equivalent to
a vector bundle homomorphism

φ : p∗2 Ẽ −→ p∗1 Ẽ

such that the identity
p∗13 φ = p∗23 φ ◦ p∗12 φ
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is satisfied. (This last identity turns out to encode the mixed associativity σ(τy) = (στ)y of the
action.)

Notice that the problems of gluing and descending vector bundles look more or less the same, once
we rewrite them in terms of a map φ satisfying a cocycle condition. This is a useful abstraction:
it allows one to treat both situations using the same formalism. This formalism is given by the
language of stacks.

If C is a category, a stack on C is a functor sending an X ∈ C to some class of “objects over X” such
that these objects can be glued together along certain maps of C, provided that one has gluing data
that satisfies a cocycle condition. The “certain” maps will determine the meaning of what a stack
is. Roughly speaking, the two examples above consider either the class of open embeddings, and
the class of covering maps. The above discussion then shows that vector bundles form a stack for
both types of maps. Most of this lecture is devoted to formalising this statement.

2 Sites

The formal name for such a class of morphisms is called a Grothendieck topology on C, and a
category with a Grothendieck topology is called a site.

Definition 1. Let C be a category with pullbacks. A Grothendieck topology on C consists of the
following data: an assignment to every X ∈ C a collection of collections of arrows {Ui → X }i,
called coverings of X, subject to the following conditions.

(a) If f : Y → X is an isomorphism, then { f } is a covering of X.

(b) If X ∈ C and {Ui → X }i is a covering of X, and for every i the collection {Uij → Ui }j is a
covering of Ui, then the collection {Uij → X }i,j is a covering of X.

(c) If {Ui → X }i is a covering of X and V → X is a morphism, then {Ui ×X V → V } is a
covering.

A site is a pair of a category with pullbacks and a Grothendieck topology on it.

The terminology is (unashamedly) stolen from the field of topology. One can think of the second
condition as being similar to unions of open sets being open; the third condition is similar to the
intersection of opens being open. This is illustrated by the following example.

Example 2 (Open topology). Consider C = Top. If X ∈ Top, we define a collection {Ui → X }i
to be a cover of X when it is

(a) jointly surjective, i.e.,
⊔

i Ui → X is surjective;

(b) every map Ui → X is an open embedding.

This defines a topology on Top, which we will call the open topology on Top. Indeed, the first
and second conditions are obviously satisfied. For the third, note that if f : V → X is a map and
{Ui ⊆ X }i is a covering by open subsets, then Ui ×X V is (isomorphic to) f−1(Ui), and under this
identification the projection Ui ×X V → Ui is given by the inclusion f−1(Ui) ⊆ V. More generally,
if fi : Ui → X is an open embedding, then Ui ×X V is isomorphic to f−1( fi(Ui)). ▲
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Example 3. Let X be a topological space, and let Open(X) denote the category whose objects are
open subsets of X, and the morphisms are given by inclusions of sets. Then the topology from
Example 2 induces a topology on Open(X). ▲

An important difference between point-set topology and Grothendieck topologies lies in the
behaviour of the pullbacks Ui ×X Uj. While in the previous examples this behaviour was more or
less the same, in general it can be quite different. For instance, in the case where Ui = Uj = U, the
two projections U ×X U → U need not be the same, as the following example illustrates.

Example 4 (Covering topology). Again consider C = Top, but now with the following topology:
a collection {Ui → X }i is defined to be a cover of X when it is

(a) jointly surjective;

(b) every map Ui → X is a local homeomorphism.

For lack of a better name, we call this the covering topology on Top. In this topology, a surjective
covering map p : Y → X defines a covering { p } of X. If p : Y → X is such a surjective covering
map with fibre F, then we have

Y ×X Y ∼= F × Y.

Note that the two projections Y ×X Y → Y need not be the same. For example, consider again the
two-fold covering map of the circle, i.e., p : Y → X where X = Y = S1. In the introduction we saw
that the two projections Y ×X Y → Y are not the same. (The case for a general fibre F with size
#F > 1 is analogous, by identifying F with the group of deck transformations of the cover.) ▲

Examples 2 and 4 show that the language of sites captures both examples from the introduction. In
a general site, one can think of the coverings as maps one would like to ‘glue’ or ‘descend’ objects
along. (Whether one should think of this as ‘gluing’ or ‘descending’ depends on the topology.)
Before we discuss what we mean by gluing objects along maps in a Grothendieck topology, we
will take a step back and consider an easier examples: sheaves on sites.

3 Sheaves

A presheaf of sets F on a topological space X is an assignment of a set F(U) to every open subset
U of X, together with restriction maps F(U) → F(V) whenever V ⊆ U, and these restrictions
should be compatible with chains of inclusions. Important examples include the sheaf of smooth
functions C∞(M) on a smooth manifold M, or the structure sheaf OX on a scheme X. These
examples satisfy a special property: functions on open subsets can be compared locally, and can
be constructed locally. This is called the sheaf condition. Formally, a sheaf of sets on X is a presheaf
of sets F on X satisfying: for every open subset U of X and every open covering {Ui ⊆ U }i of U,
the natural diagram

F(U) ∏i F(Ui) ∏i,j F(Ui ∩ Uj)

should be an equaliser diagram of sets. Note that the injectivity of F(U) → ∏i F(Ui) says functions
can be compared locally; the additional statement that the diagram is an equaliser diagram says
that functions can be glued together when constructed on the opens in an open cover.

We can generalise these definitions to general sites.
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Definition 5. Let C be a category. A presheaf of sets on C is a functor Cop → Set.

If F is a presheaf of sets on C and U → X and V → X are two morphisms in X, then we get maps
F(U) → F(U ×X V) and F(V) → F(U ×X V) induced by the two projections U ×X V → U and
U ×X V → V, respectively.

Definition 6. Let C be a site. A sheaf of sets on C is a presheaf of sets F : Cop → Set that satisfies
the sheaf condition: for every X ∈ C and every covering {Ui → X }i of X, the diagram

F(X) ∏i F(Ui) ∏i,j F(Ui ×X Uj)

is an equaliser diagram.

Example 7. Let X be a topological space. Then a (pre)sheaf of sets on Open(X) is the same as a
(pre)sheaf of sets on X, where Open(X) has the topology from Example 3. Thus, one example of
a sheaf on Open(X) is the sheaf of continuous real-valued functions C(−, R), sending an open
U ⊆ X to the set C(U, R) of continuous functions U → R. ▲

Example 8. One can also consider a global variant of C(−, R), by defining it as a functor
Topop → Set sending X to C(X, R). This is a sheaf in the open topology on Top, and also for the
covering topology on Top. In fact, the sheaf C(−, R) on Open(X) from the previous example is
obtained by restricting it to the subcategory Open(X). ▲

4 Stacks

The key reason that things like C∞(M) or OX form sheaves is that functions can be glued together
whenever they agree on intersections. In other words, you do not need data to glue them: checking
their equality is enough. This breaks down when we consider more difficult objects, such as vector
bundles: equality of vector bundles is a useless notion. We have already seen that to glue vector
bundles, you need data (namely, an isomorphism on intersections, subject to a cocycle condition).
The reason that checking equality no longer works for vector bundles is that vector bundles can
have nontrivial automorphisms. Objects that have nontrivial automorphisms do not live in a set,
but instead live in a groupoid.

Definition 9. A groupoid is a category such that all morphisms are isomorphisms. A map of
groupoids is a functor.

Example 10. Let X be a topological space, and n a natural number. Then vector bundles of
rank n over X form a groupoid Vectn(X), where the objects are vector bundles of rank n, and the
morphisms are the isomorphisms of vector bundles. ▲

We would like to say that Vectn forms a contravariant functor from Top to groupoids. However,
life is not this simple. If f : X → Y and g : Y → Z are maps of topological spaces, then while we
do have pullback maps

f ∗ : Vectn(Y) −→ Vectn(X) and g∗ : Vectn(Z) −→ Vectn(Y),

the composite f ∗g∗ is not equal to (g ◦ f )∗. Instead, we only have a natural isomorphism f ∗g∗ ∼=
(g ◦ f )∗.
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To remedy this, we have to consider groupoids as living in a 2-category. A 2-category is a category
which does not merely have morphisms between objects, but can also have morphisms between
morphisms (called 2-morphisms). In the above example, the natural isomorphism f ∗g∗ ∼= (g ◦ f )∗

is an example of a 2-morphism in the 2-category Grpd of groupoids. While one could formalise
this by developing the theory of 2-categories, we will only need the following definition.

Definition 11. Let C be a category. A pseudo-presheaf of groupoids F on C consists of the data

(i) for every X ∈ C, a groupoid F (X);

(ii) for every morphisms f : X → Y in C, a map of groupoids f ∗ : F (Y) → F (X);

(iii) for every two morphisms f : X → Y and g : Y → Z in C, a natural isomorphism φ f ,g : f ∗g∗ ≃
(g ◦ f )∗,

satisfying the following conditions:

(a) for all X ∈ C, we have id∗
X = idF (X);

(b) for all morphisms g : Y → Z, we have φidY , g = id;

(c) for all morphisms f : X → Y and g : Y → Z and h : Z → W, we have

φ f , h◦g( f ∗φg,h) = φg◦ f , h(φ f ,gh∗).

Remark. A functor between 2-categories is also called a pseudo-functor. Every 1-category naturally
defines a 2-category, where the 2-morphisms are only the identies f → f . A pseudo-presheaf
of groupoids is then the same as a pseudo-functor Cop → Grpd to the 2-category of groupoids,
justifying the term ‘presheaf’.

Remark. An alternative way to define pseudo-functors Cop → Grpd (where C is an ordinary
category) is to work with so-called Grothendieck fibrations on C, also called fibered categories. A
Grothendieck fibration on C is a functor D → C, where D is an ordinary category, satisfying a
number of conditions. One can then show that the category of pseudo-functors Cop → Grpd is
equivalent to the category of categories fibered in groupoids. If F ′ : D → C is such a fibration,
then the value F (X) of the corresponding pseudo-functor F is given by the subcategory of D on
objects

{ d ∈ D | F ′(d) = X }

and morphisms
HomF (X)(d, e) = { f : d → e in D | F ′( f ) = idX }.

This has the benefit of avoiding any 2-categorical language in the definition, but it would require
additional work to make precise. We will not pursue this, but refer the interested reader to [Vis08,
Ch. 3].

Example 12. The groupoid Vectn(X) from Example 10 forms a pseudo-presheaf of groupoids
Vectn on Top. Indeed, as we already remarked, we have natural isomorphisms f ∗g∗ ∼= (g ◦ f )∗,
and one can check that these satisfy the conditions above. ▲

Taking Vectn as our leading example, we note that this pseudo-presheaf has some special features.
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(1) If X is a space and E and F are rank-n vector bundles over X, then we can construct maps
E → F locally. More precisely, let {Ui ⊆ X }i be an open cover of X, and write Ei := E

∣∣
Ui

and Fi = F
∣∣
Ui

. If we have maps fi : Ei → Fi such that f j
∣∣
Ui∩Uj

= fi
∣∣
Ui∩Uj

, then these maps

glue to a map f : E → F. In addition to being able to construct maps locally, we can also
compare maps locally: if for two maps f , g their restrictions fi and gi to Ui are equal for
every i, then f and g are equal. (In other words, the gluing of maps is unique.)

(2) We can construct vector bundles over X locally; this we explained in the introduction.

A stack is a generalisation of these two phenomena. First, we generalise the data we need to glue
objects over X.

Definition 13. Let C be a site, and let F be a pseudo-presheaf of groupoids on C. Let X ∈ C, and
let U = {Ui → X }i be a cover of X. The category F (U ) of descent data is the category whose

• objects are pairs ({ Ei }i, { φij }i,j), where Ei ∈ F (Ui) and φij : p∗2 Ej → p∗1 Ei is a morphism
in F (Ui ×X Uj), such that the cocycle condition

p∗13 φik = p∗23 φjk ◦ p∗13 φij

is satisfied (as maps in F (Ui ×X Uj ×X Uk));

• morphisms are sets { αi }i, where αi : Ei → Fi is a morphism in F (Ui) such that the diagram

p∗2 Ej p∗2 Fj

p∗1 Ei p∗1 Fi

p∗2 αj

φE
ij φF

ij

p∗1 αi

commutes.

An object in F (U ) is called a descent datum.

Note that for every X ∈ C and every covering U = { fi : Ui → X }i of X, we have a natural map

F (X) −→ F (U ),

E 7−→
(
{ f ∗i E }i, { φij : p∗2 f ∗j E ∼= p∗1 f ∗i E }i

)
,

(α : E → F) 7−→ { f ∗i α }i,

where the isomorphism p∗2 f ∗j ∼= p∗1 f ∗i comes from the equality f j ◦ p2 = fi ◦ p1 of the commutative
diagram

Ui ×X Uj Uj

Ui X.

p2

p1 f j

fi

Definition 14. Let C be a site, and let F be a pseudo-presheaf of groupoids on C.

• We call F a prestack of groupoids if for every X ∈ C and every covering U of X, the natural
map F (X) → F (U ) is fully faithful.
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• We call F a stack of groupoids if for every X ∈ C and every covering U of X, the natural
map F (X) → F (U ) is an equivalence.

Informally, a prestack is a pseudo-presheaf of groupoids where maps between two objects E, F ∈
F (X) can be compared locally and can be constructed locally. A stack is a prestack where in
addition we can also construct the objects locally.

Remark. Some authors use the term ‘prestack’ to mean a pseudo-presheaf, which would make the
terminology prestack/stack similar to the terminology presheaf/sheaf. The above definition of a
prestack is due to Grothendieck, and is also used by [Vis08].

Remark. One can phrase the condition that maps can be constructed and compared locally in a
more formal way: to any pseudo-presheaf of groupoids F , there is an associated presheaf of
maps of F . This presheaf is a sheaf if and only if F is a prestack. See, e.g., [Vis08, Def. 2.58, §3.7,
Prop. 4.7] for a precise discussion.

Unlike the notion of a pseudo-presheaf, the notion of a (pre)stack is a statement that is only
defined on sites; in other words, changing the topology changes the meaning of what a stack is.

Example 15. The pseudo-presheaf Vectn is a stack on Top, for both the open topology (from
Example 2) and the covering topology (from Example 4) on Top. Saying that Vectn is a stack in the
open topology says that vector bundles can be constructed by restricting to an open cover of X.
Saying that Vectn is a stack in the covering topology says that vector bundles can be descended
along covering maps. ▲

5 A geometric interpretation of stacks

If C is a category (thinking of an example like C = Top or C = Aff, or some other category of
‘spaces’ will be helpful) and X ∈ C an object, we get a functor

hX : Cop −→ Set, Y 7−→ HomC(Y, X).

In other words, the functor hX remembers how other spaces can be mapped into X. The Yoneda
embedding

C −→ Fun(Cop, Set), X 7−→ hX

is fully faithful, so we can think of the functor category Fun(Cop, Set) as an enlargement of C.
An object F ∈ Fun(Cop, Set) not in the image of the Yoneda embedding can be thought of as a
‘generalised object of C’. In this picture, we should think of F(X) as the set of maps from X into
this generalised object. A map between two ‘generalised objects’ F, G ∈ Fun(Cop, Set) is a natural
transformation F → G. The Yoneda lemma gives a natural isomorphism

Nat(hX , F) ∼= F(X).

Thus, morphisms out of an ‘honest’ object of C to a generalised object of C agrees with F(X),
justifying our heuristic for F(X).

Of course, not all functors are very nice objects. If we want to think of these functors as geometric
objects (e.g., if C = Top or C = Aff), then we still want to be able to construct maps of generalised
spaces locally. Thus, if C is also a site, it is more natural to only consider the sheaves Cop → Set.
For a general site C, representable functors need not be sheaves, but most (if not all) sites one
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deals with in practise have this property. (A site is called subcanonical if all representable functors
are sheaves.)

Remark. The category of schemes Sch arises in this fashion. Namely, a scheme S gives rise to a
functor of points Affop → Set given by Spec R 7→ Hom(Spec R, S). This functor is a sheaf in the
Zariski topology on Aff (briefly, we say it is a Zariski sheaf ). This defines a fully faithful functor

Sch −→ Funsh(Affop, Set)

with essential image those sheaves that are (Zariski) locally representable. One can formulate the
entire theory of schemes using this perspective; this is done in, e.g., [Ras18].

In this sense, sheaves of sets on a site C can be thought of as generalised objects of C. If we now
have a stack of groupoids F on a site C, one can try to use the same intuition for it, thinking of F
as an even further ‘generalised object’ of C. This intuition is helpful in dealing with stacks, but can
only go so far. Namely, if X ∈ C, then F (X) is no longer a set, but a groupoid; therefore maps
into F do not form merely a set, but a groupoid. This is somewhat odd behaviour: for example, if
C = Top, then we tend to think of F (∗) as the ‘points’ of F , but since F (∗) is a groupoid, this
means that ‘points of F ’ now have automorphisms!

The reason this intuition is still used comes from the original motivation for stacks, namely the
search for moduli spaces. The moduli space for a geometric object (such as vector bundles, elliptic
curves, formal groups, etc.) is a space X such that for any other space Y, geometric objects over Y
are in one-to-one correspondence with maps Y → X. However, these spaces do not always exist.
For instance, there is no topological space X such that we have an isomorphism

HomTop(Y, X) ∼= { isomorphism classes of rank n vector bundles on Y }.

The reason such a space X does not exist is because vector bundles over Y can have nontrivial
automorphisms. However, we have seen that there is a stack Vectn on Top classifying vector
bundles. In the above intuition for stacks as geometric objects, Vectn is exactly the moduli stack of
vector bundles: maps Y → Vectn are classified by vector bundles over Y.

Remark. Using homotopy theory, there is a moduli space for vector bundles: we have a natural
isomorphism

[Y, BO(n)] ∼= { isomorphism classes of rank n vector bundles on Y },

where [Y, BO(n)] indicates homotopy classes of maps Y → BO(n). The usage of homotopy classes
rather than honest maps is crucial here.

This picture so far is merely an intuition for stacks. One can also put precise conditions on a stack
to turn it into an object of algebraic geometry. Such stacks are called algebraic stacks, although
the precise definition may depend on the author. (In particular, homotopy theorists have some
different conventions than algebraic geometers.) Further examples of such conditions are Artin
stacks or Deligne–Mumford stacks. While we shall not go into much detail about this, we note that
the main idea is that an algebraic stack is a stack on Aff = CRingop which ‘locally’ looks like an
affine scheme. The crux here is that the word ‘locally’ does not mean in the Zariski topology on
Aff. (In fact, a stack on Sch/S that Zariski-locally looks like an affine scheme is in fact a scheme:
see [Mei20, Prop. 4.26] for a precise discussion.) For some more details, see, e.g., [Mei20, §4.5].
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