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ABSTRACT

Topological K-theory has shown up in the classification of symmetry-protected topolo-
gical phases of free fermions. This started with the work of Kitaev, and was later con-
tinued by Freed and Moore, who modified K-theory to twisted K-theory in order to fit
the physics. In more recent years, mathematically rigorous tools have been developed
for the computation of this twisted K-theory. We present an introductory approach to
both the mathematical and physical side of the subject, notably without assuming a
prior knowledge of K-theory. The main results of Freed and Moore are summarised
for the symmorphic case, and the basic cohomological tools for the computation of
these K-groups are outlined. These tools are then applied to specific calculations. We
classify all possible one-dimensional topological phases in all ten Altland–Zirnbauer
classes, under a few assumptions. We do this mainly by using the Mayer–Vietoris exact
sequence, and we find that for one-dimensional systems this method coincides with the
Atiyah–Hirzebruch spectral sequence approach. We also treat the three-dimensional
space group F222 in class A, i.e., topological phases protected by crystal symmetries
only. This was already done by Shiozaki et al., but not in much detail; we provide a
detailed version of this calculation. Using the Atiyah–Hirzebruch spectral sequence,
we find the same result; in particular, we find a Z2-invariant.
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CONVENTIONS

• The set N of natural numbers does not contain zero. We write N0 for N∪ { 0 }.

• The set of integers modulo n is denoted by Zn.

• The set of quaternions is denoted by H.

• Unless otherwise indicated, the unit element of a group is denoted by 1.

• When R is a ring, we write Mn(R) for the ring of n× n matrices over R.

• The exponential map, be it for numbers or operators, is denoted by exp. The
elementary charge is denoted by e.

• The letterH is reserved for Hilbert spaces. The Hamiltonian is denoted by H.

• Boldface variables are used to denote 3-vectors, e.g., E, B, F.

• We do not use the terms ‘little co-group’ or ‘high symmetry point’ common in
condensed matter literature, but rather use the mathematical terms ‘stabiliser’
and ‘fixed point’, respectively.

v





INTRODUCTION

In 1980, a new state of matter was discovered. To create it, an insulating plane was
cooled down to near absolute zero, and a strong magnetic field was put through it. The
insulator remained an insulator, but it acquired the peculiar property of always being
a one-way conductor on its boundary. Even when the system would have impurities
in it, or be deformed slightly, this conductivity would remain. What is more, the
conductivity that describes this is quantised: it takes on the values

e2

2πh̄
· ν where ν ∈ Z.

This is surprising because conductivity is not a microscopic quantity: it is a global
property of the material, depending on all sorts of small intricacies in it. Yet in this
setup, it is exactly an integer multiple of e2/2πh̄. Experimental physics found great use
in this quantisation, for the fine-structure constant could be determined very precisely
from it. For theoretical physicists it raised many questions: what is this integer, and
why is this state so stable?

Multiple points of view were presented, but only one would later generalise to
describe similar phenomena. In this theory, an insulator has associated with it the
mathematical structure of a vector bundle. Very briefly, a vector bundle can be said to be
a generalisation of a vector space. From this vector bundle a number called its Chern
number could be computed. This Chern number is an invariant in the sense that two
isomorphic vector bundles have the same Chern number. The integer appearing in the
conductivity is this Chern number. The stability then gets a mathematical explanation:
it is because the Chern number is invariant under continuous deformations of the
vector bundle. Vector bundles were already a well-known concept in mathematics,
and more specifically in topology. As such, these states with nonzero Chern numbers
became known as topological phases of matter.

But this involvement of mathematics in describing special states of matter was only
the beginning. As time went on, different kinds of states similar to the above one
were discovered, one of which is the topological insulator. These states are now also
called topological phases, but there was no overarching theory that described them.
Finding this theory turned out to require turning topological phases into a subject in
mathematical physics also. In 2009 it was discovered that a particular theory from
algebraic topology is the natural way to describe these phenomena: K-theory.

Just as vector bundles had been an established part of mathematics, K-theory had
been an established tool in algebraic topology ever since its development in the early
1960s. Many tools were created to compute K-groups, the central object of K-theory. The
first use of K-theory in topological phases was by Kitaev [24], who used it to construct
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a periodic table of topological phases. It became clear however that this periodic table
could not be the whole story: there were missing entries. In 2013 Freed and Moore [11]
described the K-theory objects that should be put in these missing entries. To do this
they had to modify the existing K-theory in order to perfectly fit the physics. The only
trouble is that these modified K-groups are notoriously difficult to compute, and that
the number of entries is massive. Additionally, it was not clear if the toolbox that was
previously available for K-theory still works for this modified version. This makes the
classification an ongoing subject of research, both in physics and in mathematics, even
at the University of Amsterdam.

On the side of theoretical physics, computational methods were described that are
not fully rigorous, but which can be used to calculate cases were rigorous mathematical
arguments (still) are unavailable. This is done by Kruthoff et al. [28, 29]. Mathematical
physicists meanwhile were concerned with the mathematical nature of this new K-
theory, trying to re-develop the tools from classical K-theory. Stehouwer [39] does this
in this Master’s thesis. Later Stehouwer et al. [40] used these tools in a number of cases,
and also studied the physicists’ method from a mathematical viewpoint.

HOW TO READ THIS THESIS

In this work we give a first introduction to topological phases, and perform some new
calculations. We take a more theoretical and mathematical viewpoint. However, the
subject is too broad and the mathematics too detailed for this thesis to be fully self-
contained. In developing the theory we therefore do not give all the proofs, but rather
direct the reader to existing literature when the proof carries over without problem.
Whenever subtleties arise that are not clearly explained in the literature, we do discuss
these in the necessary detail. Accordingly, the calculations we do are also treated in
detail.

This thesis is divided into three parts.

• Part I is concerned with the mathematics of K-theory, with a focus on giving the
tools necessary to perform calculations. Chapter 1 lays out the basics of K-theory,
and Chapter 2 expands upon this by outlining classical variants of K-theory.

• Part II has as its goal the discussion of symmetry-protected topological phases.
It is a combination of both physics and mathematics, for ultimately we wish to
mathematically calculate the different phases. One cannot describe symmetry-
protected phases adequately without first discussing symmetries; this is done in
Chapter 3. Chapter 4 treats the necessary theory of insulators, and Chapter 5 sum-
marises the modifications to K-theory that are needed for the physics. Chapter 6
then applies this knowledge to discuss topological phases, starting with the first
examples that were discovered, and ending with the relation to K-theory. It is
possible to start this part in Chapter 6, reading previous chapters when necessary,
because it does not immediately require a knowledge of the preceding chapters.

• Whereas Parts I and II contain only condensed versions of the existing literature,
Part III contains original work. It turns out that the one-dimensional case is
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simple enough that it can be fully classified, but (surprisingly) this has not yet
been done. This is the subject of Chapter 7. Lastly, Chapter 8 studies a specific
three-dimensional case, one for which different sources give different answers.

PRELIMINARIES

This thesis is written at the advanced undergraduate level for both physics and math-
ematics. On the side of physics, we assume a prior knowledge of condensed matter,
quantum mechanics and classical electrodynamics. In particular, the reader is assumed
to be familiar with the concepts of the Brillouin zones, valence and conduction bands,
the reciprocal lattice, and the Berry phase.

On the side of mathematics the preliminaries are more varied, but they are not all
equally important. A firm understanding of group theory and representation theory
is assumed, as well as a knowledge of the theory around (short) exact sequences.
Topology is used throughout. A previous familiarity with the concept of a vector
bundle is helpful, although it is very briefly reviewed. Lastly, some basic concepts from
category theory are used in various places.
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Part I.

K-theory





1TOPOLOGICAL K-THEORY

In algebraic topology one studies topological spaces by assigning algebraic structures
to these spaces, usually a group or a ring. The structures are called topological invariants,
in the sense that two homotopy equivalent (or, more strongly, homeomorphic) spaces
have isomorphic structures assigned to them. A common first example of such a tool is
the fundamental group. Another example is topological K-theory, which was developed
by Atiyah and Hirzebruch in the late 1950’s and early 1960’s. It assigns groups to spaces,
but very notably these groups are made up of objects that are themselves interesting
to study: vector bundles. As such, its use becomes two-fold: not only does it provide a
means to distinguish between topological spaces, but it also classifies vector bundles
over a fixed topological space. Ultimately it is the latter use that we are interested in,
though history has shown the former should not (and indeed cannot) be ignored.

For ease of discussion, we shall refer to topological K-theory simply as K-theory. We
limit our presentation of K-theory to compact Hausdorff spaces. The goal of this chapter
is to give a brief introduction to the construction of the K-group and its calculation.

The construction of the K-groups (Sections 1.1–1.3) is adapted from Atiyah [3]. In this
pursuit we encounter the graded K-groups. At first sight these additional groups may
seem unnatural or unmotivated, but they aid the calculation of the K-group. In later
chapters their importance will be further emphasised by their appearance in physics.

After giving this construction, in Section 1.4 we give the basic axioms of K-theory
that we use for the calculation of the K-groups. We then use these in Section 1.5 to
calculate the K-theory of the spheres. Lastly, we briefly comment upon KO-theory in
Section 1.6.

1.1. THE GROTHENDIECK GROUP

A semigroup is a (nonempty) set with a binary, associative operation on it. In other
words, it is a group without a neutral element or inverses. A homomorphism of semi-
groups is a map that preserves the semigroup operation. This turns semigroups into a
category. Notice that any group is also a semigroup.

If the operation on a semigroup is commutative, then we call the semigroup commut-
ative. There exists a universal way to turn a commutative semigroup into an abelian
group. This group is called its Grothendieck group. We provide a sketch of how it is
constructed. Curious readers may consult Lang [30, pp. 39, 40] in case more details are
desired.
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�� Theorem 1.1. Let S be a commutative semigroup. Then there exists an abelian group K(S)
and a semigroup homomorphism i : S→ K(S), unique up to unique isomorphism, satisfying
the following universal property. If A is an abelian group and ϕ : S → A a semigroup
homomorphism, then there is a unique group homomorphism ψ : K(S) → A such that the
diagram

S A

K(S)

i

ϕ

ψ

commutes. We call K(S) the Grothendieck group of S.

Proof. Uniqueness follows from the universal property. We give a construction of K(S)
as ‘formal differences’ of elements in S. Define an equivalence relation on S× S by

(a, b) ∼ (c, d) ⇐⇒ there exists s ∈ S such that a + d + s = c + b + s.

This is readily verified to be an equivalence relation. We define K(S) as S× S/∼, with
the operation on S extended to K(S) entry-wise. The associativity of S implies this
operation is associative. An element [(a, b)] is intended to represent a− b. With that in
mind, fix some s0 ∈ S. Then [(s0, s0)] ∈ K(S) is a neutral element under this operation,
independent of s0. Reversing the order in a pair yields an inverse. Thus K(S) forms an
abelian group. Define

i : S −→ K(S) : s 7−→ [(s + s0, s0)].

Note that i is also independent of the choice of s0. It is not difficult to verify that this
satisfies the desired universal property. �

When S and T are two semigroups and ϕ : S→ T a semigroup homomorphism, the
above universal property gives us a unique map K(ϕ) : K(S) → K(T) such that the
diagram

S T

K(S) K(T)

ϕ

i i
K(ϕ)

commutes. The induced map K(ϕ) depends functorially on ϕ. In this manner, K
becomes a functor from the category of commutative semigroups to the category of
abelian groups.

Now suppose that a semigroup S is also a semiring, i.e., it has a binary, associat-
ive operation with unit that distributes over its semigroup operation. This induces
a multiplication on K(S) by requiring the map i : S → K(S) to be a semiring homo-
morphism (i.e., a semigroup homomorphism that is multiplicative and preserves the
multiplicative unit). This extends to a multiplication on all of K(S), and under this
multiplication K(S) becomes a ring. In the universal property, if A is a ring and ϕ a
semiring homomorphism, the induced map ψ is a ring homomorphism. Thus, by a
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similar argument, K is also a functor from the category of semirings to the category of
rings.

To shed some light on these definitions, we present two examples: one elementary,
the other a little more involved.

Example 1.2. The set of natural numbers N forms a semigroup under addition.
The set of integers Z under addition together with the inclusion map i : N ↪→ Z

satisfies the universal property for the Grothendieck group of N. So we may
identify K(N) with Z. Moreover, when we endow N with its usual multiplication,
it becomes a semiring, and the induced multiplication on K(N) coincides with the
ordinary multiplication on Z. An entirely analogous consideration applies to N0;
it also has Z as its Grothendieck group.

Example 1.3 (Representation ring). Let G be a group. Denote by Rep(G) the set
of isomorphism classes of finite-dimensional complex representations of G. When
ϕ and ψ are two representations of G, then we may form their direct sum ϕ⊕ ψ,
which is again a representation. This is associative in the sense that

(ϕ⊕ ψ)⊕ χ ∼= ϕ⊕ (ψ⊕ χ)

as representations. Since Rep(G) is made up of isomorphism classes of representa-
tions, the direct sum descends to an associative operation on Rep(G). In addition,
we give the set Rep(G) a multiplication via the tensor product of representations.
The corresponding Grothendieck group (with its induced ring structure) is called
the representation ring of G and is denoted by R(G).

1.2. VECTOR BUNDLES

For the convenience of the reader, we briefly recall the definition of a (topological)
vector bundle. Here we restrict our attention to complex vector bundles, though the
concept is easily modified to yield real vector bundles.

Definition 1.4. Let X be a topological space. A complex vector bundle over X is a pair
(E, π) of a topological space E and a projection π : E → X, satisfying the following
conditions.

(i) For every x ∈ X, the fibre Ex := π−1({ x }) is endowed with the structure of a
finite-dimensional complex vector space.

(ii) Around every x ∈ X there exists a neighbourhood U and a homeomorphism
Φ : π−1(U)→ U ×Cn (called a local trivialisation) for some n ∈N0 such that:

• πU ◦Φ = π, with πU : U ×Cn → U the projection onto the first component;

• for every y ∈ X, the restriction Φ : Ey → { y } ×Cn is a linear isomorphism.

9



Remark 1.5. We do not add the usual restriction that the dimensions of the fibres be
constant throughout X; our definition implies it is only locally constant. This definition
is more useful for K-theory and is as such employed by standard texts like Atiyah [3].
If however the fibres of a bundle all happen to have the same dimension k, the vector
bundle is said to have rank k. Bundles over a connected base space thus always have a
well-defined rank.

Let X be a topological space and let E and F be vector bundles over X. A ho-
momorphism from E to F is a continuous map f : E → F satisfying the following
conditions.

(i) We have πF ◦ f = πE.

(ii) For every x ∈ X, the restriction f : Ex → Fx is linear.

With these definitions, vector bundles over a fixed topological space form a category.
We also recall some standard constructions with vector bundles. Let X and Y be

topological spaces and let f : X → Y be a continuous map.

• Direct sum. If E and F are vector bundles over X, their direct sum E⊕ F is a
bundle over X with fibres (E⊕ F)x = Ex ⊕ Fx.

• Tensor product. If E and F are vector bundles over X, their tensor product E⊗ F
is a bundle over X with fibres (E⊗ F)x = Ex ⊗ Fx.

• Pullback. If E is a vector bundle over Y, then the pullback bundle f ∗E is a bundle
over X with fibres ( f ∗E)x = E f (x).

Isomorphisms like V ⊗ (W ⊕U) ∼= (V ⊗W)⊕ (V ⊗U) generalise directly to vector
bundles in the place of vector spaces. Moreover, the pullback under a continuous map
preserves these isomorphisms.

Lastly, recall that a vector bundle over X is called trivial if it is isomorphic to a
bundle of the form X×Cn.

1.3. THE K-GROUPS

The direct sum of vector bundles is associative up to isomorphism. It is tempting to
think of this as an addition of isomorphism classes of vector bundles, but the analogy
quickly breaks down as there are no inverses. But previously we have seen how
inverses can be added in a universal way, namely by taking the Grothendieck group.
Applying this to isomorphism classes of vector bundles is the K-group.

Definition 1.6. Let X be a compact Hausdorff space. Denote by Vect(X) the set of
isomorphism classes of complex vector bundles over X. The direct sum of vector
bundles gives an associative, commutative operation on Vect(X), turning it into a
semigroup. The tensor product gives it the additional structure of a semiring. The
(complex) K-group of X, denoted by K(X), is the Grothendieck group of the semiring
Vect(X).
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Remark 1.7. Although the K-group has the structure of a ring, most of the time we shall
only be concerned with its structure as an abelian group.

We make K a contravariant functor from compact Hausdorff spaces to rings as follows.
When f : X → Y is continuous, it induces a map Vect(Y)→ Vect(X) via

[E] 7−→ [ f ∗E],

the pullback of vector bundles. This is a well-defined semiring homomorphism. By
functoriality of the Grothendieck group, it induces a ring homomorphism K(Y) →
K(X), which we also denote by f ∗.

Example 1.8 (K-group of a point). Take X to be a point, X = pt. Then a vector
bundle over X is nothing but a finite-dimensional vector space. (In this sense a
vector bundle can be thought of as a generalisation of a vector space.) A finite-
dimensional vector space is classified up to isomorphism by its dimension. Thus
Vect(pt) is isomorphic to N0 as a semigroup, with isomorphism the dimension
map. From Example 1.2 we know that K(N0) ∼= Z as rings, so K(pt) ∼= Z as rings.

1.3.1. The reduced K-group

Recall that a pointed topological space is a pair (X, x0) of a topological space X and a
point x0 ∈ X called its basepoint. Equivalently, it is a space together with the choice of
a map pt ↪→ X. Pointed spaces form a category, where morphisms are the continuous
maps that preserve basepoints.

What makes a space interesting in terms of its K-group is how many nontrivial vector
bundles it can have. If all bundles over the space are trivial, its K-group is simply
(isomorphic to) Z. This motivates the definition of the reduced K-group of a pointed
space. It is obtained by ‘removing all data’ at the fibre over the basepoint; in this case,
this means we ‘forget’ the dimension of its fibre. What is left is a group that keeps track
of the possible ways in which vector bundles over the space can be nontrivial.

Definition 1.9. Let X be a pointed compact Hausdorff space. Then the inclusion map
pt ↪→ X induces a map K(X) → K(pt). The kernel of this map is called the reduced
K-group of X and is denoted by K̃(X).

Remark 1.10. In contrast to the K-group of a space, the reduced K-group is not a ring: it
is an ideal in K(X). In particular it is still an abelian group, and this structure is the one
of interest to us.

Note that the map pt ↪→ X has a continuous left-inverse X � pt given by projection
onto one point. This gives us a section of the short exact sequence

0 K̃(X) K(X) K(pt) 0,

which induces an isomorphism

K(X) ∼= K̃(X)⊕ K(pt). (1.3.1)
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This direct sum formalises the idea that the reduced K-group ‘forgets’ the information
at the basepoint. A diagram chasing argument now shows that a map f : X → Y also
induces a map between reduced K-groups, f ∗ : K̃(Y)→ K̃(X). Thus it is a contravariant
functor from pointed compact Hausdorff spaces to abelian groups.

Remark 1.11. Some authors define K̃(X) differently. Namely, the map K(pt) → K(X)

induced by X � pt has as its image the trivial bundles. Then K̃(X) is defined as the
cokernel of this map. Because this map K(pt) → K(X) is the section that splits the
short exact sequence above, these views are entirely equivalent.

Example 1.12. Again taking X = pt, this automatically becomes a pointed space.
The inclusion of the basepoint is a homeomorphism, hence the induced map of
K-groups is an isomorphism. As such it has trivial kernel, which means that
K̃(pt) = 0.

1.3.2. Graded K-groups

In addition to just one K-group associated with a space, K-theory associates many
groups to a space. Before we can define these, we need to define some preliminary
operations on pointed spaces: the wedge sum and smash product. They are the pointed
analogues of the disjoint union and Cartesian product of ordinary spaces, respectively.

Definition 1.13. Let X and Y be pointed topological spaces, with basepoints x0 and y0

respectively. Their wedge sum X ∨Y is the pointed space

X ∨Y := (X× { y0 }) ∪ ({ x0 } ×Y)

(in the subspace topology of X×Y) with { x0, y0 } as its basepoint. Their smash product
X ∧Y is the pointed space

X ∧Y := X×Y /X ∨Y

with X ∨Y as its basepoint.

Remark 1.14. A different definition of the wedge sum is the quotient X t Y/x0 ∼ y0.
One quickly verifies that this definition is homeomorphic to ours.

Example 1.15 (Smash product of spheres). In this example we take Sn to be the
(pointed) space

Sn := In /∂In ,

where I = [0, 1] is the unit interval. With this definition, it is easy to see that when
n, m ∈N, we have a homeomorphism of pointed spaces

Sn ∧ Sm ∼= In+m /∂In+m ∼= Sn+m.

We can extend this result to account for n = 0 if we take the standard definition
S0 = {±1 }, seeing the 0-sphere as the elements of length 1 in R. In fact, for any
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pointed space X we then have a homeomorphism of pointed spaces

S0 ∧ X ∼= X ∧ S0 ∼= X.

Definition 1.16. Let X be a pointed topological space and n ∈ N a natural number.
The n-fold reduced suspension of X, denoted ΣnX, is the pointed space

ΣnX := Sn ∧ X.

We abbreviate Σ1X as ΣX.

Each n-fold suspension can also be turned into a functor. For this, when f : X → Y is
a continuous map of pointed spaces, we define a map Sn × X → Sn × Y via (α, x) 7→
(α, f (x)). Since f preserves basepoints by assumption, this is compatible with passing
to the quotient to get a continuous map Σn f : ΣnX → ΣnY of pointed spaces. The
reader may verify that this assignment of maps is functorial.

One reason for the interest in suspensions is a classic theorem of algebraic topology
called the Freudenthal suspension theorem. A consequence of this theorem is that (for n
large enough) we have a group isomorphism πn(X) ∼= πn+1(ΣX), where πn denotes
the n-th homotopy group. In the case of K-theory, we use the suspensions to define
more K-groups.

Definition 1.17. Let X be a compact Hausdorff space and n ∈N a natural number. We
define the K-group in degree−n of X, denoted by K−n(X), and the reduced K-group
in degree−n, denoted by K̃−n(X), as

K̃−n(X) := K̃(ΣnX) when X is pointed;

K−n(X) := K̃(Σn(X+)),

where X+ is the pointed space X t pt with basepoint pt. By the K-theory of X we shall
mean all of the K-groups of X together.

Remark 1.18. Because the groups K−n and K̃−n are defined in terms of a reduced K-
group, neither of them has the structure of a ring; see Remark 1.10.

Remark 1.19. The reason why we give the n-fold suspension a negative index as K-group
is rather dull and will be explained later.

We turn these other K-groups into contravariant functors in the following way. The
reduced group K̃−n is the composition of the functor Σn and the contravariant functor
K̃. The assignment X 7→ X+ becomes a functor when we let it extend continuous maps
to preserve the newly added basepoints. Then K−n is a composition of two functors
and one contravariant functor, and is thus a contravariant functor. In conclusion, for
every n ∈N we have contravariant functors K−n and K̃−n. For convenience we shall
define K0 as K, and K̃0 as K̃.
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1.4. AXIOMS OF K-THEORY

It turns out that the above construction of K-theory satisfies certain axioms that help
the calculation of these groups. We shall not prove the majority of the axioms we list;
most omitted proofs may be found in Atiyah [3]. In these, the reader will find the (so
far hidden) reasons why we restrict our definitions to compact Hausdorff spaces. Many
of the maps in the diagrams below are natural, but we shall comment below how they
are constructed. Note that some of these illustrate that the graded K-groups impact the
calculation of the K-group.

(1) Contravariance. For every n, the assignments X 7→ K−n(X) and f 7→ f ∗ make
K−n into a contravariant functor, and similarly for K̃−n.

(2) Homotopy invariance. If f , g : X → Y are homotopic, then f ∗ = g∗ for every n.

(3) Exactness. When Y ⊆ X is a closed subspace, we have a long exact sequence
(infinite to the left) of natural maps

· · · K̃−n(X/Y) K−n(X) K−n(Y) K̃−n+1(X/Y) · · ·δ δ

When X is a pointed space and Y ⊆ X a closed subspace that shares the basepoint,
we have an analogous long exact sequence (infinite to the left)

· · · K̃−n(X/Y) K̃−n(X) K̃−n(Y) K̃−n+1(X/Y) · · ·δ δ

(4) Excision. If X = A ∪ B for closed subspaces A, B ⊆ X, then for every n the
composition A/(A ∩ B) ↪→ X/(A ∩ B) � X/B induces an isomorphism

K̃−n(X/B) ∼= K̃−n(A/(A ∩ B)).

(5) Additivity. If X = A t B for closed subspaces A and B, then for every n the
inclusion maps induce isomorphisms

K−n(A t B) ∼= K−n(A)⊕ K−n(B).

For K̃−n, the same holds for a wedge sum X = A ∨ B of pointed spaces in the
place of a disjoint union.

(6) Mayer–Vietoris sequence. If X = A ∪ B for some closed subspaces A, B ⊆ X,
then we have a long exact sequence (infinite to the left) of natural maps

· · · K−n(X) K−n(A)⊕ K−n(B) K−n(A ∩ B)

· · · K−n+1(A ∩ B) K−n+1(A)⊕ K−n+1(B) K−n+1(X)

δ

δ

δ

(7) Bott periodicity. For every n, we have an isomorphism

K−n−2(X) ∼= K−n(X).
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We already proved Axiom (1). Axiom (2) implies that the K-theory of a space depends
only on its homotopy type; in particular, any contractible space has the K-theory of a
point.

In Axiom (3), the maps labelled δ are called coboundary maps. The minus signs in
our definition of K-groups (Definition 1.17) make these maps increase the degree by one
instead of decreasing it, which is a standard custom (cf. Remark 1.19). The existence
of these coboundary maps is often more important than a precise construction. As for
the other morphisms, the map X+ → X/Y given by collapsing Y ∪ pt to a single point
induces K̃−n(X/Y)→ K−n(X). The map K−n(X)→ K−n(Y) is just the one induced by
inclusion.

Axiom (5) follows from our definition that a vector bundle only has locally constant
rank (see Remark 1.5). The analogous property for reduced K-theory follows from
Axiom (3).

Roughly speaking, any ‘theory’ that satisfies Axioms (1)–(5) but with the exact
sequences infinite in both directions is called a cohomology theory. For a precise definition
of a cohomology theory, see, e.g., Hilton [18, Ch. 1]. From these, Axiom (6) follows
in general. Like in Axiom (5), often the existence of the maps labelled δ is more
important than a construction of them. The inclusion map A ↪→ X induces a map
K−n(X)→ K−n(A), and similarly for B ↪→ X. The map K−n(X)→ K−n(A)⊕ K−n(B)
is the direct sum of these two. Similarly, the inclusion A ∩ B ↪→ A induces a map
K−n(A)→ K−n(A ∩ B), and analogously for A ∩ B ↪→ B. The difference of these two
is the map indicated K−n(A)⊕ K−n(B)→ K−n(A ∩ B) in the diagram.

Lastly, Axiom (7) is perhaps the most surprising of all. This property allows us
to extend the definition of Kn for any integer n, by making K-theory fully periodic
with period 2. Reading the other axioms in light of this one, we extend all the exact
sequences to be infinite to the right as well, thereby making K-theory a full-fledged
cohomology theory. In fact, the exact sequences also become periodic.

1.5. THE K-THEORY OF SPHERES

We have already computed the K-group of a point in Example 1.8. Computing the
K-group K−1(pt) suffices to compute the entire K-theory of a point by Bott periodicity
(Axiom (7)). From Definition 1.17 we see that this amounts to K̃(S1). Indeed, adding a
disjoint point to pt yields S0, and by Example 1.15 we have Σ1(S0) ∼= S1. To determine
K̃(S1) it suffices to first compute K(S1), for then we have the splitting

K(S1) ∼= K̃(S1)⊕ K(pt)

given in Equation (1.3.1). It turns out that there are no nontrivial complex vector
bundles over the circle; see for instance Hatcher [17, pp. 22–24]. This is equivalent to
saying that the rank map Vect(S1)→N0 is an isomorphism of semigroups. By taking
Grothendieck groups we then find

K(S1) ∼= Z.
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In particular we see that K̃(S1) = 0. As noted, this completes the computation of the
K-theory of a point:

K−n(pt) ∼=
{

Z n even,

0 n odd.
(1.5.1)

This result has deeper implications than it might first appear to have. Because the
spheres are suspensions of a point, and lower-degree K-groups are defined using
suspensions, we can derive the K-theory of all spheres from this. Let us illustrate this
in more detail.

Similarly to the above, we have by definition that K−n(pt) = K̃(Sn). Since we know
this group for all possible n, the splitting K(Sn) ∼= K̃(Sn)⊕ K(pt) from Equation (1.3.1)
tells us how to compute the K(Sn) for every n. This argument even generalises to all
degrees, as follows.

�� Proposition 1.20. Let X be a pointed compact Hausdorff space. Then for all n ∈N0 we have
a split short exact sequence

0 K̃−n(X) K−n(X) K−n(pt) 0.

In particular, for all n we have an isomorphism K−n(X) ∼= K̃−n(X)⊕ K−n(pt).

Proof. Take Y equal to the basepoint of X; then we have a homeomorphism X/Y ∼= X.
Part of the exact sequence in Axiom (3) then reads

K−n−1(X) K−n−1(pt) K̃−n(X) K−n(X) K−n(pt).δ

The last map in this sequence induced by the inclusion pt ↪→ X. This has a left-inverse
X � pt given by projection onto one point. So by contravariance of K−n, the map
K−n(X) → K−n(pt) has a right-inverse K−n(pt) → K−n(X). It is therefore surjective.
Notice that the same argument applies to the first map in this sequence, so it is surjective
as well. By exactness this means that the map δ is the zero map, and therefore the
map K̃−n(X)→ K−n(X) following it is injective. Consequently we have a short exact
sequence

0 K̃−n(X) K−n(X) K−n(pt) 0,

for which we already constructed a section K−n(pt)→ K−n(X), so it splits. �

Remark 1.21. The proof of the above immediately generalises to the case where Y is a
retraction of X (i.e., when the inclusion Y ↪→ X has a continuous left-inverse). In that
case we get a splitting K−n(X) ∼= K̃−n(X/Y)⊕ K−n(Y).

Notice that for all n and d,

K̃−d(Sn) = K̃(ΣdSn) ∼= K̃(Sn+d) = K−n−d(pt).

By the above proposition we know that K−d(Sn) ∼= K̃−d(Sn)⊕ K−d(pt). In conclusion,
the K-theory of a sphere can be deduced from the K-theory of a point.
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1.6. KO-THEORY

The above discussion only treated complex vector bundles, i.e., vector bundles where
the fibres have the structure of a complex vector space. The discussion applies verbatim
with the real numbers in the place of the complex numbers. If we repeat the construction
in Section 1.3 for vector bundles over the real numbers, the groups we end up with are
called the KO-groups and are denoted by K O−n(X), and K̃ O−n(X) for the reduced
versions. The KO-groups are also referred to as real K-groups, in contrast to the complex
K-groups outlined previously. Section 1.4 applies as well,1 except for Bott periodicity
(Axiom (7)): though there still is a periodicity, it is now eight-fold:

K O−n−8(X) ∼= K O−n(X).

This periodicity is fittingly called real Bott periodicity. In a similar fashion to K-theory
we extend KO-theory to have indices in Z, making it a cohomology theory too.

The most basic yet crucial calculation is the KO-theory of a point. This turns out to
be a much more involved task than the complex variant. Atiyah, Bott, and Shapiro [5]
first computed this and found that

K O−n(pt) ∼=



Z n ≡ 0 mod 8,

Z2 n ≡ 1 mod 8,

Z2 n ≡ 2 mod 8,

0 n ≡ 3 mod 8,

Z n ≡ 4 mod 8,

0 n ≡ 5 mod 8,

0 n ≡ 6 mod 8,

0 n ≡ 7 mod 8.

(1.6.1)

In particular, we see that

K O(S1) ∼= K O(pt)⊕ K̃ O(S1) ∼= K O(pt)⊕ K O−1(pt) ∼= Z ⊕Z2,

so the circle does have a nontrivial real vector bundle. This is the Möbius bundle.
Indeed, a direct sum of two Möbius bundles is a trivial bundle, hence it manifests as
Z2 in the KO-group. Because its real dimension is odd, it does not appear in K(S1).

1In particular, Proposition 1.20 also holds for KO-theory, because we derived it from these axioms alone.
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2VARIANTS OF K-THEORY

The groups K(X) and K O(X) are made up of complex and real vector bundles, respect-
ively. Atiyah introduced a K-group that generalises both of these: the group K R(X).
Its definition is slightly more difficult because it is made up of vector bundles with
additional structure. Each of these three K-theories also comes with its own equivariant
version. Throughout, the word ‘equivariant’ signifies that a group action is involved.
In this case it means that, given a group G, we consider vector bundles over X that
have a group action of G. The K-groups we obtain from these bundles are denoted by
KG(X), K OG(X) and K RG(X).

Upon first reading however, the equivariant K-group KG(X) is an easier introduc-
tion to the idea of additional structure than the KR-group is. Hence we first discuss
equivariant K-theory in Section 2.1, and define KR-theory and equivariant KR-theory
afterwards in Section 2.2. For all of these theories, the difficulty lies in defining the
appropriate type of vector bundle. Once established, the definitions of the K-groups
are entirely analogous to the ones from the previous chapter. The axioms for their
calculation also carry over naturally. In some cases these new groups reduce to ones
we have seen before; such cases will be of use in later calculations.

2.1. EQUIVARIANT K-THEORY

Equivariant K-theory is a modification of K-theory that considers spaces with a group
action on it. The vector bundles that make up these modified K-groups are required
to carry a group action that is compatible with the one on the base space. To define
this rigorously, we first need to specify the category of spaces that we will define this
K-theory on. Our presentation of equivariant K-theory is based on the paper by Segal
[37], with some influences from Atiyah [3]. To save ourselves unnecessary effort, we
shall discuss only finite groups.

2.1.1. Equivariant spaces

A further discussion of equivariant spaces is given by Atiyah [3, Ch. 1]. Fix a finite
group G. A G-equivariant space X (or G-space) is a topological space X together with a
continuous group action of G on it. That is, it has a group action where multiplication by
a group element is a continuous map. (Note that this implies it is a homeomorphism.)
When the group G is clear from the context, we may leave it implicit and simply call
the space an equivariant space.
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A G-equivariant map (or G-map) between two equivariant spaces X and Y is a con-
tinuous map f : X → Y that commutes with the group action. With these morphisms,
G-equivariant spaces form a category. A G-equivariant subspace (or G-subspace) is a
subspace of X that is closed under the group action. In particular, the inclusion map of
an equivariant subspace is an equivariant map.

A pointed G-equivariant space is a pointed space and a G-equivariant space where
the basepoint is fixed under the G-action. A morphism between pointed equivariant
spaces is a morphism of pointed spaces that is also an equivariant map. So pointed
equivariant spaces form a category as well.

Definition 2.1. Let G be a finite group and let X be a G-equivariant space. A complex
G-equivariant vector bundle over X is a complex vector bundle E over X that is
simultaneously a G-equivariant space, such that the following conditions are satisfied.

(i) The projection π : E→ X is an equivariant map.

(ii) The action of G on E is fibre-wise linear, i.e., for every g ∈ G the restriction
Ex → Eg·x of multiplication by g is linear for every x ∈ X.

Suppose X is a G-equivariant space and E and F are two G-equivariant vector
bundles over X. A G-equivariant homomorphism from E to F is a map f : E→ F that
is both a homomorphism of vector bundles and a G-equivariant map.

Operations like the direct sum, tensor product and pullback are all possible for
equivariant bundles too. This is done by constructing the non-equivariant bundle first
from the underlying vector bundles, and then giving it the natural G-action. Note
though that the pullback of an equivariant bundle is only defined over an equivariant
map.

Notice the following special cases of equivariant bundles. When G is the trivial
group, a G-equivariant bundle is just a vector bundle. When the base space has trivial
group action, the G-action restricts to give representations of G on each fibre. More
generally, the fibre over x ∈ X has a representation of the stabiliser Gx of x on it. In
particular, a G-equivariant bundle over a point is the same as a finite-dimensional
representation of G. Thus equivariant vector bundles generalise both vector bundles
and representations.

2.1.2. Equivariant K-groups

Fix a finite group G. Let X be a compact Hausdorff G-equivariant space. Denote by
VectG(X) the set of equivariant isomorphism classes of complex G-equivariant vector
bundles over X. This set forms a commutative semigroup under the direct sum. The
(complex) G-equivariant K-group of X, denoted by KG(X), is the Grothendieck group
of this semigroup. The tensor product of equivariant vector bundles induces a ring
structure on it. When f : X → Y is an equivariant map, it induces a homomorphism
KG(Y)→ KG(X) via the pullback of equivariant vector bundles. This turns KG into a
contravariant functor from G-equivariant compact Hausdorff spaces to rings.
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It is important to note that KG(X) is constructed out of G-equivariant isomorphism
classes of vector bundles. Being equivariantly isomorphic is stronger than being iso-
morphic as vector bundles. Indeed, two equivariant vector bundles may be isomorphic
as vector bundles, while not being equivariantly isomorphic. This is illustrated in a
simple case by the following example.

Example 2.2. Previously we remarked that (complex) G-equivariant bundles over
a point are simply finite-dimensional (complex) representations of G. Back in
Example 1.3, we denoted the semigroup of equivalence classes of such repres-
entations by Rep(G). So we see that this semigroup is isomorphic to VectG(pt).
Therefore KG(pt) = R(G), the representation ring of G defined in Example 1.3.

Several special cases of G-actions give a relation between the equivariant K-group
and the ordinary K-group. If G is the trivial group, then KG(X) is simply K(X).
If the G-action on X is trivial, then KG(X) may be viewed as modifying K(X) by
giving each fibre a G-representation. For this, first notice that R(G) = KG(pt) has a
natural map to KG(X) induced by X � pt. This yields a natural ring homomorphism
R(G)⊗Z K(X)→ KG(X).

�� Proposition 2.3. Suppose X is a G-equivariant space with trivial G-action. Then the natural
map

R(G)⊗Z K(X) −→ KG(X)

is a ring isomorphism.

Proof. See Segal [37, Prop. 2.2]. �

When the G-action on X is free (i.e., only the identity element of G has fixed points),
we can quotient out by the G-action and obtain the K-group.

�� Proposition 2.4. Suppose X is a free G-equivariant space. Then we have a ring isomorphism

KG(X) ∼−→ K(X/G) : [E] 7−→ [E/G].

More generally, if N is a normal subgroup of G that acts freely on X, then we have an
isomorphism KG(X) ∼= KG/N(X/N).

Proof. See Segal [37, Prop. 2.1] and Atiyah [3, Prop. 1.6.1]. �

When X is a pointed equivariant space, this means the map pt ↪→ X that defines
the basepoint is an equivariant map. Thus it induces a map KG(X) → KG(pt). The
reduced G-equivariant K-group of X, denoted by K̃G(X), is defined as the kernel of
this map. Similar to Equation (1.3.1), we have an isomorphism

KG(X) ∼= K̃G(X)⊕ R(G),

where we used KG(pt) ∼= R(G) as explained in Example 2.2. Notice that the fibre over
the basepoint has the structure of a G-representation: the basepoint is fixed under
the group action. So now the reduced group ‘forgets’ not just the dimension of the
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fibre over the basepoint, but also the representation on it. Like in ordinary K-theory,
K̃G becomes a contravariant functor from pointed G-equivariant compact Hausdorff
spaces to abelian groups.

To define graded equivariant K-groups, we need to turn the suspensions ΣnX into
G-equivariant spaces. We first give the spheres Sn trivial G-action; we shall denote
this space by Sn

triv. The product Sn
triv × X is then also an equivariant space. Taking the

quotient, we get a G-action on ΣnX too. We can then use the same definition as before
for the lower degree K-groups (cf. Definition 1.17):

K̃−n
G (X) := K̃G(ΣnX) when X is pointed;

K−n
G (X) := K̃G(Σn(X+)).

Example 2.5 (Equivariant K-theory of a point). Let G be a finite group. In Ex-
ample 2.2 we argued why KG(pt) = R(G). We will now compute the entire
G-equivariant K-theory of a point. First notice that since pt has trivial G-action, so
does pt+, and hence so do all suspensions Σn(pt+). Thus the suspension Σn(pt+)
is equivariantly homeomorphic to the sphere Sn

triv (i.e., the n-sphere Sn with trivial
group action). Proposition 2.3 together with the K-theory of spheres from Sec-
tion 1.5 yields for n > 0

KG(S
n
triv)
∼= R(G)⊗Z K(Sn) ∼=

{
R(G)⊕ R(G) n even,

R(G) n odd.

Taking reduced groups, we conclude for all n

K−n
G (pt) = K̃G(S

n
triv)
∼=
{

R(G) n even,

0 n odd.

Notice the striking similarity with the K-theory of a point from Equation (1.5.1).

Equivariant K-theory also satisfies the axioms of Section 1.4, but with some modifica-
tions made. Most notable are the replacement of maps with equivariant maps. This
includes replacing the homotopy with an equivariant homotopy: a homotopy that is
also an equivariant map (with the unit interval carrying a trivial action). These make
equivariant K-theory an equivariant cohomology theory; see Bredon [6, §1.2] for a precise
definition. Two-fold Bott periodicity also still holds, allowing us to extend equivariant
K-theory to have degrees in Z as well.

2.1.3. Equivariant KO-theory

Parallel to Section 1.6, KO-theory can also be adapted to an equivariant version. All that
is needed is to replace the complex fibres with real fibres. This yields a ring K OG(X)

and an abelian group K̃ OG(X). The graded versions K O−n
G (X) and K̃ O−n

G (X) are
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defined in the exact same manner as the complex variant. All the axioms for KO-
theory carry over to equivariant KO-theory, mutatis mutandis, making it an equivariant
cohomology theory as well. It too has an eight-fold Bott periodicity.

2.2. KR-THEORY

Central to KR-theory is the idea of an antilinear involution on a complex vector space.
An involution is a map that is its own inverse. A map T : V → V on a complex vector
space V is antilinear when

T(x + λ · y) = Tx + λ̄ · Ty for all x, y ∈ V and λ ∈ C.

This can be thought of as a conjugation on the vector space: x 7→ x̄. Antilinearity then
looks like λ · x = λ̄ · x̄. The space Cn automatically has such a conjugation, namely
component-wise complex conjugation: (z1, . . . , zn) 7→ (z̄1, . . . , z̄n). For a general com-
plex vector space however, there is no canonical conjugation: it is an additional piece
of information. This additional information gives it the structure of the complexification
of a real vector space.

�� Proposition 2.6. Let V be a finite-dimensional complex vector space, and let T : V → V be
an antilinear involution on V. Then there is a real vector subspace W of V such that we have
an isomorphism V ∼= C⊗R W under which T takes the form z⊗ x 7→ z̄⊗ x.

Proof. The complex vector space V also has the structure of a real vector space. The
map T is linear over the real numbers, so we can consider its eigenvalues. Since T
squares to one (it is an involution), it can only have eigenvalues +1 and −1. It is
diagonalisable since any x ∈ V can be written as

x = 1
2 (x + Tx) + 1

2 (x− Tx).

The eigenspaces of T are of equal real dimension because multiplication by i ∈ C

restricts to an isomorphism between them. Denote the eigenspace of eigenvalue +1
(i.e., the set of fixed points of T) by W. The complex dimension of V is half its real
dimension, so

dimR W = dimC V.

The map C×W → V given by scalar multiplication is bilinear over the real numbers, so
it induces a map C⊗R W → V. This map is surjective, and because dimR W = dimC V,
it is also an isomorphism. The elements of W are fixed by T, so because T is antilinear,
conjugating it with this isomorphism yields the map z⊗ x 7→ z̄⊗ x on C⊗R W. �

We shall use this proposition to view a complex vector space with conjugation as a
real vector space. One can think of KR-theory as consisting of bundles where some
fibres are real, and others are complex. An involution that is fibre-wise antilinear will
accomplish this. This involution will depend on the base-space; the category of such
spaces we shall have to define first. In the remainder of our presentation of KR-theory,
we mostly follow the original paper by Atiyah [2], which can be consulted when we
omit proofs or details.
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Remark 2.7. Sadly, Atiyah’s original terminology in KR-theory has the tendency to be
confusing. A particular variation of his original terms seems to have become standard
in much of the literature. In particular, it was employed by Atiyah and Segal [4] in 1969
(Atiyah’s original paper came out in 1966). It is this variant we shall adopt throughout.

2.2.1. Real spaces

A Real space X (note the capital ‘R’) is a topological space X together with a continuous
involution T : X → X. A Real map between two Real spaces X and Y is a continuous
map that commutes with the involutions on X and Y. A pointed Real space is a
pointed space and a Real space where the basepoint is fixed under the involution.

Strictly speaking, the notion of a Real space is equivalent to that of a Z2-equivariant
space. The reason why we do not use this terminology is because we would like to
view it as a conjugation, which becomes apparent in the appropriate kind of vector
bundle.

Definition 2.8. Let X be a Real space. A Real vector bundle over X is a complex vector
bundle E over X that is simultaneously a Real space, such that the following conditions
are satisfied.

(i) The projection π : E→ X is a Real map.

(ii) The involution on E is fibre-wise antilinear, i.e., the restriction Ex → ETx of the
involution is antilinear for every x ∈ X.

If the involution T on the base-space fixes a point, the fibre over that point is the
complexification of a real space, as in Proposition 2.6. Points that are not fixed by the
involution do not have this property. It is in this sense that a Real vector bundle can
have both real and complex fibres, even though strictly speaking all fibres are complex
vector spaces.

2.2.2. The KR-groups

The definition of the KR-group is very much similar to that of the equivariant K-group.
In short, when X is a Real compact Hausdorff space, the KR-group K R(X) is the
Grothendieck group of isomorphism classes of Real vector bundles over X under the
direct sum. The tensor product turns it into a ring. In this manner K R is a contravariant
functor from Real compact Hausdorff spaces to rings.

Special types of Real spaces also yield a relation between KR-theory and ordinary
K-theory. When X is a Real space, denote by XR the set of Real points of X, i.e., all
points that are fixed under the involution. Previously we discussed why the fibre of
a Real point can be viewed as a real vector space. This idea works on the level of
K-groups as well.

�� Proposition 2.9. Let X be a Real compact Hausdorff space. Then we have a ring isomorphism

K O(XR)
∼−→ K R(XR)
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given by fibre-wise complexification (and the involution induced thereby). In particular, if X
has trivial Real structure, then K R(X) ∼= K O(X).

Proof. See Atiyah [2]. �

On the other hand, KR-theory also generalises K-theory in the following manner.

�� Proposition 2.10. Let X be a compact Hausdorff space. Give the space X t X the involution
that swaps the two copies of X. Then we have a ring isomorphism

K(X) ∼= K R(X t X).

Proof. If E is a vector bundle over X, denote by Ē the conjugate-bundle over X. As a
set it is equal to E, but we give the fibres a different scalar multiplication: if v ∈ Ēx

and λ ∈ C, then we take λ ∗ v := λ̄ · v as scalar multiplication (where the latter is the
scalar multiplication on Ex). Give E t Ē the Real involution sending x ∈ E to x ∈ Ē
and vice-versa. This is antilinear by definition of Ē. Then the map

K(X) −→ K R(X t X) : [E] 7−→ [E t Ē],

with Ē over the second X in X t X, is an isomorphism. �

When X is also pointed, the reduced KR-group K̃ R(X) is the kernel of the map
K R(X) → K R(pt) induced by inclusion of the basepoint. We have an isomorph-
ism K R(X) ∼= K̃ R(X) ⊕ K R(pt). In the same way as before, K̃ R then becomes a
contravariant functor from pointed Real compact Hausdorff spaces to abelian groups.

It is possible to define graded KR-groups by giving the spheres trivial involution,
analogous to the trivial action in equivariant K-theory. Later however we will need
a slightly more complicated definition. The method using a trivial involution on the
spheres will be a special case of this. With p, q ≥ 0 not both zero, define Sp,q as follows:
as a topological space it equals Sp+q−1, and its involution is given by

(α1, . . . , αp+q) 7−→ (−α1, . . . ,−αp, αp+1, . . . , αp+q).

In other words, the first p components get a minus sign, and the remaining q ones
remain fixed. Notice that Sn

triv, the n-sphere with trivial involution, is equal to S0, n+1 in
this notation. Now when X is a pointed Real space, define the (p, q)-suspension of X
as

Σp,qX := Sp, q+1 ∧ X,

with the induced Real structure on the quotient. It is defined in this way to ensure that

Σp,q(Sr,s) ∼= Sp+r, q+s

as Real spaces. In particular, Σ0,0 is the identity. Now we define

K̃ Rp,q(X) := K̃ R(Σp,qX) when X is pointed;

K Rp,q(X) := K̃ R(Σp,q(X+)).
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It turns out that, up to isomorphism, the group K Rp,q(X) only depends on the value of
p− q mod 8. In this spirit we abbreviate

K Rp−q(X) := K Rp,q(X) and K̃ Rp−q(X) := K̃ Rp,q(X).

As promised, the definition using a trivial involution on the spheres is a special case of
this: take p = 0. In fact, this periodicity even shows it is sufficient to use only the cases
with p = 0. Nevertheless, being able to take p nonzero is useful, as it gives an easy way
to compute the KR-groups of spaces that are a suspension of that form. This will come
up in Section 7.2.

Example 2.11 (KR-theory of a point). Since the point has a trivial involution,
Proposition 2.9 implies that K R(pt) ∼= K O(pt). We can generalise this, noting that
the suspensions Σ0,n(pt+) all have trivial involution as well. Therefore we can use
Proposition 2.9 again, finding for all n that

K R−n(pt) = K R0,n(pt) ∼= K O−n(pt).

The KO-theory of a point is given in Equation (1.6.1).

The axioms from Section 1.4 carry over to the groups K R−q as well, mutatis mutandis.
Like with KO-theory (see Section 1.6), its periodicity is eight-fold:

K R−q−8(X) ∼= K R−q(X).

Because these axioms carry over to KR-theory, Proposition 1.20 carries over directly to
KR-theory: if X is pointed,

K R−q(X) ∼= K̃ R−q(X)⊕ K R−q(pt).

2.2.3. Equivariant KR-theory

The most involved modification of K-theory we will encounter here is equivariant
KR-theory. As its name suggests, it involves a Real space that also carries a group
action. Though more generality is possible (like in the work of Atiyah and Segal [4,
§6]), all we need is the following.1 Fix a finite group G. A G-equivariant Real space is
a Real space and a G-equivariant space, such that the group action commutes with the
involution. A G-equivariant Real vector bundle E over X is a Real vector bundle E
that is also a G-equivariant vector bundle, such that the group action again commutes
with the involution. A homomorphism of Real G-equivariant vector bundles is a
homomorphism of G-equivariant vector bundles that is also a Real map.

These definitions yield, like we have seen a number of times, a ring K RG(X) and
an abelian group K̃ RG(X). The suspensions from KR-theory become G-equivariant
spaces by giving the spheres trivial G-action. This allows us to define K Rp,q

G (X) and
K̃ Rp,q

G (X), and also K R−q
G (X) and K̃ R−q

G (X), in the obvious way. As is the case with
equivariant K-theory, the axioms of KR-theory hold for its equivariant version as well
(mutatis mutandis). Eight-fold Bott periodicity in particular also applies.

1Our definition is a special case of Atiyah and Segal’s, namely by taking G to have trivial involution.
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3SYMMETRIES IN QUANTUM MECHANICS

This chapter gives a mathematical description of the type of group actions that arise
in quantum mechanics. A first guess at the relevant action would be a representation
on the Hilbert space, i.e., a group acting on the Hilbert space by linear maps. It turns
out this is not sufficiently general for quantum mechanics. First, the requirement of
linear maps has to be relaxed: some symmetries cannot be implemented by linear
maps. Second, the group action cannot even be a homomorphism in general: it is only
multiplicative up to phases. In Sections 3.1 and 3.2 we demonstrate these phenomena
with physical examples, and then abstract these ideas into the notion of a quantum
symmetry group. Later, when asking the question of what symmetries commute with
the Hamiltonian, we are led to the definition of an extended quantum symmetry group.
We conclude the chapter with Section 3.3, where we discuss certain symmetries that
occur often in condensed matter; these will play a central role in the rest of the work.

The mathematics presented in this chapter is mostly an adaptation of the work by
Freed and Moore [11], with influences from Stehouwer [39].

3.1. QUANTUM AUTOMORPHISMS

In quantum mechanics, the state of a particle or system is described by a (nonzero,
normalised) element of the Hilbert space of the system. The inner product on the Hilbert
space is physically relevant: inner products give probability amplitudes. However, it is
not immediately clear to what extent this inner product is physical. This is a relevant
concern: if the inner product is not fully physical, then there are maps from the Hilbert
space to itself that do not preserve the inner product, yet do preserve all relevant
physical information. In other words, answering this question is directly relevant to
deciding which maps should be called quantum automorphisms: maps from the Hilbert
space to itself that preserve all physically relevant structure on it.

In any case, unitary maps should definitely be considered automorphisms. Won-
drously enough, there are relatively simple examples of automorphisms that cannot
be implemented as a unitary map. One such example is that of time-reversal: the
exchange t 7→ −t. Though a particular system may or may not be invariant under
this exchange, it should still be a valid automorphism on the quantum level. Suppose
that we were to implement time-reversal by a unitary operator T acting on the Hilbert
space. Now consider the Schrödinger equation for the system:

ih̄ · ∂tψ = Hψ,
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with H the Hamiltonian of the system. Clearly T anticommutes with the time-derivative
operator ∂t. Since it is complex-linear, we find by applying T to both sides that

−ih̄ · ∂tTψ = THψ.

Now we have run into a problem as far as our physics is concerned. Suppose ψ is
an eigenstate of the Hamiltonian, i.e., Hψ = Eψ for some energy E. Then apparently
Tψ will have energy −E. Assuming that the system has arbitrarily large energies (i.e.,
H has arbitrarily large eigenvalues), it must therefore also have arbitrarily negative
energies. In other words, there would be no ground state for this system!

The way out of this problem is to let go of the complex-linearity condition. For if
we let T be an antilinear operator, meaning that T(λψ) = λ̄ · Tψ for all ψ and λ, the
problem goes away in full. However, the length of the inner product should still be
conserved (i.e., |〈ψ1, ψ2〉|must be invariant). The appropriate notion of such a map is
called an antiunitary operator.

Definition 3.1. Let V be a complex vector space with inner product 〈·, ·〉. An antiunit-
ary map from V to V is a bijective map T : V → V satisfying the following conditions.

(i) It is antilinear: T(v + λ · w) = Tv + λ̄ · Tw for all v, w ∈ V and λ ∈ C.

(ii) It satisfies 〈Tv, Tw〉 = 〈v, w〉 for all v, w ∈ V.

The inverse of an antiunitary map is quickly verified to be antiunitary as well. Also
notice that the composition of two antiunitary maps is unitary, and the composition
of a unitary with an antiunitary map is antiunitary (whatever the order). Hence the
set of all unitary and antiunitary operators on a (Hilbert) space forms a group under
composition. It is these maps that we shall take for quantum automorphisms.

Definition 3.2. Let H be a Hilbert space. A (linear) quantum automorphism is an
operator on H that is either unitary or antiunitary. The group of all linear quantum
automorphisms onH is denoted by Autqtm(H).

Remark 3.3. The reason for the term “linear” in the above definition is to contrast it
with so-called projective quantum automorphisms, which we do not discuss in this work.
(For more information, see Freed and Moore [11, Ch. 1].) As such, we shall often forget
the term “linear” and just refer to “quantum automorphisms” instead.

We have seen why we need to consider antiunitary operators as quantum automorph-
isms as well. However, it is not at all clear if we have not overlooked any other types of
maps. The fact that we have not is known as Wigner’s theorem. A full discussion would
take too long for our purposes, but let us briefly comment on this theorem. LetH be a
Hilbert space; then the transition probability of two nonzero elements ψ1, ψ2 ∈ H is
defined as

P(ψ1, ψ2) =
|〈ψ1, ψ2〉|2
‖ψ1‖2 · ‖ψ2‖2 .

An automorphism of a quantum system should preserve this quantity since it can be
measured (see Stehouwer [39, §1.1]). Roughly speaking, Wigner’s theorem states that
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any bijective map that preserves this transition probability may be ‘implemented’ as
either a unitary or antiunitary operator. A precise formulation and its proof are not
necessary for our purposes, but may be found in the exposition by Freed [10].

3.2. QUANTUM SYMMETRIES

Knowing what automorphisms of Hilbert space we consider as relevant, we can raise
the question what the relevant type of group action is. This question is of also physical
importance: often we shall consider a crystal living in Euclidean space R3, or in
other dimensions, Rd. This space comes with its own automorphism group: the
group of all transformations of Rd, consisting of translations, rotations, reflections, and
glide-reflections. The Hilbert spaceH of complex-valued wave functions on Rd (i.e.,
L2(Rd, C)) then inherits an action of this group: if R is a transformation of Rd and
ψ : Rd → C a wave function,

(R · ψ)(x) := ψ(R−1 · x) for all x ∈ Rd.

The inverse appears to make this a left-action instead of a right-action. Thus Euclidean
transformations of Rd act naturally on wave functions defined on Rd. One might think
this yields a group homomorphism into Autqtm(H), but this is not so. In general the
action is not multiplicative, but only up to a phase.

Example 3.4 (Rotation of fermions). Consider a three-dimensional system with
half-integral angular momentum j, with J2 and Jz as the corresponding angular
momentum operators. A rotation around the quantisation axis (i.e., the z-axis)
is generated by −i/h̄ · Jz, so that a rotation of an angle θ around the z-axis is
represented by the operator

Rz(θ) := exp(−θi/h̄ · Jz).

Using the familiar bra-ket notation for this example, we have a basis { |j, m〉 }m for
our Hilbert space of states. Any state |ψ〉 can be expressed in this basis via

|ψ〉 =
j

∑
m=−j
|j, m〉〈j, m|ψ〉.

Because j is half-integral, so too are all possible values of m. Therefore, acting on
this state with Rz(2π) yields

Rz(2π)|ψ〉 =
j

∑
m=−j

exp(−2πi/h̄ · Jz) · |j, m〉〈j, m|ψ〉

=
j

∑
m=−j

exp(−2πi ·m) · |j, m〉〈j, m|ψ〉
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= exp(−πi)
j

∑
m=−j
|j, m〉〈j, m|ψ〉 = −|ψ〉.

Thus Rz(π) ·Rz(π) = −Rz(0). Even though rotating π radians twice is the identity
on Euclidean space, on a quantum system of half-integral spin this is not the case.

This example shows we need a modified version of a group action to describe how
groups act on quantum systems. The approach we take was originally thought of by
Mackey [31]. If G is a group, we will impose on a map ρ : G → Autqtm(H) that

ρ(g) · ρ(h) = τ(g, h) · ρ(gh) (3.2.1)

for some map τ : G × G → U(1), where U(1) is the complex circle (i.e., all z ∈ C

of modulus 1). In Example 3.12 we will calculate the τ belonging to Example 3.4
above. The map τ we will view as an intrinsic part of the group and will be called the
(quantum) anomaly associated to the group. Nevertheless, its effects are only seen in
the representations of the group, not in the multiplication on the group itself. Before
we give a general definition, we derive some properties of this map τ.

3.2.1. Cocycles

Let G be a group, and let ρ : G → Autqtm(H) be a map satisfying Equation (3.2.1). We
must first comment upon what happens when G has elements that act antiunitarily
under ρ (e.g., when G contains time-reversal). When ρ(g) is antiunitary, we have

ρ(g) · z = z̄ · ρ(g) = z−1 · ρ(g) for all z ∈ U(1),

while ρ(g) commutes with all of U(1) when it is unitary. Define a map ϕ : G →
{±1 } by setting ϕ(g) = +1 when ρ(g) is unitary, and ϕ(g) = −1 when ρ(g) is
antiunitary. This is a homomorphism by previous comments. We can write the above
more compactly as

ρ(g) · z = zϕ(g) · ρ(g) for all z ∈ U(1).

With this notation established, let us study the anomaly τ. Let g, h, k ∈ G. Multiplication
in Autqtm(H) is associative, so ρ(g) · ρ(h) · ρ(k) is equal to

ρ(g) · (ρ(h) · ρ(k)) = ρ(g) · τ(h, k) · ρ(hk)

= τ(h, k)ϕ(g) · ρ(g) · ρ(hk)

= τ(h, k)ϕ(g) · τ(g, hk) · ρ(ghk),

but also equals

(ρ(g) · ρ(h)) · ρ(k) = τ(g, h) · ρ(gh) · ρ(k)
= τ(g, h) · τ(gh, k) · ρ(ghk).

The map ρ(ghk) is invertible, so we must conclude that

τ(h, k)ϕ(g) · τ(g, hk) = τ(g, h) · τ(gh, k). (3.2.2)
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In summary, this identity encodes the fact that multiplication from Equation (3.2.1)
must be associative. This identity is not a new one: it has shown up before in the
mathematical subject of group cohomology. Because the terminology from this field
is commonplace in the literature, we give the necessary definitions to make further
reading easier. More material on group cohomology may be found in Dummit and
Foote [7, Ch. 17].

Definition 3.5. Let G be a group. A G-module is an abelian group A together with a
group homomorphism G → Aut(A).

More concretely, a G-module A is an abelian group along with a multiplication by
elements of G, satisfying (where we write A additively)

1 · a = a, (gh) · a = g · (h · a) and g · (a + b) = g · a + g · b

for all g, h ∈ G and a, b ∈ A.

Example 3.6. Let G be a group and ϕ : G → {±1 } a homomorphism. Then the
abelian group U(1) of complex numbers of modulus one is a G-module under the
multiplication

g · z := zϕ(g) for g ∈ G and z ∈ U(1).

We denote U(1)ϕ for the group U(1) with this G-module structure.

Definition 3.7. Let G be a group, and let A a be G-module (written additively). A
2-cocycle from G to A is a map τ : G× G → A satisfying

g · τ(h, k) + τ(g, hk) = τ(g, h) + τ(gh, k)

for all g, h, k ∈ G.

Unwrapping definitions, we see that Equation (3.2.2) says that τ is a 2-cocycle from G
to the G-module U(1)ϕ. Note that we write U(1) multiplicatively rather than additively.

Another requirement on τ arises if we want ρ to map the identity element of G to the
identity of Autqtm(H). In this case, we have for all g ∈ G,

ρ(g) = ρ(1) · ρ(g) = τ(1, g) · ρ(g), meaning τ(1, g) = 1,

and τ(g, 1) = 1 follows similarly. A 2-cocycle satisfying τ(1, g) = τ(g, 1) = 1 for all
g ∈ G is called unital. In our application, this notion is equivalent to ρ(1) = Id. There
are no physical obstructions to having this be the case; in fact, it seems rather desirable.
Mathematically speaking it is harmless to choose τ to be unital.

Remark 3.8. In group cohomology, one not only has 2-cocycles, but n-cocycles for a
natural number n. If G is a group and A is a G-module, one writes Cn(G, A) for the
group of n-cocycles with values in A (with pointwise addition as operation). This forms
a cochain complex, and the cohomology at position n is called the n-th cohomology group
of G with values in A, denoted by Hn(G, A). A more mathematically pleasing version
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of the above is to use the class of τ in the group H2(G, A) instead of τ itself. We may
do this because equivalent cocycles describe twistings of groups that are physically
indistinguishable. However, doing this is not necessary for the calculations we do
in this work, so we shall not pursue this further. Our approach can be thought of as
choosing a representative for a class in H2(G, A). The assumption that τ is unital is
justified because every class in H2(G, A) has a unital representative; see, e.g., Stehouwer
[39, Lem. A.16].

3.2.2. Symmetry groups

With the proper terminology fixed, we define a quantum version of a symmetry group
and a representation thereof. This is simply a generalisation of our earlier discussion.

Definition 3.9. A quantum symmetry group is a triple (G, ϕ, τ) of a group G, a group
homomorphism ϕ : G → {±1 }, and a unital 2-cocycle τ from G to the G-module
U(1)ϕ. The cocycle τ is called the (quantum) anomaly of the quantum symmetry
group.

The meaning of the maps ϕ and τ lies in the conditions they impose on representa-
tions of G, as follows.

Definition 3.10. Let H be a Hilbert space and (G, ϕ, τ) a quantum symmetry group.
A (ϕ, τ)-twisted representation of G onH is a map ρ : G → Autqtm(H) satisfying the
following conditions.

(i) The map ρ(g) is unitary when ϕ(g) = +1, and antiunitary when ϕ(g) = −1.

(ii) For all g, h ∈ G, we have ρ(g) · ρ(h) = τ(g, h) · ρ(gh).

Quantum symmetry groups and twisted representations also have a notion of a
homomorphism. A homomorphism between two quantum symmetry groups (G, ϕ, τ)

and (G′, ϕ′, τ′) is a group homomorphism f : G → G′ such that

ϕ′( f (g)) = ϕ(g) and τ′( f (g), f (h)) = τ(g, h)

for all g, h ∈ G. A homomorphism between twisted representations is a map between
the Hilbert spaces that ‘intertwines’ the multiplication of G.

Remark 3.11. In all our definitions, G is a group without any further structure. In
the work of Freed and Moore, G is taken to be a topological group, and both ϕ and
τ are required to be continuous, as are twisted representations. This would require
Autqtm(H) to be given a topology. For our more modest purposes, this detail is not
necessary to discuss.

Example 3.12 (Rotation of fermions, continued). We continue Example 3.4 and
phrase the situation in our new terminology. For our group G we take the circle.
Since all rotations defined previously are unitary maps (because Jz is hermitian),
the morphism ϕ is trivial in this case. However, as shown before, the cocycle τ
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cannot be trivial. To find an expression for it, we first describe our desired (twisted)
representation ρ, because this determines τ uniquely. Recall the map (whereH is
our Hilbert space)

Rz : R −→ Autqtm(H) : θ 7−→ exp(−iθ/h̄ · Jz).

For convenience we will represent G as [0, 2π) with addition modulo 2π. Define
the map s : [0, 2π)→ R to be the inclusion. Then we define ρ := Rz ◦ s. Notice that

Rz(θ ± 2π) = −Rz(θ)

since exp(∓2πi/h̄ · Jz) acts as − Id on H due to the half-integral angular mo-
mentum of the system.

When θ, η ∈ [0, 2π) are such that 0 ≤ θ + η < 2π, then ρ(θ + η) = ρ(θ) · ρ(η)
since s is additive under these conditions. But when 2π ≤ θ + η < 4π, then

s(θ + η) = s(θ) + s(η)− 2π = θ + η − 2π,

so that ρ(θ + η) = Rz(θ + η − 2π) = −Rz(θ + η). So in this case we find

τ(θ, η) = ρ(θ) · ρ(η) · ρ(θ + η)−1

= −Rz(θ) · Rz(η) · Rz(θ + η)−1

= −Rz(θ + η) · Rz(θ + η)−1 = −1.

We thereby conclude that, for θ, η ∈ [0, 2π),

τ(θ, η) =

{
+1 when θ + η < 2π,

−1 when θ + η ≥ 2π.

3.2.3. Extended symmetry groups

In our applications of quantum symmetry groups, we will encounter groups that have
elements that reverse the time direction of the system. This can be encoded abstractly
by a group homomorphism θ : G → {±1 }, where θ(g) is +1 or −1 when it preserves
or flips the time direction, respectively. From this information we can derive whether
(the representation of) an element g ∈ G will commute with the Hamiltonian.

�� Proposition 3.13. Let (G, ϕ, τ) be a quantum symmetry group, letH be a Hilbert space with
a Hamiltonian H, and let ρ be a (ϕ, τ)-twisted representation of G onH. Let θ : G → {±1 }
be the homomorphism defined by θ(g) = +1 when ρ(g) preserves the time direction, and
θ(g) = −1 when it reverses it. Then for all g ∈ G,

H · ρ(g) = ϕ(g) · θ(g) · ρ(g) · H.

Proof sketch. Time translations in quantum mechanics are generated by −iH/h̄, i.e.,
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translating the system t units of time into the future is implemented by the operator

exp(−itH/h̄).

When g ∈ G, the map ρ(g) reverses the time direction if and only if θ(g) = −1, which
means that

exp(−itH/h̄) · ρ(g) = ρ(g) · exp(−θ(g) · itH/h̄).

From this it follows that

(−itH/h̄) · ρ(g) = ρ(g) · (−θ(g) · itH/h̄).

Remember that ρ(g) commutes with i when ϕ(g) = +1, and anticommutes with i
when ϕ(g) = −1. So this proves the result. �

Writing c := ϕ · θ, this homomorphism keeps track whether elements of g should com-
mute or anticommute with the Hamiltonian. A quantum symmetry group equipped
with such a homomorphism c we shall call an extended quantum symmetry group.

Definition 3.14. An extended quantum symmetry group is a quadruple (G, ϕ, τ, c)
where (G, ϕ, τ) is a quantum symmetry group, and where c : G → {±1 } is a homo-
morphism.

Remark 3.15. Since any two of ϕ, θ and c determine the third, we have lost no inform-
ation by not making θ part of this definition. Choosing c in this definition is a useful
convention, which will become more and more clear as we progress.

Like with quantum symmetry groups before, the meaning of the homomorphism
c is in the requirements it puts on representations. However, a representation of an
extended quantum symmetry group only makes sense when we have also chosen a
Hamiltonian.

Definition 3.16. Let (G, ϕ, τ, c) be an extended quantum symmetry group. An exten-
ded quantum system with extended quantum symmetry group (G, ϕ, τ, c) is a triple
(H, H, ρ) of a Hilbert space H, a self-adjoint operator H on H, and a (ϕ, τ)-twisted
representation ρ of G onH, such that

H · ρ(g) = c(g) · ρ(g) · H

for all g ∈ G. We call H the Hamiltonian of the quantum system.

Remark 3.17. Note that we do not call the map ρ in the above definition a “(ϕ, τ, c)-
twisted representation” — that terminology is reserved for a later concept (see Defini-
tion 4.19).
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3.3. ALTLAND–ZIRNBAUER CLASSES

We have seen why time-reversal has to be implemented by an antiunitary operator.
One would expect that reversing time twice is the same as not reversing it at all, but in
quantum mechanics this need not be the case. It will always be a scalar, i.e., T2 = z for
some z ∈ C×, but there are two options for z.

�� Proposition 3.18. Let H be a Hilbert space and let T be an antiunitary operator on H such
that T2 = z, where z ∈ C×. Then z is either +1 or −1.

Proof. Because T conjugates the inner product onH, the operator T2 must preserve it.
Therefore z must be of modulus one: for all v, w ∈ H,

〈v, w〉 = 〈T2v, T2w〉 = 〈zv, zw〉 = z̄z · 〈v, w〉 = |z|2 · 〈v, w〉,

which implies |z|2 = 1. The operator T commutes with itself, so

T · z = T · T2 = T2 · T = z · T,

while because T is antilinear,
T · z = z̄ · T.

The fact that T is invertible now implies z = z̄. We conclude z = ±1. �

The possibility T2 = −1 is very similar to the rotation of a fermionic system from Ex-
ample 3.4. Indeed, on a fermionic system time-reversal will square to −1. Nonetheless,
the argument above is limited only to antiunitary maps. For the square of a unitary
operator can be altered at will: if U is unitary and |w| = 1, then wU is unitary and
(wU)2 = w2 ·U2. For an antiunitary operator T this reasoning does not work, since
then (wT)2 = wTwT = ww̄ · T2 = T2.

But if this is the case, then it is not clear why we should care that a 180-degree rotation
squares to−1 in Example 3.4. If there are no further symmetries present, then the above
argument indeed shows the square is irrelevant. However, if we have a system with
both a unitary symmetry U and an antiunitary symmetry T, then multiplying U with a
phase changes the commutation relation with T. For example, if U and T commute,
then iU and T anticommute: iUT = iTU = −TiU. In other words, we cannot change
the square of U while leaving the physical system unchanged.

This distinction made in Proposition 3.18 is physically relevant. In 1962, Dyson [9]
grouped single-particle quantum systems into three classes, according to what type of
time-reversal symmetry it has. A system could either have no time-reversal symmetry,
it could have time-reversal that squares to +1, or time-reversal that squares to −1. This
classification into three classes became known as the three-fold way. For convenience,
we shall abbreviate these three cases by T2 = 0, T2 = +1 and T2 = −1, respectively.
Note that this does not mean that time-reversal squares to the zero map in the first case:
it is but an abbreviation.

Later in 1997, Altland and Zirnbauer [1] gave a similar classification that considered
more symmetries. These classes are now called the Altland–Zirnbauer classes; it is
also referred to as the ten-fold way, referring to how many classes there are. The second
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symmetry they incorporated is particle-hole symmetry (also called charge conjugation).
We denote this symmetry by C. As its name suggests, it is the reversal of a particle and
its corresponding hole (i.e., the absence of a particle). It turns out to be implemented
by an antiunitary map that anticommutes with the Hamiltonian. One can see this
because a hole has the opposite energy of a particle, so C must anticommute with the
Hamiltonian. If one then requires C to preserve the Schrödinger equation, one has no
choice but to make it antiunitary. Proposition 3.18 then implies it squares to either +1
or −1 when it is present. We shall use the abbreviations C2 = 0 and C2 = ±1 in the
same way as we do with time-reversal.

The final symmetry that Altland and Zirnbauer considered is chiral symmetry (also
called sublattice symmetry): the product of time-reversal and particle-hole reversal,
which we denote by S. Being the product of two antiunitary maps, it is a unitary map.
When a system has time-reversal and particle-hole symmetry, then the square of chiral
symmetry is fixed. It is also possible that a system has chiral symmetry while having
neither time-reversal nor particle-hole symmetry. In that case we can take S2 = +1 by
the previous discussion. The square of S is thus always uniquely determined. Due of
this lack of freedom it is customary to use the abbreviations S = 0 and S = 1 to indicate
the absence and presence of chiral symmetry, respectively.

In total this gives ten classes: there are three options for T, three for C, and one
additional case where only S is present. Each of the classes has a label called its Cartan
label. This has to do with a different classification done by the mathematician Élie
Cartan, though the connection is not obvious. (See the comments made by Ryu et al.
[36] for more information.) Table 3.1 gives all the Altland–Zirnbauer classes, using our
abbreviations to denote the symmetries in each class. As odd it may seem, the order of
the classes in that table is chosen deliberately. It turns out this ordering is particularly
useful for the calculations we intend to do in this work (more specifically, for Corol-
lary 6.16). Take particular note that classes A and AIII are positioned separately: they
are the only ones that do not have an antiunitary symmetry.

A AIII AI BDI D DIII AII CII C CI

T2 0 0 +1 +1 0 −1 −1 −1 0 +1
C2 0 0 0 +1 +1 +1 0 −1 −1 −1
S 0 1 0 1 0 1 0 1 0 1

Table 3.1: The ten Altland–Zirnbauer classes. The top row gives the Cartan label of
the classes. The three rows below indicate whether time-reversal symmetry
T, particle-hole symmetry C, and chiral symmetry S is present in a given
class, respectively. A zero indicates the absence of a symmetry. If present,
time-reversal and particle-hole reversal have two options: their square is
either +1 or −1. For chiral symmetry there is no such distinction.
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4INSULATORS

Topological insulators are special states of insulators, so we cannot continue unless we
have a proper understanding of insulators. The most important aspect of an insulator
is its symmetries. Insulators are in particular crystals, giving them crystal symmetry,
but they can also have time-reversing or particle-hole reversing symmetries. The most
elegant way to unify these concepts is to realise that an insulator has a vector bundle
that summarises all of its physics. We call this bundle its Bloch bundle. The symmetries
of the insulator then act on this vector bundle in a similar way to the equivariant vector
bundles from Chapter 2. As we will see in Chapter 6, recognising this vector bundle in
an insulator is the crucial first step towards describing topological phases.

To ensure that this vector bundle does indeed describe all of the physics of an
insulator, we are forced to work non-relativistically, and to use a non-interacting model
of electrons. This is assumed throughout this chapter, and even this whole work. Most
material in this chapter is drawn from Stehouwer [39, Ch. 2]. Before we define crystals,
in Section 4.1 we fix some terminology to allow for easier discussion. We can then in
Section 4.2 define crystals mathematically and re-introduce basic terminology from
condensed matter in this context. The Bloch bundle is the subject of Section 4.3, which
then allows us to discuss time-reversal and particle-hole reversal in Sections 4.4 and
4.5. The formalisation of these ideas given in Section 4.6 concludes the chapter.

4.1. AFFINE SPACES

Even though it is sometimes modelled that way, Euclidean space does not form a vector
space. The trouble lies in that Euclidean space has no preferred origin. But once an
origin is chosen, the vector space structure is recovered by making this origin the neutral
element of the vector space. The reason why this recovers a vector space structure
is because Euclidean space still has a notion of translations. More mathematically
speaking, it has an action of a (real) vector space. The formalisation of this idea is an
affine space.

Definition 4.1. An affine space is a set E together with a real vector space V that acts
transitively and freely on E. In other words, for every x, y ∈ E, there is a unique v ∈ V
such that x + v = y, with x + v denoting the result of v acting on x. The vector space V
is called the affine group of E.

If E is an affine space with affine group V, then any choice e0 ∈ E of origin makes it
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a vector space isomorphic to V. For then we can define a map

V −→ E : v 7−→ e0 + v,

and since V acts transitively and faithfully on E, this is a bijection. Therefore it gives E
a unique vector space structure, which in turn makes the map a linear isomorphism.

Our only interest in affine spaces is to describe Euclidean space. Thus any examples
of affine spaces in our work may safely be replaced with Euclidean space (whence the
label E for an affine space). But Euclidean space is more than just an affine space: it
also has a distance function (i.e., metric) on it. The functions that preserve this metric
(i.e., isometries) form the Euclidean group.

Definition 4.2. The d-dimensional Euclidean space Ed is, as a set, equal to Rd. It is
an affine space with affine group Rd. Its group of isometries (where we give Ed has the
usual Euclidean distance function) is called the d-dimensional Euclidean group and
is denoted by E(d).

The group of translations Rd is a normal subgroup of E(d). Its quotient is (isomorphic
to) O(d), the group of d-dimensional orthogonal transformations. More visually, divid-
ing out by translations means fixing an origin in space, and the group of all isometries
that fix an origin is O(d). In fact, E(d) is a semidirect product O(d)n Rd, but not
canonically: an isomorphism E(d) ∼= O(d)n Rd is the same as choosing an origin for
Euclidean space Ed.

4.2. CRYSTALS

Informally, a crystal is a collection of points that is positioned regularly. This property
can be described more formally in terms of its symmetry group. More specifically, it
has to do with its translational symmetry: it means that its group of translations is a
lattice.

Definition 4.3. Let V be a d-dimensional vector space. A lattice Π in V is a subgroup of
V that is isomorphic to Zm for some m ≥ 1, such that its linear span is an m-dimensional
subspace of V. The lattice Π is called full when m = d.

Definition 4.4. A d-dimensional crystal is a subset C of Ed, such that the group of
translations of C,

Π(C) := { v ∈ Rd | C + v = C },

is a full lattice. If C ⊆ Ed is a crystal, its space group is

S(C) := { R ∈ E(d) | R(C) = C },

and its point group P(C) is the quotient S(C)/Π(C).

Two facts about the point group are of paramount importance for us. The first is that
it may be naturally embedded in O(d), as follows. The map S(C) ↪→ E(d) � O(d) has
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Π(C) as its kernel. It therefore induces an injection P(C) ↪→ O(d); we shall interpret it
as an inclusion. The other fact about the point group is that it is always finite.

�� Proposition 4.5. If C ⊆ Ed is a crystal, then its point group P is a finite group.

Proof. First we shall prove that the point group naturally acts on the crystal lattice Π
by group automorphisms. For P can be embedded in O(d) as we argued above. It
therefore acts on Rd. If R ∈ P and v ∈ Π, then Rv lies in Π also:

C + Rv = R(C) + Rv = R(C + v) = R(C) = C,

because both R and v leave the crystal invariant. Hence the action of P on Rd restricts
to an action on Π. One immediately sees that v 7→ Rv is a group automorphism of Π
for any R ∈ P. Lastly, the action is also faithful: only the identity element acts trivially,
because Π spans all of Rd. Taken together, these facts imply we have an injective
homomorphism P → Aut(Π), i.e., an embedding of P into Aut(Π). Because Π is
isomorphic to Zd, its automorphism group is isomorphic to Aut(Zd). But Aut(Zd) is a
finite group; thus P is finite also. �

Instead of using crystals directly, we will only use the space group of the crystal.
However, this group can be hard to work with because it is not finite. Sometimes we
can quotient out the lattice, in which case we can use the point group instead, but this
does not always happen. Two types of crystals will distinguish themselves: those for
which P is a subgroup of S, and those for which it is not. More precisely, the distinction
is whether S is isomorphic to a semidirect product PnΠ or not. If it is, we shall call the
crystal symmorphic, and nonsymmorphic otherwise. In this context it is customary
to denote elements in P n Π as { R | v } instead of (R, v) for R ∈ P and v ∈ Π. This is
called Seitz notation.1 An isomorphism S ∼= P n Π then gives rise to an embedding of
P into S, via

R 7−→ { R | 0 }.
This should be thought of as choosing an origin on the crystal and interpreting elements
of P as rotations and reflections around this origin. It allows one to restrict to the
point group instead of having to take a quotient by the lattice. In particular, any
S-action restricts to a P-action through the above embedding, even when the lattice
acts nontrivially. It should be noted however that there is no preferred isomorphism
S ∼= P n Π: choosing one is the same as choosing an origin.

In this thesis we shall only treat symmorphic crystals. Stehouwer [39] gives a thor-
ough treatment that is close to our presentation, but which includes nonsymmorphic
crystals. Occasionally we will point out the places where nonsymmorphic crystals
cause subtleties.

4.2.1. The Brillouin zone

In a crystal it is very natural to take the Hamiltonian to be invariant under the lattice of
the crystal. Examples like

H = − h̄2

2m
∇2 + V,

1Seitz notation also exists for nonsymmorphic crystals, but it is slightly more intricate in that case.
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where V is a Π-periodic potential, often occur. Due to this periodicity, the wave
functions of particles moving through the lattice depend periodically on the momentum
of the particle. This allows us to think of a particle as not having a momentum, but
a quasi-momentum: a momentum up to a reciprocal lattice vector. The set of all these
momenta is called the (first) Brillouin zone. Mathematically the Brillouin zone is easier
to work with because it is compact, which momentum-space (isomorphic to Rd) is not.
All these notions can be defined from the lattice alone.

Definition 4.6. Let V be a real vector space and let Π ⊆ V be a full lattice in V. The
reciprocal space of V is the dual space V∗ = HomR(V, R). The reciprocal lattice of Π
is the group

Π∗ := Hom(Π, 2πZ)

of group homomorphisms from Π to 2πZ.

The reciprocal space V∗ is to be thought of as the space of all momenta, often called
k-space. The dual coupling of V and V∗ we shall denote as 〈k, v〉 := k(v) for k ∈ V∗ and
v ∈ V, in order to think of this as an inner product between a vector v and a reciprocal
vector k. This is also why we require dual lattice vectors to map the lattice to 2πZ: in
condensed matter, if k is the dual lattice vector to a lattice vector v, one requires the
inner product 〈k, v〉 to be 2π.

Notice that a functional k : V → R is uniquely determined by its valued on a full
lattice, since the span of a full lattice is the entire vector space. Conversely, if Π ⊆ V is
a full lattice, any group homomorphism Π → 2πZ can be extended to a linear map
V → R. This gives an embedding of the reciprocal lattice in reciprocal space. We may
therefore also regard it as a subset of reciprocal space.

Definition 4.7. Let V be a real vector space and let Π ⊆ V be a full lattice in V. The
Brillouin zone of Π is the quotient group

XΠ := V∗/Π∗.

It becomes a topological space under the quotient topology of the projection V∗ →
V∗/Π∗ (where V∗ has the topology coming from its finite-dimensional vector space
structure).

�� Proposition 4.8. Let V be a d-dimensional real vector space, and let Π be a full lattice in V.
Then the Brillouin zone XΠ is, as a topological space, homeomorphic to the d-torus Td = (S1)d.

Proof. We have a (non-canonical) isomorphism V∗ ∼= Rd under which Π gets mapped
to Zd. Moreover, this map is a homeomorphism. The quotient group Rd/Zd ∼= (R/Z)d

is homeomorphic to the d-torus because the quotient group R/Z is homeomorphic to
the circle. �

The above definitions do not require the lattice to come from a crystal. When it does,
it inherits an action of P, as follows. In this case we have V = Rd, making k-space equal
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to V∗ = (Rd)∗. The point group P then acts naturally on (Rd)∗ via, for R ∈ P ⊆ O(d)
and k ∈ (Rd)∗,

(R, k) 7−→ k ◦ R−1.

The inverse appears to make this a left-action instead of a right-action. This action
preserves the dual lattice because R(Π) = Π for all R ∈ P, as we showed in the proof
of Proposition 4.5. Hence it induces an action on the quotient V∗/Π∗. In the language
of Section 2.1.1, this makes the Brillouin zone a P-equivariant space.

Although this action depends on the crystal, one action on the Brillouin zone will
recur often. Consider the involution on V∗ = (Rd)∗ given by k 7→ −k, i.e., the reversal
of the momentum direction. It is clear that this preserves the dual lattice Π∗, so it
induces an involution on the Brillouin zone too. This involution we shall denote by
σ. Its importance lies in the multitude of examples of symmetries that reverse the
direction of momenta.

4.3. THE BLOCH BUNDLE

The basic solutions to the Schrödinger equation with zero potential (i.e., free particles)
are the plane waves, exp(i〈k, x〉). Although these functions themselves are not L2-
functions, the L2-solutions to the Schrödinger equation have a Fourier decomposition
into these waves:

ψ(x) =
∫

ψ̂(k) · exp(i〈k, x〉)dk.

Wave functions on crystals behave analogously, but with a decomposition into Bloch
waves. This is known as Bloch’s theorem. It is of fundamental importance for us because
it reveals that a certain vector bundle is underlying the Hilbert space.

Definition 4.9. Let E be an affine space and let Π be a full lattice of translations of E.
Let k ∈ XΠ. A Bloch wave with momentum k on E is a function ψ : E→ C such that

ψ(x + v) = exp(i〈k, v〉) · ψ(x) for all x ∈ E and v ∈ Π.

The phase appearing in this definition is well-defined because dual lattice vectors
map Π to 2πZ.
Remark 4.10. A more common definition of a Bloch wave is a function ψ that can be
written as ψ(x) = exp(i〈k, x〉) · u(x), with u a Π-periodic function. Although it is
equivalent to ours, inherent in this alternate definition is the choice of an origin for the
affine space E.

Through a process of symmetrisation, any function can be turned into a Bloch wave
of a certain momentum.

Definition 4.11. Let Π be a full lattice of translations of Ed. Let ψ : Ed → C be an
L2-function on X. The Bloch sum of ψ is the function ψ̂ : XΠ ×Ed → C defined by

ψ̂(k, x) := ∑
v∈Π

exp(−i〈k, v〉) · ψ(x + v).

We write ψ̂k with k ∈ XΠ for the function Ed → C : x 7→ ψ̂(k, x).
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Remark 4.12. The above sum converges because ψ is an L2-function.

Notice that ψ̂k is a Bloch wave of momentum k. Define Ek (with k ∈ XΠ) to be the
Hilbert space of all Bloch waves over Ed of momentum k. Then for every k ∈ XΠ, the
Bloch sum yields a map

L2(Ed, C) −→ Ek : ψ 7−→ ψ̂k.

We define E :=
⊔

k∈XΠ
Ek, the set of all Bloch waves. This can be thought of as a sort of

bundle E over XΠ: it has a projection E → XΠ assigning to each wave its momentum.
If each Ek were finite dimensional, this would yield a vector bundle over XΠ, but this is
not the case. The sets Ek do form a Hilbert space, so instead it forms a Hilbert bundle.
A Hilbert bundle is a modification of a vector bundle, where the fibres are endowed
with the structure of a Hilbert space instead of just a vector space. In particular, these
Hilbert spaces are not assumed to be finite-dimensional. Local triviality is still assumed,
in an analogous fashion to vector bundles (cf. Definition 1.4).

Definition 4.13. Let Π be a full lattice of translations of Ed. With k ∈ XΠ, write Ek for
the Hilbert space of Bloch waves over Ed of momentum k. The Bloch bundle E is the
complex Hilbert bundle over XΠ with fibres Ek.

Freed and Moore [11, App. D.2] prove that the Bloch bundle has a natural topology
that makes it a Hilbert bundle, i.e., under which it is locally trivial.

The Bloch sum now gives a relationship between the Hilbert space L2(Ed, C) and
the Bloch bundle E . For if ψ ∈ L2(Ed, C), then ψ̂k is a Bloch wave of momentum k. In
other words, the assignment ψ 7→ ψ̂ in the Bloch sum maps wave functions to sections
of the Bloch bundle E : at every point k ∈ XΠ, we get a Bloch wave ψ̂k ∈ Ek. Such a
section will itself be an L2-map from XΠ to E ; the set of such sections of the bundle E
we denote by ΓL2(E).

�� Theorem 4.14 (Bloch). Let Π be a full lattice of translations in Ed. The Bloch sum is an
isomorphism of Hilbert spaces

L2(Ed, C) ∼−→ ΓL2(E) : ψ 7−→ ψ̂,

with inverse given by

ϕ 7−→
(

x 7−→
∫

XΠ

ϕk(x)dk
)

.

Proof. See Freed and Moore [11, Prop. D.17]. �

In general, the Hilbert space of a system may not be all of L2(Ed, C), but a (closed)
subspace of it. A physically relevant subspace corresponds to a sub-Hilbert bundle of E
under the isomorphism of Bloch sums. This subbundle we shall call the Bloch bundle
of the system; by abuse of notation, we shall also denote it by E . However, because we
shall rarely use the ‘total’ Bloch bundle and almost always use the Bloch bundle of the
system, this is unlikely to cause confusion.
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4.3.1. The equivariant Bloch bundle

Previously, we saw how the point group of a crystal naturally acts on the Brillouin
zone, making it a P-equivariant space. This idea also holds true for the Bloch bundle,
but the details are more intricate. Difficulties arise in nonsymmorphic crystals, i.e.,
crystals for which S is not a semidirect product P n Π. As we stated before, we only
treat symmorphic crystals, so we may fix an isomorphism S ∼= P n Π for this section.
Recall that we write elements of P n Π as { R | v } with v ∈ Π and R ∈ P. The product
is given by

{ R | v } · { R′ | v′ } = { RR′ | v + Rv′ }.

Recall that this means we have an embedding of P into S via R 7→ { R | 0 }.
The Hilbert space L2(Ed, C) naturally has an S-action associated with it, namely

precomposition: if ψ ∈ L2(Ed, C) and s ∈ S, define s · ψ by

(s · ψ)(x) := ψ(s−1 · x),

where the inverse appears to make this a left-action instead of a right-action. Written
out under the isomorphism S ∼= P n Π, we have

({ R | v } · ψ)(x) = ψ({ R−1 | −R−1v } · x) = ψ(R−1x− R−1v).

By imposing the isomorphism in Bloch’s theorem to be an equivariant isomorphism (i.e.,
by requiring it to commute with the group action), we get an action of S on Γ(E) as
well. Explicitly, the result of { R | v } acting on ϕ ∈ Γ(E) is

({ R | v } · ϕ)k0(x) = ∑
w∈Π

exp(−i〈k0, w〉)
∫

XΠ

ϕk(R−1(x + w)− R−1v)dk

= ∑
w∈Π

exp(−i〈k0, w〉)
∫

XΠ

ϕk(R−1x + R−1w− R−1v)dk

= ∑
u∈Π

exp(−i〈k0, Ru〉)
∫

XΠ

ϕk(R−1x + u− R−1v)dk

= ∑
u∈Π

exp(−i〈k0 ◦ R, u〉)
∫

XΠ

ϕk(R−1x + u− R−1v)dk

= ϕk0◦R(R−1x− R−1v).

Via the embedding R 7→ { R | 0 }, the action restricts to the P-action given by

(R · ϕ)k(x) = ϕk◦R(R−1x).

We can also interpret this action as one on the bundle E itself, instead of on the sections
Γ(E). Recall that the action of P on the Brillouin zone is given by k 7→ k ◦ R−1 whenever
R ∈ P. The P-action on Γ(E) can be rewritten as

(R · ϕ)k◦R−1 = ϕk ◦ R−1.

Notice that by precomposing with R−1, the wave ϕk of momentum k turns into a wave
of momentum k ◦ R−1. Thus, if we let P act on E by precomposition, this turns the
Hilbert bundle E into a P-equivariant Hilbert bundle. By this we mean that
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(i) the projection E → XΠ is P-equivariant (i.e., commutes with the P-action);

(ii) the restriction Ek → Ek◦R−1 is a linear isometry for all R ∈ P.

One quickly recognises this as the proper generalisation of an equivariant vector bundle
— cf. Definition 2.1.

Remark 4.15. When S is not a semidirect product P n Π, the trouble lies in that P is no
longer a subgroup of S. One may still regard P as a subset of S, but there will always be
elements in P that multiply to a nontrivial translation from Π. Hence the S-action does
not restrict nicely to a P-action. Instead the bundle gets a P-action that is twisted by a
2-cocycle, in a way similar to group actions being twisted by a quantum anomaly (see
Definitions 3.9 and 3.10). This cocycle however has values that depend on the point
k ∈ XΠ. For a motivation and precise treatment, see Stehouwer [39, §2.4, Ch. 3].

4.4. TIME-REVERSAL

So far we have only treated the spatial symmetries of crystals. When we consider a
crystal as a subset of spacetime, it becomes apparent that a crystal can have additional
symmetries. We do not consider relativistic effects, so we will model2 spacetime by
Ed ×E1. Whereas a crystal in space consists of points, a crystal in spacetime consists of
worldlines. Taking a slice of fixed time yields a crystal in the ordinary sense. The set of
all spacetime symmetries of a crystal C, denoted by Ŝ(C), is called the magnetic space
group.

A crystal should not change overtime, so all time-slices should be required to have
the same space group. We impose this by requiring that a spacetime crystal should be
invariant under a line of time translations. This line of time translations need not be
the ‘usual’ one, i.e., time translations of the form (0, . . . , 0, ∆t). Formally, a line of time
translations is the image of an injective group homomorphism

R −→ Rd ×R : t 7−→ ( f1(t), . . . , fd(t), t)

where f1, . . . , fd are some homomorphisms. Importantly, every desired time-shift ∆t
can be accomplished, though it may require shifting in the spatial direction as well.
Write U for this line of time-translations. Just as the lattice is a normal subgroup of the
space group, so too U is a normal subgroup of Ŝ. The quotient Ŝ/U corresponds to
fixing a time-slice of the crystal. But it is not always equal to S, because Ŝ may contain
time-reversing symmetries. If we quotient Ŝ/U out by the lattice Π of the crystal, we
obtain a group called the magnetic point group of the crystal, which is labelled P̂.
Like the point group P, it is always a finite group. Its structure is turns out to be very
simple: it is (isomorphic to) P⊕Z2 when the crystal has time-reversal symmetry, and
otherwise it is simply P. Essentially this is because we do not consider any relativistic
effects; see Freed and Moore [11, §2.4] for the details.

2We do not use Ed+1 here because the symmetries of spacetime are not allowed to mix space and time —
after all, we do not work relativistically.
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It is usually easier to forget the construction of the magnetic point group and simply
use that it is either P or P⊕Z2. That way one does not have to think about embedding
the crystal in spacetime, but has only to decide whether time-reversal symmetry should
be present. This is the route we will take.

Time-reversal always acts in the same way on the Brillouin zone. For it flips the
direction of momenta, so on k-space it is given by k 7→ −k. We previously discussed
how this induces an involution on the Brillouin zone which we denoted by σ. Hence
time-reversal acts via the involution σ on the Brillouin zone. On the Bloch bundle
however its action is not uniquely determined: for instance, it might square to +1 or
−1 on the fibres (see the discussion in Section 3.3).

4.5. PARTICLE-HOLE REVERSAL

The last crystal symmetry that we need to describe is hiding in the Hilbert space of an
insulating crystal. Associated to each Bloch wave is an energy. Plotting the energies
of all of the possible Bloch waves as a function of the momentum on the Brillouin
zone gives the familiar picture of a band structure. Recall that a band gap is a range (i.e.,
interval) of energy values in which there are no bands. An insulator has an energy level
called the Fermi level and a band gap around it, such that the states below the Fermi
level are filled, and those above it are empty. The filled bands are called valence bands,
and the empty ones are called conduction bands. If E the Bloch bundle for an insulator,
this gives a direct sum decomposition of Hilbert bundles

E = E− ⊕ E+,

where E− is the subbundle consisting of the valence bands, and E+ of the conduction
bands. The band gap around the Fermi level is crucial here: this energy separation
between the valence and conduction bands ensures that E− and E+ form subbundles.
The bundle E− will always be assumed to have finite rank, or in other words, that it
forms an actual vector bundle. This is justified by the physical requirement that there
must be a ground state, meaning there can only be finitely many valence bands.

It is possible that an insulator is symmetric under the reversal of particles and holes.
We briefly comment upon some motivation, for insulators that possess particle-hole
symmetry are somewhat odd. The relativistic free particle described by the Dirac
equation has this symmetry. Indeed, the Dirac equation is famed for having positive
and negative energy solutions (see, e.g., Thomson [41, Ch. 4]). To remedy this, Dirac
invented the Dirac sea: the filling up of all negative energy states. The creation of
a particle is then the same as a particle moving from a negative-energy state to a
positive-energy state. The resulting situation has particle-hole symmetry. We work
non-relativistically, which we may view as a first-order approximation to the relativistic
case. If our states are sufficiently close to the Fermi level, then this Fermi level behaves
similarly to the zero-energy level of the Dirac sea. In principle it is possible, therefore,
that a more complicated system should inherit this symmetry from the free situation.
In fact, all symmetries of Altland–Zirnbauer classes have such a motivation: the free
particle situation has these symmetries.
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Henceforth we will denote particle-hole reversal by C, as agreed upon in Section 3.3.
Recall also from Section 3.3 that this is an antiunitary operator that anticommutes with
the Hamiltonian. We can now see an additional requirement on C: when acting on the
Bloch bundle, it must reverse the valence and conduction bands in the sense that

C(E−) ⊆ E+ and C(E+) ⊆ E−.

By contrast, any map that does not reverse particles and holes must preserve this
decomposition: if R preserves particles and holes, we instead have

R(E−) ⊆ E− and R(E+) ⊆ E+.

Since a symmetry either does or does not reverse particles and holes (mixing them is
impossible), the decomposition E = E− ⊕ E+ is an intrinsic property of the bundle E .
We shall say a symmetry reverses the decomposition E = E− ⊕ E+ if the first equation
above holds, and that it preserves the decomposition if the second one holds.

Remark 4.16. Since E− always has finite rank by assumption, if there is a particle-hole
reversing symmetry present, then E+ has finite rank as well. In that case the total Bloch
bundle E is itself of finite rank, and hence forms a vector bundle.

Particle-hole reversal also flips the direction of momenta, since holes have opposite
momentum compared to particles. Hence, similarly to time-reversal, it also acts as σ

on the Brillouin zone. But, also like time-reversal, its action on the Bloch bundle is not
uniquely determined.

4.6. FORMALISATION

Now that we have studied insulators, we are ready to give a mathematical formalisation.
This formalisation should describe not just the insulator, but also the symmetries that
the insulator has. Because we want to implement time-reversal and particle-hole
symmetries, the natural candidate to describe these symmetries would be an extended
quantum symmetry group (G, ϕ, τ, c) (see Definition 3.14). An insulator would then
be described by an extended quantum system (see Definition 3.16). However, these
concepts are too general. We are only interested in symmetry groups that describe
crystal symmetry, and quantum systems which describe insulators. Chapter 3 on the
other hand is only concerned with general quantum-mechanical symmetries. We shall
therefore need to modify these definitions to describe the appropriate physical concepts.
There are some rather technical requirements that we shall need later, but these we do
not go into; see Freed and Moore [11, Def. 10.7, Hyp. 10.9] for more information.

4.6.1. Crystal symmetries

We shall write G for the group of all symmetries of a crystal. It should consist of
the space group S of the crystal it describes, along with a possible combination of
time-reversal and particle-hole reversal. But, importantly, it should not contain any
symmetries besides these. We may phrase this requirement as follows. Recall from
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Section 3.2.3 that θ := ϕ · c tells if a symmetry reverses time or preserves it. Space
group symmetries do not flip time or particles and holes, so θ and c restrict trivially to
S. We impose that if a symmetry g ∈ G satisfies θ(g) = c(g) = +1, that it then must lie
in S. Put mathematically, we require that the kernel of

θ × c : G −→ {±1 } × {±1 }

is equal to S. The quotient G/S is then a finite subgroup of {±1 }× {±1 } that depends
on what Altland–Zirnbauer class (see Section 3.3) the group belongs to.

But these requirements are still not enough. For just like the space group before, we
would like to be able to work with the quotient G/Π instead of G (where Π ⊆ S is
the lattice). Thus Π should be a normal subgroup of all of G. Note that because S/Π
and G/S are finite, the third isomorphism theorem automatically implies that G/Π is
finite also. Both θ and c automatically descend to G/Π because they are trivial on S
(and hence on Π too), but the anomaly τ need not. We therefore require that it does,
meaning that τ comes from an anomaly τ′ on G/Π:

τ(g, h) = τ′(π(g), π(h)) for all g, h ∈ G,

where π : G → G/Π is the projection. To ease discussion, when a symmetry group is
of this form, we shall say it is of crystal type.

Definition 4.17. Let C be a crystal and let S be the space group of this crystal. An
extended quantum symmetry group (G, ϕ, τ, c) is said to be of crystal type S if the
following conditions hold.

(i) The kernel of θ × c : G → {±1 } × {±1 } is the space group S, where θ := ϕ · c.

(ii) The lattice Π ⊆ S is a normal subgroup of G.

(iii) The anomaly τ comes from an anomaly τ′ on G/Π in the sense that

τ(g, h) = τ′(π(g), π(h)) for all g, h ∈ G,

where π : G → G/Π is the projection.

A group (G, ϕ, τ, c) is said to be of crystal type when it has the crystal type of a crystal.

Remark 4.18. Freed and Moore use a double prime to denote a quotient by the lattice:
G′′ = G/Π. Restricting to the kernel of θ × c is denoted by a zero subscript: G0 = S. In
this notation, the point group P is G′′0 .

Notice that all relevant information of the crystal can be recovered from its symmetry
group. Most importantly, its Brillouin zone XΠ is defined only with reference to its
lattice, which is contained in G. In this manner we simultaneously treat all crystals
with space group S by abstracting to a symmetry group of crystal type S.

4.6.2. Band insulators

We writeH for the Hilbert space of an insulator. As explained in Section 4.3, the space
H should be isomorphic to the sections of the Bloch bundle E . The Bloch bundle has a
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decomposition E = E− ⊕ E+ into valence and conduction bands, where E− has finite
rank. Notice that the decomposition of the Bloch bundle induces a decomposition
Γ(E) = Γ(E−)⊕ Γ(E+). The isomorphism H ∼= Γ(E) then yields a decomposition of
the Hilbert space, H = H− ⊕H+. Whether a symmetry reverses or preserves this
decomposition is recorded by the homomorphism c. A quantum system of this form is
called a band insulator by Freed and Moore [11, Def. 10.7].

Definition 4.19. Let (G, ϕ, τ, c) be an extended quantum symmetry group of crystal
type. A band insulator is an extended quantum system (H, H, ρ) of this symmetry
type along with a decompositionH = H− ⊕H+, satisfying the following conditions.

(i) The Bloch sum gives an equivariant isomorphism betweenH and the sections of
an equivariant Hilbert bundle E over XΠ.

(ii) Under the isomorphism H ∼= Γ(E), the decomposition of H corresponds to a
decomposition E = E− ⊕ E+ of Hilbert bundles, where E− has finite rank.

(iii) For all g ∈ G, the map ρ(g) preserves the decomposition onH when c(g) = +1,
and reverses it when c(g) = −1.

A (ϕ, τ)-twisted representation ρ satisfying Condition (iii) is called a (ϕ, τ, c)-twisted
representation of G on the decomposed Hilbert spaceH = H− ⊕H+.

As we pointed out in Remark 4.16, a system with particle-hole symmetry must
have a finite-dimensional bundle of conduction bands. To ease the discussion, Freed
and Moore call a band insulator of type F if the bundle of conduction bands is finite-
dimensional, and of type I when it is infinite-dimensional. Thus any band insu-
lator with a particle-hole reversing symmetry is of type F. Conversely, if an extended
quantum symmetry group describes the symmetries of a type I insulator, then its
homomorphism c must be the trivial map.

There is some ambiguity in the above definition. Namely, we have not specified
precisely how the Bloch bundle E forms an equivariant Hilbert bundle. Of course,
we have seen how it forms an S-equivariant bundle, and even a P-equivariant one
when the crystal is symmorphic. But we have not commented on how to incorporate
time-reversal or particle-hole reversal. An equivariant vector bundle is not the right
concept, for there the group action is required to be complex-linear, whereas these
symmetries are antilinear. Including these symmetries leads to a new type of vector
bundle, and these bundles in turn make up a new type of K-theory: twisted K-theory.
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5TWISTED K-THEORIES

In Chapter 2 we met the G-equivariant K-group KG, which classifies vector bundles
with a group action. If we modify this group action to be the action of a quantum
symmetry group (G, ϕ, τ), we get the twisted G-equivariant K-group, ϕKτ

G. Bundles in this
group are the natural generalisation of the twisted representations from Definition 3.10.
Physically speaking, the valence bands of an insulator naturally form a vector bundle
of this kind. We can also generalise the K-group to an extended quantum symmetry
group (G, ϕ, τ, c), yielding the extended twisted G-equivariant K-group, ϕKτ,c

G . The Bloch
bundle E = E− ⊕ E+ is naturally a bundle of this kind. These theories are treated
in Sections 5.1 and 5.3, respectively. However, some subtleties in extended twisted
K-theory require further algebraic preliminaries — these are treated in Section 5.2.

As our ultimate aim will be to compute some of these groups, we require some more
basic tools. It turns out that the twisted K-theories of a point may be computed in an
elegant algebraic way that generalises the representation ring defined in Example 1.3.
This is described in Section 5.4.

Although these theories were originally defined by Freed and Moore [11, §7.4], their
formulation is quite different from the way we have formulated K-theory thus far.
Stehouwer [39, Ch. 3] gives a presentation that is much closer to ours. Our definitions
in Sections 5.1 and 5.3 mostly agree with his, but have been simplified so as to only
treat symmorphic crystals. This is because the theory to calculate the K-groups of
nonsymmorphic crystals is not as far developed as the one for symmorphic crystals.
When we deviate from either Freed and Moore or from Stehouwer, this is indicated.

5.1. TWISTED K-THEORY

In this section we treat quantum symmetry groups (G, ϕ, τ) with G finite. We shall
henceforth phrase this condition by saying that (G, ϕ, τ) is finite. Like with all K-
theories before, to define twisted K-theory we need to specify the category of spaces
that it is defined on. But ϕ and τ have no effect on the action of G on the base space,
so we can take the category of G-equivariant compact Hausdorff spaces described in
Section 2.1.1. All of the modifications happen in the vector bundles.

Definition 5.1. Let (G, ϕ, τ) be a finite quantum symmetry group, and let X be a G-
equivariant space. A (ϕ, τ)-twisted G-equivariant vector bundle over X is a complex
vector bundle E over X, along with a collection of maps ρg : E→ E for g ∈ G, satisfying
the following conditions.
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(i) The map ρ1 is the identity map on E.

(ii) For all g ∈ G, we have π(ρg(x)) = g · π(x) for all x ∈ E.

(iii) For all g ∈ G, the map ρg is fibre-wise linear when ϕ(g) = +1, and fibre-wise
antilinear when ϕ(g) = −1.

(iv) For all g, h ∈ G, we have ρg ◦ ρh = τ(g, h) · ρgh.

Often we shall write ρg as multiplication by g when there is no confusion possible.
Notice that the maps ρg do not turn E into a G-equivariant space, because ρgρh 6= ρgh
in general. We may occasionally refer to this as a twisted G-action. When τ is trivial this
is a G-action in the ordinary sense.

The motivating example for this definition is the vector bundle of valence bands
from the previous chapter. We saw that it forms a P-equivariant bundle, but this did
not include time-reversal, or an anomaly τ that might be present. The above definition
is the natural notion that also includes possible time-reversal and an anomaly τ.

Recall from equivariant K-theory that, when a point x ∈ X is fixed by the G-action,
its fibre has a G-representation on it. Similarly, when x ∈ X is fixed by G, then the
fibre over x in a twisted bundle will have a (ϕ, τ)-twisted representation of G on it (see
Definition 3.10). Or, more generally, any point x ∈ X has a twisted representation of
the stabiliser Gx on it, restricting ϕ and τ to Gx ⊆ G.

Remark 5.2. The requirement that τ is a unital 2-cocycle is crucial for this definition.
The cocycle identity is required to make this definition compatible with associativity,
and the unital property is required because we impose ρ1 = IdE.

When E and F are two twisted equivariant vector bundles over X, a homomorphism
from E to F is a vector bundle homomorphism that intertwines the twisted action
of G. We define ϕVectτ

G(X) to be the set of isomorphism classes of (ϕ, τ)-twisted G-
equivariant vector bundles over X. The direct sum and pullback can be defined for
twisted vector bundles too. In particular, the direct sum makes ϕVectτ

G(X) a commutat-
ive semigroup.

Definition 5.3. Let (G, ϕ, τ) be a finite quantum symmetry group, and let X be a G-
equivariant compact Hausdorff space. The (ϕ, τ)-twisted G-equivariant K-group of
X, denoted by ϕKτ

G(X), is the Grothendieck group of the semigroup ϕVectτ
G(X).

Like with equivariant K-theory, this is a contravariant functor. However, there is one
important difference: the twisted K-group does not form a ring. For the tensor product
of two (ϕ, τ)-twisted bundles naturally forms a (ϕ, τ · τ)-twisted bundle (where τ · τ
denotes point-wise product). If τ is trivial we do get a ring structure on the twisted
K-group, but because this does not happen in general we shall not use this structure.

Remark 5.4. The difference between ϕ and τ in the notation of the twisted K-group
reflects that ϕ does not change under the tensor product, while τ does.

As with all K-theories before it, we have a variant for pointed spaces. When X is
a pointed G-equivariant space, we have an equivariant map pt ↪→ X. This induces a
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map ϕKτ
G(X)→ ϕKτ

G(pt), the kernel of which we define to be ϕK̃τ
G(X). Because the map

pt ↪→ X has a left-inverse, we have a splitting

ϕKτ
G(X) ∼= ϕK̃τ

G(X)⊕ ϕKτ
G(pt).

Spheres become G-equivariant spaces under a trivial G-action. In this fashion, we
can use the same definitions for the graded twisted K-groups as we did for all other
K-theories:

ϕK̃τ−n
G (X) := ϕK̃τ

G(Σ
nX) when X is pointed;

ϕKτ−n
G (X) := ϕK̃τ

G(Σ
n(X+)).

Instead of calling this theory “twisted equivariant K-theory,” to ease discussion we
will often simply refer to it as twisted K-theory. The axioms of Section 1.4 also apply
here, mutatis mutandis: it is an equivariant cohomology theory. This is proved by
Stehouwer [39, §3.8], but note that he calls this theory “topologically defined higher
twisted K-theory.” Twisted K-theory has an eight-fold periodicity, but as we will see it
can be two-fold periodic in some cases. Like with previous K-theories, this periodicity
allows us to extend the degrees to the integers, yielding ϕKτ+n

G and ϕK̃τ+n
G .

5.1.1. Special cases

Twisted K-theory generalises all previously seen K-theories.

Example 5.5 (K-theory). Take G, ϕ and τ to all be trivial. A (ϕ, τ)-twisted G-
equivariant vector bundle is then simply a vector bundle. Therefore ϕKτ

G(X) is
simply K(X). More generally, if G is any group and we take ϕ and τ trivial, then
ϕKτ

G(X) becomes KG(X). In all of these cases, the reduced groups coincide. So do
the lower-degree groups, because they are defined via the same suspension.

In light of the above, we often omit trivial maps. For instance, when ϕ is trivial we
will also write Kτ

G for ϕKτ
G. Note that this example shows that twisted K-theory can be

two-fold periodic. However, the following example shows this is not always the case.

Example 5.6 (KR-theory). Take G = Z2, take ϕ : G → {±1 } to be the isomorph-
ism, and take τ trivial. Then a (ϕ, τ)-twisted bundle is a vector bundle with a map
T that is an involution (because τ is trivial) and which is antilinear on the fibres.
Thus the twisted K-group ϕKG(X) is exactly the KR-group K R(X).

More generally, take G = H ⊕Z2 for another group H, take ϕ the projection
onto the second component, and again take τ trivial. Then ϕKG(X) is K RH(X),
the H-equivariant KR-group from Section 2.2.3. Indeed, the condition that the
H-action commutes with the Real involution is satisfied because G splits as a direct
sum of H and Z2. Again the reduced and the lower-degree groups coincide.

Because (equivariant) KR-theory generalises (equivariant) KO-theory, so does
twisted K-theory.
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In addition to these examples, one special case is worth noting for later use. Consider
G = Z2, with ϕ the isomorphism, but with τ such that τ(1̄, 1̄) = −1. A twisted bundle
is then a bundle with a fibre-wise antilinear map ψ that squares to −1. The K-theory
concerned with these types of bundles was already introduced by Dupont [8] and
is called symplectic K-theory, although it has also become known as Quaternionic
K-theory. We shall use the latter name and write it as K Q(X). The name is inspired
by the fact that a module over the quaternions H is the same as a complex vector
space with an antilinear map that squares to −1. This map is to be thought of as
multiplication by j ∈H. Indeed, multiplication by j is antilinear because ij = −ji, and
it squares to −1 because j2 = −1 in H. The action of k is uniquely determined by that
of j because k = ij. Hence an antilinear map squaring to −1 on a complex vector space
is the same as an H-module structure extending the complex vector space structure.
As such, KQ-theory behaves similarly to KR-theory, but now with quaternionic fibres
on points that are fixed by the involution.

The main result in KQ-theory is the following.

�� Theorem 5.7 (Dupont). Let X be a Real compact Hausdorff space. Then for all n ∈N0, we
have a group isomorphism

K Q−n(X) ∼= K R−n−4(X).

In particular, K Q(X) ∼= K R−4(X).

Proof. See Dupont [8], but note that he writes Ksp instead of K Q. �

Not only does this tell us how to compute the KQ-groups, but it also provides a
different way to look at the group K R−4. For example, we previously defined K R−4(pt)
to be K̃ R(S4), which is hard (if not impossible) to visualise. On the other hand, the
above discussion tells us that K Q(pt) consists of quaternion-modules. By an argument
analogous to the complex case in K(pt), we can immediately see that K Q(pt) ∼= Z. Of
course, we already knew that K R−4(pt) ∼= Z (see Example 2.11), but the method of
calculation was not as insightful.

5.2. SUPERALGEBRA

Throughout this section, let F denote either R or C (although what we are about to
define generalises to an arbitrary field). Recall that an F-algebra is a ring A together
with a ring homomorphism i : F ↪→ Z(A) embedding F into the centre of A. This turns
A into an F-vector space by, for x ∈ A and λ ∈ F,

λ · x := i(λ) · x.

We shall often forget the embedding i and treat F as a subset of A. In short then, an F-
algebra is a ring that is simultaneously an F-vector space. An algebra homomorphism
is a ring homomorphism that commutes with the multiplication of F.

Inspired by the decomposition E = E− ⊕ E+ into two parts, we can modify any
algebraic structure by giving it such a decomposition. The resulting modification
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will get the prefix ‘super-’. This terminology comes from supersymmetry; it does not
signify that there is anything particularly fascinating about the structure compared to
its original counterpart. A basic example of this procedure is the following; much of
the terminology associated to it carries over to other structures as well.

Definition 5.8. A super vector space is a vector space V together with a decomposition
V = V0 ⊕ V1 into subspaces V0 and V1. The subspace V0 is called the even part of V,
and V1 the odd part. A linear map L : V → W between super vector spaces is called
even when

L(V0) ⊆W0 and L(V1) ⊆ L(W1),

and odd when
L(V0) ⊆W1 and L(V1) ⊆ L(W0).

Remark 5.9. What we call ‘super-’ is also called ‘Z2-graded’.

Generalising the above, we also get a notion of a super vector bundle: a vector
bundle E together with a decomposition E = E0⊕ E1 into subbundles. The terminology
for even and odd maps is analogous.

Definition 5.10. An F-superalgebra is an F-algebra A together with a decomposition
A = A0 ⊕ A1 into F-subalgebras A0 and A1, satisfying

Ai · Aj ⊆ Ai+j with indices modulo 2.

We write |A| for the algebra underlying a superalgebra A. A superalgebra homo-
morphism between A and B is an algebra homomorphism A→ B that maps A0 to B0

and A1 to B1.

The conditions on a superalgebra fit nicely with our terminology: it says that the
product of two even elements is even, the product of two odd elements is even, and
the product of an even and an odd element is odd. Notice that the unit element must
always be even. Therefore, since A0 is closed under scalar multiplication by F, the
entire field F is contained in A0. This motivates the following convention: throughout
this work, R and C as superalgebras always have a trivial decomposition, meaning
that everything is even. Even more so, H is also assumed to have trivial decomposition
in this work.

We can consider modules over a superalgebra. The natural type of module itself also
has a decomposition, in the following way.

Definition 5.11. Let A be a superalgebra. A supermodule over A is an A-module V,
together with a decomposition V = V0 ⊕V1, such that multiplication by x ∈ A is an
even endomorphism of V when x is even, and an odd endomorphism of V when x is
odd.

Notice that if A is an algebra, we can consider it as a superalgebra with trivial
decomposition. In that case a supermodule V over the superalgebra A is the same as
two modules over the algebra A. Indeed, all of A being even implies that all x ∈ A
restrict to V0 and V1 separately, so that V0 and V1 are both modules over A.
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5.2.1. Tensor products

With rings, or even algebras, we can form the direct sum and tensor product. For
superalgebras we can do the same. Let A and B be two F-superalgebras; their direct
sum is the superalgebra with underlying algebra A⊕ B, under the decomposition

(A⊕ B)0 := A0 ⊕ B0 and (A⊕ B)1 := A1 ⊕ B1.

For the tensor product however, we have a question to answer: should elements from
A and B commute in A ⊗F B? There are two natural answers, but before we can
introduce these, we need some terminology. An element x of a superalgebra A is
called homogeneous when it lies in either A0 or A1, and is nonzero. When x ∈ A is
homogeneous, we write |x| for its parity:

|x| :=

{
0 when x ∈ A0,

1 when x ∈ A1.

This terminology applies to other super-structures in the same way. Notice that the
homogeneous elements of a superalgebra span it as an F-vector space.

To define the tensor product of superalgebras, we first need a tensor product on
super vector spaces. If V and W are F-super vector spaces, then we give V ⊗F W the
decomposition

(V ⊗F W)0 := (V0 ⊗F W0)⊕ (V1 ⊗F W1),

(V ⊗F W)1 := (V0 ⊗F W1)⊕ (V1 ⊗F W0).

Definition 5.12. Let A and B be two F-superalgebras. The (ungraded) tensor product
A ⊗F B of A and B is the F-superalgebra with A ⊗F B as underlying super vector
space, with multiplication determined as follows. When a, a′ ∈ A and b, b′ ∈ B are
homogeneous, we require

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′.

The graded tensor product A ⊗̂F B of A and B is the superalgebra with the same
underlying vector space, but with multiplication determined by, for a, a′ ∈ A and
b, b′ ∈ B homogeneous,

(a⊗ b) · (a′ ⊗ b′) = (−1)|b||a
′| · (aa′ ⊗ bb′).

The multiplication of the ungraded tensor product makes A and B commute with
each other. The graded tensor product on the contrary makes homogeneous elements of
A and B anticommute when both are odd, and commute otherwise. This commutation
relation is also referred to as the Koszul sign rule.

Remark 5.13. When either A or B has a trivial decomposition, the graded and ungraded
tensor product coincide.

56



Example 5.14. For illustrative purposes, we break our earlier convention (though
we only do so here) and take the following nontrivial decomposition on C and H:

C = R⊕ iR,

H = (R⊕ kR)⊕ (iR⊕ jR).

In other words, i and j are odd, while 1 and k = ij are even. This makes C and H

real superalgebras. We then have a natural isomorphism of real superalgebras

H ∼= C ⊗̂R C.

Here the i in the second C is to be thought of as j. Indeed, i and j anticommute in
H, and in C ⊗̂R C we have

(i⊗ 1) · (1⊗ i) = i⊗ i while (1⊗ i) · (i⊗ 1) = −(i⊗ i).

5.2.2. Clifford algebras

Clifford algebras are generalisations of the complex numbers and quaternions. They
pop up in various places in mathematics; in our case they will make an appearance in
the K-theory of a point. Much can be said and proved about Clifford algebras, but our
goal is to give a minimal overview of the results we will need going forward. Curious
readers can consult Atiyah, Bott, and Shapiro [5, I] and Karoubi [23, III.3] for further
study.

Definition 5.15. Let p, q ∈N0. The (p, q)-th real Clifford algebra, denoted by Cliffp,q,
is the real algebra generated by p + q symbols γ1, . . . , γp+q subject to the relations

γiγj = −γjγi when i 6= j,

γ2
i =

{
−1 when i = 1, . . . , p,

+1 when i = p + 1, . . . , p + q.

It becomes a real superalgebra when we make all the symbols γ1, . . . , γp+q odd.

Remark 5.16. It is a matter of convention whether the first p elements square to +1 or
−1. Our convention is most convenient for our intended use of Clifford algebras.

For small p and q we recover some familiar algebras. For instance, Cliff1,0 is the
real algebra with one generator that squares to −1, which is C. Analogously, Cliff2,0

is H, where k is identified with γ1γ2. However, these identifications do not work as
superalgebras, because of our convention that C and H have trivial decomposition.
The correct statement is that |Cliff1,0|, the underlying real algebra, is isomorphic to
C, and analogously that |Cliff2,0| ∼= H. Although it requires more effort, all Clifford
algebras can be computed in this fashion. The underlying algebras of some of these are
given in Table 5.1. Note that we write Mk(A) for k× k matrices over A. From this table,
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n |Cliffn,0| |Cliff0,n|
0 R R

1 C R⊕R

2 H M2(R)

3 H⊕H M2(C)

4 M2(H) M2(H)

5 M4(C) M2(H)⊕M2(H)

6 M8(R) M4(H)

7 M8(R)⊕M8(R) M8(C)

8 M16(R) M16(R)

Table 5.1: The first nine real Clifford algebras with the decomposition forgotten.

the others may be determined: the most striking feature of the Clifford algebras is that
in a sense they repeat when either index is increased by eight.

�� Theorem 5.17 (Periodicity of Clifford algebras). Let p, q ∈N0. Then for all n ∈N0, we
have real superalgebra isomorphisms

Cliffp+n, q+n ∼= M2n(Cliffp,q),

Cliffp+8, q ∼= M16(Cliffp,q),

Cliffp, q+8 ∼= M16(Cliffp,q).

Proof. See Atiyah, Bott, and Shapiro [5, I] or Karoubi [23, III.3]. �

Remark 5.18. A matrix algebra M2k(A) over a superalgebra A is also a superalgebra,
where block-diagonal matrices are even, and block off-diagonal matrices are odd (with
blocks of size k× k). This is what we take in the above proposition.

Remark 5.19. The resemblance between the periodicity of Clifford algebras and the
periodicity of the double grading in KR-theory is no coincidence, but would take too
long to do justice. See Atiyah [2, §4] or Atiyah and Segal [4, §8] for more information.

There is also a notion of a complex Clifford algebra.

Definition 5.20. Let n ∈N0. The n-th complex Clifford algebra, denoted by Cliffn, is
the complex algebra generated by n symbols γ1, . . . , γn subject to the relations

γiγj = −γjγi when i 6= j,

γ2
i = +1.

It becomes a complex superalgebra when we make all the symbols γ1, . . . , γn odd.

Standing out is the absence of negative squares. This is because we can change the
squares at will: if γ2 = +1, then (iγ)2 = −1, because (by definition) C lies in the centre
of a complex algebra. More generally, if γ2 = +1, then (zγ)2 = z2 for any z ∈ C. As
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n |Cliffn|
0 C

1 C⊕C

2 M2(C)

Table 5.2: The first three complex Clifford algebras with the decomposition forgotten.

such, replacing +1 in the above definition with any nonzero complex number yields
an isomorphic complex superalgebra.

Some of the algebras underlying the complex Clifford algebras are given in Table 5.2.
The complex Clifford algebras also have a periodicity property: for all n, we have

Cliffn+2 ∼= M2(Cliffn).

Here again the matrix algebra has the superalgebra structure described in Remark 5.18.
The complex Clifford algebras naturally arise as complexifications of real Clifford

algebras.

�� Proposition 5.21. Let p, q ∈N0. We have an isomorphism of complex superalgebras

C⊗R Cliffp,q
∼−→ Cliffp+q

determined by z⊗ γi 7→ z · γi.

Lastly, the graded tensor product naturally appears in Clifford algebras. For the
generators of a Clifford algebra Cliffp,q are imposed to anticommute, so we get an
isomorphism

Cliffp,q ∼= (Cliff1,0 ⊗̂R · · · ⊗̂R Cliff1,0)︸ ︷︷ ︸
p times

⊗̂R (Cliff0,1 ⊗̂R · · · ⊗̂R Cliff0,1)︸ ︷︷ ︸
q times

. (5.2.1)

By taking p = 2 and q = 0 we retrieve Example 5.14. For complex Clifford algebras we
have a similar isomorphism:

Cliffn ∼= Cliff1 ⊗̂C · · · ⊗̂C Cliff1︸ ︷︷ ︸
n times

.

5.3. EXTENDED TWISTED K-THEORY

We now enrich the twisted K-theory from Section 5.1 to use an extended quantum
symmetry group. Accordingly, we shall call the resulting theory extended twisted K-
theory. Like with twisted K-theory, the base space can be left unmodified, so we
shall also define this K-theory on the space of equivariant compact Hausdorff spaces.
The type of vector bundle we consider is to be a generalisation of a (ϕ, τ, c)-twisted
representation from Definition 4.19. Recall that (when phrased in our new terminology)
this is a (ϕ, τ)-twisted representation on a super vector space such that multiplication
by g ∈ G is even when c(g) = +1, and odd when c(g) = −1.

59



Definition 5.22. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group, and let
X be a G-equivariant space. A (ϕ, τ, c)-twisted G-equivariant super vector bundle
over X is a (ϕ, τ)-twisted G-equivariant vector bundle E that is simultaneously a super
vector bundle E = E0 ⊕ E1, such that ρg is an even map when c(g) = +1, and an odd
map when c(g) = −1.

Like how the valence bands naturally form a twisted vector bundle, the Bloch bundle
(if it has finite rank) is naturally a twisted super vector bundle. For depending on its
value under c, a symmetry will either flip or preserve the decomposition E = E− ⊕ E+
into valence and conduction bands (see Definition 4.19). The group action on a twisted
super vector bundle captures precisely this behaviour.

A homomorphism of twisted super vector bundles is a super vector bundle ho-
momorphism that intertwines the G-action. Like with twisted vector bundles from
Section 5.1, the direct sum and pullback construction can also be done on these twisted
super bundles. Here the direct sum is that of super vector bundles, i.e., on E⊕ F we
have the decomposition

(E⊕ F)0 := E0 ⊕ F0 and (E⊕ F)1 := E1 ⊕ F1.

By ϕVectτ,c
G (X) we shall denote the set of isomorphism classes of twisted super vector

bundles over X under even isomorphisms. This set is a commutative semigroup under
the direct sum. One might expect the definition of the extended twisted K-group to be
the Grothendieck group of ϕVectτ,c

G (X). However, this definition does not yield a proper
generalisation of the twisted K-group from Section 5.1. For we would like to retrieve
ϕKτ

G(X) when c is trivial. When c is trivial, a (ϕ, τ, c)-twisted super bundle E is the same
as two (ϕ, τ)-twisted bundles, namely E0 and E1, the even and odd parts of E. What
we will do instead is interpret the odd part as carrying a formal minus sign, meaning
that that one should think of the super vector bundle E0 ⊕ E1 as embodying E0 − E1.
Reversing the even and odd parts should then yield an inverse. In this approach one
has to be careful about the meaning of the symbol ⊕, for sometimes it refers to the
direct sum of two super vector bundles, and other times it gives a decomposition into
an even and odd part.

The formal definition involves a quotient of ϕVectτ,c
G (X). A quotient of a commutative

semigroup S is defined as follows. When T ⊆ S is a subsemigroup (i.e., a subset closed
under the operation), define an equivalence relation on S by

s ∼ s′ ⇐⇒ there exist t, t′ ∈ T such that s + t = s′ + t′.

We define S/T := S/∼. It becomes a commutative semigroup by requiring the projec-
tion S � S/T to be a semigroup homomorphism. More details on this construction
may be found in, e.g., Gomi [13, App. C] or Stehouwer [39, Lem B.18].

Definition 5.23. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group, and
let X be a G-equivariant compact Hausdorff space. A twisted super vector bundle E
over X is called super trivial when it admits an automorphism ψ : E → E satisfying
the following conditions.
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(i) The map ψ is odd.

(ii) For all g ∈ G, the map ψ commutes with ρg when c(g) = +1, and anticommutes
with it when c(g) = −1.

(iii) We have ψ2 = +1.

Write ϕTrivτ,c
G (X) for the subsemigroup of ϕVectτ,c

G (X) consisting of (classes of) super
trivial bundles. The (ϕ, τ, c)-twisted G-equivariant K-group of X is the quotient

ϕKτ,c
G (X) :=

ϕVectτ,c
G (X)

ϕTrivτ,c
G (X)

.

Remark 5.24. Freed and Moore [11, Def. 7.1] originally only required Conditions (i) and
(ii). Gomi [13, §3.5] adds Condition (iii) but with ψ2 = −1 instead. Stehouwer [39, §1.7]
showed why imposing ψ2 = +1 is necessary to reproduce previous physical results.
More precisely, only this reproduces the d = 0 column from Table 6.1 in Section 6.3. See
also Remark 6.17.

Remark 5.25. Putting c on the right side in the notation ϕKτ,c
G reflects that c changes

when taking a tensor product, just like τ is put on the right (cf. Remark 5.4).

�� Proposition 5.26. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group, and let X be
a G-equivariant compact Hausdorff space. Then the extended twisted K-group ϕKτ,c

G (X) forms
an abelian group under the direct sum of twisted super vector bundles.

Proof. See Freed and Moore [11, Lem. 5.12], which also applies to our case. �

�� Proposition 5.27. Let (G, ϕ, τ) be a finite quantum symmetry group, and let X be a G-
equivariant compact Hausdorff space. Let c : G → {±1 } be the trivial homomorphism. Then
we have a group isomorphism

ϕKτ,c
G (X) ∼−→ ϕKτ

G(X) : [E0 ⊕ E1] 7−→ [E0]− [E1].

Proof. See Stehouwer [39, Lem. 3.34]. �

The reduced group is defined in the exact same manner as with twisted K-theory.
The graded groups are defined in the same way as well, although the notation becomes
cramped:

ϕK̃(τ,c)−n
G (X) := ϕK̃τ,c

G (ΣnX) when X is pointed;
ϕK(τ,c)−n

G (X) := ϕK̃τ,c
G (Σn(X+)).

Because we use the same suspensions to define the grading of extended twisted K-
groups, by Proposition 5.27 these groups also reduce to the twisted K-groups when c
is trivial. Extended twisted K-theory also satisfies the analogues of the axioms from
Section 1.4, which is proved by Gomi [13, Thm. 3.11], although he gives a different
construction. Like before, this makes it an equivariant cohomology theory. Extended
twisted K-theory is eight-fold periodic (also proved by Gomi [13, Cor. 3.9]). Hence we
can extend the grading to an arbitrary integer: ϕK(τ,c)+n

G and ϕK̃(τ,c)+n
G with n ∈ Z.
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5.4. TWISTED REPRESENTATION RINGS

Back in Example 1.3, we defined the representation ring R(G) of a group G. It naturally
appeared in G-equivariant K-theory as the G-equivariant K-group of a point: KG(pt) =
R(G) (see Example 2.2). In equivariant K-theory it is possible to compute all the graded
K-groups K−n

G (pt) of a point from this, as we did in Example 2.5. For (extended) twisted
K-theory however, we require more tools. Certain generalisations of R(G) naturally
appear as the twisted K-theory of a point; we define these and then give tools for
computing them. We only provide the minimal theory we need; Stehouwer [39, App. B
and §1.7] gives a more detailed, self-contained treatment.

From elementary representation theory, it is known that a complex G-representation
is equivalent to a module over the complex group algebra C[G]. For twisted represent-
ations we have a similar correspondence, but now with the twisted group algebra.

Definition 5.28. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group. The
(ϕ, τ)-twisted group algebra of G, denoted by ϕCτ[G], is the real algebra generated by
symbols eg for every g ∈ G and a formal imaginary unit i, subject to the relations

i2 = −1, eg · eh = τ(g, h) · egh and eg · i = ϕ(g) · i · eg.

The (ϕ, τ, c)-twisted group algebra of G, denoted by ϕCτ,c[G], is the real superalgebra
that has ϕCτ[G] as its underlying algebra, with the following grading. The element i is
even, and an element eg is even when c(g) = +1, and odd when c(g) = −1.

When no confusion is possible we will simply write g instead of eg. Notice that the
twisted group algebra is not always a complex algebra: C need not lie in the centre. It is
a complex algebra if and only if ϕ is trivial. One quickly sees that a module over ϕCτ[G]

is the same as a (ϕ, τ)-twisted representation of G. In the same way, a supermodule
over ϕCτ,c[G] is the same as a (ϕ, τ, c)-twisted representation of G.

Remark 5.29. Similar to Remark 5.2, the cocycle identity of τ ensures that ϕCτ[G] is
associative, and τ being unital implies that ϕCτ[G] has a unit element.

Instead of defining a more general representation ring for a group directly, we will
define it for general superalgebras first. In the end we will take this algebra to be the
twisted group algebra. This general representation ring has a definition similar to
Definition 5.22. When A is a superalgebra, write Mods(A) for the set of isomorphism
classes (under even isomorphisms) of left supermodules over A. This set forms a
semigroup under the direct sum of supermodules. Recall that when A is a superalgebra
with trivial decomposition, a supermodule over A is the same as two modules over
the algebra A. Again the odd part is to be viewed as carrying a formal minus sign.
Like with extended twisted K-theory, we take a quotient by ‘trivial’ supermodules to
achieve this. This triviality condition is similar to the one in Definition 5.23.

Let A be a real superalgebra. A supermodule over the superalgebra A ⊗̂R Cliff0,1

is the same as a supermodule over A with the choice of an odd automorphism that
squares to +1, and that (anti)commutes with the even (odd) elements of A. Notice
that we have an embedding of algebras iA : A ↪→ A ⊗̂R Cliff0,1 mapping x ∈ A to x⊗ 1.
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Through restriction of scalars, this means a supermodule over A ⊗̂R Cliff0,1 is also a
module over A, by forgetting the extra automorphism. Hence we have a map

i∗A : Mods(A ⊗̂R Cliff0,1) −→ Mods(A).

The image of this map we shall take as the trivial modules. For now we shall be sloppy
with notation and also write Mods(A ⊗̂R Cliff0,1) for the image of the map i∗A.

Definition 5.30. Let A be a real superalgebra and let p, q ∈ N0. The representation
ring in degree (p, q) of A is the quotient

Rp,q(A) :=
Mods(A ⊗̂R Cliffp,q)

Mods(A ⊗̂R Cliffp, q+1)
.

We abbreviate R0,0(A) by R(A).

Remark 5.31. Unlike its name would suggest, in general Rp,q(A) does not form a ring,
but only an abelian group. The name is merely there to emphasise that it generalises
the representation ring from Example 1.3. The argument why it is an abelian group is
entirely similar to the proof of Proposition 5.26.

If A → B is a superalgebra homomorphism, via restriction of scalars it induces a
group homomorphism Rp,q(B) → Rp,q(A). This turns the representation rings into
contravariant functors from superalgebras to abelian groups.

Definition 5.32. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group, and let
p, q ∈N0. The (ϕ, τ)-twisted representation ring in degree (p, q) of G is

ϕRτ+(p,q)(G) := Rp,q(ϕCτ[G]),

where ϕCτ[G] is regarded as a superalgebra with trivial decomposition. The (ϕ, τ, c)-
twisted representation ring in degree (p, q) of G is

ϕR(τ,c)+(p,q)(G) := Rp,q(ϕCτ,c[G]).

If we take p = q = 0, then the twisted representation ring ϕRτ,c(G) is naturally the
extended twisted K-group of a point: ϕKτ,c

G (pt). Indeed, a supermodule over ϕCτ,c[G]

is a (ϕ, τ, c)-twisted representation of G. A twisted super vector bundle over a point is
the same as such a representation. Comparing Definitions 5.23 and 5.30, we see that we
take the same quotient in both cases. Thus we conclude

ϕRτ,c(G) = ϕKτ,c
G (pt).

Notice that ϕR(τ,c)+(p,q)(G) is the same as ϕRτ+(p,q)(G) when c is trivial. In particular,
by taking c trivial and p = q = 0 we see that ϕRτ(G) is equal to ϕKτ

G(pt). Taking an
even more specific case by taking ϕ and τ trivial also, then ϕRτ(G) agrees with our
old definition of R(G), because ϕKτ

G reduces to KG when ϕ and τ are trivial. As such,
we may use the same notation R(G) without ambiguity. In degree zero therefore, the
twisted representation ring is the twisted K-group of a point. The reason we introduced
the graded representation rings is because these account for the other degrees.
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�� Theorem 5.33. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group. For all p, q ∈
N0, we have an isomorphism

ϕR(τ,c)+(p,q)(G) ∼= ϕK(τ,c)+(p−q)
G (pt).

Proof. See Stehouwer [39, p. 66], bearing in mind Remark 5.35. �

In light of this theorem, we will sometimes be sloppy and write Rp−q instead of Rp,q.

Remark 5.34. Different conventions and definitions can reverse the above relation. For
instance, should we have chosen the opposite convention for Clifford algebras (see
Remark 5.16), then this theorem would relate Rp,q to K-theory in degree q− p. More
fundamentally, if in Definition 5.30 we would divide out by an extra generator that
squares to −1 instead of +1, the above would relate Rp,q to K-theory in degree q− p.
This is done by Atiyah, Bott, and Shapiro [5] and Gomi [13], for instance.

Remark 5.35. Appendix B in the work by Stehouwer [39] instead derives that Rp,q is re-
lated to degree q− p in K-theory. This is due to an error in the proof of Proposition B.23
in his work, which does not divide out by the appropriate type of modules. Explicit
calculation using the theory of Atiyah, Bott, and Shapiro [5, §5] reproduces our result
in the case of KO-theory.

5.4.1. Computation

Computing twisted representation rings is the same as computing the representation
rings of the twisted group algebra. In our applications the twisted group algebras are
easily determined, so the difficulty lies in computing the representation rings of these
algebras. For us, the following two results will suffice.

�� Proposition 5.36. Let A be a real superalgebra. Then for all p, q, r, s ∈N0 we have

Rp,q(A ⊗̂R Cliffr,s) ∼= Rp+r, q+s(A).

In particular, if A has trivial decomposition, we have

Rp,q(A⊗R Cliffr,s) ∼= Rp+r, q+s(A).

Proof. The first isomorphism relies on the fact that

Cliffp,q ⊗̂R Cliffr,s ∼= Cliffp+r, q+s,

which follows at once from the isomorphism of Equation (5.2.1). The second is a
consequence of Remark 5.13. �

Remark 5.37. The superalgebra structure of the Clifford algebras is crucial in the above
proposition. In particular, a tensor product with |Cliffp,q| (i.e., a Clifford algebra with
trivial decomposition) does not shift the degree.
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�� Theorem 5.38. Let A be a real algebra. Suppose that for certain numbers nR, nC and nH, we
have an isomorphism between A and a direct sum of matrix algebras over R, C and H:

A ∼=
(

nR⊕
k=1

Mrk(R)

)
⊕
(

nC⊕
k=1

Msk(C)

)
⊕
(

nH⊕
k=1

Mtk(H)

)
.

Then we have an isomorphism

Rp,q(A) ∼= (K Op−q(pt))nR ⊕ (Kp−q(pt))nC ⊕ (K Op−q−4(pt))nH .

Proof. See Stehouwer [39, App. B.3]. �

Note that the shifting of KO-theory by four is because of Theorem 5.7. To aid
understanding we give two examples, the second of which will introduce notation to
be used later.

Example 5.39. Let G = Z2, and let ϕ and τ be trivial. Writing G = { 1, R }, we see
that R and i commute, so the group algebra becomes a quotient of a polynomial
ring:

C[G] = R[i, R]
/
(i2 + 1, R2 − 1) ∼= C[R]

/
(R2 − 1) ∼= C⊕C,

as follows by the Chinese remainder theorem. Therefore

Rp,q(G) ∼= (Kp−q(pt))2.

Example 5.40. Again take G = Z2 with trivial τ, but this time with nontrivial
ϕ. If we write G = { 1, T }, this means T and i anticommute. The twisted group
algebra ϕC[G] therefore cannot be a quotient of a polynomial ring: a polynomial
ring is always commutative. For simplicity however we would like to use a similar
notation. By the expression

R[i, T]
/
(i2 = −1, T2 = +1, Ti = −iT)

we shall denote the real algebra generated by symbols i and T subject to the rela-
tions i2 = −1, T2 = +1, and Ti = −iT. This we recognise as |Cliff1,1|, identifying i
with γ1 and T with γ2. By Theorem 5.17 this is M2(R), so

ϕRp,q(G) ∼= K Op−q(pt).
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6TOPOLOGICAL PHASES

Topological phases have proved to be a very interesting area of research. They were
first encountered in the integer quantum Hall effect, the effect very briefly sketched in the
introduction to this thesis. It turns out that a similar effect can arise without a magnetic
field: the quantum spin Hall effect. In fact, this effect can only arise in the absence of a
magnetic field. This made it the first example of a symmetry-protected topological phase.
We describe these effects in Sections 6.1 and 6.2, respectively. More details may be
found in, e.g., Hasan and Kane [15] and Moore [33].

As topological phases are still relatively new and are very hard to create in general,
we cannot yet be fully sure about their possible applications. Currently, among other
things, it is expected that they can be used to create Majorana particles. This would be
a first step toward creating a topological quantum computer, which is particularly well
protected against errors. See Moore [33] for some further information. But instead
of going into the applications of these effects, we use them as an introduction to the
general concept of a topological phase. This prepares us to then in Sections 6.3 and 6.4
treat this concept mathematically, which will be the basis for Part III.

Throughout this section, and indeed this whole work, we only treat non-interacting
electrons in the non-relativistic case. Interacting theories would require a very different
approach — see for instance Kruthoff [27].

6.1. THE INTEGER QUANTUM HALL EFFECT

Suppose that we set up a plane that electrons are restricted to move through, with a
constant current I flowing in a fixed direction. We may choose this plane to be the
xy-plane, with the current I flowing in the x-direction. Now suppose we turn on a
homogeneous magnetic field B perpendicular through this plane (i.e., in the z-direction).
Because of the Lorentz force F = −ev× B on the electrons, a voltage will appear in the
y-direction. This is called the Hall effect. The setup is depicted in Figure 6.1.

We can express this behaviour in a different way. The current I causes a nonzero
current density J to appear, which everywhere points in the y-direction with constant
magnitude. This current also gives rise to an electric field E. Recall that Ohm’s law
may be stated as J = σ · E, where σ is the conductivity (see, e.g., Griffiths [14, §7.1]).
This law still holds in our setup, but the magnetic field requires σ to be a matrix instead
of a scalar:

σ =

[
σxx σxy

σyx σyy

]
=

[
σxx σxy

−σxy σxx

]
.
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I
VH

Figure 6.1: The setup of the quantum Hall effect. A current I runs through the plate
in the x-direction, and a magnetic field B runs through it in the z-direction.
This causes a voltage, here denoted by VH, to appear over the y-direction.

The magnetic field causes the current to bend in the x-direction; the conductivity σxy

measures this effect. With this in mind, one can see that the relations σyx = −σxy and
σyy = σxx follow from rotational invariance.

But this classical effect is not what we are after. More interesting things occur when
we lower the temperature to near absolute zero, and greatly increase the strength of the
magnetic field. In 1980, von Klitzing [25] discovered that this causes the conductivity
σxy to be quantised as

σxy =
e2

2πh̄
· ν where ν ∈ Z. (6.1.1)

Here ν depends on the magnitude of the magnetic field B. This cannot be explained
classically; it is a quantum-mechanical phenomenon. Accordingly it became known as
the integer quantum Hall effect (henceforth IQHE). Yet it is not a typical quantisation
that one might normally encounter in quantum mechanics: the conductivity σxy is a
global property of the material. This is in stark contrast to quantities like the energy of a
single particle in a harmonic oscillator, which are very microscopic. For its discovery,
von Klitzing was awarded the 1985 Nobel Prize in Physics.

For a long time the IQHE was used to very precisely measure the fine-structure
constant α = e2/4πε0h̄c. However, its curiosities go further than mere experimental
use: it can be elegantly described by topology, or more specifically, by using vector
bundles. This made the IQHE the first example of a so-called topological phase of matter,
starting a whole new area of physics, both experimental and theoretical. It is the
theoretical sides that we shall focus on. We do simplify for the sake of brevity; most
importantly, we do not discuss the role of disorder, which does play an important role.
Our presentation is heavily based on the lecture notes by Tong [43], with an emphasis
on the topological aspects. A much more detailed exposition can be found in these
notes if so desired.

6.1.1. Informal approach

Before we go into the mathematics of the IQHE, there is a picture that gives some
intuition about the effect. The magnetic field makes the electrons spin in circles, say
counterclockwise. The electrons however cannot move past the edge, which results
in them bouncing back into the material. The result is that the electrons move in one
direction along the edge, giving a one-way conducting edge — see Figure 6.2.
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Figure 6.2: An informal picture of the conducting edge of the IQHE. Viewing the plate
from above, the magnetic field causes the electrons to move in circular orbits
as depicted. On the edge these orbits cannot be ‘completed’, so the electrons
skip to the next circular orbits.

6.1.2. The Berry connection

Let us suppose that we perturb a Hamiltonian (and its eigenstates) slowly overtime,
eventually returning to our original Hamiltonian after some time T. The word ‘slowly’
here means that an energy eigenstate of the Hamiltonian at time zero will retain its
energy eigenvalue overtime. The state itself however can acquire a nontrivial phase.
Some of this phase is due to time-evolution, but crucially this is not all of the phase
that a state acquires as we perturb the Hamiltonian. In addition to this phase from
time-evolution, a Berry phase is given to the state. This Berry phase can be computed as

exp
(
−
∫ T

0
〈ψ(t)|ψ̇(t)〉dt

)
.

Instead of viewing the Hamiltonian as being perturbed overtime, we can think of it
as taking a path through some parameter-space. Since we assume we eventually end
up at our original Hamiltonian again, this forms a closed path in this parameter-space.
The coordinates of this parameter space we shall write as λa. Then

|ψ̇(t)〉 = ∑
a

∂a|ψ(λ)〉 · λ̇a

by the chain rule (with ∂a denoting the partial derivative with respect to λa). If we
define a vector A with components Aa := i〈ψ|∂a|ψ〉, then the Berry phase becomes

exp

(
i
∫ T

0
∑

a
Aaλ̇a dt

)
= exp

(
i
∮

C
A
)

,

where C is the (closed) path taken through parameter-space. The quantity A is called
the Berry connection. It is not our intention to develop the mathematics of connections,
or more precisely of gauge theory. Much more in-depth material can be found in
Nakahara [35], but we briefly point out only what we need. It turns that the Berry
connection A behaves rather similarly to the vector potential Aµ in electromagnetism.

69



More specifically, in electromagnetism on Minkowski spacetime, one defines the field
strength Fµν := ∂ν Aµ − ∂µ Aν. By analogy we can also define

Fab(λ) := ∂bAa − ∂aAb,

which is now called the curvature of A. This can be used to give an alternate computa-
tion for the Berry phase,

exp
(

i
∮

C
A
)
= exp

(
i
∫

S
F
)

with S a surface enclosed by the closed path C.
The curvature F has one special property. When S is any closed surface, the quantity

C :=
1

2π

∫
S
F

is called a Chern number, and is always an integer. We shall not go into why this is, as
it would require the detailed treatment of connections we intend to avoid.

6.1.3. The TKNN invariant

The integer appearing in Equation (6.1.1) is best understood in terms of vector bundles.
Let us assume that the plane that the electrons move through in the IQHE is an
insulating crystal. This means we can apply the theory from Chapter 4 to describe the
system. The momentum of the electrons can be viewed as lying in the Brillouin zone.
Because the material is two-dimensional, this is a 2-torus T2 = S1 × S1, as we showed
in Proposition 4.8. The valence bands form a vector bundle E− over the Brillouin
zone consisting of Bloch waves (see Definitions 4.9 and 4.13). We treat non-interacting
systems only, so the states in this vector bundle are filled up according to the Pauli
exclusion principle. As such it makes sense to describe the system by this vector bundle.

Notice that a valence band is a one-dimensional subbundle of E−. A band can be
parametrised by a function T2 → E−, assigning to each momentum k ∈ T2 a wave
function ψk. Using this we define a Berry connection on this band (as a function of
k ∈ T2):

Aa(k) := i〈ψk|∂a|ψk〉,

with corresponding curvature

Fab = ∂bAa − ∂aAb,

with ∂a being the partial derivative with respect to ka. From the Berry connection we
can derive whether this band is a trivial vector bundle or not. For associated to it is the
Chern number

C =
1

2π

∫
T2
F

by integrating over the Brillouin zone. If the bundle is trivial, this number turns out
to be zero; equivalently, a bundle with nonzero Chern number is nontrivial. What is
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more, if two bundles of equal rank have a different Chern number, then they are not
isomorphic.1 The Chern number of vector bundles is additive under direct sum, so
the Chern number of E− is simply the sum over all the Chern numbers of the valence
bands within it.

�� Theorem 6.1. The conductivity σxy in the IQHE can be expressed as

σxy =
e2

2πh̄ ∑
α

Cα,

with α running over all valence bands, and with Cα denoting the Chern number belonging to
band α. The total Chern number ∑α Cα is called the TKNN invariant of the system.

Proof. See Thouless, Kohmoto, Nightingale, and den Nijs [42]. �

Note that the sum in the TKNN invariant is finite because there are only finitely
many valence bands. Thus, the conductivity σxy tells us whether the valence bands
form a nontrivial vector bundle over the Brillouin zone. This is very surprising: while
the Chern number is an exact integer quantity, computed from the abstract notion of
a vector bundle, the conductivity σxy is a real-world quantity, dependent upon many
intricate details in the system.

If we slowly perturb the system without closing the gap, this does not change the
TKNN invariant. This is not overly surprising: it is an integer quantity, so changing it
would require a discontinuity to occur somewhere. More formally, the Chern number
of two isomorphic vector bundles are the same. Thus a perturbation which does not
close the gap and which does not change the vector bundle structure of the valence
bands preserves the TKNN invariant. What this means in practise is that a system with
nontrivial TKNN invariant is incredibly stable under perturbations and impurities.
This rigidity motivates the following terminology.

Definition 6.2. Two insulators are said to be in the same topological phase when they
can be continuously deformed into one another without closing the gap. An insulator is
in a trivial topological phase when it is in the same topological phase as the vacuum.

In practise this definition is too strict. For instance, by the above definition an
insulator with ten valence bands cannot be in the same topological phase as one with
ten million valence bands, even if they both have a trivial vector bundle structure.
Often the above is modified by allowing a number of trivial valence bands to be added
without changing the topological phase. In that case the TKNN invariant exactly
classifies the topological phase an insulator is in: the Chern number of a trivial vector
bundle is zero, so the Chern number does not change when we add trivial bands.

6.2. THE QUANTUM SPIN HALL EFFECT

Crucial to the IQHE is the presence of the magnetic field. One might wonder if it is
at all possible to get similar effects in the absence of a magnetic field. More generally,

1This is not true in general: only in specific cases such as the 2-torus does this hold.
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we could ask if there are time-reversal invariant systems that exhibit similar topological
behaviour. This is a generalisation of our original question because magnetic fields
break time-reversal symmetry: the force F on a particle of charge q in a magnetic field
B depends on the velocity v of the particle, according to

F = qv× B.

Of course, velocities are odd under time-reversal: reversing time flips the sign. Thus
magnetic fields break time-reversal symmetry. From this we can quickly see that
the conductivity σxy is also odd under time-reversal. In other words, a time-reversal
invariant system must have zero Hall conductivity, and is therefore topologically trivial.

Contrary to what the previous discussion might suggest, it is still possible to create a
system with nontrivial topological behaviour that is time-reversal invariant. Key to
this idea is to use the spin of the electrons. Informally, through spin-orbit coupling one
can place two IQH systems in the same place, with spin-up electrons moving one way,
and spin-down electrons the other way. The edge would then be conducting, due to
the two-way moving electrons. This had been theorised for a while, but it was not clear
why such a system would be at all stable like the IQH states. These doubts started to
disappear in 2005 when Kane and Mele [21, 22] gave a more realistic model, which was
not dependent upon keeping the spin-up and spin-down electrons separate.

In this model the idea of having two IQH systems still holds true to some extent.
If we label the Chern numbers of these two systems by n1 and n2, then the Chern
number of the total state is n1 + n2. We must have n1 + n2 = 0 because the system is
time-reversal invariant: the conductivity σxy = (n1 + n2) · e2/2πh̄ must be zero. But
the difference n1 − n2 can be nonzero. This turns out to always be even, so it is more
interesting to consider 1

2 (n1− n2). In and of itself it is not invariant under deformations,
but its parity is: the residue class

1
2 (n1 − n2) mod 2

is invariant under deformations that do not close the gap and which do not reverse
time. It is called the Kane–Mele invariant. As such, a system is either in a trivial or in
a unique nontrivial phase. This effect became known as the quantum spin Hall effect
(henceforth QSHE). The unique nontrivial phase is now called a topological insulator.
Such a state was first observed experimentally in 2007 by König et al. [26].

Take particular note of the fact that this nontrivial insulator is trivial in the IQHE,
because its Chern number (and hence its conductivity) is zero. This means that we can
deform this state, without closing the gap, to a trivial insulator. As such there does
not seem to be any topological behaviour at all, seemingly contradicting our previous
comments. What this shows is that it is crucial that we consider only deformations
that preserve the time direction: only when considering these deformations is there a
distinction between the topological insulator and a normal insulator. Because of this, the
topological insulator is called a symmetry-protected topological phase: a topological
phase which is only definable when restricting to gap-preserving deformations that
also respect certain symmetries. In this case, we say that the QSHE is protected by
time-reversal symmetry.
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(a) An even number of crossings of the
Fermi level.
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(b) An odd number of crossings of the
Fermi level.

Figure 6.3: The difference between a usual and a topological insulator, simplified to a
one-dimensional picture. Pictured is the band structure of an insulator, with
valence bands at the bottom (shaded green) and conduction bands at the
top (shaded red). At time-reversal invariant points (here the points k = 0
and k = π), we have a Kramers degeneracy according to Proposition 6.3.
At other points this degeneracy is lifted. This is illustrated by the black
lines coming together at the time-reversal invariant points, and splitting
apart at the others. Either these lines cross the Fermi level EF (the light-red
horizontal line) an even number of times, or an odd number of times. These
situations are depicted in Figures 6.3a and 6.3b, respectively.

6.2.1. Kramers pairs

Let us describe why the parity of 1
2 (n1 − n2) is topologically invariant.

�� Proposition 6.3 (Kramers). Let V be a complex vector space, and let T : V → V be an
antilinear map such that T2 = −1. If v ∈ V is a nonzero eigenvector of T, then v and Tv are
linearly independent.

Proof. It suffices to prove that Tv is not a scalar multiple of v. Suppose that it is, i.e.,
suppose that Tv = z · v for some z ∈ C. Then

−v = T2v = T(z · v) = z̄ · Tv = z̄z · v = |z|2 · v,

which means that |z|2 = −1, an impossibility. �

Now suppose that k is a time-reversal invariant momentum. Then in the vector
bundle of valence bands, if we have an eigenstate |ψ〉 of T in the fibre over k, then T|ψ〉
is a different state. Because time-reversal T commutes with the Hamiltonian, |ψ〉 and
T|ψ〉 have the same energy. In other words, we have a two-fold degeneracy. The states
|ψ〉 and T|ψ〉 form what is called a Kramers pair.

On momenta that are not time-reversal invariant, the degeneracy will be lifted.
These states cross the Fermi level n1 − n2 times in total. Because time-reversal acts
on the Brillouin torus T2 as (kx, ky) 7→ (−kx,−ky), we can consider one half of the
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Brillouin zone only. In this half, we therefore have 1
2 (n1 − n2) crossings of the Fermi

level. Figure 6.3 depicts this situation in a simplified one-dimensional case. Plainly,
the number of crossings is either even or odd. By deforming the Hamiltonian in a
time-reversal symmetric way, we can add or subtract an even number of crossings, but
not an odd number. Note that we therefore cannot change the parity of the number
of crossings, at least not without closing the gap or breaking time-reversal symmetry.
These are precisely the conditions that distinguish the topological insulator from an
ordinary one: a topological insulator has an odd number of band crossings.

6.2.2. Three dimensions

Both the IQHE and the QSHE describe two-dimensional systems. Ever since the
discovery of the IQHE, people have searched for an analogous situation in three
dimensions. This turned out not to exist: the only three-dimensional analogue of the
IQHE that one could make consists of many two-dimensional IQH states stacked on
top of one another. People were hesitant to call this a three-dimensional topological
phase, as there was nothing truly three-dimensional about it. Worse, it did not have the
same stability of the normal IQHE.

The QSHE on the other hand does generalise to three-dimensions, which was theor-
ised by Fu, Kane, and Mele [12] in 2007. Such a system is described by four Z2-valued
invariants (ν0, ν1, ν2, ν3), but only the first of these is truly three-dimensional. It is
appropriately called the Fu–Kane–Mele invariant, and an insulator with nontrivial in-
variant is appropriately called a three-dimensional topological insulator. To communicate
that ν0 is a truly three-dimensional property whereas the others are two-dimensional,
this ν0 is called a strong invariant, and the others are called weak invariants. This
terminology is general: for instance, the three-dimensional IQHE consists only of weak
invariants, because there is no truly three-dimensional invariance at play. A system
with ν0 = 0, i.e., a system with only nontrivial weak invariants, is not as stable as the
strong topological insulator with ν0 = 1.

6.3. KITAEV’S PERIODIC TABLE

Thus far, in order to see if a system is in a nontrivial topological phase, we considered
the valence bands as a vector bundle and used various means of distilling it down
into a number. This number, called an invariant, then tells us what phase the system
is in. In order to generalise more easily, we abstract away from this perspective and
shall instead interpret the vector bundle itself as the invariant. More precisely, the
K-group of the Brillouin zone consists of (isomorphism classes of) vector bundles over
the Brillouin zone. Hence the valence bands determine an element of this K-group, and
it is this element that we shall view as the invariant. In this way the K-group plays the
role of the group of all invariants. If this point of view is to be at all useful, it should
coincide with the invariants found previously. For example, the K-group we associate
to the IQHE should be isomorphic to Z, because we already know that the IQHE is
classified by an integer: the Chern number.
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Class \ d 0 1 2 3 4 5 6 7

A Z 0 Z 0 Z 0 Z 0
AIII 0 Z 0 Z 0 Z 0 Z

AI Z 0 0 0 Z 0 Z2 Z2

BDI Z2 Z 0 0 0 Z 0 Z2

D Z2 Z2 Z 0 0 0 Z 0
DIII 0 Z2 Z2 Z 0 0 0 Z

AII Z 0 Z2 Z2 Z 0 0 0
CII 0 Z 0 Z2 Z2 Z 0 0
C 0 0 Z 0 Z2 Z2 Z 0
CI 0 0 0 Z 0 Z2 Z2 Z

Table 6.1: Kitaev’s periodic table of topological insulators and superconductors. An
entry gives the group of invariants in a dimension d (indicated by the column)
protected by the symmetries of an Altland–Zirnbauer class (indicated by the
row). The table is periodic in the dimension with period 8, so the entries for
dimensions higher than 7 can be deduced from the ones listed here.

Kitaev [24] was the first person to take this approach. In 2009 he showed that K-
theory does indeed generalise the invariants we have seen above. However, what truly
made it powerful (and hence interesting) was how it could be used to predict many
more, previously unknown invariants. He summarised his findings in a periodic table,
as follows. Given a dimension d and an Altland–Zirnbauer class, he computed all
the different the topological phases protected by the symmetries in that class.2 The
resulting periodic table is given in Table 6.1. Striking is the fact that the table depends
only on the dimension modulo 8. This makes Kitaev’s table a truly ‘periodic’ table,
as opposed to the more commonly known periodic table of elements. As Ryu et al.
[36, p. 13] note, dimensions higher than three can also be of physical relevance: a
parameter space can increase the dimension beyond three, even though the spatial
spatial dimension is at most three. One example of this is the four-dimensional QHE
theorised by Zhang and Hu [44] in 2001.

The table contains both the IQHE and the QSHE. Recall from Table 3.1 that class A
is the class without any symmetries. In two dimensions this has a Z-invariant, cor-
responding to the integers in the IQHE. Indeed, the IQHE is not protected by any
symmetries. Class AII has time-reversal satisfying T2 = −1, and it has a Z2-invariant
in two dimensions. This is the QSHE: it is described by the spin of electrons, and
because electrons are fermions, we have T2 = −1. Notice how this table also predicts
that the QSHE generalises to three dimensions (class AII also has a Z2-invariant there),
while the IQHE does not (class A has only trivial phases in three dimensions). One
also sees that it only lists the strong invariants: the three-dimensional QSHE has four
Z2-invariants, but only one of these is strong.

2Here a zero-dimensional system is a system where the total Hilbert space is finite-dimensional.
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Those with an eye for patterns may have spotted that both the K-theory and the
KO-theory of a point appear in this table. In dimension zero, classes A and AIII contain
the K-theory of a point, and the other classes contain the KO-theory of a point. Higher
dimensions shift these groups. The distinction between A and AIII and the rest is no
accident: these two classes do not have antilinear symmetries. An antilinear symmetry
essentially reduces a complex vector bundle to a real one (as in Proposition 2.6), so only
classes A and AIII have a complex K-group, while the others have a KO-group.

We shall only explain the calculation of the phases in class A. Note again that this
contains the IQHE. A more complicated story is needed for the other classes; we will
treat these later (see Corollary 6.16).

�� Proposition 6.4. The row belonging to class A in Kitaev’s periodic table is given by Z if d is
even, and 0 when d is odd.

Proof. Since we do not consider any sort of lattice symmetries, the Brillouin zone
becomes simply Rd, with d the dimension of the system. We have to compute K(Rd).
This immediately raises questions because Rd is not compact, while our development
of K-theory uses only compact spaces. Recall that, in our definition of a topological
phase, we did not want the dimension of the bundle to have any influence on the phase
of a system. We can accomplish this by adding a ‘point at infinity’ to Rd, and then
taking the reduced K-group of the resulting space. The d-sphere Sd is this space, which
motivates the definition K(Rd) := K̃(Sd). By definition of lower-degree K-theory this
is K−d(pt), so we conclude

K(Rd) = K−d(pt) ∼=
{

Z d even,

0 d odd.
�

Remark 6.5. It turns out this is a general construction: given a locally compact Hausdorff
space X, we can construct its one-point compactification X+. As a set this is X with one
new point, and there is a unique topology that makes it compact and makes it have X
as a subspace (see, e.g., Munkres [34, §29]). We could define K(X) to be K̃(X+). In case
X is already compact, X+ is simply adding a disjoint point to X, so this would extend
our definition. In fact, this gives a different perspective on suspensions because we
have a (pointed) homeomorphism Σn(X+) ∼= (X×Rn)+ when X is locally compact.

As elegant as it is, this periodic table is far from the whole story. One of its bigger
shortcomings is that it it only deals with symmetries from the Altland–Zirnbauer
classes. The most natural next step is to include crystal symmetries. Although Kitaev
commented upon including lattice symmetries, he did not discuss any further possible
crystal symmetries.

6.4. FREED AND MOORE’S CLASSIFICATION

In 2013, a few years after Kitaev, Freed and Moore [11] created a mathematical frame-
work for classifying topological phases. They went further than Kitaev by including
general crystal symmetries, but they also formalised the concept of a topological phase.
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With this, the correspondence between topological phases and a K-group of the Brill-
ouin zone can be proved rather than motivated. This formalisation is what we have
been working towards in the previous chapters, so we give a more detailed exposition
of their classification. Even so, there are details we omit for the sake of simplicity.

An insulator is described mathematically by what we called a band insulator (see
Definition 4.19). Two insulators are supposed to be in the same topological phase if
we can continuously deform one into the other without closing the band gap. Since
we wish to speak of symmetry-protected phases, this deformation should respect the
symmetries that we are considering. Instead of considering only symmetries associated
to Altland–Zirnbauer classes, we also incorporate crystal symmetries. We argued
in Section 4.6 that symmetries of this form are described by an extended quantum
symmetry group of crystal type (see Definition 4.17). In this mathematical language,
the appropriate notion of deformation is the following.

Definition 6.6. Let (G, ϕ, τ, c) be an extended quantum symmetry group of crystal type.
Let (H0, H0, ρ0) and (H1, H1, ρ1) be two band insulators with this symmetry group.
The two systems are called homotopic if there exists a Hilbert bundleH• → [0, 1] over
[0, 1], along with:

• a decompositionH• = H−• ⊕H+
• ;

• a continuous family of operators H• : H• → H•, and a continuous family of maps
ρ• : G → H•,

satisfying the following conditions.

(i) Every fibre Hs for s ∈ [0, 1] with the induced decomposition forms a band
insulator (Hs, Hs, ρs) with symmetry group (G, ϕ, τ, c).

(ii) The fibres over 0 and 1 recover the systems (H0, H0, ρ0) and (H1, H1, ρ1), respect-
ively.

Notice that Condition (i) implies that the deformation does not close the gap. In
particular, the deformation restricts to yield separate deformations of H−i and H+

i .
Symmetry-protection is implemented by the requirement that each fibre should have
(G, ϕ, τ, c) as its symmetry group.

Remark 6.7. We have simplified the above definition by not explaining the word ‘con-
tinuous’ as it applies to the families H• and ρ•. Although crucial for a mathematically
formal proof, a more detailed treatment does not aid general understanding. One may
find the details in Freed and Moore [11, App. D].

In mathematics, a way to formally define a property is to model it as a set consisting
of all objects that are intended to satisfy the property. This is how we formalise the
concept of a topological phase.

Definition 6.8. Let (G, ϕ, τ, c) be an extended quantum symmetry group of crystal
type. A homotopy-equivalence class of band insulators with this symmetry group
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is called a topological phase protected by (G,ϕ, τ, c). The set of all such topological
phases is denoted by

TP(G, ϕ, τ, c).

If c is trivial, we denote this set by TP(G, ϕ, τ).

To aid the calculation of topological phases, we turn this set into a commutative
semigroup by the direct sum of (super) Hilbert spaces. As we have discussed previously,
the Hilbert space of a band insulator is to be viewed as the space of one-particle states,
because we assume the electrons are non-interacting. Two band insulators are then
coupled to one quantum system by taking the direct sum of the Hilbert spaces, for
the direct sum then describes one particle which can live in either insulator. The one-
particle nature is crucial here, otherwise the natural combination of two systems would
be the tensor product of the Hilbert spaces. Although this motivates the semigroup
structure physically, for us it is only a tool for calculating topological phases.

Sadly, topological phases as defined above do not perfectly correspond to a K-group
of the Brillouin zone. We have to alter the set TP, although the method depends on
whether we work with type F or type I insulators. This distinction is essentially the
same as the one between twisted and extended twisted K-theory from Chapter 5.

Definition 6.9. Let (G, ϕ, τ, c) be an extended quantum symmetry group of crystal
type. For type F insulators, define the group of reduced topological phases as the
quotient of TP(G, ϕ, τ, c) by the elements possessing an odd automorphism squaring
to 1. We denote this group by RTP(G, ϕ, τ, c). For type I insulators, define the group of
reduced topological phases as the Grothendieck group of TP(G, ϕ, τ). We denote this
group by RTP(G, ϕ, τ).

At the time of writing there does not seem to be a physical motivation for passing
to reduced topological phases. It is not even clear that this cruder invariant is able
to detect the phases we have encountered thus far. Freed and Moore [11, §11] have
proved that it does detect the Kane–Mele invariant, among others.
Remark 6.10. Like in Chapter 5, we have followed the convention of Stehouwer instead
of following Freed and Moore; see Remark 5.24.

In the end, these definitions and requirements allow us to calculate the reduced to-
pological phases by the twisted K-theory of the Brillouin zone. This is the fundamental
theorem for topological phases protected by crystal symmetry. The divide between
twisted K-theory and extended twisted K-theory appears here as well.

�� Theorem 6.11 (Freed and Moore). Let (G, ϕ, τ, c) be an extended quantum symmetry group
of symmorphic crystal type. For band insulators of type F, we have an isomorphism

RTP(G, ϕ, τ, c) ∼−→ ϕKτ′, c
G/Π(XΠ)

[(H, H, ρ)] 7−→ [E− ⊕ E+].

For band insulators of type I, we instead have an isomorphism

RTP(G, ϕ, τ) ∼−→ ϕKτ′
G/Π(XΠ)

[(H, H, ρ)] 7−→ [E−].
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Proof. See Freed and Moore [11, §10.3–4], bearing in mind our modifications to exten-
ded twisted K-theory from Chapter 5 (see Remark 5.24). �

Remark 6.12. For nonsymmorphic crystals there is an analogous result. What changes
in that case is the cocycle τ′, as sketched in Remark 4.15.

This theorem is our motivation for developing K-theory for compact spaces and
finite groups only. It formally shows why only the valence bands played a role in the
IQHE and the QSHE: these are type I insulators, and in that case the bundle of valence
bands alone determines the topological phase of the system. Because extended twisted
K-theory reduces to twisted K-theory when c is trivial (Proposition 5.27), the distinction
between type I and type F can often be forgotten in computations.

Notably absent from this result is a distinction between weak and strong invariants
(see Section 6.2.2). Rather, the twisted K-group gives all the invariants of the system,
including the dimension of the bundle (which we argued is often too strong an invari-
ant). Freed and Moore do not discuss weak and strong invariants, and neither does
there seem to be a straightforward mathematical formalisation of the concept of a weak
and strong invariant. One is left to study the situation at hand in order to determine
which parts of the K-group describe weak and strong invariants.

6.4.1. Special cases

With this theorem in hand, some special cases are worth pointing out.

Example 6.13 (Class A). If G = S, so ϕ and τ are trivial, then G/Π = P, and ϕ

and τ restrict trivially to it. In Example 5.5 we argued that in this case the twisted
K-group ϕKτ′

P (XΠ) is simply KP(XΠ). So when only treating crystal symmetry, the
(reduced) topological phases protected by G are classified by the P-equivariant
K-group KP(XΠ).

Example 6.14 (Class AI). When G also contains time-reversal symmetry T2 = +1,
then G/Π is the magnetic point group, which we know to be P⊕Z2 in this case
(see Section 4.4). Time-reversal is anti-unitary, so ϕ is the projection onto the
second component. Because T2 = +1 there is no further twisting from τ (or τ′).
The corresponding K-group is ϕKP⊕Z2

(XΠ), and from Example 5.6 we know this
to be equivariant KR-theory: K RP(XΠ).

Example 6.15 (Class AII). Again take G to be S along with time-reversal, but now
with T2 = −1. From Section 5.1.1 we know that this is (equivariant) KQ-theory,
which by Theorem 5.7 is simply KR-theory shifted by four: K R−4

P (XΠ).

This third example illustrates that going to a different Altland–Zirnbauer class can
be accounted for by a degree-shift in K-theory. This is also what happened in Kitaev’s
periodic table. Under some additional requirements, it also holds for all symmetry
classes in Freed and Moore’s classification.
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�� Corollary 6.16. Let (G, ϕ, τ, c) be an extended quantum symmetry group of symmorphic
crystal type. Denote by A the image of the map θ× c : G → {±1 }× {±1 }, where θ := ϕ · c.
Suppose that G/Π splits as a direct sum G/Π ∼= P⊕ A and that τ restricts trivially to S.
Then we have the following table for the reduced topological phases according to the Altland–
Zirnbauer class of (G, ϕ, τ, c).

Class A AII I AI BDI D
ϕKτ′, c

G/Π(XΠ) KP(XΠ) K−1
P (XΠ) K RP(XΠ) K R−1

P (XΠ) K R−2
P (XΠ)

Class DII I AI I CI I C CI
ϕKτ′, c

G/Π(XΠ) K R−3
P (XΠ) K R−4

P (XΠ) K R−5
P (XΠ) K R−6

P (XΠ) K R−7
P (XΠ)

In all of these cases, the Real involution on XΠ is given by the involution σ : k 7→ −k.

Proof. The proof given by Freed and Moore [11, Cor. 10.25] still applies if one uses our
relation between Clifford algebras and K-theory instead (see Theorem 5.33). �

Remark 6.17. This result relies on the modification we made to extended twisted K-
theory as compared to Freed and Moore — see Remarks 5.24 and 5.34. Because Freed
and Moore have a different definition of trivial bundles, they have the degrees in
KR-theory running the other direction, which does not reproduce Kitaev’s results.

Remark 6.18. In the above corollary we have omitted the distinction between type I and
type F insulators from Theorem 6.11. To reintroduce it, note that a type I insulator can
only be of class A, AI or AII: these are the only classes without particle-hole reversing
symmetries. These are exactly the cases covered in Examples 6.13–6.15.

It is this corollary that is responsible for the seemingly odd ordering of the Altland–
Zirnbauer classes. The appearance of the graded K-groups here gives a physical
explanation for why we introduced them back in Chapters 1. One can think of this
corollary as a generalisation of Kitaev’s periodic table, though strictly speaking it
is not: the periodic table did not take into account crystal or even lattice symmetry.
Even so, the resemblance is striking: classes A and AIII are also classified by complex
K-theory, while the others have a real K-theory group (more precisely, a Real one). In
zero dimensions the Brillouin zone is a point, so in that case this is a true generalisation
of Kitaev’s results.

It is important to point out that the assumptions made in this corollary are not
very general. Any situation where the point group has a nontrivial cocycle τ′ on it is
excluded. This means, for example, that a fermionic system with a 180-degree rotation
R is not described by this corollary, because then R2 = −1, which requires τ′ to be
nontrivial.
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Part III.

Calculations





7ONE-DIMENSIONAL CLASSIFICATION

Research into one-dimensional topological phases has been done, but surprisingly, at
the time of writing no classification using the theory of Freed and Moore seems to have
been given yet. In this chapter we present precisely that, classifying the non-interacting,
non-relativistic, one-dimensional topological phases. Our results are summarised in
Table 7.1.

In two and three dimensions, mathematically rigorous calculations tend to use
an advanced tool called a spectral sequence. In contrast, as we will illustrate, one-
dimensional cases are all computable using the more elementary tools presented earlier
in this work. This is especially important for cases involving particle-hole symmetry,
because a spectral sequence has not yet been developed for these cases. The reason
for this simplicity is two-fold: there are very few point groups in one dimension (all
of which are very small), and the one-dimensional Brillouin zone is a circle (which is
much easier to work with than higher-dimensional tori).

Despite this simplicity, the classification as a whole does require all the K-theory
tools we have developed up to this point. As a side effect, this makes it a good didactic
tool: it is simple enough to be accessible to beginners, yet the amount of K-theory
involved encourages and motivates a further study of (twisted) K-theory.

7.1. PRELIMINARIES AND ASSUMPTIONS

According to Theorem 6.11, the (reduced) topological phases protected by (G, ϕ, τ, c)
are classified by the K-group

ϕKτ′, c
G/Π(XΠ),

under the assumption that the crystal underlying G is symmorphic. To calculate this
K-group, in principle one therefore needs to know two things: the group G/Π with its
twistings, and the Brillouin zone XΠ. More precisely, one needs to know the (G/Π)-
equivariant Brillouin zone: the action of G/Π on XΠ does impact the K-group. As such,
to classify all possible one-dimensional phases, one needs to know all possibilities for
G/Π and for XΠ. (We assume for the moment that all one-dimensional crystals are
symmorphic — see Proposition 7.1.) One cannot describe the latter without knowing
the former, so we have to study the group G/Π first.

Because only G/Π appears in the K-group, throughout this chapter we shall denote
by G the group that we previously denoted by G/Π in Chapter 6. As such we shall
also write τ instead of τ′. To know this group G, we need to know the point group
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P, and how this point group ‘sits’ inside G. The (only) assumptions we make in our
classification are the following.

(i) The group G splits as a direct sum G ∼= P⊕ A.

(ii) The group A comes from an Altland–Zirnbauer class, i.e., it is of the from Zk
2 for

a certain k, with its twistings being one of the possibilities from Table 3.1.

Physically, Assumption (i) means that point group symmetries commute with time-
reversal and particle-hole reversal. Assumption (ii) in particular means that time-
reversal, particle-hole reversal and chiral symmetry all commute with each other
and that they all square to a complex phase. Although one can imagine physical
systems that do not satisfy these assumptions, in calculations of topological phases
they are commonly assumed. A fuller classification would have to determine all
physically sensible alternatives to these assumptions. Take particular note of the fact
that Assumption (i) is one of the conditions of Corollary 6.16.

In order to know all possible forms of (G, ϕ, τ, c) under these assumptions, it suffices
to determine all possible one-dimensional point groups. Indeed, we already know all
possible forms of A and its twistings.

7.1.1. The point group

One-dimensional Euclidean space has few symmetries: only translations and reflections.
In particular, O(1) = {±1 } consists only of the identity and a reflection around a fixed
origin. Since the point group P of a one-dimensional crystal is a subgroup of O(1)
(see Section 4.2), this means P is either trivial or Z2. From this we can verify that all
one-dimensional crystals are in fact symmorphic.

�� Proposition 7.1. Let S ⊆ E(1) be the space group of a one-dimensional crystal. Then we have
an isomorphism S ∼= P n Π, with Π ⊆ S the lattice and P = S/Π the point group.

Proof. If P is trivial, the proposition is trivial, so assume that P = {±1 }. This means
there is a point x0 ∈ E1 such that the reflection R around x0 is an element of S. Because
R2 = 1, we have a homomorphism i : P → S given by sending −1 to R. Notice that
π ◦ i = IdP, where π denotes the canonical projection S � P. For any s ∈ S, the
element

f0(s) := s · (i ◦ π)(s)−1

lies in Π ⊆ S; after all, it lies in the kernel of π:

π(s · (i ◦ π)(s)−1) = π(s) · (π ◦ i ◦ π)(s)−1 = π(s) · π(s)−1 = 1.

The map i defines an action of P on Π, namely conjugation by i(p) when p ∈ P. Now
define

f : S −→ P n Π : s 7−→ {π(s) | f0(s) }.

It is a trivial verification that this map is an isomorphism. �
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Remark 7.2. We have proved a general fact in group theory: if N is a normal subgroup
of G such that the projection G � G/N admits a right-inverse which is also a group
homomorphism, then G ∼= N o G/N.

Henceforth we write R for the generator of P. This map R must be a unitary map, as
all point group symmetries are unitary. However, in principle it could square to −1.
Up to isomorphism1 the cases R2 = +1 and R2 = −1 are the only possible ones. In
conclusion therefore, the point group is of one of the following types:

(i) trivial point group, abbreviated by R2 = 0;

(ii) P ∼= Z2 with trivial twisting, abbreviated by R2 = +1;

(iii) P ∼= Z2 with nontrivial cocycle τ, abbreviated by R2 = −1.

As in Section 3.3, the abbreviation R2 = 0 does not mean that we have a group acting
by the zero map, but only serves as an abbreviation. Combining these with the ten
Altland–Zirnbauer classes, we get a total of 30 possible symmetry groups.

Only the cases R2 = 0 and R2 = +1 have trivial twisting of the point group. Com-
bining this with Assumption (i) from above, we see that in these cases we can use
Corollary 6.16 to compute the topological phases. When R2 = −1 this does not hold.2

7.1.2. The Brillouin zone

The Brillouin zone XΠ is the quotient R∗/Π∗ of reciprocal space by the reciprocal lattice
(see Definition 4.7). Without loss of generality we may take Π to be Z. Identifying R∗

with R via the standard inner product, then Π∗ can be naturally identified with 2πZ.
Hence the Brillouin zone is the circle R/2πZ.

If the point group has a reflection in it, it acts on the Brillouin zone as k 7→ −k,
which reflects the circle as illustrated in Figure 7.1. As noted in Section 4.2.1, this
map we denote by σ. In Sections 4.4 and 4.5 we explained that both time-reversal and
particle-hole reversal also act by σ on the Brillouin zone. Notice that this implies that
chiral symmetry, being the product of these two, acts trivially on the Brillouin zone.
Because these are the only the symmetries that can arise in one dimension, we thus
have a full description of the equivariant Brillouin zone.

7.1.3. Mayer–Vietoris

For most of the thirty cases, we will use the Mayer–Vietoris exact sequence to calculate
the corresponding K-group of the Brillouin zone. We divide the circle into two parts, A
and B, as indicated in Figure 7.2. Notice that A and B are symmetric around the reflec-
tion axis of σ. Therefore, for all possible G, the space A is G-equivariantly homotopy
equivalent to { a }, with a as indicated in Figure 7.1. Similarly B is equivariantly homo-
topy equivalent to { b }, with b indicated in Figure 7.1. Both of these spaces therefore

1For a formal explanation, one needs to develop Remark 3.8 further; see, e.g., Stehouwer [39, App. A].
2In the case R2 = −1, the lower-degree KR-groups do not agree with the ones we compute in Section 7.4.

This demonstrates that the condition on τ cannot be omitted from Corollary 6.16.
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σa b

x

y

Figure 7.1: The action of the involution σ on the one-dimensional Brillouin zone, viewed
as a circle. It fixes the points labelled a and b, and reverses those labelled x
and y.

have the K-theory of a point, which we can calculate using the twisted representation
rings from Section 5.4.

The intersection A ∩ B is equivariantly homotopy equivalent to { x, y }. This space
also has the K-theory of a point, but with a different group: the stabiliser of x. Through-
out this chapter we denote this stabiliser by H. Notice then that { x, y } ∼= G/H as
G-equivariant spaces.

�� Proposition 7.3. Let (G, ϕ, τ, c) be a finite extended quantum symmetry group. Let H ⊆ G
be a subgroup. Give G/H the discrete topology. Then for all n ∈N0, we have an isomorphism

ϕK(τ,c)−n
G (G/H) ∼= ϕK(τ,c)−n

H (pt).

For n = 0, this isomorphism is given by [E] 7→ [EH ].

Proof. See Stehouwer [39, Lem. 3.72]. �

Remark 7.4. Note that when we pass to twisted H-equivariant twisted K-theory in the
above, we have to restrict ϕ, τ and c to H. Because this would clutter the notation we
have left this implicit, which we will do in the remainder of this chapter also.

In light of the above, the Mayer–Vietoris exact sequence takes the form

· · · ϕK(τ,c)−n
G (S1) ϕK(τ,c)−n

G (pt)⊕ ϕK(τ,c)−n
G (pt) ϕK(τ,c)−n

H (pt)

· · · ϕK(τ,c)−n+1
H (pt) ϕK(τ,c)−n+1

G (pt)⊕ ϕK(τ,c)−n+1
G (pt) ϕK(τ,c)−n+1

G (S1).

δ

δ

δ

Theorem 5.33 tells us that we can compute the K-groups of a point using the twisted
representation ring of the group. This motivates the following general procedure to
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A B

Figure 7.2: The definition of the closed subsets A and B of the circle. Both sets are
symmetric under reflection over the x-axis.

compute ϕKτ,c
G (S1). First one computes the twisted group algebras of H and G. The

K-theories of a point can then be derived from these. Afterwards one computes some
of the maps in the Mayer–Vietoris sequence in case this is needed to give a unique
answer. As we will see, this last step is not always needed, and sometimes we can even
get around using the Mayer–Vietoris sequence altogether.

7.2. TRIVIAL POINT GROUP

Previously we argued why we can use Corollary 6.16 in the case R2 = 0. This now
means that, to classify all topological phases protected by this point group, we have to
compute

K−q(S1) and K R−q(S1) for all q.

This is especially simple because the circle is itself a suspension. The arguments for
this are very similar to the ones in Section 1.5. In that section we already stated that
K(S1) ∼= Z. Notice that K̃−1(S1) = K−2(pt) ∼= Z, so by Proposition 1.20 we find

K−1(S1) ∼= K̃−1(S1)⊕ K−1(pt) ∼= Z ⊕ 0 = Z.

In short, we have
K(S1) ∼= Z and K−1(S1) ∼= Z.

For the KR-groups, the Real involution on S1 is given by σ, as noted in Corollary 6.16.
The action of σ is to mirror the circle. In the language of Section 2.2.2, this makes
the circle equal to S1,1. Notice that this is Σ1,0(pt+). The proof of Proposition 1.20
immediately generalises to KR-theory, so for all q we have an isomorphism

K R−q(S1,1) ∼= K̃ R−q(S1,1)⊕ K R−q(pt).

The reduced KR-group of S1,1 is a KR-group of a point:

K̃ R−q(S1,1) = K̃ R−q(Σ1,0(pt+)) = K R−q+1(pt).
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The KR-theory of a point is the KO-theory of a point (see Example 2.11), so

K R−q(S1,1) ∼= K O−q+1(pt)⊕ K O−q(pt).

By plugging in the KO-theory of a point from Equation (1.6.1) we find the following
table for the KR-theory of S1,1.

q 0 1 2 3 4 5 6 7
K R−q(S1,1) Z Z ⊕Z2 Z2

2 Z2 Z Z 0 0

7.3. UNTWISTED REFLECTION

When R2 = +1, we have that P ∼= Z2. Again, as explained above, in the case R2 = +1
we can also use Corollary 6.16, meaning we have to compute the P-equivariant K- and
KR-theory of the circle:

K−q
P (S1) and K R−q

P (S1) for all q.

However, the previous suspension argument breaks down because the circle has a
nontrivial group action. We shall therefore resort to using the Mayer–Vietoris sequence
as described above.

Complex K-theory. Notice that the stabiliser of the point x on the circle is trivial,
meaning A ∩ B has the normal K-theory of a point. Therefore, as outlined above, we
need the Z2-equivariant K-theory and the normal K-theory of a point. The K-theory
of a point is given by Equation (1.5.1). For the Z2-equivariant K-theory of a point we
may use the twisted representation rings from Section 5.4: twisted K-theory reduces
to ordinary K-theory when the twists are trivial. This was actually already done in
Example 5.39, which found

R−q(P) ∼= (K−q(pt))2 ∼=
{

Z2 q even,

0 q odd.

Because equivariant K-theory is two-fold periodic (Axiom (7) in Section 1.4, see also
Section 2.1), the Mayer–Vietoris sequence becomes periodic also:

KP(S
1) KP(A)⊕ KP(B) KP(A ∩ B)

K−1
P (A ∩ B) K−1

P (A)⊕ K−1
P (B) K−1

P (S1).

Notice that only the vertical maps change the degree. The map KP(A ∩ B)→ K−1
P (S1)

decreases it instead of increasing it because of the identification of degrees +1 and −1.
Plugging in what we have found, this reduces to

KP(S
1) Z2 ⊕Z2 Z

0 0 K−1
P (S1).

ψ

88



We need to calculate the map ψ under the above isomorphisms. This case is simple
enough that we can do this as follows. The first component of Z2 under the iso-
morphism KP(A) ∼= Z2 represents the dimension of the bundle over A, and similarly
for B. Recall from Section 1.4 that the map ψ is induced as follows. The inclusion
map A ∩ B ↪→ A induces the restriction map KP(A) → KP(A ∩ B), and similarly for
KP(B) → KP(A ∩ B). The map ψ is the difference of these two maps. The isomorph-
ism KP(A ∩ B) ∼= K(pt) from Proposition 7.3 is by taking the fibre over the point x.
We know that the isomorphism K(pt) ∼= Z is given by the dimension of the bundle.
Therefore ψ is given by

ψ : Z2 ⊕Z2 −→ Z : (a, b, c, d) 7−→ a− c.

From this we finally conclude

KP(S
1) ∼= Ker(ψ) ∼= Z3 and K−1

P (S1) ∼= Coker(ψ) = 0.

KR-theory. Here we can use an analogous computation, with the only complication
that we have an eight-fold periodicity instead of a two-fold one. Therefore the Mayer–
Vietoris sequence becomes much longer, but is still of a similar form.

K RP(S
1) K RP(A)⊕ K RP(B) K RP(A ∩ B)

K R−7
P (A ∩ B) K R−7

P (A)⊕ K R−7
P (B) K R−7

P (S1)

...

K R−2
P (S1) K R−2

P (A)⊕ K R−2
P (B) K R−2

P (A ∩ B)

K R−1
P (A ∩ B) K R−1

P (A)⊕ K R−1
P (B) K R−1

P (S1)

Here too only the vertical maps change the degree, with only one decreasing it because
of the identification of degrees −7 and +1.

Before we continue, we compute the KR-theories of A, B and A ∩ B. For A and B
this is the Z2-equivariant KR-theory of a point. This is, in particular, a twisted K-group
(see Example 5.6), so we can use the method of twisted group algebras from Section 5.4.
Writing the Real involution as T, notice that the stabiliser of x is H = { 1, RT }. Because
it plays this special role, it is convenient to abbreviate S := RT. Notice that S is
antilinear and that S2 = +1. The corresponding twisted group algebra of G is then

ϕC[G] = R[i, R, S]
/
(i2 = −1, S2 = +1, R2 = +1, Si = −iS, Ri = iR, RS = SR)

∼= |Cliff1,1| ⊗R (R⊕R)
∼= M2(R)⊗R (R⊕R)
∼= M2(R)⊕M2(R),
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where we use i and S to generate |Cliff1,1| and R to generate R⊕R (by the Chinese
remainder theorem). From this we deduce

K R−q
P (pt) ∼= R−q(M2(R)⊕M2(R)) ∼= (K O−q(pt))2.

Because H = { 1, RT }, the twisted group algebra ϕC[H] of H is M2(R), the first
component of ϕC[G]. Therefore we have

K R−q
P (A ∩ B) ∼= K O−q(pt).

Plugging these groups into the Mayer–Vietoris exact sequence yields

K RP(S
1) Z2 ⊕Z2 Z

0 0 K R−7
P (S1)

K R−6
P (S1) 0 0

0 0 K R−5
P (S1)

K R−4
P (S1) Z2 ⊕Z2 Z

0 0 K R−3
P (S1)

K R−2
P (S1) Z2

2 ⊕Z2
2 Z2

Z2 Z2
2 ⊕Z2

2 K R−1
P (S1).

ψ0

ψ4

ψ2

ψ1

Two of the KR-groups of the circle we can immediately read off:

K R−6
P (S1) = 0 and K R−5

P (S1) = 0.

To determine the remaining ones, we need expressions for the maps ψ0, ψ1, ψ2 and ψ4

indicated in the diagram. Because we used twisted group algebras, we can compute all
of these simultaneously. For we know that ϕC[G] is M2(R)⊕M2(R), and that ϕC[H]

is simply the first component M2(R) of this. On twisted representation rings therefore,
the inclusion map ϕC[H] ↪→ ϕC[G] induces the projection onto the first component.
Notice that the maps K R−q

P (A)→ K R−q
P (A ∩ B) and K R−q

P (B)→ K R−q
P (A ∩ B) both

equal this induced map. This means that ψ0 and ψ4, under these isomorphisms, are
given by

Z2 ⊕Z2 −→ Z : (a, b, c, d) 7−→ a− c,
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and that ψ1 and ψ2 are given by

Z2
2 ⊕Z2

2 −→ Z2 : (a, b, c, d) 7−→ a− c.

Computing the remaining KR-groups is now an easy exercise in exact sequences,
resulting in the following table.

q 0 1 2 3 4 5 6 7
K R−q

P (S1) Z3 Z3
2 Z3

2 0 Z3 0 0 0

7.4. TWISTED REFLECTION

Corollary 6.16 does not apply in the case R2 = −1, so all K-groups have to be computed
separately. Before we do so, let us comment upon some general trends.

Because the reflection R squares to −1, it generates an algebra isomorphic to C. The
grading here agrees as well, since R is even (point group symmetries do not reverse
particles and holes) and because of our convention that all elements of C are even.
Note that R commutes with all other symmetries, and also with i. Finally, notice that
G/H ∼= { 1, R }. These considerations imply that the superalgebra ϕCτ,c[G] will always
be the complexification of the superalgebra ϕCτ,c[H] with R acting as the imaginary
unit. We will see this more concretely below. Because of this relationship, it is most
fruitful to first determine ϕCτ,c[H], and afterwards find ϕCτ,c[G] by taking the tensor
product with C.

A particle-hole reversing symmetry will give rise to an odd element in ϕCτ,c[G].
Thus only in symmetry classes with particle-hole reversing symmetries do we have
to worry about the superalgebra structure of ϕCτ,c[G]. If we can recognise the tensor
product with a Clifford algebra in this, then this will result in a degree shift according
to Proposition 5.36. Classes without particle-hole symmetry will not have any degree
shift take place (cf. Remark 5.37).

We have organised the different classes here in order of increasing complexity. Some
steps or details will repeat themselves; we shall omit these if they have been explained
before.

Classes A and AIII. These classes are actually the same as their R2 = +1 counterpart,
because there are no antilinear symmetries present. Formally, define R̃ := iR, then
we have R̃2 = i2 · R2 = +1. Using R̃ instead of R gives isomorphic groups, even in
the presence of chiral symmetry (which is complex-linear). Thus the situations are the
same, in particular yielding the same invariants.

Class AI. In addition to R, in this class there is one additional symmetry: time-reversal
T with T2 = +1. Remember that time-reversal is antilinear. Notice that H = { 1, RT }.
If we write S := RT, then S is antilinear and S2 = −1. Therefore we have

ϕCτ[H] ∼= R[i, S]/(i2 = S2 = −1, Si = −iS) ∼= H,
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implying

ϕKτ−q
G (A ∩ B) ∼= ϕKτ−q

H (pt) ∼= R−q(H) ∼= K Q−q(pt) ∼= K O−q−4(pt).

Notice that T and R together generate the same elements as S and R. We may therefore
without harm work with S instead of T for ϕCτ[G] also:

ϕCτ[G] = R[i, R, S]
/
(i2 = R2 = S2 = −1, Si = −iS, Ri = iR, RS = SR)

∼= C⊗R
ϕCτ[H] ∼= C⊗R H ∼= M2(C).

From this we conclude

ϕKτ−q
G (pt) ∼= ϕRτ−q(G) ∼= R−q(M2(C)) ∼= K−q(pt).

Part of the Mayer–Vietoris exact sequence now reads

0 ϕKτ
G(S

1) Z2 Z.
ψ

It is not hard to see that ψ is not the zero map. Hence its kernel is isomorphic to Z,
making us conclude

ϕKτ
G(S

1) ∼= Z.

Class AII. This class is similar to the previous one, only having T2 = −1 instead.
Again writing S := RT, we now have S2 = +1, so

ϕCτ[H] = R[i, S]/(i2 = −1, S2 = +1, Si = −iS) ∼= |Cliff1,1| ∼= M2(R),

so that
ϕKτ−q

G (A ∩ B) ∼= ϕRτ−q(H) ∼= R−q(M2(R)) ∼= K O−q(pt).

Similarly to the previous case, the twisted group algebra of G is

ϕCτ[G] = R[i, R, S]/(i2 = R2 = −1, S2 = +1, Si = −iS, Ri = iR, RS = SR)
∼= C⊗R

ϕCτ[H] ∼= M2(C),

so we find
ϕKτ−q

G (pt) ∼= K−q(pt).

Accordingly, the K-group of the circle fits into the exact sequence

0 Z2
ϕKτ

G(S
1) Z2 Z.

ψ

Again ψ is nonzero, so its kernel is isomorphic to Z. Therefore ϕKτ
G(S

1) fits into a short
exact sequence

0 Z2
ϕKτ

G(S
1) Z 0,

which must split because Z is free, ergo

ϕKτ
G(S

1) ∼= Z ⊕Z2.
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Class C. Here we have particle-hole reversal C that squares to −1. Particle-hole
reversal is odd and antilinear. If we write U := RC, then H = { 1, U }. As U2 = +1,
we therefore have

ϕCτ,c[H] = R[i, U]/(i2 = −1, U2 = +1, Ui = −iU),

where U is odd and i is even. If i were odd, we could recognise a Clifford algebra here.
We can make it odd as follows: define j := iU, then j is odd and j2 = iUiU = −i2U2 =

+1. Notice that j and U anticommute and generate the same elements as i and U do.
Consequently we may without harm replace i with j. Together these generate Cliff0,2,
so by Proposition 5.36,

ϕK(τ,c)−q
G (A ∩ B) ∼= ϕR(τ,c)−q(H) ∼= R−q(Cliff0,2) ∼= R−q−2(R) ∼= K O−q−2(pt).

We once again find that ϕCτ,c[G] is simply the complexification of ϕCτ,c[H]:

ϕCτ,c[G] = R[i, R, U]
/
(i2 = R2 = −1, U2 = +1, Ui = −iU, Ri = iR, RU = UR)

∼= C⊗R
ϕCτ,c[H] ∼= Cliff2 .

Note that this is an isomorphism of superalgebras because R is an even element. This
means that

ϕR(τ,c)−q(G) ∼= R−q(Cliff2) ∼= R−q−2(C) ∼= K−q−2(pt) ∼= K−q(pt),

and plugging these results into the Mayer–Vietoris exact sequence, we find

0 ϕKτ,c
G (S1) Z2 Z2.

ψ

Whatever ψ may be, its kernel is always isomorphic to Z2; this means

ϕKτ,c
G (S1) ∼= Z2.

Class D. This is similar to the previous class, but now we have C2 = +1. Hence,
using the same procedure as before,

ϕCτ,c[H] ∼= R[i, U]/(i2 = U2 = −1, Ui = −iU) ∼= Cliff2,0,
ϕCτ,c[G] ∼= C⊗R

ϕCτ,c[H] ∼= Cliff2 .

Therefore we get

ϕK(τ,c)−q
G (A ∩ B) ∼= R−q(Cliff2,0) ∼= K O−q+2(pt) ∼= K O−q−6(pt),

ϕK(τ,c)−q
G (pt) ∼= R−q(Cliff2) ∼= K−q(pt).

The Mayer–Vietoris sequence reads

0 ϕKτ,c
G (S1) Z2 0,

which means
ϕKτ,c

G (S1) ∼= Z2.
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Class BDI. This class has both time-reversal and particle-hole symmetry, with T2 =

C2 = +1. It is the easiest to work with U := RC, and S := iTC, and j := iRC. Then
U, S and j together generate ϕCτ,c[H], whereas R, U and S and j generate ϕCτ,c[G].
Note that U, S, and j are all odd, and that U2 = S2 = j2 = −1. Lastly, these three all
anticommute with each other. Therefore

ϕCτ,c[H] = R[j, U, S]
/
(j2 = U2 = S2 = −1, Sj = −jS, Uj = −jU, SU = −US)

∼= Cliff3,0 .

Analogously to previous cases, because R commutes with everything and R2 = −1,
we have

ϕCτ,c[G] ∼= C⊗R
ϕCτ,c[H] ∼= Cliff3 .

This means that

ϕK(τ,c)−q
G (A ∩ B) ∼= R−q(Cliff3,0) ∼= K O−q+3(pt) ∼= K O−q−5(pt),

ϕK(τ,c)−q
G (pt) ∼= R−q(Cliff3) ∼= K−q+3(pt).

As such, Mayer–Vietoris reads

0 ϕKτ,c
G (S1) 0,

so we conclude
ϕKτ,c

G (S1) = 0.

Class DIII. With T2 = −1 and C2 = +1, the first calculations in this class are very
similar to the previous one. We again write U := RC, and S := iTC, and j := iRC. The
only difference compared to class BDI is that we now have U2 = j2 = −1 and S2 = +1.
As such,

ϕCτ,c[H] ∼= Cliff2,1,
ϕCτ,c[G] ∼= C⊗R

ϕCτ,c[H] ∼= Cliff3,

so that
ϕK(τ,c)−q

G (A ∩ B) ∼= R−q(Cliff2,1) ∼= K O−q+1(pt),
ϕK(τ,c)−q

G (pt) ∼= R−q(Cliff3) ∼= K−q+1(pt).

Mayer–Vietoris now reads

Z2 Z ϕKτ,c
G (S1) 0.

ψ

We can no longer uniquely determine ϕKτ,c
G (S1) from the shape of this sequence alone,

so we have to compute the map ψ. Recall that ψ is induced as follows. For each q, the
inclusion A ∩ B ↪→ A induces a map ϕK(τ,c)−q

G (A) → ϕK(τ,c)−q
G (A ∩ B), and similarly

for A ∩ B ↪→ B. The map ψ is the difference of the induced maps belonging to q = 1.
But both of these maps in degree −q equal the map

R−q+1(C) −→ R−q+1(R)
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induced by the inclusion R ↪→ C. The degree shift of +1 is because ϕCτ,c[H] ∼= Cliff2,1.
For q = 1 this is R(C) → R(R). Notice that this is simply the map K(pt) → K O(pt)
given by sending a complex vector space to its underlying real vector space. As such it
is multiplication by 2 as a map Z → Z. So ψ is given by (a, b) 7→ 2(a− b), meaning
that it has cokernel Z2, so

ϕKτ,c
G (S1) ∼= Z2.

Class CI. Now that T2 = +1 and C2 = −1, the same arguments as above apply, only
with some differing minus signs. Still writing U := RC, and S := iTC, and j := iRC,
we have U2 = S2 = j2 = +1. This means

ϕCτ,c[H] ∼= Cliff0,3,
ϕCτ,c[G] ∼= Cliff3;

ϕK(τ,c)−q
G (A ∩ B) ∼= K O−q−3(pt),

ϕK(τ,c)−q
G (pt) ∼= K−q−3(pt).

Plugging this into Mayer–Vietoris yields

Z2 Z ϕKτ,c
G (S1) 0.

ψ

Like before, the maps induced by A ∩ B ↪→ A and A ∩ B ↪→ B in degree −q both equal
the map

R−q−3(C) −→ R−q−3(R)

induced by R ↪→ C. Using the theory of Atiyah, Bott, and Shapiro [5, §5] one may
explicitly calculate that this map is the identity map Z → Z when q = 1. The map ψ is
therefore given by (a, b) 7→ a− b, meaning it is surjective, so

ϕKτ,c
G (S1) = 0.

Class CII. In this class, T2 = C2 = −1. In the exact same manner, we have

ϕCτ,c[H] ∼= Cliff1,2,
ϕCτ,c[G] ∼= Cliff3;

ϕK(τ,c)−q
G (A ∩ B) ∼= K O−q−1(pt),

ϕK(τ,c)−q
G (pt) ∼= K−q−1(pt).

Mayer–Vietoris now reads

Z2 Z2
ϕKτ,c

G (S1) 0.
ψ

One may compute the map ψ using the same arguments as in class CI, in which case
one finds that it is (a, b) 7→ a− b. Hence we have

ϕKτ,c
G (S1) = 0.
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7.5. DISCUSSION

Our approach to the classification demonstrates that different methods give different
insights into the groups. In the case R2 = 0, each entry is given by the K-group of a
point, plus the K-group of a point shifted by one:

K−q(pt)⊕ K−q−1(pt) or K R−q(pt)⊕ K R−q−1(pt).

This is reminiscent of the use of an equivariant splitting by Stehouwer [39, §4.2, §4.5].
By this method he retrieves the Fu–Kane–Mele invariant (see Section 6.2.2) as

K R−4(T3) ∼= K R−4(pt)⊕ (K R−3(pt))3 ⊕ (K R−2(pt))3 ⊕ K R−1(pt) ∼= Z ⊕Z3
2 ⊕Z2.

This motivates identifying the K-group of a point that has the highest shift as a strong
invariant, and the others as weak invariants (see Section 6.2.2 for a definition of weak
and strong invariants). If we apply this to our case R2 = 0, then the strong invariants
here recover the one-dimensional invariants from Kitaev’s periodic table (Table 6.1).

7.5.1. Band structure combinatorics

However, because we could not use a similar suspension argument for the other point
group types, we cannot distinguish the weak and strong invariants as easily. We can
take the reduced K-theory in each entry, but this does not seem to always remove
all local invariants. For instance, in class A with point group R2 = +1, we have Z3

as the group of invariants. The K-group of a point we calculated to be Z2 in that
case, so the reduced K-group of the circle here is Z. Yet this Z arises because of the
second fixed point of the circle under the reflection. Indeed, a fixed point will have a
representation of Z2 on its fibre, and we calculated that R(Z2) ∼= Z2, where the first
component indicates the dimension. We have two fixed points on the circle, which
might suggest an invariant of Z4. Yet to ensure that the vector bundle has the same
dimension everywhere, the representations must have the same dimension, yielding a
group of Z3, as our method found as well. So in this case there do not seem to be any
strong or non-local invariants, despite the reduced K-theory being nonzero.

This slightly different look at class A with R2 = +1 is an application of the method
called band structure combinatorics introduced by Kruthoff et al. [28]. In this method,
first the fixed points of (subgroups of) the group G are identified. Each point has
a representation of its stabiliser on its fibre, and compatibility conditions then give
the total group of invariants. This method only applies for class A, and is proved to
be correct in dimension one and two.3 We already verified that their method agrees
with ours for R2 = +1, and it is an easy exercise to see that it also does in R2 = 0.
(Remember that R2 = +1 and R2 = −1 are the same case in class A — see Section 7.4.)

Later, Kruthoff et al. [29] extended this method to class AI and AII, i.e., by including
time-reversal, either T2 = +1 or T2 = −1, respectively. They in particular give an
interpretation of this method using transition functions, an interpretation which is
particularly close to our method. In this approach, we cut up the circle into two lines,

3Whether it is always correct in three dimensions will be discussed in the next chapter.
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give each of these lines a vector bundle of the same rank, and glue them back together
using a transition function. This function is a map { x, y } → U(n), with x and y as
indicated in Figure 7.1, with n the rank bundles over the two lines, and U(n) the n× n
unitary matrices. This map should be symmetric under the symmetries we consider,
in this case T and R. Whenever two transition maps are equivariantly homotopic, the
resulting bundles over the circle are isomorphic.

We can already see the striking similarities with the Mayer–Vietoris approach. For
the kernel of the map

ϕKτ
G(A)⊕ ϕKτ

G(B) −→ ϕKτ
G(A ∩ B)

consists precisely of pairs of bundles over A and B which can be glued together. Indeed,
if two vector bundles restrict to the same bundle over A ∩ B, then these come from a
vector bundle over S1. However, in general ϕKτ

G(S
1) does not equal this kernel, for we

have an exact sequence

ϕKτ−1
G (A ∩ B) −→ ϕKτ

G(S
1) −→ ϕKτ

G(A)⊕ ϕKτ
G(B) −→ ϕKτ

G(A ∩ B).

So if ϕKτ−1
G (A ∩ B) 6= 0, there does not need to be a unique way to glue two vector

bundles over A and B together. This reflects the fact that not all transition functions are
homotopic.

7.5.2. General weak and strong invariants

The above consideration actually gives us a method to distinguish between weak and
strong invariants in all one-dimensional cases. For in all cases, we got a splitting

ϕKτ,c
G (S1) ∼= Ker(ϕKτ,c

G (A)⊕ ϕKτ,c
G (B)→ ϕKτ,c

G (A ∩ B))
⊕Coker(ϕK(τ,c)−1

G (A)⊕ ϕK(τ,c)−1
G (B)→ ϕK(τ,c)−1

G (A ∩ B)).
(7.5.1)

The kernel part is the same as a consistent assignment of invariants to the points a and b.
The cokernel is a global invariant: it measures how the two ‘halves’ of a vector bundle
are glued together. In other words, the kernel consists of weak invariants, and the
cokernel of strong invariants. Because we used the Mayer–Vietoris approach for both
R2 = +1 and R2 = −1, this allows one to quickly recognise the strong invariants in all
of these cases. Doing this, one finds that the R2 = +1 case has only weak invariants,
and for the R2 = −1 case we have a strong Z2-invariant in classes AII and DIII. By
using the Mayer–Vietoris approach for the R2 = 0 cases, one can see that this method
of differentiating weak and strong invariants yields the same distinction as the method
described above for the R2 = 0 case.

It should be noted that in this case, the Mayer–Vietoris approach is also very similar
to the approach using spectral sequences. In fact, it seems to even coincide with the
spectral sequence approach. The splitting from Equation (7.5.1) is the same type of
splitting obtained there. We do not go into detail about this here, but note that in the
next chapter we will use a simplified version of the spectral sequence.
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8SPACE GROUP F222

In Section 7.5, we discussed a method to calculate topological phases in class A called
band structure combinatorics, introduced by Kruthoff et al. [28] in 2017. We remarked
that in one and two dimensions, this method is proved to yield the correct result. In
three dimensions there is a subtlety, which is illustrated by the three-dimensional space
group F222. In 2018, Shiozaki et al. [38, p. 25] found that it has Z7 ⊕Z2 as its group of
invariants. Band structure combinatorics does not detect this particular Z2-invariant.
Nonetheless, some doubt hangs over this result because McAlister [32, §5.6] instead
found Z7, although he used a completely different method. Moreover, Shiozaki et al.
do not give many details on their computation.

In this chapter we verify the result of Shiozaki et al. in more detail. We use the
Atiyah–Hirzebruch spectral sequence, which was particularly simplified by Stehouwer
et al. [40, §4.3] for class A invariants. With this simplification, we do not have to make
explicit mention of spectral sequences, but can instead use only Bredon cohomology to
arrive at our result. In Section 8.1 we describe this theory, but in a drastically simplified
version for the sake of brevity. To use this theory, one needs to know the representation
rings of all the subgroups of the point group, and one needs to study the Brillouin
zone in further detail. We study these things in Sections 8.3 and 8.4, respectively. In
Section 8.5 we compute the K-group of the Brillouin zone of F222.

8.1. BREDON EQUIVARIANT COHOMOLOGY

Bredon equivariant cohomology is a method of studying equivariant spaces by studying
points only. More precisely, it studies G-equivariant CW complexes by considering G-
equivariant points. We discuss the latter concept first.

We know from Example 2.2 that KG(pt) ∼= R(G). For the space G/H of cosets of H
(under the discrete topology) we have an analogous result, as follows.

�� Proposition 8.1. Let G be a finite group and let H be a finite subgroup of G. Give G/H the
discrete topology. Then we have a ring isomorphism

KG(G/H) ∼−→ R(H) : [E] 7−→ [E1·H ].

Proof sketch. If V is a complex H-representation, then the group H acts on the space
G×V by

(h, (g, v)) 7−→ (h · g, h · v).
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The quotient (G×V)/H is a G-equivariant vector bundle over G/H. The assignment
[V] 7→ [(G×V)/H] is a two-sided inverse to the given map. �

This motivates one to think of G/H not as a collection of points, but as one ‘equivari-
ant point’: a point with a G-action on it. The stabiliser of the equivariant point G/H
is then H. Briefly said, G-equivariant CW complexes are spaces that are built out of
equivariant cells. To grasp this concept, first consider the following example.

Example 8.2. The circle can be made by taking two points, and gluing two lines
between these points, as follows.

A formal way to see this is as follows. First, define X0 = { a, b } to be a discrete set
on two points. Then we consider the disjoint union X0 t `0 t `1 of X0 with two
lines `0 and `1.

`0

`1

a b

The quotient of this space identifying a with the left endpoints of both `0 and `1,
and b with the other endpoints of `0 and `1, is (homeomorphic to) the circle.

We can turn the circle into a Z2-equivariant space by the mirroring described
in Figure 7.1. This group action behaves well with this decomposition into points
and lines: it keeps the points a and b fixed, while it reverses the lines `0 and `1.

We generalise the idea presented in this example. The n-cell Dn is the topological
space

Dn := { x ∈ Rn | ‖x‖ ≤ 1 }.

More concretely, for n = 0 this is a point, for n = 1 this is a line, and for n = 2 this is a
disk. We have ∂Dn = Sn−1, the (n− 1)-sphere. A CW complex is a topological space
X that is constructed as follows. One starts with a discrete set of points X0. One forms
Xn+1 by gluing a number of (n + 1)-cells along their boundary to Xn. The smallest n
for which X = Xn is called the dimension of the CW complex.1 If each cell is given an
orientation,2 the CW complex is called oriented. More information, along with a more
elaborate definition of CW complexes, may be found in, e.g., Hatcher [16, Ch. 0, App.].
Notice that every n-cell is contractible, so in particular has the K-theory of a point.

1Infinite-dimensional CW complexes are also possible. As a set these are simply
⋃

n Xn; their topology is
described by, e.g., Hatcher [16, Ch. 0]. They will not appear in this work.

2An orientation of a point (i.e., a 0-cell) is a sign, +1 or −1.
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Similar to equivariant points, the G-equivariant space

(G/H)×Dn,

with G acting trivially on the component Dn, should be thought of as an equivariant
n-cell. This space is equivariantly homotopy equivalent to G/H, because G acts trivially
on Dn and because Dn is contractible. In particular, the space has the G-equivariant
K-theory of G/H. A G-equivariant CW complex is an oriented CW complex where the
group action comes from using equivariant n-cells in the construction of the complex,
and where the orientations are compatible with the G-action. A more detailed definition
of a G-equivariant CW complex is given by Bredon [6, §1.1] and is summarised by
Stehouwer [39, App. C.2].

In a certain sense therefore, a G-equivariant CW complex is built out of equivariant
points only, because equivariant n-cells have the same homotopy type as equivariant
points. But this does not mean the K-theory of an equivariant CW complex is the direct
sum of the K-theory of its cells, as even Example 8.2 illustrates. For the K-group of the
circle is Z (see Section 1.5), whereas if we sum the K-groups of the cells in the circle (of
which there are four), we would get Z4. The reason it is not this simple is because there
are ‘gluing conditions’: a bundle over the circle must have constant rank, so we cannot
independently assign Z to each of the cells. The formal tool that incorporates these
gluing conditions is Bredon equivariant cohomology. We have simplified the following
definitions to only apply only to our case; in particular, we only discuss finite abelian
groups. The original definition was given by Bredon [6]; for a concise summary, see
Stehouwer [39, App. C.3].

Definition 8.3. Let G be a finite abelian group and let X be a G-equivariant CW
complex. Denote by Cn(X) the set of (non-equivariant) n-cells of X. An n-dimensional
G-cochain is a map

f : Cn(X) −→
⊔

H⊆G

R(H),

with H running over all subgroups of G, satisfying the following conditions.

(i) For all σ ∈ Cn(X), we have f (σ) ∈ R(Gσ), with Gσ the stabiliser of σ.

(ii) For all g ∈ G and σ ∈ Cn(X), we have f (g · σ) = f (σ).

We write Cn
G(X) for the set of n-dimensional G-cochains on X.

Remark 8.4. Condition (ii) has been changed the most compared to Bredon’s original
definition. Our modification requires G to be abelian: this guarantees that σ and g · σ
have the same stabiliser.

Notice that every Cn
G(X) forms an abelian group under the operation ( f + f ′)(σ) :=

f (σ) + f ′(σ). We have a cochain complex3

0 C0
G(X) C1

G(X) · · · Cn
G(X) Cn+1

G (X) · · · ,d d d d d

3I.e., a chain complex where the differentials increase the degree instead of decreasing it.
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with differential given as follows. First, note that if an n-cell τ lies on the boundary of an
(n + 1)-cell σ, then we have Gσ ⊆ Gτ. Thus we have a restriction map R(Gτ)→ R(Gσ)

induced by restricting representations. We denote the image of an element V ∈ R(Gτ)

under this map by V
∣∣
Gσ

. If f ∈ Cn
G(X), then d f ∈ Cn+1

G (X) is given by

(d f )(σ) := ∑
τ∈Cn(X)

[τ : σ] · f (τ)
∣∣
Gσ

. (8.1.1)

This lies in R(Gσ) and is hence well-defined. Here the symbol [τ : σ] is 0 if τ does not
lie on the boundary of σ, and otherwise is ±1 depending on the orientation of the cell
σ. For instance, if ` = D1 is the 1-cell with standard orientation, then [+1 : `] = +1
and [−1 : `] = −1. If f is then a zero-dimensional G-cochain, we have in this case

(d f )(`) = f (+1)
∣∣
G`
− f (−1)

∣∣
G`

.

It is quickly verified that these differentials are group homomorphisms. We have d2 = 0
because the boundary of a boundary is zero.

Definition 8.5. Let G be a finite abelian group and let X be a G-equivariant CW
complex. The n-th cohomology group of the above cochain complex is called the
Bredon G-equivariant cohomology group in degree n of X, and is denoted by Hn

G(X).
In other words, it is the quotient

Hn
G(X) :=

Ker(d : Cn
G(X)→ Cn+1

G (X))

Im(d : Cn−1
G (X)→ Cn

G(X))
.

Remark 8.6. Bredon’s definition does not use the representation rings, but rather uses
an arbitrary functor F that assigns abelian groups to equivariant points. In that case
the Bredon cohomology groups are denoted by Hn

G(X, F). As such, what we denote
by Hn

G(X) is usually denoted by Hn
G(X,RG). HereRG denotes the functor that maps

G/H to R(H); its action on maps is described by Stehouwer [39, §3.9]. Because we do
not describe this more general theory, we have modified the notation accordingly.

In contrast to the naive approach from before, Bredon cohomology does allow us
to compute K-groups. This is proved using the Atiyah–Hirzebruch spectral sequence,
resulting in the following.

�� Theorem 8.7 (Class A, 3D). Let G be an abelian group, and let X be a three-dimensional
G-equivariant CW complex. Then we have an isomorphism

KG(X) ∼= H0
G(X)⊕ H2

G(X).

Proof. See Stehouwer et al. [40, §4.3]. �

Remark 8.8. In the above isomorphism, the group H0
G(X) captures zero-dimensional

invariants, whereas H2
G(X) captures two-dimensional invariants. For Cn

G(X) consists
of maps that assign representations to n-cells, and Hn

G(X) is a subquotient of this group.
Note that this splitting is very similar to the splitting discussed in Section 7.5.2 and
summarised in Equation (7.5.1).
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8.2. THE GROUP F222

Up to isomorphism, there are 230 different three-dimensional space groups (see Defin-
ition 4.4 for the definition of a space group). One of these is F222, the 22nd in the
International Table for Crystallography [20]. It is a symmorphic space group, generated
by the translations

u1 :=


0
1
2
1
2

 , u2 :=


1
2

0
1
2

 , u3 :=


1
2
1
2

0

 ,

and rotations

Rx :=

1 0 0
0 −1 0
0 0 −1

 , Ry :=

−1 0 0
0 1 0
0 0 −1

 , Rz :=

−1 0 0
0 −1 0
0 0 1

 .

In other words, Rx is the rotation of 180 degrees around the x-axis, and similarly for
Ry and Rz. The point group is thus { 1, Rx, Ry, Rz }, which is the Klein four-group V4

(notice that Rz = RxRy = RyRx). This explains the ‘222’ in the name F222: around the x,
y and z-axes we each have a rotation of order 2. The lattice Π spanned by { u1, u2, u3 }
is face-centred cubic (FCC), illustrated in Figure 8.1a. This explains the ‘F’ in the name
F222.

8.3. REPRESENTATION RINGS

We shall henceforth denote the point group of F222 by G. It has five different subgroups:
the trivial ones { 1 } and G, and

Hx := { 1, Rx }, Hy := { 1, Ry }, Hz := { 1, Rz }.

In Bredon cohomology, we see the representation rings of subgroups of G appear, as
well as restriction maps between them. We therefore determine all of these for the
group G. The quickest method to this end is to compute the representation rings using
group algebras. We have

C[G] =
C[Rx, Ry, Rz]

(R2
x − 1, R2

y − 1, Rz − RxRy)
∼= C4,

as follows from the Chinese remainder theorem. Hence R(G) ∼= Z4 by Theorem 5.38.
It also shows that R(Hx) ∼= R(Hy) ∼= R(Hz) ∼= Z2 by considering the corresponding
subalgebras of C[G]. However, the restriction maps are different:

πx : R(G) −→ R(Hx) : (a, b, c, d) 7−→ (a, b),

πy : R(G) −→ R(Hy) : (a, b, c, d) 7−→ (a, c),

πz : R(G) −→ R(Hz) : (a, b, c, d) 7−→ (a, d).

Lastly, we have R({ 1 }) ∼= Z, with all restriction maps being the projection onto the
first component. In the remainder of this chapter we will view all the representation
rings under the above isomorphisms.
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(a) A cube representing a face-centred cu-
bic (FCC) lattice. Lattice points are
found on the corners of the cube, and
in the middle of each face.

(b) A cube representing a body-centred cu-
bic (BCC) lattice. Lattice points are
found on the corners of the cube, and
in the middle of the body of the cube.

Figure 8.1: The cubes representing the FCC and BCC lattices. In both cases, the entire
lattice can be reconstructed by filling all of space by repeating the cube.

8.4. THE BRILLOUIN ZONE

Recall from Definition 4.7 that the Brillouin zone XΠ is the quotient of (R3)∗ by the
reciprocal lattice Π∗ (i.e., the set Hom(Π, 2πZ) of group homomorphisms from Π to
2πZ). To make later discussion easier, we identify (R3)∗ and R3 via

R3 ∼−→ (R3)∗ : x 7−→ 2π · 〈x, ·〉,

where 〈·, ·〉 denotes the default inner product on R3. The factor 2π appears here to
prevent it from appearing anywhere else in this chapter. The reciprocal lattice Π∗ is the
lattice spanned by linear functionals f1, f2, f3 satisfying fi(uj) = 2πδij. Thus, under our
identification, these are vectors v1, v2, v3 ∈ R3 such that 〈vi, uj〉 = δij. This is the same
as finding the rows of the inverse of the matrix4

[
u1 u2 u3

]
=


0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

 ,

which are quickly found to be

v1 =

−1
1
1

 , v2 =

 1
−1

1

 , v3 =

 1
1
−1

 .

The lattice Π′ ⊆ R3 spanned by { v1, v2, v3 } is body-centred cubic (BCC), as illustrated
in Figure 8.1b. Note however that the cube shown there has sides of length 2, not 1.

Recall from Section 4.2.1 that we defined the action of a point group P on the Brillouin
zone by, for k ∈ XΠ and R ∈ P,

(R, k) 7−→ (R∗)−1(k),
4The formulas for reciprocal lattice vectors commonly used in condensed matter literature (see, e.g.,

Hook and Hall [19, Eq. (11.9)]) describe precisely this, up to a factor of 2π.
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with R∗ denoting the dual map. Under our identification (R3)∗ ∼= R3 the dual map of
a matrix is the same as the transpose of the matrix. The matrices Rx, Ry and Rz are all
symmetric and their own inverse. Therefore the action on R3 through the isomorphism
(R3)∗ ∼= R3 is given by the same matrices. In other words, the action of the point group
G on reciprocal space is also by rotations over 180 degrees around the x, y and z-axes.

8.4.1. CW structure

We give the Brillouin zone the structure of a G-equivariant CW complex. To make things
easier, we work with the quotient R3/Π′ (with Π′ as above), which we previously
argued is equivariantly isomorphic to (R3)∗/Π∗. First of all, notice that every point in
the quotient R3/Π′ is equivalent to a point in the cube shown in Figure 8.1b. Thus we
only have to consider that region. Notice however that the unit cube is not a primitive
unit cell5 because of the lattice point in the middle of the cube. This means that every
point in R3 is also equivalent to a point in the left-half of this cube (i.e., all points with
0 ≤ x < 1). Notice that this has volume 4 (bear in mind that the cube in Figure 8.1b has
side-length 2).

Our CW structure will be based around the unit cube highlighted red in Figure 8.2a.
We denote this volume by V . In Figure 8.2b we label the vertices of this smaller cube:

Γ =

0
0
0

 , A =

1
0
0

 , B =

0
1
0

 , M =

1
1
0

 .

Notice that the points Γ, A, B and M are all fixed by all elements of G. For example, we
have

RxB =

 0
−1

0

 ∼
0

1
0

 = B,

because the vector [0 2 0] lies in the lattice Π′ (it is v1 + v3). In the terminology of
Section 8.1, they are all equivariant points with stabiliser G.

In Figure 8.2b we label the edges of V . There are twelve lines in total, but these make
up six equivariant lines. Indeed, a and a′ make up the same equivariant line, for Ry

reverses them. Notice that a has Hx = { 1, Rx } as its stabiliser, so { a, a′ } is the entire
orbit of a. A similar consideration applies to the other lines. Notice that in Figure 8.2b
we have given these lines an orientation that is compatible with the action of G.

Figure 8.2c labels the faces of V . Notice that all of the faces have trivial stabiliser.
The notation is similar to the 1-cells; for instance, α and α′ lie in the same orbit since
α′ = Rz · α, so they are part of the same equivariant 2-cell. However, Figure 8.2c does
not show Rx · α or Ry · α, but it is easy to see where they must lie in Figure 8.2a.

Lastly, V also has trivial stabiliser. Its orbit therefore consists of four 3-cells, which
make up a single equivariant 3-cell. As V has volume 1, its orbit therefore has total
volume 4. By previous comments, this means its orbit is the entire Brillouin zone.

5In more mathematical terminology, a primitive unit cell is a fundamental domain for the lattice.
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(a) The unit cube V , highlighted in red, in
the BCC lattice. By letting the point
group G act on V , it fills the entire cube
depicted here up to lattice vectors from
Π′.

Γ A

M

M

ΓA

B

B

d′

a

c f

c′

a′
e′

b′

eb

d
f ′

(b) The unit cube V with labelled vertices
and edges. Vertices with the same label
are the same point up to a lattice vec-
tor from Π′. The arrows on the edges
indicate their orientation. Edges whose
names differ only by a prime (e.g., a
and a′) lie in the same orbit under the
action of the point group G.

α′

α

γ′

γ

β′β

(c) The unit cube V with labelled faces. The
arrows on the faces indicate the orienta-
tion. Faces whose names differ only by
a prime (e.g., α and α′) lie in the same or-
bit under the action of the point group
G.

Figure 8.2: The CW structure of the Brillouin zone of F222. In total it has four points,
twelve lines, twelve faces, and four volumes. These make up four equivari-
ant points, six equivariant lines, three equivariant faces, and one equivariant
volume.
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8.5. THE CALCULATION

We compute the phases protected by F222 in class A, i.e., without any other symmetries.
If we write G for the point group of F222 and X for the Brillouin zone of F222, then
from Example 6.13 we see that this amounts to computing KG(X). The Brillouin zone
is isomorphic to the G-equivariant CW complex discussed in Section 8.4.1 (which we
will also denote by X). By Theorem 8.7 we can therefore find its G-equivariant K-group
by computing the the Bredon cohomology of this CW complex. This is the cohomology
of the cochain complex

0 C0
G(X) C1

G(X) C2
G(X) C3

G(X) 0.d d d (8.5.1)

Notice that C4
G(X) = 0 because X has no 4-cells (X is three-dimensional). All groups

and differentials have to be determined in order to find the relevant cohomology
groups. We begin with the groups Cn

G(X).

C0
G(X). We have four G-equivariant points in X, all of which have G as their stabiliser.

The representation ring R(G) is Z4. This means there are four independent options for
f (Γ) for a 0-cochain, namely ei ∈ Z4 for i = 1, 2, 3, 4, and similarly for A, B, and M. We
denote by

π
(i)
Γ for i = 1, 2, 3, 4

the equivariant 0-cochain that maps Γ to ei ∈ R(G), and maps all other 0-cells to
0 ∈ R(G). Thus C0

G(X) is isomorphic to

〈π(1)
Γ , π

(2)
Γ , . . . , π

(1)
A , . . . , π

(1)
B , . . . , π

(1)
M , . . . , π

(4)
M 〉Z ∼= Z16.

Here 〈 〉Z denotes the Z-linear span.

C1
G(X). We have six G-equivariant lines, all with Z2 as stabiliser (although not the

same Z2 as a subgroup of G). For instance, the line a has stabiliser Hx. Since R(Hx) ∼=
Z2, this means there are two independent possibilities to assign to a, namely e1 and e2

in R(Hx). We denote by
λ
(i)
a for i = 1, 2

the equivariant 1-cochain that maps a to ei ∈ R(Hx), maps the other line in the orbit of
a to ei also, and maps all other 1-cells to zero. Similarly, b has Hy as stabiliser, but now
we write

λ
(i)
b for i = 1, 3

for the 1-cochain that maps b to e1 and e2 in R(Hy), respectively. This is to reflect the fact
that the restriction map πy : R(G)→ R(Hy) projects onto the first and third component
(see Section 8.3). For the other 1-cells we use similar notation, with i = 1, 4 for lines
with stabiliser Hz. In this way C1

G(X) is isomorphic to

〈λ(1)
a , λ

(2)
a , λ

(1)
b , λ

(3)
b , . . .〉Z ∼= Z12.
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C2
G(X). We have three G-equivariant faces, all with trivial stabiliser. Write ϕα for the

2-cochain that maps α to 1 ∈ Z, maps all faces in the orbit of α to 1 also, and maps the
other faces to 0. We define ϕβ and ϕγ similarly. Then we have

C2
G(X) ∼= 〈ϕα, ϕβ, ϕγ〉Z ∼= Z3.

C3
G(X). There is only one G-equivariant face, which has trivial stabiliser. Therefore

C3
G(X) ∼= Z.

Knowing the groups, we determine the differentials between them.

C0
G(X) → C1

G(X). Looking at the orientation given in Figure 8.2b, we see that
∂a = A− Γ. By the definition of the differential in Equation (8.1.1), this means that

(dπ
(i)
Γ )(a) = π

(i)
Γ (A)

∣∣∣
Ga
− π

(i)
Γ (Γ)

∣∣∣
Ga

= −π
(i)
Γ (Γ)

∣∣∣
Ga

=


−(1, 0) i = 1,

−(0, 1) i = 2,

(0, 0) i = 3, 4.

Here we used that Ga = Hx and that the restriction map πx : R(G) → R(Hx) is the
projection onto the first two components. Similarly we have

(dπ
(i)
Γ )(b) =


−(1, 0) i = 1,

−(0, 1) i = 3,

(0, 0) i = 2, 4;

(dπ
(i)
Γ )(c) =


−(1, 0) i = 1,

−(0, 1) i = 4,

(0, 0) i = 2, 3;

and since Γ does not lie on the boundary of d, e or f , we have

(dπ
(i)
Γ )(d) = (dπ

(i)
Γ )(e) = (dπ

(i)
Γ )( f ) = (0, 0).

The images of these 1-cells uniquely determine any 1-cochain. This makes us conclude

dπ
(1)
Γ = −(λ(1)

a + λ
(1)
b + λ

(1)
c ),

dπ
(2)
Γ = −λ

(2)
a , dπ

(3)
Γ = −λ

(3)
b , dπ

(4)
Γ = −λ

(4)
c .

In the exact same way we find

dπ
(1)
A = λ

(1)
a − λ

(1)
e − λ

(1)
f , dπ

(2)
A = λ

(2)
a , dπ

(3)
A = −λ

(3)
e , dπ

(4)
A = −λ

(4)
f ;

dπ
(1)
B = λ

(1)
b − λ

(1)
d + λ

(1)
f , dπ

(2)
B = −λ

(2)
d , dπ

(3)
B = λ

(3)
b , dπ

(4)
B = λ

(4)
c ;

dπ
(1)
M = λ

(1)
d + λ

(1)
e + λ

(1)
c , dπ

(2)
M = λ

(2)
d , dπ

(3)
M = λ

(3)
e , dπ

(4)
M = λ

(4)
c .
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C1
G(X)→ C2

G(X). Using the orientations indicated in Figure 8.2c, we see that

∂α = a + f + d′ − c,

∂β = b− f ′ + e′ − c,

∂γ = a + e− d− b.

Recall that Gα = { 1 }. This means that

(dλ
(i)
a )(α) = λ

(i)
a (a)

∣∣∣
Gα

=

{
1 i = 1,

0 i = 2;

and analogously

(dλ
(i)
a )(β) = 0, (dλ

(i)
a )(γ) =

{
1 i = 1,

0 i = 2.

Therefore dλ
(1)
a = ϕα + ϕγ and dλ

(2)
a = 0. Similarly, for dλ

(i)
d we find that

(dλ
(i)
d )(α) = λ

(i)
d (d′)

∣∣∣
Gα

=

{
1 i = 1,

0 i = 2;
(dλ

(i)
d )(γ) =

{
−1 i = 1,

0 i = 2.

Notice that this first equality relies on Condition (ii) in Definition 8.3, which implies
that all 1-cochains assign the same value to d and d′. We conclude that

dλ
(1)
d = ϕα − ϕγ and dλ

(2)
d = 0.

In the exact same manner we find

dλ
(1)
b = ϕβ − ϕγ, dλ

(1)
c = −ϕα − ϕβ, dλ

(1)
e = ϕβ + ϕγ, dλ

(1)
f = ϕα − ϕβ,

and the differential of all other generators are zero.

C2
G(X)→ C3

G(X). The volume V pictured in Figure 8.2 has boundary

α− α′ + β− β′ + γ− γ′.

Notice that any 2-cochain must have the same value at α as at α′ because they lie in the
same orbit, and similarly for the other faces. So if ϕ is a 2-cochain, then dϕ is zero on α,
β, and γ. But this implies that dϕ is zero. Therefore the differential C2

G(X)→ C3
G(X) is

the zero map.

H0
G(X). From the form of the cochain complex in Equation (8.5.1), we see that the

zeroth Bredon cohomology group is the kernel of the differential C0
G(X)→ C1

G(X). Our
computations above show that the image of of this differential is spanned by

λ
(2)
a , λ

(2)
d , λ

(3)
b , λ

(3)
e , λ

(4)
c , λ

(4)
f ,

λ
(1)
a + λ

(1)
b + λ

(1)
c , λ

(1)
d + λ

(1)
e + λ

(1)
f , λ

(1)
a − λ

(1)
e − λ

(1)
f .

These elements are also independent over Z. Therefore the image of the differential is
isomorphic to Z9. Previously we argued that C0

G(X) ∼= Z16. Because Z is a free group,
this means that the kernel of this differential is isomorphic to Z16−9 = Z7, so

H0
G(X) ∼= Z7.
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H2
G(X). Because the differential C2

G(X)→ C3
G(X) is zero, we have

H2
G(X) =

C2
G(X)

Im(d : C1
G(X)→ C2

G(X))
.

Abbreviate I := Im(d : C1
G(X) → C2

G(X)). Above we argued that C2
G(X) ∼= Z3 with

ϕα, ϕβ, ϕγ as generators. Under this isomorphism, we see from our earlier calculations
that I is spanned over Z by

(1, 0, 1), (0, 1,−1), (1, 0,−1), (0, 1, 1), (1,−1, 0).

Notice that T := 〈(2, 0, 0), (0, 2, 0), (0, 0, 2)〉Z is therefore contained in I. The quotient
H2

G(X) therefore factorises through T by the third isomorphism theorem:

Z3

I
∼=

Z3/T
I/T

∼=
Z3

2
〈(1̄, 1̄, 0̄), (1̄, 0̄, 1̄)〉Z2

.

Notice that the group homomorphism

f : Z3
2 −→ Z2 : (a, b, c) 7−→ a + b + c

is surjective and has 〈(1̄, 1̄, 0̄), (1̄, 0̄, 1̄)〉Z2 as its kernel. The first isomorphism theorem
therefore implies

H2
G(X) ∼= Z2.

By Theorem 8.7, we have thus proved the following.

�� Theorem 8.9 (F222, class A, [38]). Write G for the point group of F222, and write X for the
Brillouin zone of F222. Then we have an isomorphism

KG(X) ∼= Z7 ⊕Z2. �

8.6. DISCUSSION

As we noted at the beginning of this chapter, McAlister [32] found the group Z7 instead.
Notable is the fact that he uses C*-algebras and their K-theory to find this result. We
do not discuss this approach in this work, and hence must leave an analysis of this
disagreement to future work.

8.6.1. The nontrivial phase

Our approach does not merely give us the resulting K-group, but also provides some
insight into what vector bundles represent the nontrivial element of this Z2 part.
Physically this is interesting because it provides a starting point for further describing
this phase. To describe it, consider the quotient map

C2
G(X) −→ H2

G(X).
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We argued above why C2
G(X) ∼= Z3. The three components here describe something

about the vector bundles on the faces α, β and γ, respectively. To properly understand
what they describe, we use the take a closer look at the description given by Stehouwer
et al. [40, App. A.3].

Notice that, because these faces have trivial stabilisers, we no longer have to deal with
the group G when restricting to one of these faces. Using the theory from Section 1.5,
one may find that

K(S2) ∼= Z ⊕Z.

The first component describes the dimension; the second component describes the
degree of vector bundles over the sphere (see, e.g., Hatcher [17, pp. 22–24] for a further
explanation). Now notice that a vector bundle over one of the faces α, β and γ yields
a vector bundle over the sphere S2 by collapsing the boundary of the face to a single
point.] In this fashion we can talk about the degree of a vector bundle over one of these
faces. As explained by Stehouwer et al. [40, App. A.3], the components of Z3 ∼= C2

G(X)

give the degrees of the vector bundles over α, β and γ.
Under the above isomorphisms, the quotient map C2

G(X)→ H2
G(X) is

Z3 −→ Z2 : (a, b, c) 7−→ a + b + c.

Thus, in order to be in the nontrivial phase, the sum of these degrees should be odd.

8.6.2. Possible cause of torsion

It has been suggested that the torsion arising in this K-group is due to RP2 appearing
in the Brillouin zone. We do not verify this, but let us briefly summarise the results of
Shiozaki et al. [38, p. 25]. They state that the boundary of the volume V has a boundary
homeomorphic to RP2. They then use this to give a formula for the Z2-invariant in
this case, which in our labelling from Figure 8.2 is

(−1)ν = exp
(∫

a+e−c′
TrA− 1

2

∫
β−α−γ

TrF
)

,

with ν ∈ Z2 = { 0, 1 } the invariant, and with A and F the Berry connection and its
curvature, respectively.
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CONCLUSION

We have described the basics of topological K-theory, as well as the twisted variant
introduced by Freed and Moore. We discussed the basics of topological insulators,
focusing on how K-theory naturally appears in the study of the free-fermion version.
This is summed up in the main result of Freed and Moore, that (reduced) topological
phases are classified by a suitable twisted K-group. Finally, we have applied this theory
in numerous cases, which is the most important part of this thesis.

ONE DIMENSION

In Chapter 7 we classified all one-dimensional topological phases. At the base of
this classification lies the computation of the twisted K-theories of a point. This we
did by using the (twisted) group algebras and (twisted) representation rings outlined
in Section 5.4. Note that these K-groups are simply zero-dimensional topological
phases. Thus the theory outlined in this thesis on twisted representation rings suffices
to compute zero-dimensional topological phases.

To go from zero-dimensional to one-dimensional topological phases, an additional
tool is required. We took this tool to be the Mayer–Vietoris exact sequence, except
when a suspension argument would provide a shortcut. The only difficulties that arise
in this method is the need to compute the maps in the sequence. By using twisted
group algebras we resolved this difficulty also. Thus we have illustrated how the
Mayer–Vietoris exact sequence suffices to compute these one-dimensional topological
phases. More strongly, for the circle, the Mayer–Vietoris approach coincides with the
spectral sequence approach.

There is still room for future work in this area. On the mathematical side, one could
consider generalising the assumptions we listed in Section 7.1. Physically it would
be interesting to compare the phases we found with previously found results, be they
theoretical or experimental. But more importantly, one should find a way to explicitly
calculate what phase a given system is in. We outlined such a method for the IQHE in
Section 6.1, which was the integral

1
2π

∫
T2

∑
α

Fα,

with α running over the valence bands, and Fα being the curvature of the Berry
connection of the valence band α. When similar expressions are found for the (strong)
one-dimensional topological invariants, our results can be compared to the existing
condensed matter literature much more effectively. Additionally, one could try to find
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explicit Hamiltonians that represent these different phases. For Kitaev’s periodic table
this can be done (see, e.g., Kruthoff [27, §2.1.2]), but for Freed and Moore’s classification
no general procedure exists.

THREE DIMENSIONS

In Chapter 8 we gave a more detailed version of the calculation done by Shiozaki et al.
[38] about F222. We found that their result, the group Z7 ⊕Z2, is indeed correct. For
this we used the Atiyah–Hirzebruch spectral sequence, which for this particular case
reduces to Bredon cohomology. This makes our calculation uninteresting as far as
spectral sequence are concerned: in this case (3D in class A) it always gives a unique
answer. In classes with time-reversal symmetry (i.e., AI and AII) this is already no
longer the case, even in two dimensions, as discussed in detail by Stehouwer et al. [40].

This method of computation has the advantage of giving some insight into what
vector bundle represents the nontrivial phases. In Section 8.6.1 we briefly described
this vector bundle. We then briefly commented on the formula that Shiozaki et al. [38]
found to detect if a system is in this nontrivial phase, but we did not verify it, nor
connect it with our description of the phase.

114



POPULAR SUMMARY (DUTCH)

In 1980 werd een experiment gedaan waarbij men een totaal nieuwe soort isolator
ontdekte. Het is een soort isolator die je niet in het alledaagse leven tegen zal komen:
om het te maken moest er gewerkt worden bij bijna 0 K. Maar nutteloos is het ook
niet: lange tijd werd het gebruikt om natuurconstanten heel precies te meten, en ze
blijken nu zelfs nuttig te zijn voor het maken van quantum computers. Deze isolatoren
worden ook wel topologische fasen genoemd. Waar deze naam vandaan komt is het
makkelijkst te begrijpen als we snappen wat een fase is.

Fase-overgangen komen op vele plaatsen tevoorschijn in de natuurkunde. Het
simpelste voorbeeld is dat van water. Water heeft drie fasen: vast, vloeibaar, en gas.
Als je water genoeg verhit (of afkoelt) kan je het water van de ene fase naar de andere
over laten gaan. Zo’n overgang noemen we een fase-overgang. Verhitten of afkoelen
zal niet altijd een fase-overgang veroorzaken: immers, water van 10 ◦C naar 20 ◦C
verhitten zal niet zo veel veranderen. Je weet dat je een fase-overgang hebt gemaakt als
er fundamenteel iets verandert.

Het blijkt dat zoiets ook kan gebeuren tussen isolatoren. In het experiment van 1980
werd een isolator gemaakt die op zijn rand altijd geleidt, ook al isoleert de binnenkant.
Hier stopte het vreemde gedrag niet: als de isolator in twee stukken zou worden
gehakt, zou het oppervlak dat je daarmee maakt ook spontaan gaan geleiden! Dit deed
natuurkundigen denken aan een fase-overgang: als je van deze vreemde isolator naar
een ‘gewone’ isolator overgaat, dan gebeurt er op de rand (de plek van overgang) iets
vreemds. We zouden daarom kunnen zeggen dat deze vreemde isolator zich in een
andere ‘fase’ bevindt, om dezelfde reden waarom we zeggen dat gas een andere fase is
dan vloeibaar: om van de ene naar de andere over te gaan, moet er iets geks gebeuren.
In plaats van het woord ‘fase’ te gebruiken voor deze isolator, zeggen we dat de isolator
zich in een andere topologische fase bevindt.

Het woord ‘topologie’ komt hier niet zomaar uit de lucht vallen. De topologie
is een vakgebied in de wiskunde, wat de term ‘topologische isolatoren’ apart doet
klinken voor wiskundigen. In de topologie is men geı̈nteresseerd of objecten naar
elkaar omgevormd kunnen worden zonder iets te scheuren of te plakken. Bijvoorbeeld,
kan je een lijn omvormen tot een cirkel, enkel door te buigen of uit te rekken, zonder te
plakken?

Waarschijnlijk denk je “nee,” en dat is ook het juiste antwoord. Echter, dit antwoord is
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enkel gebaseerd op gevoel, wat een wiskundige niet een voldoende antwoord vindt.
Hij wil een wiskundig bewijs zien. In één klap maakt dit de vraag veel, veel lastiger.
Men heeft vele manieren bedacht om deze variant van de vraag te beantwoorden.

Een van deze manieren staat nu bekend als K-theorie. Deze theorie beantwoordt een
iets specifiekere vraag dan de algemene vraag uit topologie. Namelijk, K-theorie is het
stuk gereedschap dat je nodig hebt om een wiskundige te kunnen overtuigen dat een
cilinder niet hetzelfde is als een Möbius band:

Dit laat zien dat topologie, en zo ook K-theorie, een behoorlijk abstract vakgebied
is. Desalniettemin is K-theorie (een deelgebied van de topologie) de reden voor het
woord ‘topologie’ in de naam ‘topologische fasen’. Om een lang verhaal kort te maken:
het blijkt dat K-theorie gebruikt kan worden om uit te rekenen hoeveel topologische
fasen er zijn. Dit blijkt namelijk gecompliceerder te zijn dan de fasen van water. Water
heeft drie fasen, onafhankelijk van de situatie waarin je je bevindt; voor topologische
fasen werkt dit anders. Bijvoorbeeld, als je een sterke magneet aanzet, dan zal het
aantal topologische fasen drastisch veranderen. Een magneetveld is niet het enige dat
het aantal fasen doet veranderen, maar de andere situaties zijn lastiger uit te leggen.
Het blijkt dat er 10 verschillende situaties zijn die het aantal fasen kunnen veranderen.
Verder hangt het aantal ook af van de dimensie van het materiaal, oftewel: is het een
plat vlak (twee dimensies), is het ruimtelijk (drie dimensies), of is het een lijn (één
dimensie)?

Deze verschillende mogelijkheden kunnen we in een tabel zetten, welke men heeft
ingevuld door K-theorie te gebruiken. De resulterende tabel werd bekend als het
periodieke systeem van topologische fasen.

0 1 2 3 4 5 6 7

A ∞ 1 ∞ 1 ∞ 1 ∞ 1
AIII 1 ∞ 1 ∞ 1 ∞ 1 ∞
AI ∞ 1 1 1 ∞ 1 2 2

BDI 2 ∞ 1 1 1 ∞ 1 2
D 2 2 ∞ 1 1 1 ∞ 1

DIII 1 2 2 ∞ 1 1 1 ∞
AII ∞ 1 2 2 ∞ 1 1 1
CII 1 ∞ 1 2 2 ∞ 1 1
C 1 1 ∞ 1 2 2 ∞ 1
CI 1 1 1 ∞ 1 2 2 ∞
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Een vakje geeft het aantal topologische fasen aan in een bepaalde dimensie (gegeven
door de kolom), en in een van de 10 gevallen die we eerder noemden (gegeven door de
rij). In de gevallen waar een 1 staat, kunnen we het topologische gedrag dus niet zien:
er is maar één fase, en dus kunnen er geen fase-overgangen plaatsvinden, dus zal er
ook geen geleiding ontstaan! Opvallend is dat veel vakjes oneindig veel fasen hebben:
dit laat weer zien dat topologische fasen drastisch anders zijn dan fasen uit het gewone
leven.

Helaas is het periodieke systeem niet het volledige verhaal. Recentelijk hebben
natuurkundigen ontdekt dat er vakjes missen, en wel ongelofelijk veel. Wat nog erger
is, is dat de getallen die in deze vakjes moeten staan veel lastiger uit te rekenen zijn
dan de vakjes in het periodieke systeem. Er zijn honderden, nee, duizenden vakjes die
missen, en voor bijna al deze vakjes is de K-theorie nog te moeilijk om het ook echt uit
te rekenen. De tijd zal leren of we ooit beter worden in K-theorie om dit probleem op
te lossen.

In deze scriptie bekijk ik waarom zoveel vakjes hier missen, en belangrijker nog,
welke van deze vakjes we wel kunnen uitrekenen, en hoe! Mijn uiteindelijke doel is
dan om een aantal vakjes die nog leeg zijn uit te rekenen. Zo blijkt de kolom voor één
dimensie niet uit 10 vakjes te bestaan, maar eigenlijk uit 30. Er missen dus 20 vakjes, die
(naar het schijnt) nog niet berekend waren. Ietwat versimpeld komt hier de volgende
tabel uit; merk op dat de rij die met “R2 = 0” is aangegeven hetzelfde is als de kolom
voor één dimensie uit het periodieke systeem.

A AII I AI BDI D DII I AII CI I C CI

R2 = 0 1 ∞ 1 ∞ 2 2 1 ∞ 1 1
R2 = +1 1 1 1 1 1 1 1 1 1 1
R2 = −1 1 1 1 1 1 2 2 1 1 1

Verder bekijk ik één specifiek geval in drie dimensies, een vakje dat niet terug te vinden
is in het periodieke systeem. Als je dit uitrekent, wat in totaal zo’n 12 pagina’s kost,
vind je dat er 2 topologische fasen zijn. Dit klinkt niet heel spannend, maar voor de
experts is dit verbazend: lange tijd dacht met dat er een 1 moest staan, maar blijkbaar
niet!
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