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CONVENTIONS AND NOTATION

If p is a prime number, then Z/p denotes the ring of integers modulo p, and Zp denotes
the ring of p-adic integers.

The term graded means Z/2-graded, unless explicitly stated otherwise. When a Z/2-
graded or Z-graded ring is called commutative, it is always meant that it is graded-
commutative (i.e., obeys the Koszul sign rule).

If R is a commutative ring and M an R-module, then SymR(M) and ΛR(M) denote the
symmetric and exterior R-algebra on M, respectively.

We work with ∞-categories as our formalism for homotopy theory. Limits and colimits
should always be understood as homotopy limits and colimits, unless explicitly stated
otherwise. The ∞-category of spaces (respectively pointed spaces) is denoted by S
(respectively S∗), and the ∞-category of spectra is denoted by Sp. If C is an ∞-category,
its homotopy category is denoted by h C.

By abuse of notation, we think of every 1-category C as being an ∞-category by identi-
fying C with its nerve N(C).

The wedge sum and smash product of spectra are denoted by ⊕ and ⊗, respectively.
The sphere spectrum is denoted by S. The Spanier–Whitehead dual of a spectrum E is
denoted by E∨.

The spectrum of complex K-theory is denoted by KU. If p is a prime number, then
KU(p) and KUp denote the p-localisation and p-completion of KU, respectively. Unless
explicitly stated otherwise, the K-theory of a space or spectrum is viewed as a Z/2-
graded abelian group by recording only the groups in degrees 0 and 1.

By a commutative ring spectrum, we mean an E∞-ring spectrum (and likewise for algebra
spectra). All ring spectra appearing in this work are commutative.

If R is a commutative ring spectrum and M an R-module spectrum, then SymR(M)

denotes the symmetric R-algebra spectrum on M.
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INTRODUCTION

Algebraic topology studies spaces by assigning algebraic invariants to them. Since the
inception of this idea, many invariants have been defined and studied. They all seem
to obey the same law: there is a trade-off between how computable an invariant is, and
how powerful it is. The homotopy groups are the most important invariant of spaces.
They are also among the hardest invariants to compute: even now we only know a
small range of the homotopy groups of spheres, and rare are the spaces of which all
homotopy groups are known.

One can try to ease the situation by studying only parts of the homotopy groups.
Studying the easiest part, the free part, is tantamount to studying the rational homotopy
groups of a pointed space X: the groups π∗(X) ⊗ Q. (This tensor product is well-
defined if X is, e.g., simply-connected.) Unlike their torsion-infested originals, the
rational homotopy groups are very amenable to computations. Using what is now
known as the Serre spectral sequence, Serre [Ser51] first computed these groups for
many spaces, including all spheres. Out of the seminal works of Quillen [Qui69] and
Sullivan [Sul77], the field of rational homotopy theory was born, which gave an even
more powerful framework for computing these groups. In the past decade, torsion-
sensitive generalisations of rational homotopy theory have been developed. This thesis
is essentially a computation using one of these generalisations. Before we can discuss
those results, we need a little familiarity with rational homotopy theory.

Rational homotopy theory

If X is a space, then the rational cohomology groups H∗(X; Q) carry a ring structure
given by the cup product of cochains, making H∗(X; Q) a graded-commutative ring.
The cup product already lives on the cochain complex C•(X; Q), but there it is not
graded-commutative. However, this is only a minor defect of C•(X; Q), for we do not
care about C•(X; Q) up to isomorphism, but only up to quasi-isomorphism (i.e., up to
maps that induce isomorphisms on cohomology). Up to quasi-isomorphism, one can
choose a model for C•(X; Q) where the cup product does become graded-commutative
(this can even be chosen functorially). In this way, the rational cochains have the
structure of a commutative differential graded algebra, or cdga for short.

The rational cochains are very computable, at least if we work up to quasi-isomorphism.
As a simple example, consider the k-sphere Sk, for k > 1. The cohomology of Sk is
concentrated in degrees 0 and k. Let A•k denote the cochain complex with Q in degrees
0 and k, having the zero differential, and with the zero multiplication on elements
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of degree k. Then C•(Sk; Q) is quasi-isomorphic to A•k . In general, if the rational
cohomology groups of a space are known, one can usually extract a good enough
model (where ‘good enough’ depends on the context) for the rational cochains from
this information.

The surprising feature of the rational cochains is that they also hold a lot of information.
If X is a finite space (i.e., it is equivalent to a finite CW complex), then the cdga C•(X; Q)

captures essentially all homotopy-theoretic behaviour of X up to torsion phenomena.
To make this precise, we need some terminology. For simplicity, let us work with
simply-connected pointed spaces only. A map f : X → Y of simply-connected pointed
spaces is called a rational equivalence if it induces an isomorphism on rational homotopy
groups. An augmentation of a rational cochain complex C• is a map C• → Q to the
cochain complex with only Q in degree 0. A choice of basepoint on X induces an
augmentation of C•(X; Q). The rational cochains set up an equivalence of categories

Top>2, fin
∗

/
rational

equivalence
{ augmented cdga’s over Q }>2, fin/ quasi-

isomorphism.
'

On both sides, the superscript ‘> 2’ indicates simply-connected, and ‘fin’ indicates
finite type. (A better formulation would be to say that we have an equivalence of
homotopy theories.) The surprising feature of this equivalence is that the right-hand
side is completely algebraic, even though one usually thinks of algebraic invariants as
capturing much less information than do topological phenomena. The concreteness of
this algebraic model gives it great computational power.

If X is a finite simply-connected pointed space, then the rational homotopy groups of X
can be extracted from the rational cochains. Roughly speaking, there is an isomorphism
between the Q-linear dual of πk(X)⊗Q and the module of derived indecomposables of
degree k of C•(X; Q). The derived indecomposables take some care to define, because
this notion has to be invariant under quasi-isomorphism. But once this has been done,
computing them is again a very manageable and concrete matter.

The torsion-sensitive generalisation we are after uses topological K-theory in place of
rational cohomology. This is the cohomology theory KU that sends a (compact) space X
to the Grothendieck group of complex vector bundles over X (i.e., the group obtained
by adding formal additive inverses for vector bundles). One can extend the definition
of K-theory to have groups KUn in degrees indexed by the integers n ∈ Z. Note that
this definition does not make use of cochain complexes, so it is unclear how we should
proceed. It turns out that there is an object that plays the same role for K-theory as
does C•(−; Q) for rational cohomology, but it is not an algebraic object. Rather, it is an
object from higher algebra.

Spectra and higher algebra

Higher algebra is the study of the type of algebraic structures that arise when using
higher categories instead of ordinary categories. The role that abelian groups play in
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ordinary algebra is now played by spectra. For the purposes of this introduction, a
spectrum is essentially a representing object for a cohomology theory. Consider rational
cohomology Hn(−; Q), which is represented by the Eilenberg–MacLane space K(Q, n):
for X a pointed space,

H̃n(X; Q) ∼= [X, K(Q, n)]∗.

The collection {K(Q, n) | n > 0 } of all representing spaces constitutes the spectrum
underlying rational cohomology. Roughly speaking, one can think of this spectrum
as a space with an abelian group structure up to homotopy, since the set of homotopy
classes of maps from X to K(Q, n) has a natural abelian group structure. It turns
out that any cohomology theory (i.e., a functor satisfying axioms similar to singular
cohomology) has such a spectrum representing it. For example, the functor of complex
K-theory KU is represented by Z× BU, with BU denoting the classifying space for the
infinite unitary group. The functors KUn for n ∈ Z are also representable.

Rational cohomology and K-theory are cohomology theories with a special property:
they both have a graded-commutative ring structure. For rational cohomology this is
given by the cup product; for K-theory this is given by the tensor product of vector
bundles. One might wonder whether this transfers into a type of ring structure on
the spectrum representing it. For these theories, it turns out that it does, and in fact
the multiplication on the spectrum has a very rich structure: it is commutative up to
coherent homotopy. This means that not only is it commutative up to homotopy, but
moreover that the homotopies witnessing the commutativity are themselves unique
up to specified homotopy, and those homotopies are unique up to specified homotopy,
etc., ad infinitum. Spectra with such a ring structure are often called E∞-ring spectra,
though we will resort to calling them commutative ring spectra.

Compared to ordinary algebra, higher algebraic objects are built entirely out of topo-
logical spaces, and the theory hardly seems algebraic at all. It is a remarkable fact
that there is a theory of ring spectra that closely parallels the theory of ordinary rings.
For instance, one can speak of modules over a ring spectrum (which will be spectra
with an ‘action’ of the ring spectrum), and study exact sequences of module spectra.
Operations like the direct sum and the tensor product exist in this world, and satisfy
many similar-looking properties. One can also localise or complete commutative ring
spectra at a prime number p. There is even an analogue of the abelian group Z: the
sphere spectrum S. It plays many similar roles: for example, a module over S is the same
as a spectrum. A monumental treatise on higher algebra is given by Lurie [HA].

Using higher algebra, one can (as promised) construct an analogue of the cochain com-
plex C•(−; Q) for K-theory (or even for any commutative ring spectrum). Given a space
X, one can define the K-theory cochains KUX+ , which is a commutative algebra over
the commutative ring spectrum KU. This algebra has the property that its homotopy
groups are the K-theory of X:

π∗ KUX+ ∼= KU∗(X).

This is a K-theoretic analogue of the rational cohomology groups H∗(X; Q) being the
cohomology groups of the cochain complex C•(X; Q).
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As with any invariant, there are two questions we should ask: how computable are
these cochains, and how much information about the space do they retain? The first
result of this thesis is geared to answering the first question: we compute this algebra
(or rather, its p-completion) for many X. Before discussing this in more detail, let us
discuss the answer to the second question.

Chromatic homotopy theory

The rational homotopy groups are the first (or rather, zeroth) in a long list of approxim-
ations to the homotopy groups. If p is a prime number, and n > 0 is a natural number
called the height, chromatic homotopy theory defines the vn-periodic homotopy groups of
a space pointed X, denoted by v−1

n π∗(X). (The prime p is left implicit in the notation.)
Taking n = 0 yields the rational homotopy groups. If n > 0, then these groups are
periodic with a period depending on n and p. (One can think of these periods as
different ‘wavelengths’, whence the name chromatic.) These groups detect torsion in
the homotopy groups. It turns out that the vn-periodic homotopy groups of a space X
can be viewed as the homotopy groups of a spectrum ΦnX. Studying this spectrum
gives a more rigid approach to studying the vn-periodic homotopy groups.

Sadly, the complexity of computing vn-periodic homotopy groups increases extremely
quickly as n increases. The case n = 1 is the most amenable to computation; much
less is known in the case n = 2, and very little for higher n. Among others, Bousfield
has studied v1-periodic homotopy theory. In [Bou99], working over an odd prime, he
computed v−1

1 π∗(X) when X is an odd-dimensional sphere (from this calculation, the
case of even spheres quickly follows), and when X is a finite H-space subject to a few
conditions. This computation applies in particular to all simply-connected compact Lie
groups.

In more recent years, the approach of rational homotopy theory has been generalised
to these vn-periodic homotopy groups, but only to a certain extent. Behrens and
Rezk [BR20b] constructed, for X a pointed space, a comparison map from ΦnX to the
‘indecomposables’ of a cochain algebra on X. Specifically, they consider cochains SX+

K(n)
with SK(n) the “K(n)-local sphere spectrum”. At height n = 1 this is very closely related
to K-theory: the algebras KUX+ and SX+

K(1) give more or less the same information
(see the section Results below for a more precise statement). The precise name for
the indecomposables of a commutative ring spectrum is its topological André–Quillen
cohomology (or TAQ-cohomology for short).

The crucial difference with rational homotopy theory is that this map is not an equival-
ence for all X. As such, it does not always provide a way to compute ΦnX from the
‘indecomposables’ of SX+

K(n). Behrens and Rezk identify a technical condition (termed
Φn-goodness), which is equivalent to this map’s being an equivalence (if X satisfies
a finiteness condition). If the comparison map is an equivalence, then we think of
the cochains SX+

K(n) as being a ‘good model’ for the vn-periodic homotopy of X. It in
particular means that the vn-periodic homotopy groups of X can be extracted from the
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cochains on X.

Work has been done to determine when this comparison map is an equivalence. Behrens
and Rezk [BR20b] prove that (for arbitrary n) it is an equivalence if X is a sphere. Kjaer
[Kja19] works at height 1 and uses the aforementioned computation done by Bousfield
to conclude that it is an equivalence on the spaces studied by Bousfield. However, the
existing literature does not compute the indecomposables of the cochains on X by first
understanding the cochains on X; rather they use technices to get the indecomposables
directly from purely algebraic data. Yet these cochain algebras are interesting algebra
spectra, and having a better understanding of them would be a worthwhile higher-
algebraic result in and of itself.

In conclusion, the cochain algebras of higher algebra can detect certain torsion in
the homotopy groups of a space, but this works best if the space satisfies a technical
condition. The literature does not tend to compute these cochain algebras in this context.
Doing so can shed light on how much information about vn-periodic homotopy theory
they carry.

Remark. There is a second side to rational homotopy theory that we have ignored so
far, one that uses differential graded Lie algebras in the place of cdga’s. This approach
does generalise to an equivalence between vn-periodic homotopy theory and a higher-
algebraic analogue of Lie algebras, namely spectral Lie algebras. This was recently
proved by Heuts [Heu21]. While spectral Lie algebras, unlike algebra spectra, thus give
the ‘correct model’ for vn-periodic homotopy theory, working with them is a challenge
of its own and deserves a separate thesis. As our aim is to understand cochain algebra
spectra, we do not discuss spectral Lie algebras in this work.

Results

This thesis contains two main results. Fixing an arbitrary prime p, let KUp denote
the p-completion of the commutative ring spectrum KU. Roughly speaking, let X be
a space such that the ring KU∗p(X) is an exterior algebra on a finite number of odd
generators. (This includes many H-spaces, among which all simply-connected compact
Lie groups, and in fact includes all spaces studied by Bousfield in [Bou99].) We then
compute the KUp-cochain algebra KUX+

p by giving a presentation of this algebra as the
quotient of a ‘free’ KUp-algebra.

This computation has applications to chromatic homotopy theory. Specifically, let p be
an odd prime. Combining Bousfield’s computation of v−1

1 π∗(X) with the computation
of KUX+

p , we can derive that the Behrens–Rezk comparison map is an equivalence on
such X. We do this by computing the indecomposables of KUX+

p . By a method called
descent, the algebra SX+

K(1) can be recovered from KUX+
p (if p is odd and X satisfies a

finiteness condition). We then show that the comparison map is an equivalence.
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Outline

This thesis is divided into two parts. The first part is devoted to the computation of
the KUp-cochains, and the second to the implications of this computation to chromatic
homotopy theory. Chapters on background information (Chapters 1, 2, and 4, and Ap-
pendix A) contain few proofs, often resorting to references to the literature. Chapters 3
and 5 contain original work. We work in an ∞-categorical setting, but this is mostly
preferential, and our results do not make heavy use of this formulation of homotopy
theory.

Chapter 1 discusses higher algebra in an ∞-categorical formulation, in order to make
the foundations for the rest of this work explicit. This includes a definition of spectra,
commutative ring spectra and their modules, and the theory of p-localisation and
p-completion in higher algebra. This is by far the longest chapter, but may be treated
as a reference work for the later chapters, instead of being read linearly from beginning
to end. Appendix A concerns a variant of p-completion that arises naturally in higher
algebra. This is briefly explained in the main text, but the reader may glance at
the appendix if more background is desired. Chapter 2 focuses on K-theory and its
cohomology operations known as Adams operations. The structure of a ring ‘with Adams
operations’ is a called a θ-algebra. Understanding K-theory as a θ-algebra proves to be
crucial for our main computation. Chapter 3 gives the promised computation of KUp-
cochains KUX+

p on certain X, and afterwards discusses the question of how general
the assumptions on X are. This discussion is a summary of results of Bousfield on the
classification of bialgebras ‘with Adams operations’. We end Chapter 3 with a short list
of questions that naturally flow from this discussion.

Chapter 4 gives a brief introduction to v1-periodic homotopy theory. Notably, this
chapter discusses v1-periodic homotopy groups, the functor Φ1, the descent method,
and the comparison map. Chapter 5 begins with a review of the height 1 computations
done by Bousfield [Bou99], and then combines this with the result from Chapter 3 to
show that the comparison map is an equivalence for the relevant spaces.

Prerequisites

This thesis is aimed at readers with a solid understanding of basic algebraic topo-
logy. We assume the reader is familiar with the language of ∞-categories (meaning
quasi-categories) in the sense of Lurie [HTT]. Familiarity with K-theory is heavily re-
commended, although very brief reminders about the definition of K-theory and its
cohomology operations are given. Previous familiarity with spectra is also recommen-
ded. Spectral sequences are lightly used in several places. Lastly, in order to properly
grasp higher algebra, the reader will find a knowledge of commutative algebra (in the
ordinary non-topological sense) to be very beneficial. In particular, we assume that the
reader is comfortable with p-localisation and p-completion of commutative rings and
modules.
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1HIGHER ALGEBRA

The goal of this chapter is to flesh out the sketch of commutative ring spectra that we
gave in the Introduction. Developing this from the ground up would be way beyond
the scope of this thesis, so instead we record the main definitions and theorems. As
such, this chapter is (for a large part) a collection of results to be used in later chapters.
We draw heavily from the monumental work of Lurie [HA], sometimes following
the more condensed survey by Gepner [Gep19]. Readers new to the subject may also
benefit from a recent course given by Nardin [Nar21].

We begin in §1.1 by recalling some basic terminology in ∞-categories that will play
a special role. In §1.2 we define spectra and focus on two main features: first, that
the ∞-category of spectra is a stable ∞-category, and second, that spectra represent
(co)homology theories. In order to discuss commutative ring spectra, we need a
formalism to keep track of the higher coherences. This is the formalism of symmetric
monoidal ∞-categories; we discuss this in §1.3, and list a number of general results about
them. In §1.4 we specialise to commutative ring spectra. Finally in §1.5 we discuss
Bousfield localisation, with which we define p-localisation and p-completion of spectra
and spaces. Along the way, we meet two commutative ring spectra: Eilenberg–MacLane
spectra (Examples 1.26 and 1.67) and K-theory (Examples 1.28 and 1.69).

1.1 ∞-categories

Definition 1.1 The ∞-category of spaces S is the homotopy coherent nerve of the
simplicially enriched category of Kan complexes. The ∞-category of pointed spaces
S∗ is the slice ∞-category S∗/ under a point.

If C is an ∞-category and X, Y ∈ C, we will often use the notation [X, Y] to mean
π0 MapC(X, Y). For pointed spaces S∗ we reserve the notation [X, Y]∗ for this.

Occasionally we will need the technical notion of a presentable ∞-category.

Definition 1.2 An ∞-category C is called presentable if there exists a regular cardinal
κ and a set C0 of objects satisfying the following conditions.

(i) The ∞-category C has all small colimits.

(ii) For any object X ∈ C0, the functor MapC(X,−) commutes with κ-filtered colimits.

(iii) Every object of C is a κ-filtered colimit of objects in C0.
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Example 1.3 ([HTT], Ex. 5.5.1.8) The ∞-categories S and S∗ are presentable. N

In an ∞-category C, a diagram ∆1 × ∆1 → C will often be depicted as

X Y

W Z.

Definition 1.4 Let C be an ∞-category with a zero object. A triangle in C is a diagram
∆1 × ∆1 → C of the form

X Y

0 Z,

f

g

where 0 is a zero object of C. We call this triangle a fibre sequence, or a fibre of g, if it
is a pullback square. We call it a cofibre sequence, or a cofibre of f , if it is a pushout
square.

We may abuse notation about fibre and cofibre sequences in several ways. First of all, if
a triangle is a fibre or cofibre sequence, we may simply refer to it by the diagram

X Y Z.
f g

If this is a fibre sequence, we may write fib g for X, leaving the datum of the triangle
implicit. Likewise, if it is a cofibre sequence, we may write cofib f for Z.

Definition 1.5 Let C be an ∞-category which has a zero object, and which admits
fibres and cofibres. Let X ∈ C be an object. The loop object of X is the pullback

ΩX 0

0 X.

y

The suspension of X is the pushout

X 0

0 ΣX.
p

Both Ω and Σ can be assembled into functors C → C; see [HA, pp. 23, 24]. The functor
Σ is left adjoint to Ω.
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1.2 Spectra

Definition 1.6 The ∞-category of spectra, denoted Sp, is the limit of the diagram

· · · S∗ S∗ S∗Ω Ω

in the (large) ∞-category of ∞-categories.

Remark 1.7. The homotopy category h Sp is known as the stable homotopy category.

Concretely, an object E of Sp is a sequence (E0, E1, E2, . . . ) of pointed spaces, together
with equivalences En

'−→ ΩEn+1 for every n > 0. Thus a spectrum is an infinite loop
space together with a choice of an n-fold delooping for every n > 0. This is indeed a
choice: in general such deloopings are not unique. Note that (up to equivalence) the
space En recovers Ek for k < n.

If E and F are two spectra, then a morphism f : E→ F consists of morphisms fn : En →
Fn of pointed spaces, together with diagrams

En Fn

ΩEn+1 ΩFn+1.

fn

' '

Ω fn+1

In other words, a morphism is an infinite loop map between infinite loop spaces together
with a choice of an n-fold delooping for every n > 0.

A homotopy H between two morphisms f , g : E→ F consists of pointed homotopies
Hn : En ∧ [0, 1]+ → Fn (with ∧ denoting the smash product of pointed spaces, and
[0, 1]+ the unit interval with an added disjoint basepoint), together with diagrams

En ∧ [0, 1]+ Fn

Ω(En ∧ [0, 1]+) ΩFn+1.

Hn

ΩHn+1

Remark 1.8. What we call a spectrum, would by another convention be called an
Ω-spectrum. What this other convention would call a spectrum, we would call a
prespectrum. See [Gep19, Def. 3.1.13] for more information.

Example 1.9 The zero spectrum 0 is the spectrum where every space is a point, with
the obvious delooping maps. This is a zero object in Sp: for every spectrum E, the
mapping spaces MapSp(0, E) and MapSp(E, 0) are contractible. A spectrum is called
contractible if it is equivalent to the zero spectrum. N

If E is a spectrum, then the loop space structure on the zeroth space E0 ' ΩE1 gives it
an addition law

+ : E0 × E0 −→ E0

9



given by concatenation of loops. This is associative up to coherent homotopy. Because
E0 ' Ω2E2 is also a two-fold loop space, it is also commutative up to homotopy. The
higher deloopings of E0 make this operation commutative up to coherent homotopy.
Maps of spectra respect this structure because they are infinite loop maps. In this sense
spectra are a homotopical variant of abelian groups.

This analogy goes further, and in the next section we discuss how the ∞-category Sp
can be said to behave in an algebraic way.

1.2.1 Categorical properties

Definition 1.10 An ∞-category C is called stable if it satisfies the following conditions.

(i) The ∞-category C has a zero object.

(ii) Every morphism in C admits a fibre and a cofibre.

(iii) A triangle in C is a pullback square if and only if it is a pushout square.

The notion of a stable ∞-category can be thought of as an abelian category ‘up to
homotopy’. We think of the (co)fibre of a morphism as a homotopical variant of the
(co)kernel of a homomorphism. Condition (iii) above is an analogue of the condition on
abelian categories that the image of a morphism should be isomorphic to its coimage.
In this analogy with abelian categories, Sp plays the analogous role of Ab.

Note that the opposite of a stable ∞-category is again stable.

By [HA, Rmk. 1.1.3.5], in a stable ∞-category, finite products agree with finite cop-
roducts. For this reason, in a stable ∞-category we will denote a coproduct by ⊕ and
refer to a coproduct as a direct sum.

The homotopy category of a stable ∞-category C is naturally a triangulated category. See
[HA, §1.1.2] for a discussion and proof.

The natural notion of a functor between stable ∞-categories is that of an exact functor.

Definition 1.11 Let F : C → D be a functor between stable ∞-categories. The functor
F is called exact if it sends zero objects to zero objects, and fibre sequences to fibre
sequences.

Unlike in ordinary algebra, there is no need to distinguish between left and right exact
functors between stable ∞-categories.

Proposition 1.12 ([HA], Prop. 1.1.4.1) Let F : C → D be a functor between stable ∞-
categories. The following are equivalent:

(i) F preserves finite limits;

(ii) F preserves finite colimits;

(iii) F is exact.

The main example of a stable ∞-category is that of spectra.
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Theorem 1.13 The ∞ category Sp is presentable, stable, and admits all limits and colimits.

Proof. See [HA], §1.4.3 and §1.4.4. �

In a stable ∞-category, the functors Σ and Ω are inverse equivalences. In the case of
Sp, the loop functor Ω is (up to equivalence) given by ‘shifting up’ (and appending
ΩE0 at the bottom), and the suspension functor Σ is given by ‘shifting down’. If n > 0,
we will use the notation Σ−n to mean Ωn, and the notation Ω−n to mean Σn.

Let Ω∞ : Sp→ S∗ denote the zeroth space functor, viz. the functor projecting onto the
final copy of S∗ in the diagram of Definition 1.6. The functor Ω∞−n := Ω∞Ω−n maps a
spectrum E to its n-th space. Henceforth we will write Ω∞−nE for the n-th space of a
spectrum E, instead of En as we did above. This is to avoid confusion later on.

Proposition 1.14 ([HA], Prop. 1.4.4.4) The functor Ω∞ : Sp → S∗ admits a left adjoint.
We denote this functor by Σ∞, and call Σ∞X of a pointed space X the suspension spectrum of
X.

Note that Ω∞ commutes with Ω but not with Σ. Similarly, Σ∞ commutes with Σ but
not with Ω.

Example 1.15 The suspension spectrum of the zero-sphere S0 is called the sphere
spectrum, and is denoted by S. If n is an integer, then we denote the n-fold suspension
ΣnS by Sn. If n is nonnegative, then this is the suspension spectrum of Sn:

Σ∞Sn = Σ∞ΣnS0 = ΣnΣ∞S0 = ΣnS.

However, the negative suspensions S−n are not in the essential image of Σ∞. N

Remark 1.16. In pointed spaces S∗, the coproduct is given by the wedge sum of spaces.
As Σ∞ is a left adjoint, we have a canonical equivalence

Σ∞
∨

i

Xi '
⊕

i

Σ∞Xi.

For this reason the direct sum in Sp is also called the wedge sum of spectra, and denoted
by ∨ by many authors. We use the notation ⊕ to emphasise the analogy with abelian
groups.

Lemma 1.17 Let E and F be spectra. Then the set [E, F] = π0 MapSp(E, F) naturally
has the structure of an abelian group. Maps of spectra E′ → E and F → F′ induce group
homomorphisms [E, F]→ [E′, F′].

Proof. This follows from the infinite loop space structure on the zeroth space of a
spectrum. Maps of spectra are infinite loop maps, so they respect this structure. �

Definition 1.18 Let E be a spectrum, and n an integer. The n-th homotopy group of E
is the group of homotopy classes of maps

πnE := [Sn, E].

11



The homotopy groups assemble to a functor

π∗ : Sp −→ Ab∗

from spectra to Z-graded abelian groups. Equivalently this is a functor h Sp→ Ab∗,
which is a functor between triangulated categories. This turns out to be an exact functor
of triangulated categories. This means that to a (co)fibre sequence

X −→ Y −→ Z

in Sp, there is an associated long exact sequence

· · · −→ πnX −→ πnY −→ πnZ −→ πn−1X −→ · · · .

There is also a Whitehead theorem for spectra.

Theorem 1.19 ([HA], Rmk. 1.4.3.8) A morphism f : E→ F of spectra is an equivalence if
and only if it induces an isomorphism f∗ : πnE→ πnF for every n.

1.2.2 Homology and cohomology

A (generalised) cohomology theory is a sequence of contravariant functors { h̃n }n∈Z

from pointed spaces to abelian groups, together with suspension isomorphisms of
the form γn : h̃n(−) ∼= h̃n+1(Σ−), satisfying certain axioms. For a precise definition,
see, e.g., [Gep19, Def. 3.1.7]. The Brown Representability Theorem says that every such
cohomology theory is representable by a spectrum E, unique up to equivalence. This
means that for every n we have a natural isomorphism

h̃n(X) ∼= [X, Ω∞−nE]∗

and that the suspension isomorphism γn is induced by the delooping map

Ω∞−nE −→ Ω Ω∞−(n+1)E.

Even though we formulated this using spectra, the representability of h̃n is a statement
about homotopy classes of maps between (pointed) spaces. To obtain a similar repres-
entability result for homology theories, we have to work in the category of spectra. This
has additional benefits: a spectrum gives rise to both a homology and a cohomology
theory not only on spaces, but also on spectra themselves. To phrase this, we need two
operations on spectra: the smash product and mapping spectrum.

Definition 1.20 Let E and F be spectra. The smash product E⊗ F is the colimit of the
diagram

Σ∞(Ω∞E ∧Ω∞F) ΩΣ∞(Ω∞−1E ∧Ω∞F) · · ·

ΩΣ∞(Ω∞E ∧Ω∞−1F) Ω2Σ∞(Ω∞−1E ∧Ω∞−1F) · · ·

...
...
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More briefly,
E⊗ F = colim

n,m
Ωn+m Σ∞(Ω∞−nE ∧Ω∞−mF).

Definition 1.21 Let E and F be spectra. The mapping spectrum map(E, F) is the
spectrum with n-th space

MapSp(E, ΣnF),

and with delooping maps

MapSp(E, ΣnF) ' MapSp(E, ΩΣn+1F) ' Ω MapSp(E, Σn+1F).

Both of these assemble to bifunctors on Sp. For a fixed spectrum X, the functor
X⊗− : Sp→ Sp turns out to be left adjoint to map(X,−). We will revisit the smash
product and mapping spectrum in more detail in §1.4.

The following property of the mapping spectrum will be useful.

Proposition 1.22 Let X be a spectrum. The mapping spectrum functors map(X,−) : Sp→
Sp and map(−, X) : Spop → Sp are exact.

Proof. The mapping space functor MapSp(X,−) : Sp→ S∗ preserves all limits. Limits
in Sp are computed levelwise (because Ω∞ commutes with limits), so the mapping
spectrum map(X,−) also preserves all limits. It follows from Proposition 1.12 that
map(X,−) is exact. Similarly one finds that map(−, X) is exact. �

Remark 1.23. Many others denote the smash product of spectra by E ∧ F, emphasising
its relation with the smash product of spaces. We use the latter to emphasise the
analogy with abelian groups.

Remark 1.24. The definition of the mapping spectrum makes sense in any stable ∞-
category. This parallels the 1-categorical case of abelian categories, where the Hom-sets
are abelian groups.

Definition 1.25 Let E and X be spectra, and n an integer.

(a) The n-th E-homology group of X is

En(X) := πn(X⊗ E).

(b) The n-th E-cohomology group of X is

En(X) := π−n map(X, E) = [X, ΣnE].

(c) The n-th coefficient group of E is

En := En(S).

The coefficients of E is the Z-graded abelian group E∗.
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Note that En = E−n(S) for every n:

En = πn(S⊗ E) = [Sn, E] = E−n(S).

Also note that the long exact sequence associated to a (co)fibre sequence implies that
we get long exact sequences for E-homology and cohomology. Namely, if X → Y → Z
is a cofibre sequence, then E⊗ X → E⊗Y → E⊗ Z is also a cofibre sequence, because
E⊗− is a left adjoint and therefore preserves colimits. Taking homotopy groups yields
a long exact sequence

· · · −→ EnX −→ EnY −→ EnZ −→ En−1X −→ · · · .

Using that map(−, E) is exact (Proposition 1.22), we have a long exact sequence for
cohomology as well:

· · · −→ EnX −→ EnY −→ EnZ −→ En+1X −→ · · · .

If h̃∗ : S∗ → Ab∗ is a homology theory on pointed spaces, then up to natural equival-
ence it factors as

S∗ Sp Ab∗Σ∞ E∗(−)

for a spectrum E that is unique up to equivalence. A similar statement holds for co-
homology theories, which retrieves the Brown representability theorem for cohomology
theories on spaces. If one wishes to work with unreduced (co)homology theories on S
instead, then one should replace Σ∞ by Σ∞

+ (i.e., first adding a disjoint basepoint and
then taking the suspension spectrum).

Example 1.26 If A is an abelian group, then singular cohomology with coefficients in
A defines a generalised cohomology theory on pointed spaces. This is known to be
represented by Eilenberg–MacLane spaces: for a pointed space X,

H̃n(X; A) ∼= [X, K(A, n)]∗.

It is immediate that K(A, n + 1) is a delooping of K(A, n). After choosing an equival-
ence K(A, n) ' Ω K(A, n + 1) for every n > 0, we obtain a spectrum HA called the
Eilenberg–MacLane spectrum of A. Its homotopy groups are

πn HA ∼=
{

A n = 0,

0 n 6= 0.

If X is a spectrum, then (HA)n(X) is called the n-th homology group of X with coef-
ficients in A. More commonly it is denoted by Hn(X; A), or by Hn(X) in the case
A = Z. Similarly (HA)n(X) is called the n-th cohomology group of X, and is denoted
by Hn(X; A). In the case that X = Σ∞Y is the suspension spectrum of a pointed space
Y, then these recover the (reduced) singular homology and cohomology of Y:

Hn(Σ∞Y; A) ∼= H̃n(Y; A) and Hn(Σ∞Y; A) ∼= H̃n(Y; A). N
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Remark 1.27. The assignment A 7→ HA can be turned into a fully faithful functor
Ab→ Sp with essential image the discrete spectra: spectra E for which πnE = 0 if n 6= 0.
See [HA, Prop. 1.4.3.6]. An inverse equivalence Spdisc → Ab is given by π0. In this
way we can think of an abelian group as a spectrum.

Example 1.28 Consider complex topological K-theory. Recall that two vector bundles
E and F over a space X are called stably equivalent if there are n, m > 0 such that
E⊕ εn ∼= F⊕ εm, with εn and εm denoting the trivial vector bundles of rank n and m,
respectively. If X is a finite pointed space, then we define its reduced K-group K̃U(X)

as the group of complex vector bundles over X up to stable equivalence, with group
operation the direct sum.1

On finite spaces, the functor K̃U is represented by Z × BU, where BU denotes the
classifying space of the infinite unitary group U = colimn U(n): if X is finite,

K̃U(X) ∼= [X, Z× BU]∗.

See, e.g., [Ati, Prop. 2.1.10] for a proof. If X is an arbitrary pointed space, then we define
its reduced K-group K̃U(X) to be this set of homotopy classes. We extend K-theory to
negative degrees by defining K̃U−n(X) := K̃U(ΣnX), or in other words, by defining
K̃U−n to be represented by Ωn(Z× BU). Bott periodicity [Bot57] gives an equivalence
between Z× BU and its two-fold loop space Ω2(Z× BU). This extends the grading
in K-theory to all integers, and also gives us a spectrum KU, the complex K-theory
spectrum. Its underlying spaces are

Ω∞−n KU =

{
Z× BU n even,

U n odd,

and its homotopy groups are

πn KU ∼=
{

Z n even,

0 n odd.

This in particular shows that KU is neither a suspension spectrum nor an Eilenberg–
MacLane spectrum, because it has nonvanishing negative homotopy groups.

If X is a spectrum, then we call KU∗(X) the K-theory of X. In the case that X = Σ∞Y
is a suspension spectrum of a pointed space Y, it recovers the (reduced) K-theory of Y:

KU∗(Σ∞Y) ∼= K̃U∗(Y). N

Remark 1.29. We advocate for denoting complex topological K-theory by KU rather
than by K in order to stress the parallel with real topological K-theory KO, and to
distinguish it from different kinds of K-theory (most notably, from algebraic K-theory).

1We do not need to take the Grothendieck group completion in the reduced case, because vector bundles
over a finite space X up to stable equivalences already form a group under direct sum.
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1.3 Symmetric monoidal ∞-categories

Roughly speaking, a symmetric monoidal category is a category C together with a product
functor ⊗ : C → C → C satisfying a number of coherence conditions, including associ-
ativity and symmetry. More precisely, these coherences are natural transformations that
are themselves part of the data of a symmetric monoidal category. One can then speak
of commutative algebra objects in a symmetric monoidal category, and modules over
such an algebra object. This categorical language specialises to standard notions in al-
gebra: commutative rings are commutative algebra objects in the symmetric monoidal
category Ab of abelian groups, and modules over a commutative ring R are module
objects over R in Ab.

It turns out that there is an analogous theory of symmetric monoidal ∞-categories. In
this case there are more coherences, and they play a more important role, because the
product functor is supposed to be associative and symmetric up to coherent homotopy.
For this reason it turns out to be easier to give a different formulation of the definition,
one using cocartesian fibrations. For a full review of cocartesian fibrations, see [HTT,
§2.4]. Although it looks different at first sight, the definition is truly a generalisation of
the 1-categorical case. In §1.3.1 we discuss commutative algebra objects in a symmetric
monoidal ∞-category, and in §1.3.2 we discuss module objects over commutative
algebra objects. In the end, using symmetric monoidal ∞-categories we can define
commutative ring spectra and their module spectra in §1.4.

Lurie [HA] often works in the more general setting of ∞-operads; all results below have
been specialised to the case of ∞-categories. Alternative sources include the survey
by Gepner [Gep19] and the treatment by Groth [Gro15, §4]. These three sources also
include additional motivation and intuition.

Remark 1.30. There is also a theory of monoidal ∞-categories, with which one could define
ring spectra as opposed to commutative ring spectra. We do not discuss these in this
work. Suffice it to say that a symmetric monoidal ∞-category has an underlying mon-
oidal ∞-category, and a commutative ring spectrum has an underlying ring spectrum.
(But unlike the algebraic case, commutativity is not a property of ring spectra, but
additional data.)

The coherences that the product functor should satisfy can be modelled by the following
1-category.

Definition 1.31 For a natural number n > 0, let 〈n〉 denote the pointed set { 0, 1, . . . , n },
pointed at the element 0. Let Fin∗ denote the category with objects 〈n〉 for every n > 0,
and morphisms the pointed maps. A morphism α : 〈n〉 → 〈m〉 in Fin∗ is called inert if
for every nonzero i ∈ 〈m〉, the fibre α−1{ i } is a singleton.

Suppose that p : D → Fin∗ is a functor of ∞-categories, i.e., a map p : D → N(Fin∗)
of simplicial sets. We denote by D〈n〉 the simplicial set that is the fibre of p over
〈n〉 ∈ N(Fin∗)0. If the map D → N(Fin∗) is an inner fibration, then the simplicial set
D〈n〉 is also an ∞-category.
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For n > 0 and 1 6 i 6 n, let ρi denote the morphism 〈n〉 → 〈1〉 in Fin∗ defined by

ρi(j) =

{
1 if j = i,

0 otherwise.

These are all the inert morphisms 〈n〉 → 〈1〉.

Definition 1.32 A symmetric monoidal ∞-category is an ∞-category C⊗ together
with a cocartesian fibration p : C⊗ → Fin∗ satisfying the Segal condition: for every
n > 0, the map

C⊗〈n〉 −→
(
C⊗〈1〉

)×n

induced by the morphisms ρi for i = 1, . . . , n, is a categorical equivalence.

If C⊗ → Fin∗ is a symmetric monoidal ∞-category, we write C for C⊗〈1〉 and call it the
underlying ∞-category. We say that C⊗ gives C the structure of a symmetric monoidal ∞-
category. We may abuse notation and simply call C the symmetric monoidal ∞-category,
leaving the map C⊗ → Fin∗ implicit.

The cocartesian fibration C⊗ → Fin∗ gives rise to a product functor ⊗ : C × C → C as
follows. The morphism

〈2〉 −→ 〈1〉,
{

1 7→ 1,

2 7→ 1

in Fin∗ lifts to a functor C⊗〈2〉 → C, well-defined up to contractible choice. Choosing
an inverse of the equivalence C⊗〈2〉 ' C × C (guaranteed by the Segal condition) and
precomposing with this gives a product functor. The structure of Fin∗ implies in
particular that this product is associative and commutative up to homotopy. The
additional structure in the cocartesian fibration C⊗ → Fin∗ records the higher coherence
data.

In a similar way we can obtain a unit object of C. Namely, by the Segal condition, the
∞-category C⊗〈0〉 is equivalent to ∆0. The unique morphism 〈0〉 → 〈1〉 in Fin∗ lifts to a
functor

∆0 −→ C
well-defined up to contractible choice. We call an object in the image of such a functor
a unit object of C, and denote it by 1. A unit object is in particular a two-sided unit
object up to homotopy for the product functor ⊗.

Definition 1.33 A symmetric monoidal ∞-category C⊗ → Fin∗ is called closed if for
every object X ∈ C, the functor X⊗− : C → C has a right adjoint.

In a closed symmetric monoidal ∞-category C, we will often denote the right adjoint to
X⊗− by mapC(X,−). If X is an object in a closed symmetric monoidal ∞-category C,
we denote by X∨ its dual object mapC(X, 1).

Definition 1.34 Let C⊗ → Fin∗ be a closed symmetric monoidal ∞-category. An object
X ∈ C is called dualisable if for every Y ∈ C, the natural map

X∨ ⊗Y −→ mapC(X, Y)
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is an equivalence.

If X is dualisable, then so is its dual X∨.

Definition 1.35 Let p : C⊗ → Fin∗ and q : D⊗ → Fin∗ be two symmetric monoidal
∞-categories.

(a) A lax monoidal functor F from C⊗ to D⊗ is a functor F : C⊗ → D⊗ over Fin∗
that sends p-cocartesian lifts of inert morphisms to q-cocartesian morphisms.

(b) A symmetric monoidal functor F from C⊗ to D⊗ is a functor F : C⊗ → D⊗ over
Fin∗ that sends p-cocartesian morphisms to q-cocartesian morphisms.

A lax (or symmetric) monoidal functor F : C⊗ → D⊗ has an underlying functor F : C →
D. We may abuse notation and call refer to the underlying functor C → D as the lax
(or symmetric) monoidal functor, leaving the functor C⊗ → D⊗ implicit.

If C is a 1-category, then a symmetric monoidal structure on N(C) regarded as an
∞-category turns out to be equivalent to a symmetric monoidal structure on C in the
classical sense. See the introduction to Chapter 2 of [HA] for a discussion. In this way
we regard a symmetric monoidal 1-category C (in the classical sense) as a symmetric
monoidal ∞-category N(C)⊗ → N(C). The notion of lax and symmetric monoidal
functors also coincide.

1.3.1 Commutative algebra objects

Definition 1.36 Let p : C⊗ → Fin∗ be a symmetric monoidal ∞-category. A commutat-
ive algebra object in C is a section A〈−〉 : Fin∗ → C⊗ of p that sends inert morphisms
to p-cocartesian morphisms. Write CAlg(C) for the full subcategory of the ∞-category
FunFin∗(Fin∗, C⊗) of functors over Fin∗ on the commutative algebra objects.

If A〈−〉 : Fin∗ → C⊗ is a commutative algebra object, then A := A〈1〉 lands in C⊗〈1〉 = C.
We call A the underlying object. We will often abuse notation by referring to A as
the commutative algebra object. Precomposition with the functor 〈1〉 → Fin∗ yields
a forgetful functor CAlg(C) → C that sends a commutative algebra object to its
underlying object.

The condition that A〈−〉 should send inert morphisms to cocartesian morphisms
implies, together with the Segal condition, that for n > 1, we have an equivalence
A〈n〉 ' A⊗ · · · ⊗ A.

Example 1.37 Let C⊗ → C be a symmetric monoidal ∞-category. There is an essentially
unique commutative algebra object in CAlg(C) whose underlying object is the unit
object 1; see [HA, Prop. 3.2.1.8]. We will refer to this object as the unit algebra, and
also denote it by 1. It is an initial object in CAlg(C). N

The following is immediate from the definitions.
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Proposition 1.38 Let F : C⊗ → D⊗ be a lax monoidal functor between two symmetric
monoidal ∞-categories. Then postcomposition with F induces a functor

CAlg(C) −→ CAlg(D)

which on underlying objects agrees with F : C → D.

Definition 1.39 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category. An augmented
commutative algebra object in C is a commutative algebra object A in C together with
a morphism A → 1 to the unit algebra of C. Write CAlgaug(C) for the slice category
CAlg(C)/1 over the unit algebra.

From Example 1.37 it follows that 1 is a zero object of CAlgaug(C).

Remark 1.40. There is also a notion of a nonunital commutative algebra object; see [GL,
Var. 3.1.3.8]. There is an equivalence between CAlgaug(C) and CAlgnu(C): see [HA,
Prop. 5.4.4.10]. Informally, this equivalence sends an augmented algebra A → 1 to
the fibre of the augmentation; the inverse equivalence sends a nonunital algebra Ã to
1⊕ Ã.

We now turn to limits and colimits of commutative algebra objects. Limits are the most
straightforward.

Theorem 1.41 ([HA], Cor. 3.2.2.5) Let C⊗ → Fin∗ be a symmetric monoidal ∞-category,
and K a simplicial set. Suppose that C admits K-indexed limits. Then the ∞-category CAlg(C)
admits K-indexed limits, and the forgetful functor CAlg(C)→ C preserves and reflects these.

Corollary 1.42 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category. The forgetful functor
CAlg(C)→ C is conservative.

Proof. By [Ker, Tag 02JR], a morphism X → Y in an ∞-category D exhibits X as a limit
of the diagram {Y } → D if and only if X → Y is an equivalence. Now apply the above
theorem. �

In general, colimits in CAlg(C) are much more complicated. We only need a specific
case, namely that of coproducts, from which we will later deduce the case of pushouts.
(Since limits behave so differently from colimits, it follows that even if C is stable, the
∞-category CAlg(C) need not be stable.)

In [HA], Construction 3.2.4.1, Lurie constructs a symmetric monoidal structure on
CAlg(C), such that the forgetful functor CAlg(C) → C is a symmetric monoidal
functor. We shall denote the product in CAlg(C) by ⊗ also.

Proposition 1.43 ([HA], Prop. 3.2.4.7) Let C⊗ → Fin∗ be a symmetric monoidal ∞-
category. Then the coproduct of A, B ∈ CAlg(C) is given by A⊗ B.

We conclude this section with the notion of ‘free’ commutative algebra objects. In good
settings such objects always exist.

Theorem 1.44 ([HA], Prop. 3.1.3.13) Let C⊗ → Fin∗ be a symmetric monoidal ∞-category.
Assume that the underlying category C has all countable colimits, and that the product functor
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preserves these in each variable separately. Then the forgetful functor CAlg(C)→ C admits a
left adjoint.

We will denote such a left adjoint by Sym: C → CAlg(C). For X ∈ C, we call Sym(X)

the symmetric algebra on X. We think of the counit map X → Sym(X) as the inclusion
of X in the symmetric algebra on X.

If C has a zero object 0, then Sym(0) is an initial object of CAlg(C), i.e., it is the unit
algebra 1. For every X ∈ C, a morphism X → 0 induces an augmentation Sym(X)→ 1
of Sym(X). Thus in this case we may also think of Sym as a functor C → CAlgaug(C)
to augmented commutative algebra objects.

Remark 1.45. We use the notation Sym in analogy with the symmetric algebra SymR(M)

(where R is a commutative ring and M an R-module).

1.3.2 Module objects

Spelling out the complete definition of module objects in a symmetric monoidal ∞-
category would take up a considerable amount of space, so we give a summary of a
construction. An alternative overview is given by Gepner [Gep19, §3.4].

Let C⊗ → Fin∗ be a symmetric monoidal ∞-category. In Definition 4.2.1.13 of [HA],
Lurie defines an isofibration LMod(C) → CAlg(C). Intuitively speaking, the ∞-
category LMod(C) consists of ‘pairs’ (A, M) with A a commutative algebra object of C,
and M an object of C with a left multiplication by A. The map LMod(C)→ CAlg(C)
maps such a pair (A, M) to A. If A ∈ CAlg(C) is a commutative algebra object, we
define the ∞-category of left A-module objects in C to be the pullback

LModA(C) := LMod(C)×{ A } CAlg(A).

There is a forgetful functor LModA(C)→ C (see [HA, Ex. 4.2.1.18]).

Alternatively, one could define an ∞-category of right A-modules, or (A, A)-bimodules,
or ‘commutative’ A-modules in the sense of [HA, §3.3]. Since we work with commut-
ative algebra objects, all these resulting ∞-categories are equivalent: see [HA, p. 592]
for a summary. For this reason we will simply write ModA(C) for LModA(C) in the
remainder of this text.

Let A ∈ CAlg(C). In §4.4 of [HA], Lurie defines the relative tensor product of A-module
objects M, N ∈ ModA(C), denoted by M⊗A N.

Theorem 1.46 ([HA], Thm. 4.5.2.1) Let C⊗ → Fin∗ be a symmetric monoidal ∞-category,
and let A ∈ CAlg(C). Suppose C admits all geometric realisations and ⊗ : C × C → C
preserves these in each variable separately. Then the ∞-category ModA(C) has the structure of
a symmetric monoidal ∞-category given by the relative tensor product.

We write Mod⊗A(C)→ Fin∗ for the symmetric monoidal structure of ModA(C).
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Example 1.47 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category. By Proposi-
tion 3.4.2.1 of [HA], the forgetful functor Mod⊗1 (C)→ C⊗ is an equivalence. In other
words, every object of C is a module over 1 in an essentially unique way. N

Let A → B be a morphism of commutative algebra objects in C. In §3.4.3 of [HA], a
forgetful functor Mod⊗B (C) → Mod⊗A(C) over Fin∗ is constructed. In good settings
this functor has a left adjoint, resulting in an ‘extension of scalars’ adjunction.

Theorem 1.48 (Extension of scalars; [HA], Thm. 4.5.3.1, Thm. 4.6.2.17) Let C⊗ → Fin∗
be a symmetric monoidal ∞-category, and let A→ B be a morphism in CAlg(C). Suppose C
admits all geometric realisations and ⊗ : C × C → C preserves these in each variable separately.
Then the forgetful functor ModB(C) → ModA(C) has a left adjoint given by the relative
tensor product M 7→ B⊗A M. Moreover, the forgetful functor Mod⊗B (C) → Mod⊗A(C) is
lax monoidal, and the relative tensor product Mod⊗A(C)→ Mod⊗B (C) is symmetric monoidal.

Limits and colimits in ModA(C) are very closely related to limits and colimits in C.

Theorem 1.49 ([HA], Cor. 4.2.3.3, Cor. 4.2.3.5) Let C⊗ → Fin∗ be a symmetric monoidal
∞-category, and let A ∈ CAlg(C). Let K be a simplicial set.

(a) Suppose C admits K-indexed limits. Then ModA(C) admits K-indexed limits, and the
forgetful functor ModA(C)→ C preserves and reflects these.

(b) Suppose C admits K-indexed colimits and that the tensor product functor M 7→ A⊗M
preserves these. Then ModA(C) admits K-indexed colimits, and the forgetful functor
ModA(C)→ C preserves and reflects these.

By the same reasoning as in Corollary 1.42, this implies the following.

Corollary 1.50 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category, and let A ∈ CAlg(C).
The forgetful functor ModA(C)→ C is conservative.

Because colimits in ModA(C) are so closely related to colimits in C (which was not the
case for commutative algebra objects), we also find the following.

Corollary 1.51 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category such that C is stable.
Let A ∈ CAlg(C) be a commutative algebra object. Suppose that the tensor product functor
M 7→ A⊗M commutes with pushouts. Then ModA(C) is a stable ∞-category.

Theorem 1.52 ([HA], Cor. 4.4.2.15) Let C⊗ → Fin∗ be a symmetric monoidal ∞-category,
and let A ∈ CAlg(C). Let K be a simplicial set. Assume that the tensor product functor
⊗ : C × C → C preserves geometric realisations and K-indexed colimits in each variable sep-
arately. Then the relative tensor product functor ⊗A : ModA(C)×ModA(C)→ ModA(C)
preserves K-indexed colimits in each variable separately.

Corollary 1.53 Let C⊗ → Fin∗ be a closed symmetric monoidal ∞-category, and let
A ∈ CAlg(C) be a commutative algebra object. Then the symmetric monoidal ∞-category
ModA(C) is also closed.

Definition 1.54 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category, and let A ∈
CAlg(C) be a commutative algebra object. A commutative A-algebra object in C
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is a commutative algebra object in ModA(C). Write CAlgA(C) for the ∞-category
CAlg(ModA(C)).

Theorem 1.55 ([HA], Cor. 3.4.1.7) Let C⊗ → Fin∗ be a symmetric monoidal ∞-category,
and A a commutative algebra object of C. Then we have a categorical equivalence

CAlg(ModA(C)) ' CAlg(C)A/.

In particular, we see that A is a unit algebra for CAlgA(C).

Corollary 1.56 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category, and let

B←− A −→ C

be a diagram in CAlg(C). Then the pushout of this diagram is given by B⊗A C.

Proof. Write f for the given diagram. This determines a diagram g : ∆0 t ∆0 →
CAlg(C)A/, and a colimit of g in CAlg(C)A/ is the same as a colimit of f in CAlg(C).
By Proposition 1.43, the colimit of g in CAlg(C)A/ ' CAlg(ModA(C)) is given by
B⊗A C. �

Note that the extension of scalars result for module objects (Theorem 1.48) also gives
an extension of scalars result for commutative A-algebra objects. (This is because both
functors are at least lax monoidal: see Proposition 1.38.) We record a useful result about
the compatibility of symmetric algebra objects with extension of scalars.

Proposition 1.57 Let C⊗ → Fin∗ be a symmetric monoidal ∞-category satisfying the
conditions of Theorem 1.48. Let A ∈ CAlg(C) and let X ∈ C. Then we have a natural
equivalence

SymModA(C)(A⊗ X) ' A⊗ SymC(X)

in CAlgA(C).

Proof. Using extension of scalars (Theorem 1.48), we see that for any B ∈ CAlgA(C),
we have

MapCAlgA(C)
(SymModA(C)(A⊗ X), B) ' MapModA(C)(A⊗ X, B)

' MapC(X, B)

' MapCAlg(C)(SymC(X), B)

' MapCAlgA(C)
(A⊗ SymC(X), B).

Thus the Yoneda lemma implies the result. �

1.4 Commutative ring spectra

Previously in Definition 1.20 we defined the smash product of spectra objectwise. It
has a lot more structure than this: it turns Sp into a symmetric monoidal ∞-category.
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Theorem 1.58 ([HA], Cor. 4.8.2.19) There is a closed symmetric monoidal structure on Sp,
unique up to contractible choice, such that

(i) the product functor ⊗ : Sp× Sp→ Sp preserves colimits in each variable separately;

(ii) the sphere spectrum S is a two-sided unit.

We fix a choice of such a structure and call the associated product the smash product.
The right adjoint to the functor X ⊗ − is the mapping spectrum map(X,−) from
Definition 1.21.

The concepts from the previous section now specialise to give the theory of commutative
ring spectra.

Definition 1.59

(a) A commutative ring spectrum is a commutative algebra object in the symmetric
monoidal ∞-category Sp. We denote the ∞-category of commutative ring spectra
by CAlg(Sp).

(b) If R is a commutative ring spectrum, then an R-module spectrum (or R-module
for short) is an R-module object in Sp. We denote the ∞-category of R-module
spectra by ModR.

(c) If R is a commutative ring spectrum, then a commutative R-algebra spectrum
(or commutative R-algebra for short) is a commutative R-algebra object in Sp. We
denote the ∞-category of commutative R-algebra spectra by CAlgR.

By Theorem 1.55, a commutative R-algebra spectrum A is the same as a commutative
ring spectrum together with a map R → A of commutative ring spectra. The ∞-
category ModR is stable, but CAlgR and CAlg(Sp) are not.

Remark 1.60. Often the term E∞-ring spectrum is used for what we call a commutative
ring spectrum. This is because there is an infinite hierarchy of commutativity conditions
in the world of higher algebra, which are denoted by E1, E2, etc. Of these, E∞ is the
most complex: it describes commutativity up to coherent homotopy. (See [HA, §7.2]
for more information.) This is the only type of commutativity we need in this text, so
we use the word ‘commutative’ to mean E∞ throughout.

Example 1.61 The sphere spectrum S is naturally a commutative ring spectrum,
because it is the unit of the symmetric monoidal structure on Sp (see Example 1.37). A
module spectrum over S is the same as a spectrum, ModS ' Sp (see Example 1.47).
It is also the initial commutative ring spectrum. In this sense S plays the role that Z
does in ordinary algebra. The S-linear dual X∨ = map(X, S) of a spectrum X is more
commonly referred to as the Spanier–Whitehead dual of X. N

If R is a commutative ring spectrum, then the relative smash product ⊗R on ModR

preserves colimits in each variable separately, because the smash product on Sp does
so (Theorem 1.52). Therefore all results from the previous section apply to ring spectra
and module spectra. Let us draw attention to a few particular cases.
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Proposition 1.62 A map of commutative ring spectra is an equivalence if and only if it
induces an isomorphism on homotopy groups. If R is a commutative ring spectrum, then a
map of R-module spectra (or commutative R-algebra spectra) is an equivalence if and only if it
induces an isomorphism on homotopy groups.

Proof. Combine Corollaries 1.42 and 1.50 with Theorem 1.19. �

Example 1.63 Let R be a commutative ring spectrum. The ∞-category ModR is a
closed symmetric monoidal ∞-category by Corollary 1.53. We write mapR(M, N) for
the R-module spectrum of maps from M to N. If M is an R-module spectrum, then
its R-linear dual is the R-module spectrum M∨ := mapR(M, R). The R-linear dual
functor (−)∨ : Modop

R → ModR preserves limits, and so by Proposition 1.12 it is an
exact functor. Since ModR is a stable ∞-category, in practise this means that (−)∨
preserves cofibre sequences of R-module spectra. N

Example 1.64 Let R be a commutative ring spectrum. The symmetric objects from
Theorem 1.44 exist in the symmetric monoidal ∞-category ModR. If M is an R-module
spectrum, then we call SymR(M) the symmetric R-algebra spectrum on M. In the
absolute case where R = S, we omit the subscript and simply write Sym(X) for the
symmetric ring spectrum on a spectrum X. N

In the remainder of this section we discuss results which are specific to ring spectra.

Proposition 1.65 The functor π∗ : Sp→ Ab∗ is lax monoidal.

Proof sketch. It suffices to give h Sp → Ab∗ a lax monoidal structure. If E and F are
spectra, and Sn → E and Sm → F are elements of πnE and πmF, respectively, then
taking their smash product gives a map

Sn ⊗ Sm ' Sn+m −→ E⊗ F,

i.e., an element of πn+m E⊗ F. This defines a bilinear pairing between πnE and πmF,
giving rise to a natural transformation π∗(−)⊗ π∗(−)→ π∗(−⊗−), making π∗ lax
monoidal. �

Corollary 1.66 If R is a commutative ring spectrum, then π∗R is a graded-commutative
Z-graded ring. If M is an R-module spectrum, then π∗M is a Z-graded π∗R-module. If A is a
commutative R-algebra spectrum, then π∗A is a graded-commutative Z-graded π∗R-algebra.

Example 1.67 If R is an ordinary commutative ring, then its Eilenberg–MacLane
spectrum HR is naturally a commutative ring spectrum. We can even make this
functorial, as follows. Recall the Eilenberg–MacLane spectrum functor Ab→ Sp from
Remark 1.27. This functor lands in connective spectra (i.e., spectra whose homotopy
vanishes in negative degrees), and as a functor Ab→ Spcn it has a left adjoint, given
by the zeroth homotopy group (see [HA, Ex. 2.2.1.10]). The functor π0 : Spcn → Ab is
symmetric monoidal, because π0 : h Spcn → Ab is so: the natural transformation

π0(X)⊗ π0(X) −→ π0(X⊗Y)

is an isomorphism if X and Y are connective. Thus its right adjoint, the Eilenberg–
MacLane spectrum functor, is lax monoidal by [HA, Cor. 7.3.2.7]. It therefore induces
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a functor CAlg(Ab) → CAlg(Sp) on commutative algebra objects, i.e., a functor
CRing→ CAlg(Sp) from ordinary commutative rings to commutative ring spectra. In
this way, the Eilenberg–MacLane spectrum on a ring has the structure of a commutative
ring spectrum. N

Remark 1.68. The functor CRing → CAlg(Sp) from the previous example is fully
faithful, with essential image the discrete commutative ring spectra.

Example 1.69 The complex K-theory spectrum KU from Example 1.28 can be upgraded
to a commutative ring spectrum. There are several ways of doing this; we provide a
sketch of one approach. We start with the suspension spectrum Σ∞

+CP∞. The space
CP∞ is an Eilenberg–MacLane space, and its multiplication induces a commutative ring
spectrum structure on its suspension spectrum. One can invert the Bott element β ∈
π2 Σ∞

+CP∞, resulting in a commutative ring spectrum Σ∞
+CP∞[β−1]. This commutative

ring spectrum has the property that there is a graded ring isomorphism

π∗(Σ∞
+CP∞[β−1]) ∼= π∗(Σ∞

+CP∞)[β−1].

By a theorem of Snaith [Sna81], the underlying spectrum of Σ∞
+CP∞[β−1] is equivalent

to KU. N

Theorem 1.70 (Tor spectral sequence, [HA], Prop 7.2.1.19) Let R be a commutative ring
spectrum, and let M and N be two A-module spectra. There is a spectral sequence with E2-page

Ep,q
2 = Torπ∗R

p,q (π∗M, π∗N)

converging to π∗(M⊗R N).

1.4.1 Cochain algebra spectra

Let R be a commutative ring spectrum, and Y a spectrum. An alternative notation for
the R-module map(Y, R) is RY. In the case where Y = Σ∞

+X is the pointed suspension
spectrum of a space X, this R-module can be given the structure of a commutative
R-algebra. Recall from Theorem 1.41 that CAlgR has all limits, and that the forgetful
functor CAlgR → ModR preserves these. Note that if X is a space, then X is also an
∞-groupoid, so we can talk about X-shaped diagrams in an ∞-category.

Definition 1.71 Let X be a pointed space and R a commutative ring spectrum. The
R-cochains of X is the commutative R-algebra spectrum

RX+ := lim
X

R,

where the limit is taken in CAlgR.

This definition gives a functor S op → CAlgR.

Remark 1.72. One can also define RX if X is a pointed space, but this will be a nonunital
commutative R-algebra.
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Note that if X = ∗ is a point, then R∗+ = R. If X is a pointed space, then the inclusion
of the basepoint induces an augmentation RX+ → R. In fact, taking slices under a
point, the functor S op → CAlgR induces a functor S op

∗ → CAlgaug
R to augmented

R-algebras.

Proposition 1.73 Let R be a commutative ring spectrum. The composite functor

S CAlgR ModR
R(−)+

is equivalent to the functor map(Σ∞
+−, R).

Proof. The functor S op → CAlgR is the unique functor (up to equivalence) that pre-
serves limits and that sends a point to R. As the forgetful functor CAlgR → ModR

preserves limits, we find that the composite S op → ModR is also the unique functor
preserving limits and sending a point to R. The functor map(Σ∞

+−, R) satisfies the
same property. �

Later in this work we may use the notation RX+ to refer to both the R-algebra and the
underlying R-module; the context should make clear what we mean by the notation.

Corollary 1.74 If X is a space and R a commutative ring spectrum, then the cohomology
R∗(X) is naturally a graded-commutative Z-graded ring.

As in the case of the singular cochains from singular cohomology, one should expect the
functor R(−)+ to behave best on finite spaces. In the following result, note that the maps
R→ RX+ and the natural map SX+ → RX+ together induce (using Proposition 1.43) a
natural map

R⊗ SX+ −→ RX+ .

See Definition 1.34 for the notion of dualisability of an object.

Proposition 1.75 Let R be a commutative ring spectrum and X a space. Suppose that Σ∞
+X

is dualisable in the ∞-category Sp. Then the natural map

R⊗ SX+ '−→ RX+

is an equivalence.

Proof. It suffices to check that the map is an equivalence on underlying spectra. On
underlying spectra, this is the natural map

R⊗map(Σ∞
+X, S) −→ map(Σ∞

+X, R).

If Σ∞
+X is dualisable in Sp, then this is an equivalence. �

Remark 1.76. The ∞-category of finite spectra Spfin is the full subcategory of Sp that
contains S and is closed under finite colimits. A spectrum is dualisable if and only if
it is finite. We phrased the above result using dualisability to make the proof more
transparent. It is also how we can later generalise this result: see Proposition 4.21.
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1.5 Bousfield localisation

It turns out that algebraic operations such as localisation and completion at a prime p
can also be done with spaces, spectra, commutative ring spectra and module spectra.
These operations are special instances of an ∞-categorical construction called localisation.
Informally, a localisation of an ∞-category at a collection of morphisms W is another
∞-category obtained by inverting all morphisms in W.

Definition 1.77 Let C be an ∞-category and let W be a class of morphisms in C. A
localisation of C at W is an ∞-categoryD together with a functor L : C → D that sends
W to equivalences, satisfying the following universal property. For every ∞-category
E , precomposition with L yields a categorical equivalence

L∗ : Fun(D, E) −→ FunW(C, E),

where FunW(C, E) denotes the full subcategory of Fun(C, E) on the functors that send
W to equivalences. A localisation is called reflective if L admits a fully faithful right
adjoint.

Remark 1.78. This terminology is different from that of [HTT], where the term localisa-
tion is meant to refer to a reflective localisation. See Definition 5.2.7.2 and Warning 5.2.7.3
of op. cit.

In certain cases, we can construct a localisation of C at W as a subcategory of C of a
particular form. These types of localisations are called Bousfield localisations. It was
originally developed by Bousfield in the setting of spaces [Bou75] and spectra [Bou79],
but the ideas can be used in a much more general context. We summarise the ∞-
categorical formulation of Bousfield localisation, and then specialise to the case of
spectra, ring and module spectra, and spaces. This section is heavily based on the
exposition by Lawson [Law20], with parts taken from Heuts [Heu19] and Barthel and
Bousfield [BB17].

We start with some terminology.

Definition 1.79 Let C be an ∞-category and let S be a class of morphisms in C.

(a) An object A ∈ C is S-local if for every morphism f : X → Y in S, the map

f ∗ : MapC(Y, A) −→ MapC(X, A)

is an equivalence. Write LSC for the full subcategory on the S-local objects.

(b) A morphism f : X → Y in C is an S-equivalence if for every S-local object A, the
map

f ∗ : MapC(Y, A) −→ MapC(X, A)

is an equivalence.

(c) An S-localisation of an object A ∈ C is an S-equivalence A → A′ with A′ an
S-local object.
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Proposition 1.80 ([Law20], Prop. 3.9) Let C be an ∞-category and let S be a class of
morphisms in C. Then LSC is closed under limits taken in C.

Proposition 1.81 Let C be a stable ∞-category and let S be a class of morphisms in C. Then
the ∞-category LSC is stable.

Proof. By [HA, Prop. 1.4.2.11], it suffices to show LSC is closed under suspensions in C.
This follows from the observation that MapC(X,−) commutes with suspensions, since

MapC(X, ΣY) ' ΣΩ MapC(X, ΣY) ' Σ MapC(X, ΩΣY) ' Σ MapC(X, Y)

because C is stable. �

Proposition 1.82 Let C be a closed symmetric monoidal ∞-category, and let S be a class of
morphisms in C. Let A ∈ C be an S-local object. Then for every object X ∈ C, the object
mapC(X, A) is S-local.

Proof. Let Y → Z be an S-equivalence. Since the functor map(X,−) is left adjoint to
−⊗ X, we have a commutative diagram

MapC(Z, mapC(X, A)) MapC(Y, mapC(X, A))

MapC(Z⊗ X, A) MapC(Y⊗ X, A).

' '

Because A is S-local, the bottom horizontal map is an equivalence. We find that the top
horizontal map is an equivalence, proving the claim. �

We now turn to the question of the existence of localisations of this form, i.e., when
there is a localisation functor C → LSC. First, some additional terminology.

Definition 1.83 Let C be an ∞-category and let W be a class of morphisms in C. The
class W is called strongly saturated if it satisfies the following conditions.

(i) For every pushout diagram in C

X Y

X′ Y′,

f

f ′

p

if f belongs to W, then so does f ′.

(ii) The class W is closed under colimits.

(iii) The class W is closed under equivalence, and its image in the homotopy category
satisfies the 2-out-of-3 axiom.

Lemma 1.84 ([HTT], Rmk. 5.5.4.7) Let C be an ∞-category. Every collection S of morphisms
in C generates a smallest strongly saturated class S.
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In the case of presentable ∞-categories, given a collection S of morphisms, we can
always localise at S, and this localisation is equivalent to the full subcategory on the
S-local objects.

Theorem 1.85 ([HTT], Prop. 5.5.4.15) Let C be a presentable ∞-category and let S be a
(small) collection of morphisms of C. Let S denote the strongly saturated class of morphisms
generated by S.

(a) For each object A ∈ C, there exists a morphism s : A→ A′ such that A′ is S-local and s
belongs to S.

(b) The ∞-category LSC is presentable.

(c) The inclusion LSC → C has a left adjoint L.

(d) For every morphism f of C, the following are equivalent:

(i) f is an S-equivalence.

(ii) f belongs to S.

(iii) L f is an equivalence.

Since left adjoints are unique up to contractible choice, we can pick any left adjoint
to the inclusion functor LSC → C and call it a localisation functor. The counit gives a
natural transformation idC → L. Note that combining (d) with (a), we see that every
object of C has an S-localisation in the sense of Definition 1.79(c).

The localisation L : C → LSC is called Bousfield localisation of C at S. Note that in the
terminology of Definition 1.77, this is the localisation of C at S. Bousfield localisations
are always reflective.

Corollary 1.86 Let C be an ∞-category and let S be a class of morphisms in C. Suppose C has
all limits and colimits.

(a) The limit of a diagram in LSC is computed by taking the limit in C.

(b) The colimit of a diagram in LSC is computed by applying L to the colimit in C.

In particular, the ∞-category LSC has all limits and colimits.

Proof. The first assertion because the limit in C of S-local objects is S-local (Proposi-
tion 1.80). The second assertion is formal: L is a left adjoint and left inverse to the
inclusion LSC → C, so it creates colimits. �

In good cases, we can ‘upgrade’ a localisation functor on a symmetric monoidal ∞-
category to a symmetric monoidal functor.

Theorem 1.87 ([HA], Prop. 2.2.1.9) Let C be a symmetric monoidal ∞-category and S a
class of morphisms in C. Let L : C → LSC be a localisation functor. Suppose that for every
X, Y ∈ C, the map

L(X⊗Y) −→ L(LX⊗ LY)
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is an equivalence. Then the subcategory LSC of local objects has the structure of a symmetric
monoidal ∞-category, and L is a symmetric monoidal functor.

Lemma 1.88 ([Law20], Prop. 12.3) Let C be a symmetric monoidal ∞-category and S a
class of morphisms in C. Suppose that for every S-equivalence f and every object X ∈ C, the
morphism f ⊗ idX is an S-equivalence. Then the localisation functor L : C → LSC satisfies the
condition of the previous theorem.

1.5.1 Localisation of spectra

Knowing the general theory, we specialise to the case of spectra.

Definition 1.89 Let E be a spectrum. A map f : X → Y of spectra is called an E-
equivalence if the induced map E∗(X)→ E∗(Y) is an isomorphism.

Equivalently, f : X → Y is an E-equivalence if the cofibre cofib f has zero E-homology,
i.e., if and only if E⊗ cofib f is contractible, i.e., if and only if E⊗ f is an equivalence.
The class of E-equivalences is a strongly saturated class.

We write SpE for the full subcategory on E-local spectra, and write LE : Sp → SpE
for the localisation functor. We write SE for the E-localisation of the sphere spectrum.
By Proposition 1.81, the ∞-category SpE is stable. Because E-localisations satisfy
the condition of Lemma 1.88, the ∞-category SpE becomes a symmetric monoidal
∞-category, and LE is a symmetric monoidal functor. Concretely, the product of
X, Y ∈ SpE is given by the E-local smash product

LE(X⊗Y).

By Proposition 1.82, it is even a closed symmetric monoidal ∞-category, with the E-local
mapping spectrum being the same as the normal mapping spectrum.

If X is an E-local spectrum, then its E-local Spanier–Whitehead dual is X∨ = map(X, SE).
An E-local spectrum X is called E-locally dualisable if it is dualisable in the ∞-category
SpE, i.e., if for all E-local spectra Y, the natural map

LE(X∨ ⊗Y) −→ map(X, Y)

is an equivalence.

Some localisations are of a special form: they are given by smashing with the localisa-
tion S→ SE of the sphere spectrum.

Definition 1.90 Let E be a spectrum. We call E-localisation a smashing localisation if
for all spectra X, the map

X ' X⊗ S −→ X⊗ SE

is an E-localiation.

A commutative ring spectrum R is called E-local when the underlying spectrum is
so, and similarly for module spectra. The ∞-category of E-local commutative ring
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spectra is CAlg(SpE). If R is an E-local commutative ring spectrum, then we write
ModR,E for ModR(SpE). Likewise we write CAlgR,E for CAlg(ModR,E). Note that
the ∞-category ModR,E is stable because ModR is. Also note that ModR,E is equivalent
to the subcategory of ModR on the E-local modules. Indeed, both satisfy the universal
property for localisation at the E-equivalences. Similarly, CAlgR,E is equivalent to the
subcategory on the E-local algebras.

The localisation LE : Sp→ SpE of spectra induces a localisation LE : ModR → ModR,E

of modules. This functor is symmetric monoidal, so it also induces a localisation
LE : CAlgR → CAlgR,E of commutative algebras.

For particular spectra E, the operation of E-localisation is so important that it deserves
a special name.

Example 1.91 Localisation with respect to the Eilenberg–MacLane spectrum HQ is
rationalisation. We denote the rationalisation of a spectrum X by XQ. A spectrum X is
HQ-local if and only if its homotopy groups π∗X are rational vector spaces. A map
X → Y of spectra is an HQ-equivalence if and only if it induces an isomorphism on
rational homotopy groups π∗(X)⊗Q→ π∗(Y)⊗Q. This is a smashing localisation:
the functor X 7→ X⊗ HQ is equivalent to rationalisation (see [Bou79, Prop. 2.4]). N

Example 1.92 Let p be a prime number. Let SZ(p) denote the Z(p)-Moore spectrum,
i.e., the spectrum with

πn(SZ(p)) = 0 for n < 0,

π0(SZ(p)) = H0(SZ(p)) = Z(p),

Hn(SZ(p)) = 0 for n > 0.

Localisation with respect to SZ(p) is called p-localisation of spectra. We denote the
p-localisation of a spectrum X by X(p). A spectrum X is SZ(p)-local if and only if
its homotopy groups π∗X are p-local abelian groups. By [Bou79, Prop. 2.4], this is a
smashing localisation. N

Example 1.93 Let p be a prime number. Let S/p denote the mod p Moore spectrum:
the cofibre of the degree p map S → S. Localisation with respect to S/p is called
p-completion of spectra. We denote the p-completion of X by X∧p . It turns out that this
is equivalent to the limit

X∧p ' lim
n

X/pn.

This is not a smashing localisation.

As similar as it looks, the relevant algebraic shadow is not p-completion in the classical
sense, but derived p-completion. An abelian group A is derived p-complete if and only if
the natural map

A −→ Ext1
Z(Z/p∞, A)

is an isomorphism, where Z/p∞ denotes Z[ 1
p ]/Z. If A is a finitely generated or a flat

abelian group, then this coincides with classical p-completion. See Appendix A for an
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extended discussion of derived p-completion. We write

L0A := Ext1
Z(Z/p∞, A) and L1A := HomZ(Z/p∞, A)

If A has bounded p-torsion, then L1A = 0.

A spectrum X is p-complete if and only if its homotopy groups π∗X are derived
p-complete. By [Bou79, Prop. 2.5], there is a split short exact sequence

0 L0 πnX πn(X∧p ) L1 πn−1X 0. N

In some cases, we use special notation for the p-completion of a spectrum. We write Sp

for the p-completion of the sphere spectrum S, and KUp for the p-completion of the
complex K-theory spectrum KU. This is by analogy with the notation Zp for the p-adic
integers (rather than writing Z∧p ), as Sp and KUp as the base rings over which most of
the work in this thesis is done.

1.5.2 Localisation of spaces

Definition 1.94 Let E be a spectrum. A map f : X → Y of (pointed) spaces is called an
E-equivalence if the induced map E∗(X)→ E∗(Y) is an isomorphism.

We will make light use of the localisation of spaces. Most of the time we will consider
pointed spaces only, and for this reason we write SE for the full subcategory of S∗ on
the E-local pointed spaces.

The definitions of rationalisation, p-localisation and p-completion of spaces are the
same as in the case for spectra. These localisations work best on simply-connected
spaces, or more generally on nilpotent spaces. For example, a nilpotent pointed space
is HQ-local if and only if its homotopy groups are rational vector spaces; for nilpotent
pointed spaces, there is an analogous short exact sequence for the homotopy groups of
its p-completion. For more information, the reader may consult [Law20, §7, 9.1], and
[BB17] for a specific discussion of p-completion of spaces and spectra (and how these
compare).
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2K-THEORY AND ADAMS OPERATIONS

If R is a commutative ring spectrum and X a space, we saw in Corollary 1.74 that the
R-cohomology R∗(X) naturally has the structure of a graded-commutative ring. The
commutative structure on R is much richer than this, and in fact it endows R∗(X) with
more structure: R∗(X) carries cohomology operations. These cohomology operations
depend on the ring spectrum R. For mod 2 cohomology HF2, these are the Steenrod
squares. For p-completed K-theory KUp, these are the Adams operations, which are
additive and multiplicative homomorphisms ψk indexed by p-adic integers k ∈ Zp.

In this chapter we discuss the Adams operation on p-completed K-theory. Specifically,
we look at the KUp-homology of spectra, and the KUp-cohomology of spaces. The
K-homology of spectra has Adams operations indexed by p-adic units Z×p . The K-
homology of commutative ring spectra, as well as the K-cohomology of spaces, forms
a θ-algebra, which is a refinement of a ring with Adams operations indexed by all
p-adic integers Zp. The structure of a θ-algebra captures essentially all the algebraic
information in these groups: by a result of McClure, the K-homology of a symmetric
ring spectrum is a free θ-algebra.

More precisely, we work with a completed variant of KUp-homology, which has proved
to be a more natural object than the non-completed variant. We introduce this in §2.1.
In §2.2 we give a short introduction to Adams operations, both on the K-theory of
spaces and of spectra. In §2.3 we collect the precise results about the structure that
the Adams operations give to K-theory. In §2.4 we discuss free θ-algebras, which then
allows us to discuss the K-theory of symmetric ring spectra in §2.5.

Throughout this chapter, p denotes a fixed prime number. As in Appendix A, we use
an asterisk in the notation Mod∗Zp

to signify Z/2-graded modules, and similarly for
CAlg∗Zp

.

Convention 2.1 The coefficients of (p-adic) K-theory are 2-periodic:

(KU)∗ = Z[u±] and (KUp)∗ = Zp[u±],

with u in degree 2 denoting the Bott element. As such, the homotopy of a module (or
commutative algebra) over KU (or KUp) can either be viewed as a 2-periodic Z-graded
module, or as a Z/2-graded module. In this chapter, and even this whole thesis, we
shall view these as Z/2-graded unless explicitly stated otherwise. That is, KU∗(X)

denotes the Z/2-graded abelian group KU0(X)⊕ KU1(X), and for cohomology we use
the negative degree version KU0(X)⊕ KU−1(X). The ring structure on cohomology is
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defined via
KU−1(X)⊗ KU−1(X) −→ KU−2(X)

∼=−→ KU0(X),

where the second map is division by u. Throughout this work, the term ‘graded’ will
mean ‘Z/2-graded’ unless explicitly stated otherwise.

2.1 Morava K-theory

Definition 2.2 The first Morava K-theory K(1) is the spectrum KU/p, i.e., the cofibre
in Sp of the degree p map KU → KU.

The prime p is left implicit in the notation, which is commonplace. (This is common in
the field of chromatic homotopy theory: see Chapter 4.) We will only use the notation
K(1) when working over a fixed prime, so this should not cause confusion.

Remark 2.3. Even though KU is a commutative ring spectrum, K(1) does not admit the
structure of a commutative ring spectrum.

Remark 2.4. The above definition is slightly unusual. Most commonly K(1) refers to a
summand of KU/p called the Adams summand. However, localisation with respect to
this summand yields an equivalent functor to localisation with respect to KU/p. We
are only interested in localisation with respect to K(1), so the above definition should
not cause issues. We use the notation K(1) instead of KU/p to reflect related literature
more closely.

Proposition 2.5 The functor LK(1) : Sp→ Sp is equivalent to the composite LS/pLKU .

Proof. See, e.g., [Hov93]. �

Lemma 2.6 ([Law20], Prop. 9.17) Let E be a commutative ring spectrum. Then E-module
spectra are E-local.

Corollary 2.7 On KU-module spectra, K(1)-localisation is the same as p-completion.

Proposition 2.8 ([Bou79], §4) The localisation LKU is a smashing localisation (see Defini-
tion 1.90).

Corollary 2.9 Let X be a spectrum, and let Y be a KU-local spectrum. Then the K(1)-
localisation of X⊗Y is the same as its p-completion.

Proof. The KU-localisation of X ⊗ Y is given by X ⊗ Y → X ⊗ Y ⊗ SKU . The map
Y → Y ⊗ SKU is an equivalence because Y is KU-local. The result now follows from
Proposition 2.5. �

In the style of §1.5.1, we write ModKUp, K(1) for the ∞-category of K(1)-local KUp-
module spectra, and CAlgKUp, K(1) for K(1)-local commutative KUp-algebra spectra.

As discussed in Example 1.93, the algebraic shadow of p-completion of spectra is derived
p-completion. Appendix A discusses the precise type of derived p-completion we need
here, viz. the setting of Z/2-graded Zp-modules. We use the same notation as we do
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there, writing M̂od∗Zp
for the category of derived p-complete Z/2-graded Zp-modules.

We write ĈAlg∗Zp
for the category of derived p-complete graded-commutative Z/2-

graded Zp-algebras.

Proposition 2.10 ([BF15], Cor. 3.14) Let M be a KUp-module spectrum. Then M is K(1)-
local if and only if the Z/2-graded Zp-module π∗M is derived p-complete.

Thus the homotopy groups give rise to functors

π∗ : ModKUp, K(1) −→ M̂od∗Zp
and π∗ : CAlgKUp, K(1) −→ ĈAlg∗Zp

.

It turns out that the KUp-homology of a space or spectrum X, as defined in Defin-
ition 1.25, is not a very natural invariant to consider. This is because (KUp)∗(X) is
defined as π∗(X⊗ KUp), but the smash product X⊗ KUp need not be K(1)-local even
if X is. This makes it more difficult to study: even for reasonable spectra, (KUp)∗(X)

can be intractable. It is better to consider the completed alternative.

Definition 2.11 Let X be a spectrum. The completed KUp-homology of X is the
Z/2-graded Zp-module

(KUp)
∧
∗ (X) := π∗(LK(1)(KUp ⊗ X)).

By the above, completed KUp-homology is derived p-complete. Strictly speaking this
is not a homology theory, because it does not preserve coproducts (since LK(1) does not
preserve coproducts as a functor Sp→ Sp).

Remark 2.12. There is no need for a completed variant of KUp-cohomology: the map-
ping spectrum map(X, KUp) is already K(1)-local for every spectrum X (see Proposi-
tion 1.82). So for any spectrum X, the cohomology KU∗p(X) is derived p-complete.

A detailed treatment of K(1)-localisation and completed KUp-homology is given by
Hovey and Strickland [HS99]. (Note that they work with so-called Morava E-theory
at height n; taking n = 1 retrieves the present setting.) The following result will be
particularly useful.

Theorem 2.13 ([HS99], Thm. 8.6) Let X be a K(1)-local spectrum. The following are
equivalent:

(i) the spectrum X is K(1)-locally dualisable;

(ii) the graded Zp-module (KUp)∧∗ (X) is finitely generated;

(iii) the graded Zp-module KU∗p(X) is finitely generated.

2.2 Adams operations

Theorem 2.14 (Adams [Ada62]) There exist cohomology operations ψk : KU0(−) →
KU0(−) on the complex K-theory of spaces, with k ∈ Z, satisfying the following conditions,
where X is a space, where x, y ∈ KU0(X), and where k, ` > 0.
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(i) We have ψk(x + y) = ψk(x) + ψk(y).

(ii) We have ψk(xy) = ψk(x) · ψk(y).

(iii) If x is the class of a line bundle, then ψk(x) = xk.

(iv) We have ψk(ψ`(x)) = ψk`(x).

(v) If p is a prime number, then ψp(x) ≡ xp mod p.

(vi) If n > 0 and x ∈ K̃U0(S2n), then ψk(x) = kn · x.

These conditions uniquely determine the cohomology operations ψk for k ∈ Z. We call
these (unstable) Adams operations. The operation ψ0 sends a vector bundle to its rank,
and ψ−1 sends a vector bundle to its linear dual bundle.

If KU0(X) has no p-torsion, then Condition (v) implies that there is a unique operation
θp : KU0(X)→ KU0(X) such that

ψp(x) = xp + p · θp(x).

If KU0(X) has p-torsion, then there would be multiple choices for such a θp. By a
refinement of the construction of the Adams operations, there is a canonical choice for
a map θp which is natural in the space X (see, e.g., [BF15], §5.3). In the presence of
p-torsion it is best to record θp instead of ψp, because it holds more information.

In order to move from the K-theory of spaces to the K-theory of spectra, we need to
stabilise these Adams operations. Let us temporarily consider K-theory as Z-graded
rather than Z/2-graded. So far we have only looked at KU0. To move to negative
degrees KU−n, one could consider the Adams operation ψk on K̃U(Σn

+X) = KU−n(X).
But this choice does not turn the Adams operations into stable cohomology operations.
Indeed, if n > 1, then the square

KU0(X) KU0(X)

KU−2n(X) KU−2n(X),

un

ψk

un

ψk

with u denoting the Bott element, does not commute: by Condition (vi) above, we have
(where x ∈ KU(X))

ψk(un · x) = ψk(un) · ψk(x) = kn · un · ψk(x).

If k ∈ Z is a unit in KU0(X), then we can remedy this: instead of considering ψk on
K̃U(Σ2n

+ X), we take 1/kn · ψk on K̃U(Σ2n
+ X) as operation. Then trivially for every n > 0

the square

KU0(X) KU0(X)

KU−2n(X) KU−2n(X),

un

ψk

un

1/kn·ψk
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commutes.

When working with p-completed K-theory KUp instead of ordinary K-theory, then for
every X, the integers coprime to p are invertible in KUp(X). Thus KUp(X) has Adams
operations ψk for k coprime to p. This even extends to ψk for k ∈ Z×p . In the end, for
every k ∈ Z×p we get a map of spectra ψk : KUp → KUp.

2.3 θ-algebras

In this section we record results about the structure that the Adams operations give to
the p-adic K-theory of spectra. The K-theory of a spectrum forms a Morava module. The
K-theory of a commutative ring spectrum has additional structure: it is a θ-algebra. We
closely follows Goerss and Hopkins [GH, §5.2].

Definition 2.15 A p-adic Morava module is a derived p-complete topological Z/2-
graded Zp-module M with a continuous action of Z×p by degree-preserving maps, such
that the quotient M/p is a discrete Z×p -module. A morphism of Morava modules is
a continuous morphism of graded Zp-modules that intertwines the action Z×p . Write
MorModp for the category of Morava modules.

Often we will write the action of k ∈ Z×p on a Morava module M as ψk (or by ψk
M if

we wish to emphasize the module M) and call these the Adams operations of M. If the
prime p is obvious from the context, we will often omit it and simply refer to p-adic
Morava modules as Morava modules.

Remark 2.16. In [Bou99], Bousfield uses the name stable Adams module (see Definition 2.7
of op. cit.) for a closely related concept. Roughly speaking, he uses the name Adams
module to mean a stable Adams module which also has a compatible ψp operation.

Proposition 2.17 ([GH], Prop. 2.2.2) Let X be a spectrum. The completed KUp-homology
(KUp)∧∗ (X) is naturally a p-adic Morava module. If f : X → Y is a morphism of spectra, then
the induced map f∗ : (KUp)∧∗ (X)→ (KUp)∧∗ (Y) is a morphism of p-adic Morava modules.

We call a Z/2-graded algebra A strictly commutative if it is graded-commutative and
x2 = 0 for all x ∈ A of odd degree.

Definition 2.18 A p-adic θ-algebra is a strictly commutative Z/2-graded Zp-algebra
A which is also a Morava module, together with continuous maps

θp : A0 −→ A0 and θp : A1 −→ A1,

satisfying the following conditions.

(i) For all k ∈ Z×p , the operation ψk on A is Zp-linear, and for x, y ∈ A homogeneous,

ψk(xy) =

{
ψk(x) · ψk(y) |x| = 0 or |y| = 0,
1
k · ψk(x) · ψk(y) |x| = |y| = 1.
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(ii) We have θp(1) = 0.

(iii) For all k ∈ Z×p , we have θp ◦ ψk = ψk ◦ θp.

(iv) For x, y ∈ A homogeneous,

θp(x + y) =

{
θp(x) + θp(y)− 1

p ∑
p−1
i=1 (p

i ) · x
iyp−i |x| = |y| = 0,

θp(x) + θp(y) |x| = |y| = 1.

(v) For x, y ∈ A homogeneous,

θp(xy) =

{
θ(x) · yp + x · θp(y) + p · θp(x) · θp(y) |x| = 0 or |y| = 0,

θp(x) · θp(y) |x| = |y| = 1.

A morphism of p-adic θ-algebras is a morphism of graded Zp-algebras that is a morph-
ism of Morava modules and that intertwines the action of θp. Write Algθ,p for the
category of p-adic θ-algebras.

As with Morava modules, if the prime p is clear from the context, we will simply refer
to these algebras as θ-algebras. In that case we may also write θ for θp.

Some comments are in place. By definition a p-adic θ-algebra is derived p-complete.
We extend θp to be a map A→ A by putting θp(x + y) = θp(x) + θp(y) for x ∈ A0 and
y ∈ A1. We define an Adams operation ψp by

ψp : A −→ A, x 7−→ xp + p · θp(x).

This map commutes with θp and with ψk for all k ∈ Z×p . Note that ψp(x) = p · θp(x) if x
is of odd degree. The conditions on θp imply that ψp is an additive operation satisfying
a multiplicativity condition similar to the one on ψk above: for x, y ∈ A homogeneous,

ψp(x) · ψp(y) =

{
ψp(xy) |x| = 0 or |y| = 0,

p · ψp(xy) |x| = |y| = 1.

If A has no p-torsion, then this operation ψp recovers θp via the formula

θp(x) =
ψp(x)− xp

p
.

Moreover, part of the multiplicativity condition on θp can be phrased as, for x ∈ A0

and y ∈ A1,
θp(xy) = ψp(x) · θp(y). (2.19)

Remark 2.20. In the literature, the term θ-algebra is often used to refer to a non-graded
ring A with an operation θ : A→ A satisfying the conditions on θp above in the case of
x, y even. This is also called a δ-ring by others. We use the adjective “p-adic” to indicate
the additional structure.
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Remark 2.21. Bousfield (in [Bou96a; Bou96b; Bou99]) uses different notation and termin-
ology than the above. He defines a Z/2-graded θ-algebra as a ring A with operations
θ : A0 → A0 and ψ : A1 → A1 satisfying the conditions we put on θp : A0 → A0 and
θp : A1 → A1 above, respectively. The Adams operations ψk are not part of the datum
of a θ-algebra; he uses the separate term θ-algebras with Adams operations when including
the Adams operations. Compared to the notation introduced above, the difference is
particularly unfortunate: the operation ψp is not what Bousfield means when writing ψ.

Remark 2.22. In addition to a difference in notation, Bousfield uses the term “p-adic
θ-algebra” to refer to a different concept than the above. See [Bou96a, §6] or [Bou96b,
§1] for precise definitions. Roughly speaking, his definition requires the algebra to be
complete in a stronger sense than (derived) p-completeness. Every Bousfield p-adic θ-
algebra determines a p-adic θ-algebra in the sense of Definition 2.18. The difference can
be seen particularly clearly in the case of free θ-algebras below in §2.4: see Remark 2.32.

Example 2.23 The ring Zp is a p-adic θ-algebra under the operations

ψk = id (for k ∈ Z×p ) and θp(x) = (x− xp)/p.

The operation ψp is thus also the identity. In this work, when we view Zp as a θ-algebra,
it is always with these Adams operations. N

Theorem 2.24 Let A be a commutative ring spectrum. The completed KUp-homology
(KUp)∧∗ (A) is naturally a p-adic θ-algebra. If f : A → B is a morphism of commutative
ring spectra, then the induced map f∗ : (KUp)∧∗ (A)→ (KUp)∧∗ (B) is a morphism of p-adic
θ-algebras.

Proof. This follows from the work of McClure [McC], as explained by Barthel and
Frankland [BF15, §6]. (Note though that they use the notation that Bousfield does,
writing ψ instead of θp on degree 1; see Remark 2.21.) �

Remark 2.25. McClure’s work actually shows a stronger statement, namely that for
every H∞-ring spectrum A, the completed homology (KUp)∧∗ (Y) is a p-adic θ-algebra.

Proposition 2.26 Let X be a space. Then KU∗p(X) is naturally a p-adic θ-algebra. If
f : X → Y is a map of spaces, then the induced map f∗ : KU∗p(X)→ KU∗p(Y) is a morphism
of p-adic θ-algebras.

Proof. See, e.g., [Bou96a, Thm. 1.11], bearing in mind Remark 2.22. �

Concretely, the Adams operations on this θ-algebra are the ones described in §2.2.

The K-theory of a point is Zp with the θ-algebra structure from Example 2.23. Thus for
any space X, we have a splitting of p-adic θ-algebras

KU∗p(X) = Zp ⊕ K̃Up(X).

On Zp, all Adams operations ψk for k ∈ Zp are the identity. Therefore, for any space
X, the multiplicativity condition (2.19) on θp shows that θp is Zp-linear on elements of
odd degree in K-theory.
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Example 2.27 Let n be an odd natural number. The K-theory of Sn is generated by a
class x in odd degree:

KU∗p(S
n) = Zp ⊕ Zp · x,

with x2 = 0 (which is enforced by graded-commutativity). The properties of the Adams
operations (see Theorem 2.14) imply that for k ∈ Z, we have

ψk(x) = k(n+1)/2 · x.

By continuity, the operation ψk for k ∈ Zp is given by the same formula. We recover θp

from ψp because the K-theory is torsion-free:

θp(x) =
ψp(x)− xp

p
=

p(n+1)/2 · x
p

= p(n−1)/2 · x.

Using that θp is Zp-linear on elements of odd degree, we see that θp on K̃U∗p(Sn) is
given by multiplication by p(n−1)/2. N

Example 2.28 Let n be an even natural number. The K-theory of Sn is generated by a
class y in even degree:

KU∗p(X) = Zp ⊕ Zp · y,

with y2 = 0. Using the same reasoning as in the previous example, we find that for
k ∈ Zp, we have

ψk(x) = kn/2 · y.

In this case θp becomes

θp(y) =
ψp(y)− yp

p
=

pn/2 · y
p

= pn/2−2 · y. N

2.4 Free θ-algebras

There is a θ-algebra analogue of the free algebra functor on a module M over a ring.
Given a module M with prescribed Adams operations (more precisely, given a Morava
module M), we can freely add an operation θp to it and freely turn it into a ring. The
result is the free θ-algebra on M.

Theorem 2.29 Let M be a p-adic Morava module. Then there exists a p-adic θ-algebra
Freeθ,p(M) with a morphism M → Freeθ,p(M) of Morava modules, unique up to unique
isomorphism, satisfying the following universal property. For every θ-algebra A and morphism
M → A of Morava modules, there is a unique morphism Freeθ,p(M) → A of θ-algebras
making the diagram

M A

Freeθ,p(M)

commute.
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We call Freeθ,p(M) the free θ-algebra on M. We get a functor Freeθ,p : MorModp →
Algθ,p that is left adjoint to the forgetful functor Algθ,p → MorModp. If the prime
p is clear from the context, we may write Freeθ for Freeθ,p. If f : M → A is a map of
Morava modules to a θ-algebra A, we may be sloppy and also write f for the map
Freeθ,p(M)→ A.

We do not need the above result in full generality; for us the following cases will suffice.

Example 2.30 Let us write θ for θp in this example; this means we write θt for the t-th
iterate of θ. If M is a Morava module of the form Zp · x with x in even degree, then we
write the free θ-algebra on M as Freeθ [x]. As an algebra this is

Freeθ [x] = Zp[x, θx, θ2x, . . . ]∧p .

Note that in this case classical p-completion coincides with derived p-completion,
because the polynomial ring is free as Zp-module (see Theorem A.4). The θ-action
sends θtx to θt+1x, and this uniquely determines θ on the entire algebra. For k ∈ Z×p ,
the Adams operation ψk is extended from the action of ψk on M.

Let A be a θ-algebra and f : M→ A a morphism of Morava modules. Then the induced
morphism Freeθ(M)→ A is given by sending θtx to θt

A( f (x)) for all t > 0 (where we
understand θ0x to mean x). N

Example 2.31 Again we write θ for θp in this example. If M is the Morava module
Zp · y with y in odd degree, then as an algebra, the free θ-algebra on M is

Freeθ [y] = ΛZp [y, θy, θ2y, . . . ]∧p .

The maps θ and ψk are induced from the operations on M.

More generally, if M is a Morava module concentrated in odd degree, then we can
form Freeθ(M) as follows. Let FM denote the module M⊕M⊕ · · · , which inherits
a topology and Adams operations from M. (Although strictly speaking it is not a
Morava module, as it is not derived p-complete when M is nonzero.) Define a Zp-linear
homomorphism θp : FM → FM by shifting each copy of M one to the right. Now
define as algebras

Freeθ(M) := L0 ΛZp(FM).

(In the language of §A.3, this is the free derived p-complete graded algebra on FM.)
The Adams operations ψk are induced from the Adams operations on FM. The homo-
morphism θp on FM uniquely determines an operation θp on Freeθ(M) that turns it
into a p-adic θ-algebra.

Let A be a θ-algebra and f : M→ A a morphism of Morava modules. Then the induced
morphism Freeθ(M)→ A can be described as follows. First define a map F f : FM→ A
given by applying the map θt

A ◦ f to the t-th copy of M. Note that F f is a Zp-module
homomorphism that intertwines the Adams operations. By the universal property of
the free derived p-complete graded algebra, the map F f induces a map L0 Λ(FM)→ A,
which is the map Freeθ(M)→ A. N
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The universal property of free θ-algebras shows that they are naturally augmented:
take Freeθ(M)→ Zp to be the map induced by the zero map M→ Zp.

Remark 2.32. Because Bousfield’s use of the term “p-adic θ-algebra” is different from
ours (see Remark 2.22), his definition of the term “free p-adic θ-algebra” is different
also. For example, Bousfield’s free p-adic θ-algebra on a generator x in even degree is a
power series algebra ZpJx, θx, . . .K. The above notion is more relevant for us because it
appears in McClure’s Theorem described in the next section. In Chapter 5, Bousfield’s
free p-adic θ-algebras will make an appearance.

2.5 McClure’s Theorem

McClure’s Theorem computes the completed KUp-homology of a symmetric ring
spectrum Sym(X), for X a spectrum. (See Example 1.64 for the definition of symmetric
ring spectra.) In other words, it computes the homotopy groups of

LK(1) KUp ⊗ Sym(X).

By Proposition 1.57 this is naturally equivalent to LK(1) SymKUp
(KUp ⊗ X), so one can

also think of this as computing the homotopy of certain K(1)-localised symmetric
KUp-algebra spectra. Note also that the functor LK(1) SymKUp

is the functor SymC for
the symmetric monoidal ∞-category C = ModKUp, K(1) of K(1)-local KUp-modules.

Theorem 2.33 (McClure) Let X be a spectrum such that (KUp)∧∗ (X) is a flat Z/2-graded
Zp-module. Then we have a natural isomorphism of p-adic θ-algebras

(KUp)
∧
∗ (Sym(X)) ∼= Freeθ,p((KUp)

∧
∗ (X)).

Moreover, this isomorphism is compatible with the free-forgetful adjunctions: if R is a commut-
ative ring spectrum, then the diagram

MapCAlg(Sp)(Sym(X), R) MapSp(X, R)

Homθ(Freeθ,p((KUp)∧∗ (X)), (KUp)∧∗ (R)) Hom((KUp)∧∗ (X), (KUp)∧∗ (R))

'

(KUp)∧∗ (KUp)∧∗

∼=

commutes up to natural isomorphism.

Proof. This follows from the work by McClure [McC], as explained by Barthel and
Frankland [BF15, §6]. (Note again that they use the notation of Bousfield; see Re-
mark 2.21). �

The augmentation on Sym(X) induces an augmentation on the free θ-algebra. As a
special case of the above, this agrees with the natural augmentation of the free θ-algebra.
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3COMPUTATION OF K-THEORY COCHAINS

Let p be a prime number. Consider a pointed space X whose p-adic K-theory KU∗p(X)

is an exterior algebra on a finite number of odd generators. More precisely, assume
there is a p-adic Morava module M, together with a morphism of Morava modules
θ

p
M : M→ M, such that

(i) M is finitely generated and free as a Zp-module;

(ii) M is concentrated in degree 1;

(iii) there is an isomorphism
KU∗p(X) ∼= ΛZp(M)

of p-adic θ-algebras, where the θp-map on Λ(M) is induced from θ
p
M.

This class of spaces includes odd spheres, as well as many finite H-spaces, including
all simply-connected compact Lie groups; we discuss this in detail in §3.3. Note that
Condition (i) is a type of finiteness condition on X. Henceforth, we shall refer to
Condition (iii) by saying that the θ-algebra KU∗p(X) is an exterior algebra on the pair
(M, θ

p
M).

Consider the KUp-cochains on such an X, i.e., the commutative KUp-algebra spectrum
KUX+

p from Definition 1.71. The homotopy groups of this algebra spectrum is the
K-theory KU∗p(X). Since KU∗p(X) is free as a graded algebra, one might guess that
KUX+

p is itself free as a KUp-algebra spectrum, i.e., that it is a symmetric KUp-algebra
in the sense of Example 1.64. This turns out to be naive, because KU∗p(X) is not free as
a θ-algebra. Rather, we can give a θ-algebra presentation of KU∗p(X) of the form

Freeθ,p(M) Freeθ,p(M) KU∗p(X).

This presentation does generalise: in this chapter we prove that there exists a cofibre
sequence in CAlgaug

KUp, K(1) of the form

LK(1) KUp ⊗ Sym(E) LK(1) KUp ⊗ Sym(E) KUX+
p

where E is a spectrum. This result is motivated and inspired by closely related work
done by Bousfield [Bou99] (we summarise his results in §5.1).

The spectrum E can in fact be taken to be a topological analogue of the module M. We
introduce this spectrum in §3.1, and shall denote it by M (M) to stress this analogy.
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In §3.2 we construct the advertised presentation, first constructing the maps in the
sequence, and then proving these fit into a cofibre sequence (which, by Definition 1.4,
is a particular kind of pushout square). The precise result is described in Theorem 3.12,
which is the main result of this chapter. In §3.3 we discuss the spaces that this theorem
applies to. This leads us to a short list of questions in §3.4.

Throughout this chapter, p denotes a fixed prime. In §3.2, X denotes a pointed space as
above, M a p-adic Morava module as above, and θ

p
M : M→ M a morphism as above.

We follow Convention 2.1, viewing K-theory as Z/2-graded; in particular we make the
identification (KUp)∗ = Zp.

3.1 K-theory Moore spectra

Let G be a p-adic Morava module, concentrated either in even or odd degree, and
which is finitely generated as Zp-module. In [Bou85, Prop. 8.7], Bousfield constructs a
KU-local spectrum M(p)(G) along with an isomorphism

(KU(p))∗(M(p)(G)) ∼= G

respecting stable p-local Adams operations ψk for k ∈ Z×
(p).

Definition 3.1 Let G be a p-adic Morava module, concentrated either in even or odd
degree, and which is finitely generated as Zp-module. We write M (G) for the spectrum
M(p)(G)∧p .

Note that M (G) is a K(1)-local spectrum.

Lemma 3.2 The isomorphism (KU(p))∗(M(p)(G)) ∼= G induces an isomorphism

(KUp)
∧
∗ (M (G)) ∼= G

of p-adic Morava modules.

Proof. Since G is derived p-complete, we have

L0

(
(KU(p))∗(M(p)(G))

)
= L0G ∼= G.

Using Corollary 2.9, we find that

(KUp)
∧
∗ (M (G)) = π∗

(
LK(1)

(
KUp ⊗M (G)

))
= π∗

((
KU(p) ⊗M(p)(G)

)∧
p

)
,

and using the short exact sequence for the homotopy groups of the p-completion of a
spectrum (see Example 1.93), this evaluates to

(KUp)
∧
∗ (M (G)) ∼= L0 π∗

(
KU(p) ⊗M(p)(G)

)
= L0

(
(KU(p))∗(M(p)(G))

)
∼= G.
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The Adams operations ψk for k ∈ Z×
(p) are respected by this isomorphism, hence by

continuity so are all Adams operations ψk for k ∈ Z×p . �

Remark 3.3. The notation M (G) is taken from Bousfield [Bou99], although his use
there is slightly different from ours. We discuss the difference in §5.1 (specifically, see
Remark 5.4).

Remark 3.4. Up to equivalence, the spectrum M (G) is the unique K(1)-local spectrum
with the property of Lemma 3.2. This follows, e.g., by combining Proposition 3.5 and
Proposition 4.25 below.

3.2 Construction of the presentation

The construction of the cofibre sequence will be a topological version of the resolution
of the θ-algebra ΛM hinted at earlier in this chapter. In fact, taking homotopy groups
of the resolution of KUX+

p will yield the resolution of ΛM as a θ-algebra. To build the
maps in the cofibre sequence, we require some results relating maps of spectra with
homomorphisms on their K-theory.

Recall from Definition A.12 that a module is called pro-free when it is of the form L0F
with F a free module. If Y and Z are spectra, then we have a natural map

π∗map(Y, LK(1) KUp ⊗ Z) −→ Hom(KUp)∗((KUp)
∧
∗ (Y), (KUp)

∧
∗ (Z))

evaluating on completed KUp-homology.

Proposition 3.5 ([BH16], Prop. 1.14) Let Y and Z be spectra. Suppose that (KUp)∧∗ (Y) is
pro-free. Then the natural map

π∗map(Y, LK(1) KUp ⊗ Z) −→ Hom(KUp)∗((KUp)
∧
∗ (Y), (KUp)

∧
∗ (Z))

is an isomorphism.

Since M is finitely generated and free, it is immediate that ΛM is pro-free. In what
follows, we use the construction of Freeθ(M) given in Example 2.31: we write FM for
M⊕M⊕ · · · , and let θp act on this by shifting every copy of M one to the right. The
free θ-algebra is then L0 ΛZp(FM). This in particular shows that Freeθ(M) is pro-free
also.

Corollary 3.6 Let Y be a spectrum such that (KUp)∧∗ (Y) is pro-free. Then we have an
isomorphism

KU∗p(Y) ∼= Hom(KUp)∗((KUp)
∧
∗ (Y), (KUp)∗).

Proof. Take Z = S in Proposition 3.5. �

If Y and Z are spectra, we have a natural map

KU∗p(Y)⊗(KUp)∗ KU∗p(Z) −→ KU∗p(Y⊗ Z).
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Lemma 3.7 Let Y and Z be spectra. Suppose that KU∗p(Y) is finitely generated and free. Then
the natural map

KU∗p(Y)⊗(KUp)∗ KU∗p(Z) −→ KU∗p(Y⊗ Z)

is an isomorphism.

Proof. Because KU∗p(Y) is free, the Künneth spectral sequence for KU∗p(Y⊗ Z) (as in,
e.g., [Hov13, Thm. 5.3]) collapses, yielding the claim. �

We can now construct the maps in the cofibre sequence.

(1) The map
LK(1) KUp⊗ Sym(M (M)) −→ KUX+

p .

The KUp-algebra KUX+
p is K(1)-local, so it is equivalent to give a map

KUp ⊗ Sym(M (M)) −→ KUX+
p

of KUp-algebras. This is equivalent to giving a map M (M)→ KUX+
p of spectra,

which is the same as giving a map

M (M)⊗ Σ∞
+X −→ KUp

of spectra, i.e., a cohomology class in KU∗p(M (M)⊗ Σ∞
+X). Note that Lemma 3.7

applies because KU∗p(M (M)) ∼= M is a free Zp-module, giving us an isomorph-
ism

KU∗p(M (M)⊗ Σ∞
+X) ∼= KU∗p(M (M))⊗(KUp)∗ KU∗p(X).

Using Corollary 3.6 and the fact that M is finitely generated and free, the right-
hand side is

HomZp(M, Zp)⊗Zp ΛM ∼= HomZp(M, ΛM).

In conclusion, giving the desired map is equivalent to giving a homomorphism
M→ ΛM. This we take to be the natural inclusion.

(2) The map

LK(1) KUp⊗ Sym(M (M)) −→ LK(1) KUp⊗ Sym(M (M)).

By the same reasoning, it is equivalent to give a map

M (M) −→ LK(1) KUp ⊗ Sym(M (M))

of spectra. By Proposition 3.5, such a map is determined up to equivalence by the
homomorphism it induces on K-homology. McClure’s Theorem 2.33 says that the
K-homology of Sym(M (M)) is

Freeθ((KUp)
∧
∗ (M (M)) ∼= Freeθ(M).

We take the homomorphism on K-homology to be

θp − Fθ
p
M : M −→ Freeθ(M), x 7−→ (0, x, 0, 0, . . . )− (θ

p
M(x), 0, 0, 0, . . . ),

where θp denotes the free operation on the free θ-algebra, and Fθ
p
M denotes the

componentwise action of θ
p
M on FM = M⊕M⊕ · · · . By abuse of notation we

will also denote the resulting map of KUp-algebras by θp − Fθ
p
M.
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Note that in the first step, we could also have used a cohomology class in KU∗p(Σ∞
+X⊗

LK(1) KUp⊗ Sym(M (M))). From this point of view, the map is classified by the morph-
ism of θ-algebras Freeθ(M) → ΛM induced by the morphism M → ΛM of Morava
modules.

In a general ∞-category, recall that a map is called nullhomotopic if it factors over a zero
object. In augmented KUp-algebras, the algebra KUp is a zero object.

Lemma 3.8 The composite of the above two maps is a nullhomotopic map of augmented
KUp-algebra spectra.

Proof. By the same reasoning as above, the composite map is classified by the corres-
ponding map

M (M) −→ KUX+
p ,

which is classified by the corresponding cohomology class in

KU∗p(M (M))⊗(KUp)∗ KU∗p(X) ∼= HomZp(M, ΛM).

By definition, the map

θp − Fθ
p
M : M (M) −→ LK(1) KUp ⊗ Sym(M (M))

induces on K-theory
θp − Fθ

p
M : M −→ Freeθ(M).

Thus the map M→ ΛM classifying the composite map of spectra is equal to

M Freeθ(M) ΛM,

x (−θ
p
M(x), x, 0, 0, . . . ) −θ

p
M(x) + θ

p
M(x).

θp−Fθ
p
M

As this is the zero map, we are done. �

Henceforth we fix a choice of nullhomotopy; in the end the choice does not impact the
cofibre sequence. This choice assembles to a triangle

LK(1) KUp ⊗ Sym(M (M)) LK(1) KUp ⊗ Sym(M (M))

KUp KUX+
p

θp−Fθ
p
M

(3.9)

in the category CAlgaug
KUp

of augmented KUp-algebras. (Note again that KUp is a zero
object in augmented KUp-algebras.) Our main result is that this is a pushout square. To
prove this, we need an algebraic computation.

Lemma 3.10 (Shifting generators trick) Let I′ ⊆ I and J′ ⊆ J be two inclusions of sets.
Let A be the free Z/2-graded Zp-algebra on generators { xi }i∈I′ in even degree and { yj }j∈J′

in odd degree. Let B be the analogous algebra on generators indexed by I and J. Then the map
L0 A→ L0B induced by the inclusion is flat.
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Proof. Evidently the inclusion A→ B is flat: the A-module B splits as a direct sum of
copies of A. Forming direct sums in M̂od∗Zp

is exact (Proposition A.11), so L0A→ L0B
is also flat. �

Lemma 3.11 The map Freeθ(M) → Freeθ(M) induced by θp − Fθ
p
M is a flat map of Zp-

modules.

Proof. In this proof, we will write θ for the operation θp in the free θ-algebra. Let
x1, . . . , xn be generators for M. The underlying algebra of Freeθ(M) is of the form

L0 ΛZp [ xi, θxi, θ2xi, θ3xi, . . . ]i=1,...,n.

For i = 1, . . . , n, write θ
p
M(xi) = ∑n

j=1 λijxj for λij ∈ Zp. The map θ− Fθ
p
M : Freeθ(M)→

Freeθ(M) is obtained by applying L0 to the map

f : ΛZp [ xi, θxi, θ2xi, . . . ]i −→ ΛZp [ xi, θxi, θ2xi, . . . ]i,

θtxi 7−→ θt+1xi −
n

∑
j=1

λij · θtxj.

Here we use the convention that θ0xi = xi. Denote the image of θtxi by αit. The
elements αit for i = 1, . . . , n and t > 0, together with the elements xj for j = 1, . . . , n,
also serve as exterior algebra generators. Thus up to isomorphism f is of the form
described in the previous lemma, and therefore L0 f = θ − Fθ

p
M is flat. �

Theorem 3.12 Let p be a prime number. Let X be a pointed space, let M be a p-adic Morava
module, and θ

p
M : M→ M a morphism of Morava modules, such that

(i) M is finitely generated and free as a Zp-module;

(ii) M is concentrated in degree 1;

(iii) the θ-algebra KU∗p(X) is an exterior algebra on (M, θ
p
M), i.e., there is an isomorphism

KU∗p(X) ∼= ΛZp(M)

of p-adic θ-algebras, where the θp-map on Λ(M) is induced from θ
p
M.

Then the triangle

LK(1) KUp ⊗ Sym(M (M)) LK(1) KUp ⊗ Sym(M (M)) KUX+
p

θp−Fθ
p
M

constructed above is a cofibre sequence in both CAlgaug
KUp

and CAlgaug
KUp, K(1).

Proof. As all terms in the triangle are K(1)-local, it suffices to prove that the dia-
gram (3.9) is a pushout in CAlgaug

KUp
. By [HTT, Prop. 1.2.13.8], the pushout in CAlgaug

KUp

is the same as the pushout in CAlgKUp
. Let A denote a pushout of the diagram (3.9) in

CAlgKUp
. The diagram induces a map A→ KUX+

p ; we prove this is an equivalence. It
suffices to show that it induces an isomorphism on homotopy groups (Proposition 1.62).
By Corollary 1.56, A is the relative smash product

A = LK(1) KUp ⊗ Sym(M (M))⊗LK(1) KUp⊗Sym(M (M)) KUp.
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The homotopy of a relative tensor product is computed by the Tor spectral sequence of
Theorem 1.70. The map θp − Fθ

p
M : Freeθ(M)→ Freeθ(M) is flat (Lemma 3.11), so this

spectral sequence collapses immediately. This means we have an isomorphism

π∗A ∼= Freeθ(M)⊗Freeθ(M) Zp,

or in other words: after taking homotopy groups, the pushout square for A becomes a
pushout square

Freeθ(M) Freeθ(M)

Zp π∗A

θp−Fθ
p
M

p

in CAlg∗Zp
. This pushout is a quotient of Freeθ(M). A quotient of a derived p-complete

module is again derived p-complete (Proposition A.9), so π∗A is derived p-complete.
Therefore the above square is also a pushout in ĈAlg∗Zp

.

We now compute the pushout in ĈAlg∗Zp
in a different way. Recall the notation FM =

M⊕M⊕ · · · , and recall that Freeθ(M) = L0 Λ(FM). We have a pushout square

FM FM

0 M

θp−Fθ
p
M

p

in Mod∗Zp
. The free derived p-complete algebra functor from §A.3 is a left adjoint, and

therefore preserves colimits. The three nonzero terms in this square are concentrated in
odd degree, so on these objects this functor is given by L0 Λ. As such, the square

Freeθ(M) Freeθ(M)

Zp ΛM

θp−Fθ
p
M

p

is a pushout square in ĈAlg∗Zp
. We find that the natural map π∗A → ΛM is an

isomorphism. Since the map A → KUX+
p induces this natural map π∗A → ΛM =

KU∗p(X) on homotopy groups, we find that the map A→ KUX+
p is an equivalence. �

3.3 Applicability

We discuss two types of spaces that satisfy the conditions of Theorem 3.12: odd spheres,
and H-spaces.
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3.3.1 Odd spheres

Let n be an odd natural number. Recall from Example 2.27 that the K-theory of Sn is
given by

KU∗p(S
n) = Zp ⊕ Zp · x

with x in odd degree, and

ψk(x) = k(n+1)/2 · x and θp(x) = p(n−1)/2 · x.

Write M = Zp · x for the submodule on x. As algebras, we evidently have an isomorph-
ism

KU∗p(S
n) ∼= ΛZp(M).

We can restrict the Adams operations ψk and the operation θp to M by precomposing
with the inclusion M → KU∗p(Sn) and postcomposing with the quotient KU∗p(Sn) →
M. Denote these restrictions by ψk

M and θ
p
M. Note that θ

p
M is linear because M is

concentrated in odd degree. These restricted operations θ
p
M and ψk

M induce operations
on Λ(M), turning it into a θ-algebra. (Here on Zp in Λ(M), we take the usual θ-algebra
structure on Zp from Example 2.23.) The above isomorphism KU∗p(Sn) ∼= Λ(M) is
then even an isomorphism of θ-algebras, and therefore Sn satisfies the conditions of
Theorem 3.12.

In this case, the spectrum M (M) has a very concrete description. Recall from Re-
mark 3.4 that among the K(1)-local spectra, the spectrum M (M) is uniquely charac-
terised by its completed KUp-homology. Note that M = K̃U∗p(Sn). Since (Sn)∨ ' S−n

and Sn is dualisable, we find an isomorphism of Morava modules

(KUp)
∧
∗ (S

−n) ∼= KU∗p(S
n) = K̃U∗p(S

n) ∼= M.

Thus the spectrum M (M) is S−n
K(1).

Any space whose p-adic K-theory resembles that of an odd sphere closely enough also
satisfies the conditions of Theorem 3.12. Bousfield studies such spaces in [Bou99, §5]
under the name of odd KU/p-homology spheres.

3.3.2 H-spaces

This section is mostly a summary of results of Bousfield, who extended previous work
on the classification of the K-theory of H-spaces. His approach is based on a θ-algebra
variant of the Milnor–Moore Theorem. His methods are rather technical, so rather than
spell out all the details, we present an overview of his results. It is our hope that this
provides an easier introduction to the relevant papers. This discussion leads naturally
to questions for further research; see §3.4.

To put things in their proper context, let us first review the more classical setting of
the Milnor–Moore Theorem. Let k be a field. Roughly speaking, a bialgebra over k is a
Z-graded augmented k-algebra A, which is also equipped with a comultiplication

A −→ A⊗k A,
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which is coassociative (i.e., it satisfies the dual versions of associativity) and where
the augmentation serves as a counit (i.e., satisfying the dual axiom of a unit element).
The multiplication and comultiplication and units are required to be compatible in a
suitable sense. A Hopf algebra over k is a bialgebra over k together with an antipode
map A → A satisfying a compatibility condition. See [MM65, Def. 4.1] for precise
definitions.

If A is an augmented k-algebra, the augmentation ideal Ã is the kernel of the augment-
ation A→ k. If A is a Hopf algebra over k, then its space of primitives PA is the kernel
of the comultiplication Ã → Ã⊗k Ã restricted to the augmentation ideal. This has a
natural structure of a Z-graded Lie algebra over k, with Lie bracket induced by the
(graded) commutator bracket of A. One can ask when these primitive elements serve
as generators for the algebra A; phrased differently, when the natural map U(PA)→ A
from the universal enveloping algebra of PA to A is an isomorphism. If this is the case,
we say A is primitively generated.

Theorem 3.13 (Milnor–Moore [MM65]) Let k be a field of characteristic zero, and let A be
a Hopf algebra over k. If the Hopf algebra A is

(i) connected (i.e., A0 = k and A vanishes in negative degrees);

(ii) cocommutative (i.e., the comultiplication satisfies the dual axiom for commutativity);

(iii) degree-wise finite dimensional,

then the natural map U(PA)→ A is an isomorphism.

This has applications in, e.g., the computation of the rational cohomology of H-spaces.
If X is an H-space, then the multiplication X× X → X induces a comultiplication on
the cohomology of X. In good cases this comultiplication is coassociative and cocom-
mutative (e.g., when the multiplication on X is homotopy-associative and homotopy-
commutative). In those cases, the Milnor–Moore Theorem gives a purely algebraic way
to compute the rational cohomology of X.

Bousfield in [Bou96b] proved an analogue of this classical result for a θ-algebra version
of bialgebras. This allows one to compute the p-adic K-theory of H-spaces using purely
algebraic structure on K-theory. The precise discussion can be found in §3 and §4 of op.
cit., culminating in Theorems 4.4 and 4.7. The original discussion is rather technical at
certain points; to increase readability we focus on the applications of these results to
the K-theory of H-spaces. We also discuss consequences of this result listed in [Bou99].

A technical detail to note first is that in [Bou96b], Bousfield only considers modules
and rings with a ψp-operations, without considering Adams operations ψk for other k.
(Most rings considered here will be torsion-free, in which case the map ψp gives the
same data as would the operation θp.) If p is odd, then one can use the topological
cyclicity of Z×p to adapt the results from [Bou96b] to this case. This is done implicitly in
[Bou99], working over an odd prime always. Henceforth we assume p is odd in order
to add in the missing Adams operations in these results.

A p-adic θ-bialgebra is a Z/2-graded p-adic θ-algebra A in the sense of Bousfield
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(which is not precisely the same as our Definition 2.18 — see Remark 2.22), together
with a comultiplication

A −→ A ⊗̂ A,

with ⊗̂ denoting the completed p-adic θ-algebra tensor product in the sense of Bousfield,
and where this comultiplication is coassociative and counital. If X is an H-space such
that KU∗p(X) is torsion-free, then the multiplication on X induces a comultiplication of
this form.

In Definition 4.3 of [Bou96b], Bousfield defines an augmented primitive element functor
P, which is (roughly speaking) a functor from θ-bialgebras to augmented Z/2-graded
modules M → H that are both equipped with an Adams operation ψp. The target
module H is what Bousfield calls a linear module (see Definition 2.3 of op. cit., or
[Bou99, Def. 4.2]). On the K-theory KU∗p(X) of a space X, the augmented primitives
turn out to be the map (using Example 1.8 of op. cit.)

P(KU∗p(X)) −→ H2(X; Zp)⊕ H1(X; Zp), (3.14)

where H2(X; Zp) is placed in degree 0, and H1(X; Zp) in degree 1, and where P denotes
the primitives as defined above. Both the source and the target of this map inherit
Adams operations ψk for k ∈ Z×p and a map θp from KU∗p(X). For the primitives
P(KU∗p(X)) this is done (as we did in §3.3.1 above) by precomposing with the inclusion
and postcomposing with the quotient.

Next, also in Definition 4.3 of op. cit., he defines a functor U, which is a left adjoint to
P. This is an analogue of the universal enveloping algebra on a Lie algebra, but only
in certain cases. If an augmentation M→ H has target H = 0 and if M is torsion-free,
then U agrees with the free Z/2-graded algebra. In the case of K-theory KU∗p(X), this
happens if and only if H1(X; Zp) and H2(X; Zp) vanish and KU∗p(X) is torsion-free.

However, in the case of an augmentation M → H with M = 0, then U takes on a
different character. In that case U(0→ H) is a type of group ring on H. Write H0 and
H1 for the even and odd part of H, respectively. Let ZpJH0K denote the completed group
ring

ZpJH0K := lim
α

Zp[(H0)α],

where the (H0)α are the finite quotients of H0, and where Zp[(H0)α] denotes the group
ring on the group (H0)α. In the case where H = Zp · x with x in even degree, this is the
power series algebra ZpJxK, explaining the notation. We give Zp[(H0)α] a map θp by
requiring that θp(h) = 0 for all h ∈ (H0)α, and extending it uniquely so that it satisfies
the usual requirements for θp. The Adams operations ψk we take to be ψk(h) = hk for
h ∈ (H0)α and for integers k coprime to p, and extending this in the natural way. This
also gives ZpJH0K the structure of a θ-algebra. The θ-bialgebra U(0→ H) is then

U(0→ H) = ZpJH0K ⊗̂ΛZp(H1).

(In Bousfield’s terminology, in this case U agrees with the functor J from Definition 3.4
of op. cit.) An example of a space whose K-theory is of this form is given in Ex-
ample 3.19.
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In general the functor U is a combination of these two types of θ-bialgebras. With the
necessary definitions in place, Bousfield then proves the following.

Theorem 3.15 ([Bou96b], Thm. 4.4) If A is a torsion-free bicommutative Z/2-graded p-adic
θ-bialgebra in the sense of Bousfield, then the map UPA→ A is an isomorphism.

The reader should be cautioned that this result does not imply that such an A is always
primitively generated. This is due to the mixed nature of the functor U. In certain cases
however, it does imply that A is primitively generated. This is the case for a wide range
of H-spaces, as witnessed by the following result.

Theorem 3.16 ([Bou99], Thm. 6.2) Let X be a simply-connected H-space such that

(i) the primitives P((KU/p)0(X)) vanish;

(ii) KU∗p(X) is coassociative.

Then KU∗p(X) is torsion-free, and we have an isomorphism of θ-algebras

KU∗p(X) ∼= ΛZp(P(KU1
p(X)))

and the module P(KU1
p(X)) is torsion-free.

Proof overview. Bousfield shows that under these assumptions, KU∗p(X) is torsion-free
and also cocommutative, and so Theorem 3.15 applies to it. The module P(KU1

p(X)) is
an extension of what Bousfield calls a strictly nonlinear submodule and a linear quotient
module. (Such modules are called regular by Bousfield — see [Bou99, Def. 4.4].) This
implies that the functor U discussed above is the free algebra functor. As the module
P(KU1

p(X)) is concentrated in degree 1, the free algebra functor on P(KU1
p(X)) is the

exterior algebra as claimed. �

Note that the result of this theorem even includes the claim that the Adams operations
ψk for k ∈ Zp (in particular ψp) are induced from those on the module P(KU1

p(X)).
Since KU∗p(X) is torsion-free, this means that θp is also induced from the corresponding
θ

p
M on M. Therefore if X is a space satisfying the conditions of Theorem 3.16 such that

KU∗p(X) is finitely generated, then the module M = P(KU1
p(X)) witnesses that the

conditions of Theorem 3.12 are fulfilled for such X.

The conditions of Theorem 3.16 may seem cryptic. The following result, which follows
from previous results of Lin and Kane, shows that they are in fact very general.

Theorem 3.17 ([Bou99], Thm. 6.3) Let X be a simply-connected H-space such that

(i) H∗(X; Q) is associative;

(ii) H∗(X; Z(p)) is finitely generated over Z(p) (in particular, it vanishes above some degree).

Then X satisfies the conditions of the previous theorem.

Simply-connected compact Lie groups clearly satisfy the conditions of Theorem 3.17.
Let us consider an example.
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Example 3.18 Let n > 2 and consider X = SU(n). As Bousfield [Bou99, Ex. 9.3] notes,
the primitives of KU∗p(SU(n)) are isomorphic (as a Morava module) to K̃U∗p(CPn−1).
Write M = K̃U∗p(CPn−1) ∼= P(KU∗p(SU(n))). Again we can use the uniqueness of
M (M) (see Remark 3.4) to give a concrete expression for M (M). The spectrum
LK(1) Σ∞CPn−1 is K(1)-locally dualisable by Theorem 2.13, so we have an isomorphism

(KUp)
∧
∗

(
LK(1)

(
Σ∞CPn−1

)∨) ∼= KU∗p(Σ
∞CPn−1) = K̃U∗p(CPn−1).

Therefore we find
M (M) ' LK(1)

(
Σ∞CPn−1

)∨
.

We can also describe the Adams operations on M. The K-theory of CPn−1 is a truncated
polynomial ring

KU∗p(CPn−1) = Zp[x]/(xn)

where x is the class γn−1 − 1, with γn−1 the tautological line bundle on CPn−1. For
k ∈ N, the operation ψk

M is the Adams operation ψk on CPn−1, which is given by

ψk(x) = (x + 1)k − 1 =
k

∑
j=1

(
k
j

)
xj.

(This follows because x + 1 is a line bundle and the properties of ψk from Theorem 2.14.)
We find that θ

p
M : M→ M is given by

θ
p
M(x) =

1
p

p−1

∑
j=1

(
p
j

)
xj. N

Not all H-spaces are of the form of Theorem 3.16. An illustrative counterexample is
CP∞.

Example 3.19 The K-theory of CP∞ is a power series algebra

KU∗p(CP∞) ∼= ZpJxK,

where x is the class γ− 1, with γ the tautological line bundle on CP∞. Like in the case
of CPn, the Adams operation ψk for k ∈ N is given by

ψk(x) = (x + 1)k − 1 =
k

∑
j=1

(
k
j

)
xj.

In this case the augmented primitives of KU∗p(CP∞) turns out to be the map

0 −→ H2(CP∞; Zp).

Thus Theorem 3.15 expresses KU∗p(CP∞) as the completed group ring

KU∗p(CP∞) ∼= ZpJH2(CP∞; Zp)K.
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Here the natural map from the group ring to K-theory is induced by the natural map

H2(−) −→ KU(−)

that (on finite spaces) sends a complex line bundle to its class in K-theory. (Recall
that H2(−) is represented by CP∞, and homotopy classes of maps X → CP∞ classify
complex line bundles on X if X is finite.) Thus, in the end, Theorem 3.15 proves that the
K-theory of CP∞ is a power series algebra ZpJγK on the tautological line bundle. This is
a fundamental difference compared to the H-spaces discussed previously, because the
Adams operations are not induced from an action on γ. Indeed, write M = Zp · γ. Note
that ψk(γ) = γk for all k ∈ N. If k > 1, then the induced map ψk

M on M is zero, because
ψk

M is obtained by postcomposing with the quotient KU∗p(CP∞) → M. In particular,
the operations ψk

M do not recover the Adams operations of KU∗p(CP∞), and in fact M
is not even a Morava module (since the maps ψk

M for k > 1 are not invertible). N

3.4 Questions

Theorem 3.15 shows that the structure of bicommutative p-adic θ-bialgebras is very
rigid. This has strong implications for the p-adic K-theory of H-spaces, showing
in many cases that, as a θ-algebra, it is an exterior algebra (Theorem 3.16). This
structure on K-theory is reflected in higher algebra, as witnessed by Theorem 3.12. But
Theorem 3.15 also demonstrates that (completed) group rings naturally come up in the
classification of bicommutative θ-bialgebras. A first example is the case of KU∗p(CP∞)

from Example 3.19.

(Q1) To what extent does the KUp-algebra KUCP∞
+

p form a higher algebra analogue of a
group ring?

The rigidity of θ-bialgebras would suggest there to be a rigidity of some sort to a
higher-algebraic version of Hopf algebras. In the higher algebra literature, there are
various notions of Hopf algebra spectra.

(Q2) Is there a (similarly rigid) structure theorem for bicommutative (in an appropri-
ately coherent sense) Hopf algebra spectra over KUp?
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4CHROMATIC HOMOTOPY THEORY

To understand the homotopy groups of a pointed space X (or better, its homotopy type),
it suffices to work p-locally one prime p at a time. If X is a p-local space (say pointed
and simply-connected), then the easiest part of X is its rationalisation. On homotopy
groups πk(X), this comes down to inverting the degree p map Sk → Sk. A main result
in rational homotopy theory is that the rational cochains give an equivalence

S >2, fin
Q ' CAlg(ChQ)

>2, fin

between rational simply-connected finite pointed spaces, and simply-connected ra-
tional cdga’s of finite type.

The remaining part in the homotopy groups is captured by the mod p homotopy groups,
or more generally the mod pn homotopy groups.

Definition 4.1 Let X be a pointed space, and let n, k > 1. Let Sk/pn denote the cofibre
of the degree pn map Sk → Sk. The k-th mod pn homotopy group of X is

πk(X; Z/pn) = [Sk+1/pn, X]∗.

This is a group for k > 1, and an abelian group for k > 2. The difficulty of computing
these groups is on par with that of the usual homotopy groups. Chromatic homotopy
theory studies these groups by cutting them up further. The next easiest ‘slice’ of these
groups are the v1-periodic homotopy groups. In this chapter we give an overview of the
necessary tools in the analysis of v1-periodic homotopy groups. We are particularly
interested in generalising the rational cochain approach from rational homotopy theory.
The role of rational cochains turns out to be played by KUp-cochain algebra spectra.
However, unlike in rational homotopy theory, these cochains do not give an equivalence
between v1-periodic homotopy theory and higher algebra. There is a map that measures
how well the cochain algebra spectrum models the v1-periodic homotopy of a space:
the Behrens–Rezk comparison map.

This chapter is mostly drawn from the expositions by Behrens and Rezk [BR20a] and
Heuts [Heu19]. In §4.1 we define the v1-periodic homotopy groups, culminating in
the discussion of the Bousfield–Kuhn functor. The next goal is to study the Behrens–
Rezk comparison map. This requires some preliminaries: in §4.2 we define topological
André–Quillen cohomology, which appears in the comparison map. In §4.3 we study
descent, where it becomes important that we work over an odd prime p. We end
the chapter with an overview of the Behrens–Rezk comparison map, including some
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basic computational tools, in §4.4. We include some comments about more general
vn-periodic homotopy theory to give the reader some context, although we will only
study v1-periodic homotopy theory in the next chapter.

Throughout this chapter, p denotes a fixed prime, which is assumed to be odd in §4.3
and §4.4.

4.1 v1-periodic homotopy groups

Definition 4.2 Let X be a p-local pointed space. A v1-self map on X is a map ΣdX → X
(for some d > 1) that induces the zero map on rational homology, and an isomorphism
on p-adic complex K-theory.

If f : ΣdX → X is a v1-self map, then for i > 1 we define its i-th iterate f i to be

ΣdiX Σd(i−1)X · · · Σ2dX ΣdX X.
Σd(i−1) f Σd f f

Because f induces an isomorphism on K-theory, none of the iterates f i for i > 1 are
nullhomotopic.

As a special case of the periodicity theorem of Hopkins and Smith, v1-self maps exist after
sufficient suspension, and are asymptotically unique.

Theorem 4.3 Let X be the p-localisation of a finite pointed space.

(a) There exist i > 0 and d > 1 such that there is a v1-self map Σd+iX → ΣiX on ΣiX.

(b) Suppose f : ΣdX → X and g : ΣeX → X are v1-self maps on X. Then there are i, j > 1
such that the iterates f i and gj are homotopic.

Proof. See, e.g., [Rav, Thm. 1.5.4]. �

Fix a k and n such that Sk/pn admits a v1-self map. We pick such a map and denote it
by α : ΣdSk/pn → Sk/pn. This map acts on the mod pn homotopy groups of a space: if
` > k− 1, then

π`(X; Z/pn) = [S`+1/p, X]∗ [ΣdSk+1/p, X]∗ = πk+d(X; Z/pn).
−◦(Σ`+1−kα)

In short, this endows the Z-graded abelian group π∗(X; Z/pn), for ∗ large enough,
with an action of Z[α]. Inverting this action yields the v1-periodic homotopy groups.

Definition 4.4 Let X be a pointed space.

(a) Let n > 0 be a natural number. The v1-periodic mod pn homotopy groups of X
are

v−1
1 π∗(X; Z/pn) = Z[α±]⊗Z[α] π∗(X; Z/pn).

(b) The v1-periodic homotopy groups of X are

v−1
1 π∗(X) = colim

n
v−1

1 π∗(X; Z/pn).
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(c) The completed v1-periodic homotopy groups of X are

v−1
1 π∧∗ (X) = lim

n
v−1

1 π∗(X; Z/pn).

Note that the prime p is left implicit in the notation. The above definitions do not
depend on α because of the asymptotic uniqueness of v1-self maps. The v1-periodic
groups are only well-defined for large enough index, but the resulting groups are
periodic with period d, so the definition extends to all integers.

Remark 4.5. The terminology of ‘completed’ v1-periodic homotopy groups is taken from
Behrens and Rezk [BR20a; BR20b]. We distinguish between these two notions to make
comparison with existing literature easier. Bousfield [Bou99] studies the uncompleted
version.

Remark 4.6. As the notation hints at, there is also a notion of vn-periodic homotopy
groups, for any natural number n > 1. The natural number n is referred to as the height.

Definition 4.7 A map f : X → Y of pointed spaces is called a v1-periodic equivalence
if it induces an isomorphism on v−1

1 π∗.

By [Bou99, Cor. 7.6], a map is a v1-periodic equivalence if and only if it induces an
isomorphism on the v1-periodic mod p homotopy groups.

Remark 4.8. One can localise (in the sense of Definition 1.77) the ∞-category S∗ at the
v1-periodic equivalences, yielding the ∞-category Sv1 of v1-periodic spaces. This can be
proved using results of Bousfield; see [Heu21, §3.2] for an ∞-categorical formulation
at a general height n, where this ∞-category is denoted byM f

n. However, this is not a
Bousfield localisation in the sense of §1.5: it is not even a reflective localisation, because
the localisation functor does not preserve all limits. We will not use the existence of
this localisation in any serious way.

The periodicity of v1-periodic homotopy groups implies that for every k > 0, the
truncation map X → X〈k〉 is a v1-periodic equivalence. In particular, spaces whose
homotopy groups vanish above a certain degree (e.g., Eilenberg–MacLane spaces) are
v1-periodically contractible.

Studying these groups via the above definitions above is not the best approach. A
much more robust approach uses the fact that v1-periodic homotopy groups of a space
X are actually the homotopy groups of a spectrum Φ1X.

4.1.1 Monochromatic layers

Recall from Definition 2.2 that K(1) denotes KU/p.

Definition 4.9 Let X be a spectrum. The first monochromatic layer M1X of X is the
fibre of the natural map

LHQ⊕K(1)X −→ LHQX.

Write M1Sp for the full subcategory of Sp on the spectra of the form M1X for X ∈ Sp.
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The operation M1 can be made into a functor M1 : Sp→ M1Sp. This is closely related
to K(1)-localisation.

Theorem 4.10 ([BR20a], §5) The functors

M1Sp SpK(1)

LK(1)

M1

are mutually inverse categorical equivalences.

As ∞-categories therefore, the distinction between M1Sp and SpK(1) is not very import-
ant, but as subcategories of Sp the distinction does matter. For instance, if X ∈ SpK(1),
then π∗X need not be the same as π∗ M1X.

Remark 4.11. For n > 2, there is also a height-n Morava K-theory K(n), although the
definition does not involve complex (or real) K-theory. One often writes K(0) for HQ
in this context. In general, for n > 1, the height-n monochromatic layer MnX is the
fibre of the natural map

LK(0)⊕···⊕K(n)X −→ LK(0)⊕···⊕K(n−1)X.

There is a similar equivalence between SpK(n) and MnSp; see [BR20a, §5] for an exten-
ded discussion.

4.1.2 The Bousfield–Kuhn functor

It turns out that the v1-periodic homotopy groups of X are the homotopy groups of
a spectrum Φ1X. Specifically, the works of Bousfield and Kuhn (see [Kuh08] for an
overview, or [Bou99, §7] for a more concise account) give a construction of a functor
Φ1 : S∗ → SpK(1) satisfying the following properties.

(i) If k and n are such that Sk/pn admits a v1-self map, then we have a natural
isomorphism

π∗map(Sk/pn, Φ1X) ∼= v−1
1 π∗(X; Z/pn).

(ii) We have natural isomorphisms

π∗Φ1X ∼= v−1
1 π∧∗ (X),

π∗ M1Φ1X ∼= v−1
1 π∗(X).

(iii) If E is a spectrum, then we have a natural equivalence

Φ1(Ω∞E) ' LK(1) E.

(iv) The functor Φ preserves finite limits.

(v) A map f : X → Y of pointed spaces is a v1-periodic equivalence if and only if the
induced map ΦX → ΦY is an equivalence.
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The functor Φ1 is called the Bousfield–Kuhn functor (at height 1). As before, the prime
p is left implicit in the notation.

Remark 4.12. Condition (iii) is a very strong delooping result for K(1)-local spectra: it
gives a functorial way to reconstruct (up to equivalence) a K(1)-local spectrum from
its zeroth space. For general spectra there can be no such results, because a space can
have inequivalent deloopings.

Remark 4.13. The construction of the Bousfield–Kuhn functor works at a general
height n, yielding a functor Φn. In this work (specifically, Chapter 5) we may simply
write Φ instead of Φ1 if we work specifically at height 1.

Remark 4.14. In the literature, often the Bousfield–Kuhn functor Φn lands in so-called
T(n)-local spectra, rather than K(n)-local spectra. A K(n)-local version can then be
obtained by taking LK(n)Φn. See [BR20a, §8] for a further discussion. The telescope
conjecture says that T(n)-localisation of spectra is the same as K(n)-localisation. This
is a theorem in the case of n = 1, but is widely believed to be false for n > 1; see
[Bar19] for an overview. In [BR20b], Behrens and Rezk work with the K(n)-variant of
the Bousfield–Kuhn functor when doing computations. Because the two localisations
agree at height 1, which is our main case of interest, we will ignore the issue from
hereon out.

4.2 Topological André–Quillen cohomology

If R is a commutative ring and A an augmented commutative R-algebra, then its mod-
ule of indecomposables is the R-module Ã/Ã2, with Ã the kernel of the augmentation
A → R. If A is a symmetric R-algebra R[x1, . . . , xn], then its indecomposables is the
module 〈x1, . . . , xn〉. André–Quillen homology is essentially the left derived functor of
the indecomposables functor CAlgaug

R → ModR; for this reason it is also referred to
as the derived indecomposables. This takes some care to make precise because CAlgaug

R
is not an abelian category. In practise it can be computed by replacing the algebra A
with a suitable free alternative. In the world of higher algebra, this has an analogue:
topological André–Quillen homology.

Let C be a symmetric monoidal ∞-category. In [GL, §4.2], Gaitsgory and Lurie give a
definition of the functor TAQC : CAlgaug(C) → C (although they call it the cotangent
fibre). We are mostly interested in the version where C = ModR is the ∞-category of
modules over a commutative ring spectrum R, or where C = ModR,E is the ∞-category
of E-local R-modules for some spectrum E. The main property we need is the following.

Theorem 4.15 Let C be a symmetric monoidal ∞-category which admits countable colimits,
and such that the product functor preserves these. By Theorem 1.44, the forgetful functor
CAlg(C)→ C has a left adjoint SymC .

(a) The functor TAQC : CAlgaug(C)→ Mod(C) admits a right adjoint.
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(b) There is a natural equivalence, for X ∈ C,

TAQC(SymC(X)) ' X.

Remark 4.16. The second property is an analogue of the algebraic fact that if R is a
commutative ring, the indecomposables of R[x1, . . . , xn] is the R-module 〈x1, . . . , xn〉.

If R is a commutative ring spectrum, then we write TAQR for TAQModR
and call it

topological André–Quillen homology over R. The R-linear dual

TAQR(−)∨ := mapR(TAQR(−), R)

we call topological André–Quillen cohomology over R. Note that if R is E-local for
some spectrum E, then TAQ-cohomology is automatically E-local, while the same is
not necessarily true for TAQ-homology. In the E-local setting, it is more natural to work
with LE TAQR instead, because this is the functor TAQC for C = ModR,E.

The two properties of TAQC show that if one has a presentation for an object X ∈ C as
a cofibre of symmetric objects SymC(Y), then TAQC is immediately computable from
this. In the case of TAQR, the TAQ-cohomology also follows from this, because the
R-linear dual functor is an exact functor (see Example 1.63).

The right adjoint to TAQC is the trivial algebra functor, which informally is given by

trivC : ModC −→ CAlgaug(C), M 7−→ 1⊕M,

with M carrying the ‘zero multiplication’. (This is also called the trivial square-zero
extension by M.) See [HA, §7.1.4] for a precise definition. We collect some basic
properties of the trivial algebra functor in the case of commutative ring spectra. We
write trivR for trivModR , and sometimes write R⊕M for trivR(M).

Lemma 4.17 Let E be a spectrum and let R be an E-local commutative ring spectrum. The
functor trivR sends E-local modules to E-local commutative algebra spectra, i.e., it restricts to a
functor

trivR : ModR,E −→ CAlgaug
R,E .

Lemma 4.18 Let R and S be commutative ring spectra, and R → S a morphism. If A is a
commutative R-algebra spectrum and M is an S-module spectrum, then we have a natural
equivalence

MapCAlgaug
S
(S⊗ A, S⊕M) ' MapCAlgaug

R
(A, R⊕M).

Informally, Lemma 4.18 says that the functors trivR and trivS are compatible with
restriction of scalars.

We end the section with some properties of topological André–Quillen cohomology
that will be useful for computations.

Proposition 4.19 Let E be a spectrum and let R be an E-local commutative ring spectrum. If
X is a spectrum, then we have a natural equivalence

LE TAQR(LE(R⊗ Sym(X))) ' LE(R⊗ X).
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Proof. Recall from Proposition 1.57 that we have a natural equivalence R⊗ Sym(X) '
SymR(R ⊗ X). The functor LE TAQR is the functor TAQC for the ∞-category C =

ModR,E. The functor LE SymR is the functor SymC (in the sense of Theorem 1.44) for
C = ModR,E. Thus the result follows from Theorem 4.15(b). �

Proposition 4.20 Let E be a spectrum and let R be an E-local commutative ring spectrum.
Let A be an augmented SE-algebra spectrum. Then we have a natural equivalence

TAQR(R⊗ A) ' R⊗ TAQSE
(A).

Proof. Let M be an R-module spectrum. Using Lemma 4.18, we have a chain of natural
equivalences

MapR(TAQR(R⊗ A), M) ' MapCAlgaug
R
(R⊗ A, R⊕M)

' MapCAlgaug
SE
(A, SE ⊕M)

' MapSE
(TAQSE

(A), M)

' MapR(R⊗ TAQSE
(A), M). �

We need to adapt Proposition 1.75 to a localised setting.

Proposition 4.21 Let E be a spectrum and let R be an E-local commutative ring spectrum.
Let X be a space such that LE Σ∞

+X is E-locally dualisable. Then the natural map

LE(R⊗ SX+
E ) −→ RX+

is an equivalence.

Proof. It suffices to check that the map of underlying spectra

LE(R⊗map(LE Σ∞
+X, SE)) −→ map(LE Σ∞

+X, R)

is an equivalence. This is implied by LE Σ∞
+X being E-locally dualisable. �

Recall from §1.4.1 that if X is pointed, then RX+ is an augmented commutative R-
algebra.

Corollary 4.22 Let E be a spectrum and let R be an E-local commutative ring spectrum.
Let X be a pointed space such that LE Σ∞

+X is E-locally dualisable. Then we have a natural
equivalence

LE TAQR(RX+) ' LE(R⊗ TAQSE
(SX+

E )).

4.3 Descent

The usefulness of K-theory for chromatic homotopy theory at height one originates
with the following result.
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Theorem 4.23 Let p be an odd prime, and let r be a topological generator of Z×p . There is a
fibre sequence in Sp of the form

SK(1) KUp KUp.
ψr−1

Proof. See, e.g., [Lur10, Cor. 4]. �

Because r is a topological generator of Z×p , we think of taking the fibre of ψr − 1 as
taking “Z×p -fixed points”.

This result one to study K(1)-local phenomena by using K-theory. We will use the term
descent to refer to this approach.

Lemma 4.24 Let p be an odd prime. If X is a K(1)-local spectrum, then the sequence

X LK(1) KUp ⊗ X LK(1) KUp ⊗ X
ψr−1

is a fibre sequence in SpK(1).

Proof. The functors − ⊗ X : Sp → Sp and LK(1) : Sp → SpK(1) are left adjoints, so
they preserve colimits. Thus LK(1)(− ⊗ X) is a colimit-preserving functor between
stable ∞-categories, so by Proposition 1.12 it is an exact functor. Therefore it also
preserves finite limits, in particular fibre sequences. Because X is K(1)-local, we have
LK(1)(SK(1) ⊗ X) ' X, yielding the claimed fibre sequence. �

Proposition 4.25 Let p be an odd prime. The functor LK(1) KUp⊗− : SpK(1) → ModKUp, K(1)
is conservative.

Proof. Let f : X → Y be a map of K(1)-local spectra such that LK(1) KUp ⊗ f is an
equivalence. Choose an inverse equivalence h : LK(1) KUp⊗Y → LK(1) KUp⊗X. Using
the above lemma, we have a diagram in SpK(1) of the form

X LK(1) KUp ⊗ X LK(1) KUp ⊗ X

Y LK(1) KUp ⊗Y LK(1) KUp ⊗Y

X LK(1) KUp ⊗ X LK(1) KUp ⊗ X,

f

ψr−1

LK(1)KUp⊗ f LK(1)KUp⊗ f

g

ψr−1

h h
ψr−1

where the rows are fibre sequences. Write g for the map Y → X induced by h by taking
fibres. Since all three rows are fibre sequences and the last two vertical composites are
equivalences, we find that the composite g ◦ f is an equivalence. It follows similarly
that the composite f ◦ g is an equivalence, and thus f is an equivalence. �

Remark 4.26. We can actually show something stronger, namely that LK(1)KUp ⊗− sets
up an equivalence between SpK(1) and the ∞-category of KUp-modules “with a con-
tinuous action of Z×p ”. One way to formalise this is to say that the adjunction involving
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LK(1)KUp ⊗ − and the forgetful functor is comonadic. (Showing that LK(1)KUp ⊗ −
is conservative is the first small step toward proving this: see §4.7, and specifically
Theorem 4.7.3.5, of [HA] for more information.) This comonadicity result can properly
be called a ‘descent’ statement, but we only need the above weaker version.

Remark 4.27. There is an analogous version of Theorem 4.23 for the case p = 2, which
involves real K-theory instead of complex K-theory. Roughly speaking, this is because
Z×2 is not topologically cyclic, but rather splits as Z/2 times a topologically cyclic group.
Taking fixed points of K-theory with respect to the Z/2-summand passes from complex
to real K-theory.

4.4 The Behrens–Rezk comparison map

Let R be a K(1)-local commutative ring spectrum. In [BR20b, §6], Behrens and Rezk
construct a natural transformation

cX
R : TAQR(RX+) −→ RΦ1X

of functorsS op
∗ → ModR. Taking the R-linear dual and precomposing with the natural

map
LK(1) R⊗Φ1X −→ mapR(RΦ1X, R)

yields the R-theoretic comparison map

cR
X : LK(1) R⊗Φ1X −→ TAQR(RX+)∨,

which is a natural transformation of functors S∗ → ModR, K(1). We write cX for the
comparison map where R = SK(1), and simply refer to this as the comparison map. For
general R, we may refer to cX

R as the (R-theoretic) dual comparison map. Note that the
prime p is (again) left implicit in the notation for these maps.

Remark 4.28. Benhrens and Rezk give the construction at a general height n > 1.

Definition 4.29 Let X be a pointed space such that LK(1) Σ∞
+X is K(1)-locally dualisable.

We say X is Φ1-good if the comparison map cX is an equivalence.

Remark 4.30. The above definition is nonstandard. In the literature, a pointed space
X is called Φn-good if the Goodwillie tower for Φn converges at X. If X is such that
the spectrum LK(n) Σ∞

+X is K(n)-locally dualisable, then by [Heu19, Cor. 7.15] this
is equivalent to the above definition. Our aim is to show Φ1-goodness of a class of
spaces satisfying this dualisability condition for n = 1, and to do so without the use of
Goodwillie calculus, so the above definition suffices.

If X is Φ1-good, we think of SX+

K(1) as being a ‘good model’ for the v1-periodic homotopy
type of X. Unlike rational homotopy theory, even for finite spaces, this algebra need not
always be a good model. (Though even if the comparison map is not an equivalence,
this does not mean that the cochains are useless.) A discussion of Φ1-good spaces is
given by Behrens and Rezk [BR20a, §8]. Examples include the spheres, SU(k), and
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Sp(k) (these spaces are even Φn-good for all n > 1). Not all spaces are Φ1-good:
Brantner and Heuts [BH20] prove that the wedge of two spheres of dimension greater
than one, and mod p Moore spaces, are not Φn-good for any n > 1.

Remark 4.31. In rational homotopy theory, there is also an approach using differential
graded Lie algebras (dgla’s for short). More precisely, there is an equivalence

S >2
Q ' Lie(ChQ)

>1

between simply-connected rational spaces and connected rational dgla’s. This approach
does generalise to height 1, and even to height n for any n > 1. Heuts [Heu21] proved
that ΦnX has the structure of a spectral Lie algebra, and that this sets up an equivalence
between vn-periodic spaces and spectral Lie algebras in T(n)-local spectra. The survey
by Heuts [Heu19] gives an introduction to spectral Lie algebras and their application
to vn-periodic homotopy theory, including this result. We will not use spectral Lie
algebras in this work.

Remark 4.32. The approach with cochain algebras is only suited to deal with spaces
that are suitably finite (more precisely, spaces X for which the spectrum LK(n) Σ∞

+X is
K(n)-locally dualisable). To rid oneself of the finiteness condition, one should work
with commutative coalgebras in the spectral sense. This approach is described by Heuts
[Heu21, §5]. For spaces that are finite in the earlier sense, this approach is equivalent to
working with commutative algebras. The comparison map generalises to coalgebras,
and this comparison map is an equivalence if and only if X is Φn-good (without
finiteness assumptions).

If we work over an odd prime p, then using descent we can detect Φ1-goodness via the
K-theoric comparison map. This result is specific to height 1.

Proposition 4.33 Let p be an odd prime. Let X be a pointed space such that the spectra
LK(1) Σ∞

+X and LK(1) TAQSK(1)
(SX+

K(1)) are K(1)-locally dualisable. Then X is Φ1-good if and
only if the K-theoric comparison map

cKUp
X : LK(1) KUp ⊗Φ1X −→ TAQKUp(KUX+

p )∨

is an equivalence.

Proof. By Proposition 4.25 the functor LK(1) KUp ⊗− is conservative, so X is Φ1-good
if and only if

LK(1) KUp ⊗ cX : LK(1) KUp ⊗Φ1X −→ LK(1) KUp ⊗
(

TAQSK(1)
(SX+

K(1))
∨
)

is an equivalence. We now rewrite the target of this map via a number of identifications.
The natural map

LK(1) KUp ⊗
(

TAQSK(1)
(SX+

K(1))
∨
)
−→ map

(
TAQSK(1)

(SX+

K(1)), KUp

)
is an equivalence because LK(1) TAQSK(1)

(SX+

K(1)) is K(1)-locally dualisable. Corollary 4.22
gives us an equivalence

LK(1) KUp ⊗ TAQSK(1)
(SX+

K(1)) ' LK(1) TAQKUp(KUX+
p ).
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Using this, we find an equivalence

map
(

TAQSK(1)
(SX+

K(1)), KUp

)
' mapKUp

(
LK(1) KUp ⊗ TAQSK(1)

(SX+

K(1)), KUp

)
' mapKUp

(
LK(1) TAQKUp(KUX+

p ), KUp

)
= TAQKUp(KUX+

p )∨.

Postcomposing with these identifications, we obtain a map

LK(1) KUp ⊗Φ1X −→ TAQKUp(KUX+
p )∨,

and this map agrees with the K-theoretic Behrens–Rezk comparison map cKUp
X . (Spe-

cifically, we use that these identifications are compatible with the equivalence (4.1) of
[BR20b].) This proves the claim. �
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5EVALUATION OF THE COMPARISON MAP

Let p be an odd prime, and let X be a pointed space satisfying the conditions of
Theorem 3.12, and such that LK(1) Σ∞

+X is K(1)-locally dualisable. In this chapter
we use the presentation of KUX+

p from Theorem 3.12 to show that, if X satisfies some
additional conditions, then X is Φ1-good. We do this by showing that the Behrens–Rezk
comparison map

cX : Φ1X −→ TAQSK(1)
(SX+

K(1))
∨

is an equivalence. By a descent argument, this is equivalent to the KUp-theoretic
comparison map being an equivalence. The topological André–Quillen cohomology of
KUX+

p follows directly from from a presentation for KUX+
p (see Theorem 4.15), which

is exactly what we gave in Theorem 3.12. This way we can compute the target of the
comparison map.

We do not give a new computation of Φ1X. Rather, we rely on work done by Bousfield
[Bou99] for our knowledge of Φ1X. Working over an odd prime, he computed the
spectrum Φ1X for X as above. More specifically, he described Φ1X as the fibre of
a map between K-cohomology Moore spectra. These Moore spectra turn out to be
dual versions of the spectra M (G) from §3.1. We introduce these Moore spectra and
summarise Bousfield’s results in §5.1, slightly rephrasing them in our terminology. The
main takeaway of §5.1 is Theorem 5.11. The proof of Φ1-goodness is given in §5.2, with
the exception of the construction of a crucial diagram, which is done in §5.3.

Previously Kjaer [Kja19] did something very similar: he also used Bousfield’s results to
conclude that such spaces are Φ1-good, but with a different approach to computing
topological André–Quillen cohomology. There does not seem to be another source
in the literature that computes the topological André–Quillen cohomology of these
cochains from a presentation of the cochains.

Throughout this chapter, p denotes a fixed odd prime. We work at height 1, and shall
refer to the height 1 Bousfield–Kuhn functor by Φ instead of Φ1. Unlike the previous
chapter, the results in this chapter are very specifically tied to the height 1 assumption.
Like in other chapters, we follow Convention 2.1 and view K-theory as Z/2-graded.

5.1 Bousfield’s infinite loop space approach

Recall the following from §3.1: for a Morava module G concentrated either in even or
odd degree which is finitely generated as Zp-module, Bousfield constructed a spectrum
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M(p)(G) with an isomorphism

(KU(p))∗(M(p)(G)) ∼= G

respecting p-local Adams operations. We defined M (G) := M(p)(G)∧p and showed in
Lemma 3.2 that the above isomorphism induces an isomorphism of Morava modules

(KUp)
∧
∗ (M (G)) ∼= G.

Recall also that M (G) is K(1)-local by construction. We will now use a dual version
of this spectrum. In this chapter, if Y is a K(1)-local spectrum, we write Y∨ for its
K(1)-local Spanier–Whitehead dual:

Y∨ = map(Y, SK(1)).

Definition 5.1 Let G be a Morava module concentrated either in even or odd degree
which is finitely generated as Zp-module. We write M ∨(G) for the K(1)-local Spanier–
Whitehead dual of M (G).

Proposition 5.2 Let G be a Morava module concentrated either in even or odd degree which
is finitely generated as Zp-module. The spectrum M (G) is K(1)-locally dualisable.

Proof. By Theorem 2.13, this is equivalent to (KUp)∧∗ (M (G)) being finitely generated.
We have an isomorphism (KUp)∧∗ (M (G)) ∼= G, so the result follows. �

Corollary 5.3 We have an isomorphism of Morava modules

KU∗p(M
∨(G)) ∼= G.

Remark 5.4. In [Bou99], Bousfield denotes the spectrum M ∨(G) by M (G, 1) when G is
concentrated in odd degree, and M (G, 0) when concentrated in even degree. He gives
a different construction of this spectrum (see 10.3 of op. cit.), but he notes that (up to
equivalence) it is the unique K(1)-local spectrum such that its KUp-cohomology is G.

Using this spectrum, Bousfield in [Bou99] gave a computation of ΦX for a wide variety
of spaces X. We require some results about the K-theory of infinite loop spaces before
we can discuss this. In 3.5 of op. cit., Bousfield defines a modification of M ∨(G),
denoted by M̃ ∨(G), together with a map M̃ ∨(G)→M ∨(G), such that

(i) πn M̃ ∨(G) = 0 for n < 2;

(ii) π2 M̃ ∨(G) is a modified version of π2 M ∨(G);

(iii) the map M̃ ∨(G) → M ∨(G) induces an isomorphism πn M̃ ∨(G) ∼= πn M ∨(G)

for n > 2;

(iv) the map M̃ ∨(G)→M ∨(G) is a K(1)-localisation.

If G is concentrated in odd degree, then the K-theory of the zeroth space Ω∞M̃ ∨(G)

turns out to be a free p-adic θ-algebra in the sense of Bousfield (recall from Remark 2.32
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that this is slightly different from the free θ-algebras from §2.4). This algebra can
be constructed as follows. Write FG for the module G × G × · · · (cf. the notation
FG = G⊕ G⊕ · · · from Example 2.31). Given a Zp-module N, define

Λ̂(N) := lim
α

ΛZp(Nα),

where the Nα are the finite quotients of N. If G is concentrated in odd degree, then the
algebra Λ̂FG is the underlying algebra of Bousfield’s free p-adic θ-algebra on G. The
module FG has an operation θp given by shifting each copy of G one to the right. This
induces an operation θp on Λ̂FG satisfying the conditions for a Z/2-graded θ-algebra.
The Adams operations on G induce Adams operations Λ̂FG. Based on previous results
from [Bou96a], Bousfield concludes the following.

Theorem 5.5 ([Bou99], Thm. 3.7) Let G be a Morava module concentrated in odd degree,
which is finitely generated and free as Zp-module. Then we have an isomorphism of θ-algebras

KU∗p(Ω
∞M̃ ∨(G)) ∼= Λ̂FG.

Remark 5.6. This result is a first hint that the KUp-algebra KUΩ∞M̃ ∨(G)+
p is closely related

to the symmetric algebra LK(1)KUp ⊗ Sym(M (G)). This connection will play a further
role later in this chapter.

5.1.1 Construction of the fibre sequence

Let M be a Morava module concentrated in odd degree, and which is finitely generated
and free as Zp-module, and let θ

p
M : M→ M be a homomorphism. Let X be a connected

space such that KU∗p(X) is an exterior algebra on (M, θ
p
M) (see Theorem 3.12). If X

satisfies some additional conditions, then Bousfield realises ΦX as the fibre of a map
M ∨(M)→M ∨(M). We now review his construction. (Bear in mind the differences in
notation: see Remarks 2.21 and 2.22.)

For technical reasons, one must assume that (M, θ
p
M) satisfies the regularity condition

of Bousfield (see Definition 4.4 of [Bou99], and see Remark 5.12 below for a discus-
sion of when this happens), and that H1(X; Zp) and H2(X; Zp) both vanish. Then in
Theorem 4.8 of [Bou99], Bousfield constructs a triangle

LK(1)X Ω∞M̃ ∨(M)

∗ Ω∞M̃ ∨(M)

h′

f (5.7)

in S∗. There is some freedom in the choosing of the maps h′ and f . The requirements
are as follows. One must start with a map h : X → Ω∞M̃ ∨(M) which induces the
natural quotient

KU∗p(Ω
∞M̃ ∨(M)) ∼= Λ̂FM −→ ΛM ∼= KU∗p(X)
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on K-theory. Bousfield proves such an h always exists: see Theorem 3.10 of op. cit.
The K-theory of the cofibre cofib h injects into Λ̂FM. Next one must choose a map
k : cofib h→ Ω∞M̃ ∨(M) which induces the map

θp − Fθ
p
M : Λ̂FM −→ KU∗p(cofib h) ⊆ Λ̂FM

on K-theory. (This exists by the same Theorem 3.10 of op. cit.) The map f is defined to
be the composite

Ω∞M̃ ∨(M) cofib h Ω∞M̃ ∨(M).k

On K-theory, this induces

θp − Fθ
p
M : Λ̂FM −→ Λ̂FM.

Bousfield shows that h factors to a map h′ : LK(1)X → Ω∞M̃ ∨(M) that sits in a triangle
of the form (5.7).

Remark 5.8. There seems to be a missing assumption in Theorem 4.8 of [Bou99]. The
theorem ends with the conclusion that H1(X; Zp) and H2(X; Zp) vanish under the
assumptions posed there, but X = S1 is a counterexample to this. (The module
KU1

p(S1) is indeed regular — see Remark 5.12.) Because the conclusion that H1(X; Zp)

and H2(X; Zp) vanish is used in later results of [Bou99], we have included it as a
separate assumption. Requiring M to be reduced in the sense of Definition 2.8 of op. cit.
would imply H1(X; Zp) = 0 (see also 2.9 of op. cit.).

One of the main results of [Bou99] is that the triangle (5.7) becomes a fibre sequence
after application of Φ. To state the precise assumptions on X that are necessary for this,
we require some terminology. Recall from Definition 4.7 that a map of pointed spaces is
a v1-periodic equivalence if it induces an isomorphism on v−1

1 π∗, or equivalently (see
§4.1.2) if it becomes an equivalence after application of Φ.

Definition 5.9 ([Bou99], §7) A pointed space X is called K(1)-durable if its K(1)-
localisation map X → LK(1)X is a v1-periodic equivalence.

In other words, X is K(1)-durable when the map X → LK(1)X induces an equivalence
ΦX ' Φ(LK(1)X).

Proposition 5.10 ([Bou99], Cor. 7.8) If X is a pointed nilpotent space whose p-completion
X∧p is an H-space, then X is K(1)-durable.

Note that this includes the odd spheres, since we are working over an odd prime p.

Recall from §4.1.2 that for a spectrum Y, we have a natural equivalence

Φ(Ω∞Y) ' LK(1)Y.

Theorem 5.11 ([Bou99], Thm. 8.1) Let p be an odd prime number. Let X be a pointed space,
let M be a p-adic Morava module, and θ

p
M : M → M a morphism of Morava modules, such

that
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(i) M is finitely generated and free as a Zp-module;

(ii) M is concentrated in degree 1;

(iii) the θ-algebra KU∗p(X) is an exterior algebra on (M, θ
p
M);

(iv) the pair (M, θ
p
M) is regular in the sense of Bousfield (see [Bou99, Def. 4.4]);

(v) the space X is connected and K(1)-durable;

(vi) the groups H1(X; Zp) and H2(X; Zp) vanish.

Then any triangle of the form (5.7) constructed by the above method becomes, after application
of Φ, a pullback square

ΦX M ∨(M)

0 M ∨(M)

y

in SpK(1).

Note that the conditions of Theorem 5.11 imply the conditions of Theorem 3.12.

In §8 and §9 of [Bou99], Bousfield discusses how to compute v−1
1 π∗(X) from this result,

relying on the equivalence between LK(1) and M1 (see Theorem 4.10). He also gives
some examples of such a computation, including for SU(n).

Remark 5.12. The most technical assumption is that of the regularity of (M, θp). Recall
that Bousfield calls (M, θp) regular if it is an extension of a strictly nonlinear submodule
and a linear quotient module: see Definitions 4.2 and 4.4 of [Bou99]. This is often
satisfied in practise. It is for instance satisfied for odd spheres, and for the H-spaces
that we considered in §3.3.2. For the n-sphere Sn this is evident because then (M, θp) is
either linear (if n = 1) or strictly nonlinear (if n > 1). Bousfield shows that if X satisfies
the conditions of Theorem 3.16, then (M, θ

p
M) is regular: see [Bou99, Lem. 6.1] (we in

fact remarked this in the proof overview we gave of Theorem 3.16).

Combining Theorem 3.17, Proposition 5.10, and Remark 5.12, we see that simply-
connected compact Lie groups satisfy the conditions of Theorem 5.11 (since π2 of a
compact Lie group always vanishes). For the odd spheres we have the following result.

Example 5.13 Let n be an odd natural number, and consider X = Sn. Recall from §3.3.1
that KU∗p(Sn) is an exterior algebra on M = K̃U∗p(Sn). The map θ

p
M : M→ M is given by

multiplication by p(n−1)/2. Lastly, recall that we have an equivalence M (M) ' S−n
K(1).

If n > 1, then the additional conditions of Theorem 5.11 are satisfied. The dual spectrum
M ∨(M) is now Sn

K(1). Theorem 5.11 expresses Φ(Sn) as sitting in a fibre sequence

Φ(Sn) Sn
K(1) Sn

K(1).
p(n−1)/2

This fibre is easily computed, yielding

Φ(Sn) ' Sn−1
K(1)

/
p(n−1)/2. N
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Remark 5.14. If the map θ
p
M : M→ M is injective, then the fibre sequence of Theorem 5.11

simplifies to say that ΦX is equivalent to M (M/θ
p
M). Bousfield shows that if X satisfies

the conditions of Theorem 3.17, then θ
p
M is injective: see the proof of Theorem 9.2 in

[Bou99].

5.2 Proof overview

We now come to the main result of this chapter. The triangle (5.7) (from which the fibre
sequence of Theorem 5.11 followed) resembles a dual version of the cofibre sequence
of Theorem 3.12: on KU∗p , the triangle (5.7) induces a presentation

Λ̂FM Λ̂FM ΛM,
θp−Fθ

p
M

similar to how on (KUp)∧∗ , the presentation of Theorem 3.12 induces

Freeθ,p(M) Freeθ,p(M) ΛM.
θp−Fθ

p
M

This was in fact the inspiration behind Theorem 3.12. We now study this resemblance
in more detail, and in the process prove that the spaces X to which this applies are
Φ-good.

Note that the condition that LK(1) Σ∞
+X should be K(1)-locally dualisable is a type of

finiteness condition on X; this is in particular satisfied if X is finite.

Theorem 5.15 Let p be an odd prime. Let X be a pointed space satisfying the conditions of
Theorem 5.11, and such that LK(1) Σ∞

+X is K(1)-locally dualisable. Then the Behrens–Rezk
comparison map cX is an equivalence, i.e., the space X is Φ-good.

Proof. Applying K(1)-local topological André-Quillen homology over KUp to the
presentation of KUX+

p from Theorem 3.12 yields a fibre sequence

LK(1) TAQKUp(KUX+
p ) LK(1) KUp ⊗M (M) LK(1) KUp ⊗M (M)

in ModKUp, K(1) (see Proposition 4.19). Because π∗(LK(1) KUp ⊗M (M)) ∼= M is finitely

generated, we find that π∗(LK(1) TAQKUp(KUX+
p )) is also finitely generated. Using the

equivalence

LK(1) TAQKUp(KUX+
p ) ' LK(1) KUp ⊗ TAQSK(1)

(SX+

K(1))

from Corollary 4.22, this shows that

(KUp)
∧
∗ (TAQSK(1)

(SX+

K(1)))

is finitely generated. By Theorem 2.13, this means that LK(1) TAQSK(1)
(SX+

K(1)) is K(1)-
locally dualisable. Thus we are in the setting of Proposition 4.33, meaning that it
suffices to show that the K-theoretic comparison map

cKUp
X : LK(1) KUp ⊗ΦX −→ TAQKUp(KUX+

p )∨
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is an equivalence. Applying the functor LK(1)KUp⊗− to the fibre sequence of Bousfield’s
Theorem 5.11 yields a fibre sequence

LK(1) KUp ⊗ΦX LK(1) KUp ⊗M ∨(M) LK(1) KUp ⊗M ∨(M)

in ModKUp, K(1). Applying TAQ-cohomology over KUp to the presentation of The-
orem 3.12 yields a fibre sequence

TAQKUp(KUX+
p )∨ map(M (M), KUp) map(M (M), KUp)

in ModKUp, K(1). In §5.3, we construct a diagram of the form

LK(1) KUp ⊗ΦX LK(1) KUp ⊗M ∨(M) LK(1) KUp ⊗M ∨(M)

TAQKUp(KUX+
p )∨ map(M (M), KUp) map(M (M), KUp)

c
KUp
X ' '

between these two fibre sequences, such that the last two vertical maps are equivalences.
Thus the left vertical map is an equivalence, finishing the proof. �

5.3 Construction of the diagram

In this section we finish the proof of Theorem 5.15 by constructing the advertised
diagram. The construction centres around the construction of the last two vertical
maps. This is mostly a formal endeavour, and so is the proof that these maps are
equivalences. The construction can be done in more generality, so to make the argument
more transparent we work with a general spectrum Y, and specialise to Y = M ∨(M)

at the end.

We begin with a construction given by Behrens and Rezk in [BR20b, §6]. If Y is a
spectrum, let us write KUY

p for the KUp-module map(Y, KUp). The counit Σ∞Ω∞Y →
Y induces a natural transformation

KUY
p −→ KUΩ∞Y+

p

of functors Spop → ModKUp . By the universal property of the symmetric algebra, this
induces a natural transformation

εY : SymKUp
(KUY

p ) −→ KUΩ∞Y+
p

of functors Spop → CAlgaug
KUp

.

This turns out to be a right inverse to the K-theoretic dual comparison map of the space
Ω∞Y. The proof of the following lemma was originally given when working over SK(1),
but it applies to KUp as well (or any K(1)-local commutative ring spectrum), mutatis
mutandis. Specifically, we use that the equivalence (4.1) of [BR20b] is given in this
generality. The proof is formal.
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Lemma 5.16 ([BR20b], Lem. 6.1) If Y is a spectrum, then the composite

KUY
p ' TAQKUp(SymKUp

(KUY
p ))

ε∗Y−−−→ TAQKUp(KUΩ∞Y+
p )

c Ω∞Y
KUp−−−→ KUΦ(Ω∞Y)

p ' KUY
p

is the identity.

Taking KUp-linear duals, precomposing with the natural map

LK(1) KUp ⊗Y∨ −→ mapKUp
(KUY

p , KUp)

and postcomposing with the natural map

mapKUp
(KUY

p , KUp) −→ map(Y∨, KUp)

yields the composite

LK(1) KUp ⊗Y∨

LK(1) KUp ⊗Φ(Ω∞Y) TAQKUp(KUΩ∞Y+
p )∨ TAQKUp(SymKUp

(KUY
p ))
∨

mapKUp
(KUY

p , KUp)

map(Y∨, KUp).

'
c

KUp
Ω∞Y ε∨

'

By Lemma 5.16, the ‘middle’ falls out, and this composite is equal to the composite of
natural maps

LK(1) KUp ⊗Y∨ −→ mapKUp
(KUY

p , KUp) −→ map(Y∨, KUp).

The proof of the following lemma is immediate from the definition of K(1)-local
dualisability.

Lemma 5.17 Let Y be a K(1)-locally dualisable spectrum. Then

(a) the composite of natural maps

LK(1) KUp ⊗Y∨ −→ mapKUp
(KUY

p , KUp) −→ map(Y∨, KUp)

is an equivalence;

(b) we have a natural equivalence

SymKUp
(KUY

p ) ' KUp ⊗ Sym(Y∨).
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By Proposition 5.2, the spectrum M (M) is K(1)-locally dualisable, so the above lemma
applies to Y = M ∨(M).

We now construct a diagram of the form

LK(1) KUp ⊗ΦX LK(1) KUp ⊗M ∨(M) LK(1) KUp ⊗M ∨(M)

LK(1) KUp ⊗ΦX LK(1) KUp ⊗Φ(Ω∞M̃ ∨(M)) LK(1) KUp ⊗Φ(Ω∞M̃ ∨(M))

TAQKUp(KUX+
p )∨ TAQKUp(KUΩ∞M̃ ∨(M)+

p )∨ TAQKUp(KUΩ∞M̃ ∨(M)+
p )∨

TAQKUp(KUX+
p )∨ map(M (M), KUp) map(M (M), KUp),

' '

c
KUp
X cKUp cKUp

h f

ε∨ ε∨

as follows.

• The top horizontal row is obtained by applying LK(1)KUp ⊗ − to the fibre se-
quence of Bousfield of Theorem 5.11.

• The first triple of vertical maps are the equivalences from §4.1.2, keeping in mind
that LK(1)M̃

∨(M) 'M ∨(M).

• The second triple of vertical maps is the K-theoretic Behrens–Rezk comparison
map. For the left vertical map, it is the comparison map for the space X, and for
the last two it is for the space Ω∞M̃ ∨(M).

• In the third row, we use the notation h and f to reflect the notation in the tri-
angle (5.7).

• In the third triple of vertical maps, the last two are given by applying TAQ-
cohomology to the natural transformation ε constructed above. We have abbrevi-
ated TAQ(ε)∨ by ε∨ in the diagram, and have made the identification

TAQKUp

(
LK(1) KUp ⊗ Sym(M ∨(M))

)∨
' map(M (M), KUp)

by using Lemma 5.17.

All squares except the bottom left are obtained by applying a natural transformation,
so these squares come with homotopies witnessing their commutativity. Two things
remain to be done:

(1) the bottom-left square has to be constructed;

(2) we ought to show the bottom row agrees with the fibre sequence coming from
the presentation of the algebra KUX+

p .
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To this end, it will be useful to introduce some labels. We will also make use of the
same lemmas and methods that we used in §3.2 and Lemma 3.8 to classify maps of the
form Y → KUW+

p with Y a spectrum and W a space.

If Y is a K(1)-locally dualisable spectrum, then the map of KUp-algebras

ε : SymKUp
(KUY

p ) ' KUp ⊗ Sym(Y∨) −→ KUΩ∞Y+
p

corresponds to a map of spectra

Y∨ −→ KUΩ∞Y+
p ,

which by abuse of notation we will also denote by ε. The map

TAQKUp(ε)
∨ : map(Y∨, KUp) −→ TAQKUp(KUΩY+

p )∨

as indicated in the diagram above is the KUp-linear dual ε∨ of ε.

In §3.2, we constructed a map M (M)→ KUX+
p corresponding to the inclusion M →

ΛM in

KU∗p(M (M)⊗ Σ∞
+X) ∼= KU∗p(M (M))⊗(KUp)∗ KU∗p(X) ∼= HomZp(M, ΛM).

We now use the notation ξ for this map M (M)→ KUX+
p .

Lastly, recall from §5.1 that the map h′ : LK(1)X → Ω∞M̃ ∨(M) from the triangle (5.7)
comes from a map h : X → Ω∞M̃ ∨(M) which on KU∗p induces the natural quotient

Λ̂FM −→ ΛM.

Lemma 5.18 The diagram

M (M) KUΩ∞M̃ ∨(M)+
p

KUX+
p

ε

ξ
h∗

is commutative up to homotopy.

Proof. The composite h∗ ◦ ε : M (M)→ Ω∞M̃ ∨(M) is classified by the corresponding
element in

KU∗p
(
M (M)⊗ Σ∞

+Ω∞M̃ ∨(M)
)
∼= HomZp(M, Λ̂FM).

The natural transformation ε and the isomorphism KU∗p(Ω∞M̃ ∨(M)) ∼= Λ̂FM of
Theorem 5.5 are such that the map ε corresponds to the natural inclusion M→ Λ̂FM.
Thus h∗ ◦ ε corresponds to the map

M −→ Λ̂FM −→ ΛM

that is the composite of the inclusion and the quotient; more plainly, it corresponds to
the natural inclusion M → ΛM. The map ξ by definition corresponds to M → ΛM,
and thus ξ is homotopic to h∗ ◦ ε. �
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Thus we may construct the desired bottom-left square by putting TAQ(ξ)∨ at the
bottom. We therefore arrive at a diagram of the form

LK(1) KUp ⊗ΦX LK(1) KUp ⊗M ∨(M) LK(1) KUp ⊗M ∨(M)

TAQKUp(KUX+
p )∨ map(M (M), KUp) map(M (M), KUp).

c
KUp
X ' '

TAQ(ξ)∨

It remains to be shown that the second map in the bottom row is homotopic to the map
coming from the presentation of KUX+

p . Recall from §3.2 that this map was induced by
a map

η : M (M) −→ LK(1) KUp ⊗ Sym(M (M))

that corresponds to the homomorphism θp − Fθ
p
M : M→ Freeθ(M) on K-theory. Recall

from §5.1.1 that in the triangle (5.7), the map

f : Ω∞M̃ ∨(M) −→ Ω∞M̃ ∨(M)

induces the map θp − Fθ
p
M on KU∗p .

Lemma 5.19 In the diagram

LK(1) KUp ⊗M (M) LK(1) KUp ⊗ Sym(M (M))

KUΩ∞M̃ ∨(M)+
p KUΩ∞M̃ ∨(M)+

p

ε ε

f ∗

the top map is homotopic to η.

Proof. The natural transformation ε and the isomorphism from Theorem 5.5 are such
that after taking homotopy groups, the square

LK(1) KUp ⊗M (M) LK(1) KUp ⊗ Sym(M (M))

KUΩ∞M̃ ∨(M)+
p KUΩ∞M̃ ∨(M)+

p

ε ε

f ∗

becomes
M Freeθ(M)

Λ̂FM Λ̂FM
θp−Fθ

p
M

with the vertical maps the natural inclusions. Thus the map M → Freeθ(M) in this
diagram is θp − Fθ

p
M : M → Freeθ(M), and therefore (using Proposition 3.5) the map

M (M)→ LK(1) KUp ⊗ Sym(M (M)) is homotopic to the map η. �
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POPULAR SUMMARY (DUTCH)

De topologie heeft een kenmerkende vraag: hoe kunnen we ruimtes van elkaar onder-
scheiden? Neem bijvoorbeeld de tweedimensionale bol en de torus.

Voor onze ogen zijn dit overduidelijk verschillende ruimtes: je kan de één niet in de
ander omvormen zonder te scheuren, plakken, of iets anders raars te doen. Om dit idee
om te zetten in een wiskundig bewijs, is erg lastig. De formele term voor ‘hetzelfde’ is
homeomorf ; de vraag is dus waarom de bol niet homeomorf is aan de torus.

Algebraı̈sche topologie biedt een oplossing voor dit probleem. De techniek die gebruikt
wordt lijkt misschien omslachtig, maar het idee is ongelofelijk krachtig. Het idee
is om een functie te construeren die aan elke ruimte een getal toekent, namelijk het
aantal gaten. De formele term voor het aantal gaten is het geslacht. Het geven van
de constructie kost wat tijd, maar de crux is dat het relatief eenvoudig is om uit
de constructie af te leiden dat homeomorfe ruimtes hetzelfde geslacht hebben. Om
deze reden wordt het geslacht een invariant van de ruimte genoemd: als je de ruimte
omvormt zonder haar wezenlijk te veranderen (dat wil zeggen, een homeomorfe
ruimte bekijken), verandert het geslacht niet. Nu blijkt dat, zoals je zou verwachten,
de bol geslacht 0 heeft, en de torus geslacht 1. Conclusie: de bol en de torus zijn niet
homeomorf.

Het geslacht is slechts het eerste voorbeeld van een invariant. Algebraı̈sch topologen
hebben vele invarianten bedacht en bestudeerd in de afgelopen honderd jaar. De studie
van invarianten wordt pas echt serieus zodra je kijkt naar invarianten die geen getallen,
maar groepen aan ruimtes toekennen. Het woord ‘invariant’ betekent nu dat homeo-
morfe ruimtes naar isomorfe groepen moeten worden gestuurd. Meestal kijkt men
naar invarianten die alleen abelse groepen gebruiken. Groepen zijn natuurlijk lastigere
objecten dan getallen, maar dat maakt dat ze meer informatie kunnen ‘onthouden’.
Daarnaast zijn topologen erg goed geworden in het berekenen van dit soort groepen.

Deze invarianten komen in verschillende soorten en maten. Er zijn twee hoofdrolspe-
lers. De homotopiegroepen, aangeduid met πn (voor n een natuurlijk getal), zijn zeer
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complex en moeilijk uit te rekenen, maar geven ongelofelijk veel informatie. De homo-
logiegroepen, aangeduid met Hn (voor n een natuurlijk getal), zijn in zekere opzichten
makkelijkere versies van πn (maar zijn in meer exotische gevallen ook erg verschillend).
Zowel πn als Hn zeggen iets over het aantal ‘n-dimensionale gaten’ in een ruimte. Het
geslacht van een oppervlak X kan bijvoorbeeld afgeleid worden uit π1(X) of H1(X).
Vaak probeert men uit Hn informatie af te leiden over πn.

Toch bleek het voor sommigen nog niet genoeg om deze invarianten te bekijken. Als
een generalisatie van deze invarianten is in de afgelopen decennia het vakgebied
hogere algebra ontwikkeld. Dit is een zeer vreemde, maar prachtige combinatie van
topologie en algebra. De cruciale observatie is dat achter de homologiegroepen Hn

een heel bijzonder soort ruimte schuilgaat: een spectrum. Omdat Hn een functie is die
abelse groepen toekent aan ruimtes, krijgt dit spectrum ook een soort algebraı̈sche
structuur. Je zou een spectrum een topologische versie van een abelse groep kunnen
noemen. Hogere algebra probeert zoveel mogelijk resultaten over abelse groepen te
generaliseren voor spectra. Dit lijkt ongelofelijk ingewikkeld: het doel van invarianten
was om ruimtes te begrijpen, maar nu zijn we weer terug bij af en moeten we een
ruimte proberen te begrijpen! In de praktijk zijn spectra gelukkig een stuk makkelijker
dan gewone ruimtes: er zijn genoeg stellingen bewezen om, voor een redelijk groot
deel, te kunnen doen alsof spectra zich gedragen als gewone abelse groepen. (Deze
resultaten zijn in detail uitgewerkt door Lurie [HA] in een boek van meer dan 1500
bladzijden.) Net zoals abelse groepen meer informatie kunnen onthouden dan getallen,
kunnen spectra meer informatie onthouden dan abelse groepen. Gepaard met al deze
stellingen, maakt dit spectra tot nog betere objecten om invarianten mee te bouwen.

In deze scriptie doe ik een berekening met hogere algebra, geı̈nspireerd door een artikel
van Bousfield [Bou99] uit 1999. Dit heeft meerdere doelen: allereerst is het goed om te
zien hoe gerekend kan worden met dit soort objecten, en hoe makkelijk (of moeilijk) dat
gaat. Ook is deze specifieke berekening nog niet eerder gedaan. Het tweede doel brengt
ons weer terug bij de oude invarianten. Zelfs vandaag de dag kunnen we voor maar
heel weinig ruimtes de homotopiegroepen πn uitrekenen. In de afgelopen paar jaar
is gebleken dat hogere algebra hierbij kan helpen: de uitkomst van de hogere algebra
berekening geeft inzichten in hoe de homotopiegroepen werken. De aanpak van
deze scriptie geeft niet zozeer nieuwe berekening van homotopiegroepen, maar levert
een bijdrage aan een nieuw vakgebied dat de patronen achter de homotopiegroepen
probeert te begrijpen. Omdat deze berekening nog niet eerder is gedaan, is het extra
interessant om te zien hoe dit leidt tot meer begrip van de homotopiegroepen.
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ADERIVED COMPLETENESS

Let p be a fixed prime number. In this chapter we describe the theory of derived p-
completion of Z/2-graded Zp-modules. Originally Greenlees and May [GM92] studied
this in a much more general setting. Hovey and Strickland [HS99, App. A] work in
the setting of Z/2-graded modules over ZpJu1, . . . , un−1K, for some fixed n > 1. In
the language of chromatic homotopy theory, they work at height n, whereas we work
at height 1. In §A.1 and §A.2 we summarise parts of the expositions by Hovey and
Strickland [HS99, App. A] and Barthel and Frankland [BF15, App. A], simplified to the
Zp-setting.

Throughout this appendix, we use an asterisk to indicate Z/2-graded objects: Mod∗Zp

denotes the category of Z/2-graded Zp-modules, and CAlg∗Zp
the category of graded-

commutative Z/2-graded Zp-algebras.

A.1 Derived complete modules

Consider the functor of classical p-completion of Z/2-graded Zp-modules:

(−)∧p : Mod∗Zp
−→ Mod∗Zp

, M 7−→ M∧p := lim
n

M/pn M.

This is an exact functor when restricting to finitely generated modules, but in general
it is neither left nor right exact. This is a problem because modules coming from
topology are often not finitely generated. To remedy this, one can instead consider the
zeroth left-derived functor of p-completion, and regard this as the ‘correct’ version of
p-completion. In the main text we will indeed see that this is the correct notion for
topology: derived p-completion is the shadow of p-completion of spectra (or more
specifically, in the present Z/2-graded context, p-completion of KUp-module spectra).

Definition A.1 For a natural number s > 0, let Ls denote the s-th left derived functor
of the classical p-completion functor Mod∗Zp

→ Mod∗Zp
.

More concretely, if M is a graded Zp-module and F1 → F0 a free resolution of M, then

L0M ∼= (F0)
∧
p /(F1)

∧
p ,

and this is independent of the free resolution.

Usually when working with left derived functors, one can prove that the zeroth derived
functor is equal to the functor itself, but this requires right exactness. (E.g., the tensor
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product is right exact, and Tor0 retrieves the tensor product functor.) Classical p-adic
completion is not right exact and so L0 is truly a distinct functor from (−)∧p .

For a graded Zp-module M, the natural map M→ M∧p factors canonically to

M −→ L0M −→ M∧p .

Definition A.2 Let M be a Z/2-graded Zp-module. The module L0M is called the de-
rived p-completion of M. The module M is called derived p-complete (or L-complete,
or Ext-p-complete) if the natural map M→ L0M is an isomorphism. Write M̂od∗Zp

for
the full subcategory of Mod∗Zp

on the derived p-complete modules.

It turns out that only the functors L0 and L1 are interesting, and moreover these have
an explicit description.

Theorem A.3 The functor Ls vanishes if s > 1. (In particular, L0 is right exact, and L1 is left
exact.) There are natural isomorphisms

L0 ∼= Ext1
Zp
(Z/p∞,−) and L1

∼= HomZp(Z/p∞,−),

where Z/p∞ denotes Z[ 1
p ]/Z.

Proof. See [HS99], Theorem A.2(d). �

Classical p-completion is a quotient of derived p-completion.

Theorem A.4 For M ∈ Mod∗Zp
, there is a short exact sequence

0 −→ lim
i

1 Hom(Z/pi, M) −→ L0M −→ M∧p −→ 0.

Proof. See [HS99], Theorem A.2(b). �

As special cases, we find that if M is either a finitely generated or a flat module, that
derived p-completion coincides with classical p-completion. (The flat case follows
because Hom(Z/pi, M) = TorZp

1 (Z/pi, M).)

Proposition A.5 Let M ∈ Mod∗Zp
. Then M∧p and L0M are derived p-complete. In particular,

derived p-completion is idempotent: the natural map L0M→ L0L0M is an isomorphism.

Proof. See [HS99], Theorem A.6(a). �

A.2 The derived complete category

We investigate the structure and basic properties of the category M̂od∗Zp
of derived

p-complete modules. This category is defined as a full subcategory of Mod∗Zp
, so let

us first review the relevant structure and properties of Mod∗Zp
. The tensor product

of Z/2-graded modules turns Mod∗Zp
into a symmetric monoidal category, where the

switch map incorporates the Koszul sign rule:

M⊗ N −→ N ⊗M, x⊗ y 7−→ (−1)|x||y|y⊗ x (A.6)
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on homogeneous x ∈ M and y ∈ N. The category Mod∗Zp
has all limits and colimits,

and has enough projectives.

Loosely speaking, the category M̂od∗Zp
inherits all of this structure from Mod∗Zp

. The
main result from which this follows is the adjunction between L0 and the inclusion
functor.

Proposition A.7 The functor L0 is left adjoint to the inclusion M̂od∗Zp
→ Mod∗Zp

.

Proof. See [HS99], Theorem A.6(f). �

Let us now consider the symmetric monoidal structure of M̂od∗Zp
. In general the tensor

product of two derived p-complete modules need not be derived p-complete. It is
therefore only natural to consider the completed tensor product: for M, N ∈ M̂od∗Zp

,
define

M ⊗̂ N := L0(M⊗ N).

The structure maps of the symmetric monoidal category Mod∗Zp
induce structure maps

for the completed tensor product.

If M, N ∈ Mod∗Zp
, then we have a natural map

L0M⊗ L0N −→ L0(M⊗ N).

The target is a derived p-complete module, so by the adjunction of Proposition A.7 this
yields a natural map

L0(L0M⊗ L0N) = L0M ⊗̂ L0N −→ L0(M⊗ N).

Theorem A.8 The completed tensor product, together with the structure maps described above,
gives M̂od∗Zp

the structure of a symmetric monoidal category. The natural map L0M ⊗̂ L0N →
L0(M⊗N) described above is an isomorphism, giving L0 the structure of a symmetric monoidal
functor.

Proof. See the proof of Corollary A.7 in [HS99]. �

Our next objective is to show that M̂od∗Zp
has all limits and colimits. This is a formal

consequence of Mod∗Zp
having all limits and colimits, and the following result.

Proposition A.9 The category M̂od∗Zp
is an abelian subcategory of Mod∗Zp

, and is closed
under extensions formed in Mod∗Zp

. In particular, submodules and quotient modules of derived
complete modules are again derived complete.

Proof. See [HS99], Theorem A.6(e). �

Corollary A.10

(a) The limit of a diagram in M̂od∗Zp
is computed by taking the limit in Mod∗Zp

.

(b) The colimit of a diagram in M̂od∗Zp
is computed by applying L0 to the colimit in Mod∗Zp

.

In particular, the category M̂od∗Zp
has all limits and colimits.
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Proof. To prove the assertion about limits, we make two observations.

• The product of derived p-complete modules is derived p-complete. This is
immediate from the isomorphism L0M ∼= Ext1

Zp
(Z/p∞, M) of Theorem A.3.

• The kernel of a morphism between derived p-complete modules is p-complete.
This is a special case of Proposition A.9.

Any limit can be expressed as an equaliser of products, so these two observations imply
that the limit in Mod∗Zp

of derived p-complete modules is again derived p-complete.
This proves the claim about limits.

The case of colimits is a purely formal consequence of Proposition A.7: L0 is left adjoint
and left inverse to the inclusion M̂od∗Zp

→ Mod∗Zp
, so it creates colimits. �

As a special case of the above, the coproduct of a collection {Mα }α in M̂od∗Zp
is given

by L0
⊕

α Mα. Forming this derived p-complete direct sum turns out to be an exact
procedure.

Proposition A.11 (Direct sums are exact) Let I be an indexing set, and for α ∈ I let

0 −→ M′α −→ Mα −→ M′′α −→ 0

be a short exact sequence in M̂od∗Zp
. Then the sequence

0 −→ L0
⊕

α

M′α −→ L0
⊕

α

Mα −→ L0
⊕

α

M′′α −→ 0

is exact.

Proof. See [Hov13], Proposition 1.7. �

We end our discussion by discussing the projective objects of M̂od∗Zp
.

Definition A.12 A module M ∈ M̂od∗Zp
is called pro-free when it is of the form L0F

for some free graded Zp-module F.

It turns out that projective objects in M̂od∗Zp
are exactly the pro-free modules. See

[HS99, §A.4] or [BF15, §A.3] for more infomration. We will not make use of such results,
as pro-free objects make only a minor appearance in this work.

A.3 Derived complete algebras

Let CAlg∗Zp
denote the category of graded-commutative Z/2-graded Zp-algebras. Cat-

egorically speaking, this is the category CAlg(Mod∗Zp
) of commutative algebra objects

in the symmetric monoidal category Mod∗Zp
. (The graded commutativity follows from

the symmetric structure we chose in the previous section: see Equation (A.6).) It is
natural to ask what the relevant notion of derived p-completeness is for such algebras.
For us, this is the following.
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Definition A.13 A graded-commutative Z/2-graded Zp-algebra is derived p-complete
when it is so as a Z/2-graded Zp-module. Write ĈAlg∗Zp

for the full subcategory of
CAlg∗Zp

on the derived p-complete algebras.

A more categorical way to define the same would be to consider the commutative
algebra objects in M̂od∗Zp

, i.e., to consider the category CAlg(M̂od∗Zp
). This category is

equivalent to ĈAlg∗Zp
as defined above, for the following reason. In ĈAlg∗Zp

, an object
is of the form

(A, A⊗ A −→ A), where A ∈ M̂od∗Zp
,

whereas in CAlg(M̂od∗Zp
) an object is of the form

(A, A ⊗̂ A −→ A), where A ∈ M̂od∗Zp
.

Because A is required to be derived p-complete in both cases, the adjunction of Pro-
position A.7 sets up a one-to-one correspondence between maps A ⊗ A → A and
maps A ⊗̂ A → A. One can then check that the associativity and commutativity
constraints on the maps match up under this correspondence. Furthermore, these
assignments are functors in a natural way and are inverse equivalences. Verifying this
is a straightforward but tedious endeavour, so we omit the details.

Proposition A.14 The categories ĈAlg∗Zp
and CAlg(M̂od∗Zp

) are equivalent.

Recall from Theorem A.8 that the functor L0 : Mod∗Zp
→ M̂od∗Zp

is symmetric mon-
oidal. This means that we obtain an induced functor L0 : CAlg∗Zp

→ ĈAlg∗Zp
. The

adjunction of Proposition A.7 then implies that L0 : CAlg∗Zp
→ ĈAlg∗Zp

is left adjoint to
the inclusion ĈAlg∗Zp

→ CAlg∗Zp
.

To conclude this section, we consider free derived p-complete algebras. In the uncom-
pleted case, the forgetful functor CAlg∗Zp

→ Mod∗Zp
has a left adjoint, the free algebra

functor:
Mod∗Zp

−→ CAlg∗Zp
, M 7−→ SymZp

(M0)⊗Zp ΛZp(M1),

with Sym and Λ denoting the symmetric and exterior algebra, respectively. Postcom-
posing this with L0 and pre-composing with the inclusion yields the functor

M̂od∗Zp
−→ ĈAlg∗Zp

, M 7−→ L0

(
SymZp

(M0)⊗Zp ΛZp(M1)
)

.

This is left adjoint to the forgetful functor ĈAlg∗Zp
→ M̂od∗Zp

. Thus we end up with a
square of adjunctions (left adjoints on the outside)

M̂od∗Zp
ĈAlg∗Zp

Mod∗Zp
CAlg∗Zp

.

free

forget

free

L0
forget

L0
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