
Character rings in algebraic topology

Nicholas J. Kuhn*

1 Introduction
Let R(G) be the complex representation ring of a finite group G. The

assignment

G H-+ R(G)

is a Mackey functor, i.e., a functor from groups to rings endowed with induction
(transfer) maps. Typically one studies this functor via characters. One lets C{G) be
the ring of complex-valued functions on G invariant under conjugation, and then one
defines a natural map of rings

X-R{G) -> C{G)

by x(M)(g) = trace{#: M —> M}. There is a simple formula defining induction
between character rings making x a map of Mackey functors.

Why is x s o important? There are three reasons:
(i) x 1S injective,
(ii) x ls a s surjective as possible: R(G) C C(G) is a maximal Z-lattice, so that

R(G)0zC ~C(G), and
(iii) C(G) is very concrete and easy to work with.
Analogues of R(G) are well known to topologists: given a multiplicative cohomology

theory E*, the assignment

G h-> E*{BG)

is a Mackey functor.
In this paper, I discuss some natural generalizations of the classical character ring

that can be used to detect E*(BG), for various E*, in much the same way that
C{G) detects R(G). Two recent projects fit into this picture: my joint work with

* Research partially supported by the National Science Foundation

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511662614.012
Downloaded from https://www.cambridge.org/core. University of Virginia Health Sciences Library, on 26 Jan 2022 at 21:47:00, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511662614.012
https://www.cambridge.org/core


112 N. J. Kuhn

M. Hopkins and D. Ravenel on vn -periodic complex oriented theories [HKR], and
the reinterpret at ion and extension of Quillen's work on H*(BG) by J. Lannes and
L. Schwartz and others (see e.g., [HLS]).

To explain how one generalizes C(G), observe that G ~ Hom(Z, G). Letting G act
trivially on C and by conjugation on Hom(Z,G?), we have a natural isomorphism of
C-algebras

C{G) ~ MapG(Hom(Z, G), C).

We will replace Z by other groups Y and C by other fields F. In the examples, the
choice of V seems to be vitally linked to the geometry underlying the cohomology
theory E*.

We discuss the organization of the paper.
In Section 2 and Section 3 we discuss formal properties of our generalized character

rings. In particular, they are Mackey functors, and one is naturally led to inverse
limits over categories of detecting subgroups.

The next two sections have parallel descriptions of the two projects referred to
above: Section 4 reviews the H*(BG) results, while Section 5 describes the characters
for complex oriented theories. The Lannes-Schwartz work leads to a purely group
theoretic criterion guaranteeing, for a finite p-group (7, that H*(BG; Z/p) has an
infinite-dimensional A-module summand in the kernel of Quillen's map. The criterion
is satisfied when G is the quaternionic group of order 8. Reasoning in an analogous
manner about the nth Morava K-theory K(n)*(BG), we give a group theoretic cri-
terion that would imply that K(n)*(BG) is not concentrated in even degrees,as has
been conjectured. Fortunately, or unfortunately, we have yet to find a group satisfying
our condition — indeed, there are theorems in group theory hinting that it cannot be
done.

In Section 6, we briefly describe how our character rings extend to equivariant
cohomology theories. As a simple example, we show how classical character theory
extends to a computation of KQ(X) 0 C in non-equivariant terms.

The last section touches on the possibility of assembling character rings into sim-
plicial objects.

We would like to thank Mike Hopkins for providing the proof of Lemma 5.6 and
Leonard Scott for bringing our attention to the theorem of John Thompson used in
proving Proposition 5.7.

2 Character rings: definitions and examples
We begin by defining our rings of class functions. Given two topological

groups F and G, we let Hom(T, G) denote the space of continuous homomorphisms.
This becomes a (left) G-space by letting G act on itself by conjugation. In the

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511662614.012
Downloaded from https://www.cambridge.org/core. University of Virginia Health Sciences Library, on 26 Jan 2022 at 21:47:00, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511662614.012
https://www.cambridge.org/core


Character rings in algebraic topology 113

examples we consider, G will be a finite group and Hom(T, G) will be finite and
discrete. Let F be a field (possibly graded).

2.1 Definition. CT,F(G) = MapG(Hom(I\G),F).

Thus an element of CT,F(G) is a function

/:Hom(I\G0—"+F,

constant on (jr-orbits. CT,F(G) is an F-algebra using pointwise multiplication and
addition of functions. It is clearly a contravariant functor of (T, and a covariant
functor of T and F.

To show that CY,F{G) is a Mackey functor, we need to define induction. The
classical formula [S, page 30] generalizes.

2.2 Definition. Let H be a subgroup of a Unite group G. Define

by the formula

where f: Hom(T, H) —• F , a: V —> G, and g • a denotes a composed with conjugation

by g.

It is straightforward to check that this is well-defined.

2.3 Proposition. With this structure, the assignment G i-> CY,F(G) is a
Mackey functor.

Proof. We need only check that the double coset formula holds. Let K
and H be subgroups of G and res^: CT,F{G) —• CY,F(K) the restriction. Letting Kg

denote K fl gHg~l, there is an isomorphism of left if-sets

]J K/Kg = G/H,
KgH

given by sending kKg to kgH. Thus

res£(ind£(/))(a) = £ f(g • a)
»He(G/H)Im<»)

E•=E E

KgH

as needed.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511662614.012
Downloaded from https://www.cambridge.org/core. University of Virginia Health Sciences Library, on 26 Jan 2022 at 21:47:00, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511662614.012
https://www.cambridge.org/core


114 N. J. Kuhn

2.4 Examples. (1) r = Z. Then Hom(Z,G) = G, and Gz,c(G) is the
usual character ring detecting R(G).

(2) T = Z[i]. Then Hom(Z[^],G) = Greg, the "p-regular" elements in G of order
prime to p. Note that the inclusion Greg C G is induced by Z —> Z[-]. The ring
Cjii] f=(G) arises in Brauer character theory. Let A be a p-adic ring of integers with
quotient field K and residue field k. Assume that A contains the |G|th roots of 1.
Let RK{G) (respectively Rk(G)) be the Grothendieck ring of K[G] (k[G\) modules.
There is a commutative diagram of ring homomorphisms:

y K
RK{G) • Cz,tf(G)

4 1
Xk

Rk(G) > C Z [

where \K is the usual character map, Xk is the Brauer character map, and d is the
"decomposition" map [S]. Both \K and \k are inclusions of maximal Z-lattices, and
d is surjective.

(3) F = Zp, the p-adic integers. Hom(Zp,G) is the set of up-unipotent" elements
in G, the elements of order a power of p. Where does CZP,F(G) occur naturally as a
character ring? Let K(BG)P denote the p-adic completion of the complex A'-theory
of BG. Atiyah's theorem [A] and the methods of [Kl] show that there is a unique
continuous extension of \ m the diagram

R(G) -2L cz,Qp(G)

I
K(BG)P ^ CZpQp(G)

and that Xp IS the embedding of a maximal Zp -lattice.
(4) F = Zn. Then Hom(Zn, G) is the set of n-tuples of commuting elements in G.

The case n = 2 seems to occur in "elliptic" settings — see e.g., work by S. Norton on
"montrous moonshine" [N]. Note that if C is a complex elliptic curve, K\{C) = Z X Z .
See Section 6 for one Mackey functor detected by Czn,F(G).

(5) r = (Zp)n. This is the p-adic version of (4). Hom(Z£,<7) is the set of n-tuples
of elements in G generating an abelian p-group. For "naturally occurring" instances
of CZn Q {G) and CZn p (G), see Section 5; these rings try to detect E*(BG), where
E* is a p-local vn -periodic oriented theory.

(6) F = (Z/p)n. Then Hom((Z/p)n,G) is the set of n-tuples generating an elemen-
tary abelian p-group. Quillen's theorem essentially says that, if n > rank(G), then
C(Z/p)n,z/p(G) detects H*(BG;Z/p) up to F-isomorphism. See Section 4.

(7) F = Fn, the free group on n generators. As a reminder that T might not be
abelian, we point out that Gn = Hom(Fn,G). See Section 7.
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Character rings in algebraic topology 115

3 Detecting families and counting orbits
This section exploits the obvious observation that the image of a homo-

morphism F —+ G is simultaneously a quotient group of F and a subgroup of G. Thus,
for example, it is intuitively clear that if F is abelian, Hom(F, G) should only depend
on Hom(F, A) where A runs through the abelian subgroups of G.

To be more formal, let S(G) be the category whose objects are the subgroups of (2,
and whose morphisms are generated by inclusions H < K and conjugation by elements
g £ G, Cg.H —> gHg~l. Let J{G) C S(G) just have inclusions for morphisms.

3.1 Definition. Let T(G) be the full subcategory of S(G) with objects
those subgroups of G occurring as quotient groups ofT. Let JY(G) = T(G) D J{G).

The observation at the beginning of this section can be more precisely stated as:

3.2 Proposition. The natural map

lim
r(G

is an isomorphism. The same is true if F(G) is replaced by any full subcategory of
S(Q) containing T(G).

Proof. There is an evident bijection of G-sets

colim Hom(r,iJ)—>Hom(r,G).
HeJT(G) v J v }

Taking G-invariant maps into F yields the isomorphism, noting that, for any con-
travariant functor F ,

lim
(

F(H) = ( lim F(H)) .

3.3 Examples. (1) Let A(G) be the full subcategory of S(G) with the
abelian subgroups as objects. Then, for any n,

CZ»,F(G)~ ji

(2) Let £p(G) be the full subcategory of S(G) with the elementary abelian p-groups
as objects. Then, if V is an Fp-vector space,

CV,F(G) * Km)Cv,F(E).

(3) Let C(G) be the full subcategory of S(G) with the cyclic groups as objects.
Then

CZ,F(G) - lim CZ,F(C).
C(G)
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116 N. J. Kuhn

Our little observation can be utilized in another way. Note that there is a natural
isomorphism of G-sets

] J Epi(I\ Q) xAut(Q) Mono(Q, G) = Hom(I\ G),
Q

where the union is over isomorphism classes of finite groups. For any fixed G, this is
clearly just a finite disjoint union. The group Aut(Q) acts freely on both Epi(F, Q)
and Mono(Q,G). Furthermore, MapG(Mono(Q, G), F) is easily seen to be a quotient
Mackey functor of CQ^(G). These observations imply

3.4 Proposition.

Cr,F(G) * H\Epi(T,Q)\ x [Aut(O)| * MaPG(Mono(Q,G),F),

as Mackey functors. (Here n X R means the n-fold product Rx Rx • • • x R.)

To see how this proposition can be used, we generalize counting arguments that
occurred in [K2] and [HKR]. Let G be a finite group. The group ring Fp[Out(G)]
acts on CT,FP(G) as does the larger Fp-algebra A(G, G) ® Fp generated by inductions
composed with homomorphisms. If G is a p-group, this latter algebra is known to be
isomorphic to the stable endomorphism ring {BG+, BG+} (8>FP (as in [Ma]). Let e be
an idempotent in either Fp[Out(G)] or A(G, G)(8)FP. Let /e(n) = dimFp eCZ£,Fp(G)-
In Section 5, it will be shown that this function of n has topological meaning: fe{n)
is the nth Morava K-theory Euler characteristic of the spectrum eBG+. Note that

Our application of Proposition 3.4 is

3.5 Proposition. For all p-groups G and e, fe(n) is a polynomial in pn,
with rational coefficients, of degree < d where pd is the order of the largest abelian
subgroup of G.

To prove this, if Q is an abelian p-group, let fQ(n) = |Epi(Zn,Q)|. By Proposi-
tion 3.4,

|A

so that fe(n) is a linear combination of functions /Q(H) . It suffices to verify the next
lemma.

3.6 Lemma, If \Q\ = pd, /Q(H) is a polynomial in pn of degree d.

Proof. Observe that

Hom(Zp,Q)= JJ Epi(Z;,<y).
Q'<Q

fe(n) = Y^ |Aut(Q)| X d i m p p eMaPG(Mono(<2> G), Fp) x /Q(n),
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Character rings in algebraic topology 117

Noting that |Hom(ZJ},Q)| = \Qn\ = pnd, this implies that

fQ(n) = pnd- £ /Q,(n).

The result follows by induction on \Q\.

3.7 Remarks, (i) The denominators in the rational coefficients occurring
in fe{p) are just due to the factors l/|Aut(Q)|.

(ii) For related, but slightly different, counting arguments, see [HKR, §3].
(iii) For some examples of /e(n)'s when G is abelian, see [K2, §6].

4 H*(BG) revisited
In this section, H*{G) denotes H*(BG; Fp), and V denotes a finite-

dimensional Fp -vector space. Let U be the category of unstable modules over the
Steenrod algebra, and let K, be the category of unstable ^4-algebras. Lannes and
Schwartz [HLS] have re-examined Quillen's work on H*(G) using unstable ^.-module
technology. We place their results in our character ring context.

There is a natural map

Fp[Eom(V,G)} —> Komu(H*(G),H*(V)),

where Fp[Hom(Vr, G)] is an Fp -vector space with basis Hom(V, G). Since inner auto-
morphisms of G induce the identity in cohomology, this factors through

Fp[Kom(V,G)/G] —> Komu(H*(G),H*(V)).

Taking (profinite) duals yields a natural map

—> CV,F,(G).

4.1 Theorem [HLS]. \G is an isomorphism of Mackey functors. Further-
more, taking Spec of both rings yields a natural bisection

We sketch the proof. Firstly, it is straightforward to check that \G commutes with
induction maps — using the double coset formula, one is reduced to the following
well-known lemma.

4.2 Lemma. If V is a proper subspace of the Fp-vector space V, the
cohomology transfer ind^/:i/'*(Vr/) —* H*(V) is the zero map.

The proof that XG is an isomorphism then uses four deep facts:
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118 N. J. Kuhn

(1) [Ql] aG:H*(G) -> lim H*(E) is an F-isomorphism;
€P(G)

(2) [LS] a map M —• N in K is an F-isomorphism if and only if the induced map
Romu(N,H*(V)) -+ H£(M,H*(V)) is an isomorphism for all V;

(3) [Cl,Mi] H*(V) is injective in ZV; and
(4) [AGM] XE is a*1 isomorphism if E is elementary abelian.
Armed with these, it is easy to show that XG is an isomorphism. Consider the

diagram
XG

> C V .F , (G)
la

IP
lim YE

lim Komu(H*(E),H*(V))* > lim

The map a is an isomorphism by facts (1) and (2), /? is an isomorphism by (3), and
(4) implies that limxE is an isomorphism. In Example 3.3 (2), we showed that 7 is
an isomorphism; thus, XG is also.

Of course, XG is functorial in V as well as G. This is the functoriality exploited by
Lannes and Schwartz when they assign an "analytic functor" to an unstable A-module
[HLS]. This leads to a rather practical group-theoretic way to prove that H*{G) has
many nilpotent elements.

If 5 is a simple Fp[Out(G)] or A(G,G) ® Fp module, let e$ be an associated
idempotent, so that e$M = 0 exactly when S does not occur as a composition factor
in M.

4.3 Theorem. Let G be a p-group of rank d, and let e be an idempotent

in either Fp[Out(G)] or A(G, G) 0 Fp. Then

eC(I/j>)<fFF(G) = 0 *=> eH*(G) C ker(c*G),

where ac- H*(G) —* lim H*(E) is the natural map. In particular, if S is not a

composition factor in C(z/pyfp(G), then esH*(G) is all nilpotent.

Before proving this we look at some examples.

4.4 Example. Let G = Q8>
 t n e quaternion group of order 8. Out(Q8) ~

S3, permutations of i , j , k. The Out(Q8)-set Hom(Z/2, Qg) has trivial action, since
Z(Qs) = {±1} is the only nontrivial elementary abelian subgroup. However,
F2[Out(Q8)] has two simple modules, the trivial module and a two-dimensional one.
We conclude that if*(Q8) decomposes (over the Steenrod algebra) as H*(Qg) =
Mo 0 Mx 0 Afi, where Mx C ker(ag8). We note that Mo ~ #*(SL2(F3)), and
M1 ^H*(J:-1BS3/BN) [MP].
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Character rings in algebraic topology 119

4.5 Example. If OLQ\H*(G) —• lim H*(E) is monic, it follows that every
£P(G)

simple Out(G) (and A(G, G)®Fp) module occurs as a composition factor in CV,FP(G)

with V > rankG. In [Q2], it is shown that if OCG is monic, then so is a ^Q. In

particular, if G is the p-Sylow subgroup of a symmetric group, then the map ac is

monic.

We sketch the proof of Theorem 4.3. Reasoning as in Section 3 (e.g., Propos-

ition 3.4), shows that

eC(z/pV)Fp(G) = 0 <=> W, eCv,F,(G) = 0.

Let H*(G) = lim H*(E). In the language of Lannes and Schwartz, «*(G) is "nil-

closed", and since OLQ is an .F-isomorphism, 7i*(G) is the nil-closure of H*(G). Lannes

and Schwartz show that a nil-closed object M is equivalent to the functor V H->

Romu(M,H*(V))*. Thus H*(G) is equivalent t o V n CV,FP(G). Thus, if e is an

idempotent,

eCv,Fp(G) = 0 for all V 4=^ eH\G) = 0

4.6 Remark. If e ^ 0, then eH*(G) is always infinite dimensional, a

consequence of the fact that {BG+ ,-BG-j.} is torsion free: if eH*(G) were finite

dimensional, then the order of the identity in {eBG+, eBG+} would be finite.

5 Characters for complex-oriented theories

We first summarize some theorems that will appear in [HKR]. As moti-

vation, recall that

XG:R(G)—>CZ,C(G)

is an embedding of a maximal Z-lattice, and that

Cz,c(G)HmCZ

This suggests that perhaps R(G) ~ lim R(C). This is almost true: Artin's Theorem
C(G)

[S] says that there is an isomorphism

R(G) ® Z[1/|G|] ~ lim
C(G)

It turns out that the splitting principle and equivariant general nonsense suffice to

prove an analogous theorem.
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120 N. J. Kuhn

5.1 Theorem [HKR]. Let E* be any complex-oriented theory. For any

Unite group G, the natural map

E*(BG) ® Z[1/|G|] — Urn, E*(BA) ® Z[1/|G|]

is an isomorphism.

This suggests that character rings for detecting complex-oriented theories should
be of the form CT,F(G) with T abelian, so that T(G) C A(G), and Proposition 3.2
applies. Our main discovery is that this can be done, with the rank of T corresponding
to the type of vn -periodicity present in E*.

To describe one version of our result, we recall some notation. Localized at a prime
p, MU is equivalent to a wedge of suspensions of the Brown-Peterson spectrum BP.
The coefficients are BP* = Z(p)[vi,V2,...] with \v{\ = 2p% — 2. A complex-oriented
theory E* is vn-periodic if vn is a unit in E*. For example, if-theory is V\-periodic.
Let In C BP* be the ideal (p, v\, v2,..., vn-i)- Finally, recall that to a complex-
oriented theory E*, there is an associated formal group law F, and [ra](a:) 6 22*[[x]]
denotes the m-fold formal sum x -f- x + • • • H- x.

5.2 Theorem [HKR]. Let E* he a multiplicative vn-periodic cohomology
theory such that the coefRcient ring is a characteristic 0 domain and is complete in the
In-adic topology. Let F(E*) be the graded field of fractions of E* with solutions to
\px](x) = 0 adjoined, for all i, as elements in degree 2. Then there is an isomorphism
of Mackey functors

XG:E*(BG) ®E- F(E') ~ C I « , F ( ^ ) ( G ) .

We sketch the proof, emphasizing how it parallels the proof of the H*(G) calculation
of Section 4. Firstly, XG is again constructed using

Hom(Z£,G)/G —> ttomE*(E*(BG),E*(BZ;)),

where by E*(BZp) we mean colim^E*(B(Z/pN)n). Adjointing yields a natural map

Formal group law theory yields a map of E* -algebras

which, when composed with the above, defines

To check that \G commutes with induction maps, we use an analogue of Lemma 4.2.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511662614.012
Downloaded from https://www.cambridge.org/core. University of Virginia Health Sciences Library, on 26 Jan 2022 at 21:47:00, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511662614.012
https://www.cambridge.org/core


Character rings in algebraic topology 121

5.3 Lemma [HKR]. If A1 is a proper subgroup of an abelian p-group A,
the composite

E*(BA') I2 i E*(BA) - ^ E\Bln
p) -^ F(E*)

is zero, for all surjective homomorphisms a: Z£ —• A.

The proof that XG is an isomorphism (after extending scalars) then goes as before.
The map XA is explicitly seen to be an isomorphism if A is abelian — this is the fact
corresponding to the Adams-Gunawardena-Miller Theorem. Our generalized Artin's
theorem then takes the place of Quillen's F-isomorphism theorem, and thus XG can
be identified with lim XA •

We now use Theorem 5.2 to obtain a slight strengthening of another result in [HKR]:

dimK(n)- K{n)™\BG) - dim^(n). K(n)odd(BG) = |Hom(ZJ, G)/G|.

The strengthening goes as follows. Note that both G *-*> K(n)eyen(BG) and G *-+
K(n)odd(BG) are Mackey functors to the category of K(n)*-modules. So one can
view K(n)even(BG) - K(n)odd(BG) as a "virtual Mackey functor". Call this Xn(G)

5.3 Theorem. [xn(£)] = [Czp ,#(»*)*(G)] in the Grothendieck ring of vir-
tual Mackey functors.

By this statement, we just mean that for all G, [Xn(G)] = [Gzn,K(n)*(G)] as virtual
representations of the algebra A(G,G) (8) Z/p (and so also as virtual Fp[Out(Gf)]-
modules).

To prove Theorem 5.3, we apply the previous theorem to a specific theory. Using the
Bass-Sullivan construction, one can construct a theory E* with coefficients Zp[vn, v~*].
The theory E* can be given a product [Mo]^. Furthermore, there will be a cofibration
sequence

E -£+ E—+ K(n),

and thus an associated Bockstein spectral sequence.
By Theorems 5.1 and 5.2, E*(BG)/(torsion) embeds in Czn,F(E*)(G) as a maximal

i2*-lattice. Another such lattice is given by CZ%,E*(G). By standard arguments in
the theory of modular representations (as in [S, page 125]), one can conclude that

[E*(BG)/(torsion) ®E. K(n)*] = [C2ntE.(G) » £ . K(n)*]

as virtual Mackey functors. Note that

Cz-,B.(G) ®E< K(n)* = Cz; ,*(»). (G).

I would like to thank J. Morava for assuring me that this is still true when p = 2.
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Now we use the Bockstein spectral sequence, with E1 = K{n)*(BG), and E°° =
E*(BG)/'(torsion) ®E* K{nY, *ne latter all in even degrees. Homology preserves
Euler characteristics, so x (^ r ) — x{Er+1), f°r a ^ r-> as virtual Mackey functors. We
conclude that

[Xn(G)] = MS1)] = \X(E°°)] = [CZ?,K(n).(G)],

as needed.
Our analogue of Theorem 4.3 is the following.

5.4 Theorem. Let G be a p-group of rank d, and let e be an idempotent
element in either Fp[Out(G)] or A(G,G) ® Fp. Then eCz»,Fp(G) = 0 implies that
eK(n)odd(BG) ^ 0 for some n. In particular, if there exists a simple Fp[Ont(G)]
or A(G,G) ® Fp module not occurring as a composition factor in Czn,Fp(G), then
K(n)*(BG) is not concentrated in even degrees^.

Proof. By the last theorem, eCzn,pp(G) = 0 implies that for all n,
dim eK(n)e™n(BG) ~ dim eK(n)odd(BG) = 0. If eK(n)odd(BG) = 0, we would have
0 = eK(n)*(BG) = K(n)*{eBG), for all n. Here eBG denotes the stable retract of
E°°BG+ split off by e. We claim that this is impossible, i.e., no retract of E°°BG+
can be K(n)*-acyclic for all n. To see this we use the concept of "harmonic spectra"
from [R]. By definition, a spectrum Y is harmonic if [X, Y] = 0 for all spectra X such
that K(n)*(X) = 0 for all n. Any retract of a harmonic spectrum will be harmonic,
and if Y is harmonic and not contractible, it follows that K(n)*{Y) ^ 0 for some n.
Our proof is completed by the next lemma, due to Mike Hopkins.

5.5 Lemma. ^°°BG+ is harmonic, for all finite groups G.

Proof. By transfer arguments, we can assume that G is a p-group. In
[R], it is shown that any finite complex is harmonic. It is formal that if Y is harmonic,
so is any function spectrum F(Z,Y). Thus Spanier-Whitehead duals, F(Z, 5°)'s are
harmonic. By the Segal conjecture [C2], Y,O°BG+ is a retract of its own dual.

Now, of course, we wish to find a group G satisfying the criterion of Theorem 5.4,
analogous to Example 4.4. We have been unable to find one. The next proposition
suggests where one should look for a G.

5.6 Proposition. Suppose G is a p-group having a simple Fp[Aut(G)]
module not appearing in Map(Hom(Zp,G), Fp) for all n. Then G contains a charac-
teristic i(class two" subgroup with the same property.

By class two, we mean a group H such that H/Z(H) is abelian.

^ ' (added in proof) John Thompson has shown me that no such Out(G)-module can exist.
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Proof. Our hypothesis on G is equivalent to the existence of a nonzero
idempotent e G Fp[Aut(G)] such that eMap(Hom(Z£,G), Fp) = 0 for all n. In the
famous Feit-Thompson odd order paper, J. Thompson proved that every finite p-group
G contains a characteristic class two subgroup H such that all p'-elements of Aut(G)
act nontrivially on H [G, page 185]. It follows that there are no idempotents in the
kernel of Fp[Aut(G)] —• Fp[A\it(H)], in particular, e projects to a nonzero element
of Fp[Aut(H)]. Since Map(Hom(Z^, G), Fp) -> Map(Hom(Z;,^),FJ)) is surjective,
eMap(Hom(Z£, H), Fp) = 0 for all n, also.

5.7 Remark. In fact, H can be chosen so that H/Z(H) is elementary
abelian. It is unclear whether Z(H) can also be taken to be elementary.

6 Equivariant cohomology theories
A theme familiar to topologists is introduced in this section. Our char-

acter rings are trying to be the coefficients of equivariant cohomology theories.
We need the following construction.

6.1 Definition. Let T and G be topological groups, with G compact Lie.
Define functors

Fr(G;«):G-CW-complexes -> G-CW-complexes

by Fr(G;X) = {(a,x) G Hom(I\ G) x X\a(j)x = x for all 7 G T}. This is a sub
G-space of Hom(F, G) x X, where G acts diagonally on the product. Note that if
Hom(F, G) is finite, then

FT(G]X)= JJ xIm(a).
aeHom(r,G)

We list some basic properties of these functors.

6.2 Proposition.

(ii) i<r(G; •) preserves G-pushouts.

(iii) If H < G, and X is an H-space, there is a natural G-homeomorphism

G xH Fr(H; X) ~ Fr(G; GxHX).

(iv) There is a natural G-homeomorphism

ylimFr(H;X)~Fr(G;X).

(v)
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124 N. J. Kuhn

All of these can be verified in a straightforward manner. Checking (v) is a recom-
mended exercise.

Properties (i)-(iii) imply the following, letting G run through finite groups.

6.3 Corollary. Let E* be a (non-equivariant) cohomology theory, and F
a characteristic zero field. The assignment

is an equivariant cohomology theory defined for finite G-CW-complexes X.

Since Hom(F, G) is discrete, the coefficients i£*(Hom(r, G))G ® F can be identified
with CY,E*®F{G). Furthermore, it is easy to extend the formula for induction.

As an example of how one uses such a theory, we prove

6.4 Theorem. If G is a finite group, and X is a finite G-CW-complex,
there is a natural isomorphism

XG- KG{X) ® C —• K(F2(G; X))G ® C.

Proof. We need to define \G- A homomorphism a: Z —• G factors
as Z —» "L/n >—• G for some n. The inclusion of Z/n-spaces Xz/n C X induces
KG(X) -> Kz/n{Xzln). Now recall that KH{Y) = K(Y) ® R(H) if Y is a trivial
iZ"-space [Seg] and that R(Z/n) = Z[x]/(xn — 1). The component of \G landing in

® C is the composite

KG{X) —* Kz/n(X
lm^) = K(Xlm^) 0 Z[x]/(xn - 1)

where the last map is defined by sending x to e27ri/n.
The proof that \G is an isomorphism is immediate. When X = *, \G reduces to

the usual character map

This is an isomorphism, and one inducts on the cells of X.

6.5 Examples. (1) If G = Z/3, the theorem says that

KZ/3(X) ® C = [K(X) © K(XZ'3) © K(XZ^)} 0 C.

(2) Note that by 6.2(v), FZ}C(Rom(Zn-\G)) = Hom(Zn,G). Thus the ring

JRrG(Hom(Zn-1,G)) is detected by CZn,c(G) (or, more generally, CZ»>F(G), where
F is any char 0 field that contains |G|th roots of 1). If G is a p-group, the Atiyah-
Segal theorem [AS] implies that KG(Eom(Zn-\G))p = K(EG xG Rom(Zn-\G)).
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We leave it to the reader to check that the fact that EG xG Gconj — BGS* (see
e.g., [DZ]) implies that EG xG Hom(Zn-1,G) ~ BGTn~\ when G is finite. Thus
K*(BGTn~l) is detected by CZn Q (G), the same ring that detects E*(BG) when
E* is vn-periodic. However, in the simple example n = 2 and G = Z/p, the ring
structures of K((BZ/p)s ) and E*(BZ/p) are different: the former looks roughly like
an associated graded of the latter.

7 Simplicial character rings
It has occurred to a number of people who have heard about our char-

acter rings for vn -periodic theories that they should be assembled into some sort of
co-simplicial object. Here I wish to advertise a question motivated by this idea.

Recall that BG is the geometric realization of the simplicial set n i—• Gn =

Hom(.Fn,G). This suggests the following constructions.

7.1 Definitions. Let T be a co-simplicial group.
(i) Let BTG be the realization of n n Hom(Tn, G).
(ii) Let ~BTG be the realization ofnn Hom(Tn,G)/G.

Note that the chain complex computing H*(BrG;F) has n-chains isomorphic to
Crn,F(G). This looks promising. However, this construction is too naive; induction
does not generally commute with our differentials. Still, it is tempting to think that
B(z/P)+G has something to do with H*(G; Z/p) and that Bj*G has something to do
with vn -periodicity.

7.2 Problem. Find a functor

B: finite groups —> simplicial sets
such that

(i) there is a natural homotopy equivalence E°°|#CT| ~ Yi°°BG, and
(ii) the chain complex C*(BG;F) is a complex of Mackey functors inducing the

transfer in cohomology.
The point here is that when one defines the usual stable homotopy transfer for

H < G, ZOOBG+ -> E°°^jy+, one "trades in" BE for EG xG (G/H), a homotopic,
but different, space.
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