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Overview of the mini-course

It is often said that one of the big goals of homotopy theory is to compute the stable
homotopy groups of spheres, π∗S. However, this is not what the professionals are trying
to compute, nor is it what they want to compute: many would prefer to know the ∞-page
of the Adams spectral sequence for the sphere instead. The difference is that this also
records a filtration on π∗S; practically, this cuts up π∗S into bite-sized pieces. Given the
enormous complexity of π∗S, the helpfulness cutting it up like this should not be ignored.
The downside of the ∞-page is that it does not actually tell you π∗S: there are extension
problems that one would have to solve. Tagging these on as additional information would
be a holy grail for computational homotopy theory.

In these notes, we will argue that what this approach is actually trying to compute is the
bigraded homotopy groups of the synthetic analogue of the sphere spectrum:

π∗,∗(νS).

Roughly speaking, we will see that this captures both the Adams filtration on π∗S, as
well as all extension problems. This algebra has an action of a formal element, usually
denoted by τ. The Z[τ]-module structure is the way in which these homotopy groups
capture the filtration; one of the main goals of these lectures will be to understand the
meaning of τ.

This begs the question of why νS knows about the Adams filtration on the sphere. The
reason is the motto that

synthetic spectra are to Adams spectral sequence
as spectra are to homology theories.

What we mean by this is that synthetic spectra are homotopical objects of which Adams
spectral sequences are but an algebraic shadow. Working at the homotpical level, and
only at the very end looking at this underlying algebra, has many benefits, such as

■ new techniques for deducing new differentials,
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■ ways to construct new spectral sequences,

■ obstruction theories for building new spectra.

Usually, the parameter τ is introduced alongside synthetic spectra. In this course, we
study them separately. We will begin by studying τ in its natural habitat: in the category
of filtered abelian groups, and the ∞-category of filtered spectra. One can think of filtered
spectra as a homotopical version of all spectral sequences. As a result, we will see that
some of these tools find their origin in filtered spectra rather than synthetic spectra. With
a firm understanding of these, we can then move on to synthetic spectra: there is an
adjunction

FilSp Syn

that transports τ into synthetic spectra. It is there that the use of τ is most powerful, and
also turns Syn into a tool that is all that one needs to interact with the Adams spectral
sequence.

1 Filtered abelian groups

We will begin with an elementary, algebraic concept. Note that the following terminology
is nonstandard;[1] we use the term classical to distinguish it from the later concept of
Definition 1.7.

Definition 1.1. Let A be an abelian group.

(1) A classical filtration on A is a sequence of subgroups

· · · ⊆ F1 ⊆ F0 ⊆ F−1 ⊆ · · · ⊆ A.

Let { Fs } be a classical filtration on A.

(2) If a ∈ A is an element, then the filtration of a is the integer s such that

a ∈ Fs but a /∈ Fs+1.

We say that a has filtration ∞ if it lies in all the Fs, and that it has filtration −∞ if it
is in none of the Fs.

(3) The associated graded of { Fs } is the graded abelian group Gr F given by

Grs F = Fs/Fs+1.

With the above definition of the filtration of an element, then by definition, the subgroup
Fs is the subgroup of elements of filtration at least s. It might therefore be helpful to think
of Fs as F⩾s.

[1]And open to suggestions for improvements.
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The idea behind a classical filtration is that it is a tool to better understand the group
A. One can think it as starting with the elements of filtration +∞, and at each step, the
associated graded measures how many elements we ‘add’ as we move down in filtration.
In the end, this procedure allows us to see all the elements that do not have filtration −∞.
As a result, we think of elements of filtration ±∞ as bad, and hope to find ourselves in
situations where they do not exist.

An example of a result that formalises this idea is the following.

Theorem 1.2. Let A and B be abelian groups with classical filtrations { Fs A } and { FsB },
respectively. Let f : A → B be a map that respects these filtrations. Suppose that

(1) f induces an isomorphism F∞ A ∼= F∞B;

(2) we have lim1
s Fs A = 0;

(3) f induces an isomorphism on associated graded Grs A ∼= Grs B for all s;

(4) both A and B have no elements of filtration −∞.

Then f is an isomorphism of abelian groups, and moreover restricts to an isomorphism Fs A ∼= FsB
for every s.

Proof. See [Boa99, Theorem 2.6]. ■

Remark 1.3. In the above definition, we used a decreasing indexing on the filtration. One
should think of this as cohomological indexing. For most of these lectures, we will index
the filtration cohomologically. The reason is that most filtrations we consider here (for
example, the Adams filtration) are of the form

· · · ⊆ F2 ⊆ F1 ⊆ F0 = A.

Remark 1.4. There is an obvious variant of Definition 1.1 for graded abelian groups. In
this case, the associated graded is naturally a bigraded abelian group.

Remark 1.5. In [Boa99, Section 2], the following terminology is introduced.

■ If a filtration has no elements of filtration −∞ (i.e., every element of A appears
in one of the Fs, or equivalently, if colims Fs = A), then the filtration is said to be
exhaustive.

■ If there are no elements of filtration +∞ (i.e., if the limit lims Fs vanishes), then the
filtration is said to be Hausdorff.

■ If the derived limit lim1
s Fs vanishes, then the filtration is said to be complete. (Note

that a filtration can be complete without being Hausdorff. So, to further use this
terminology, the limit of a “Cauchy sequence” need not be unique.)
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Warning 1.6. In this document, we will deviate from Boardman’s terminology from the
previous remark: see Definition 1.9

By definition, a classical filtration only grows as we move down in filtration. It turns out
to be useful to allow for a more general concept, one where we allow the groups to shrink
as well.

Definition 1.7.

(1) A filtered abelian group is a functor Zop → Ab, where we view Z as a poset under
the usual ordering. We write FilAb := Fun(Zop, Ab) for the category of filtered
abelian groups.

(2) If A : Zop → Ab is a filtered abelian group, then we write A∞ and A−∞ for its limit
and colimit, respectively.

(3) The tensor product of abelian groups induces a presentably symmetric monoidal
structure on FilAb via Day convolution, viewing Zop as a symmetric monoidal
category under addition. A filtered commutative ring is a commutative algebra
object in FilAb.

(4) If A is a filtered abelian group, then its associated graded is the graded abelian
group Gr A given by

Grs A := coker(As+1 → As).

In diagrams, a filtered abelian group A consists of abelian groups As for s ∈ Z, together
with maps

· · · −→ A1 −→ A0 −→ A−1 −→ · · · .

This generalises the notion of a classical filtration, as follows.

■ A classical filtration determines a filtered abelian group whose transition maps are
injective. The only difference is that the ambient abelian group from Definition 1.1
is no longer present. We will instead view the colimit A−∞ as the ambient abelian
group. Said differently, giving a filtration on an abelian group B now consists of
providing a filtered abelian group A, together with a map A−∞ → B.

■ Conversely, a filtered abelian group A gives rise to an induced classical filtration
{ Fs } on its colimit A−∞, via

Fs := im(As → A−∞) ⊆ A−∞. (1.8)

This filtration has, essentially by definition, no elements of filtration −∞. Note
however that the assignment A 7→ { Fs } loses information: the transition maps in
the filtered spectrum need not be injective.
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We still need to deal with the potential presence of elements of filtration +∞; we will use
the following terminology. The reason for this terminology is that it matches up with the
notion of completeness for filtered spectra later: see ????.

Definition 1.9. We say a filtered abelian group A is derived complete if

lim A = 0 and lim1 A = 0.

Remark 1.10 (Filtered tensor product). Concretely, the tensor product of A, B ∈ FilAb is
given levelwise by

(A � B)s = colim
i+j⩾s

Ai � Bj,

with the natural transition maps between them. A filtered commutative ring is a filtered
abelian group A together with pairings

As � At −→ As+t

for every s, t ∈ Z, satisfying the obvious commutative ring diagrams. The unit for this
monoidal structure is

· · · 0 Z Z · · · ,

with the first Z appearing in filtration 0.

We leave it to the reader to verify that the associated graded assembles to a symmetric
monoidal functor

Gr : FilAb −→ grAb.

Remark 1.11. If a filtered commutative ring describes a classical filtration { Fs }, then this
is the same as a commutative ring structure on the ambient abelian group, such that for
all s, t, we have

Fs · Ft ⊆ Fs+t.

Note that this means that the filtration might “jump”: a product in Fs+t might land in the
subgroup FN for N > s + t. In other words, filtration is subadditive under multiplication.
See Example 1.17 below for an example.

We introduced a classical filtration as a tool to better understand the abelian group A−∞.
From this perspective, a filtered abelian group as in Definition 1.7 only serves as a way
to give rise to its induced classical filtration via (1.8). The kernels of the maps As → Fs

would then be considered an anomaly, because they determine the zero element in A.
This is not the perspective we will take: we will view the entire filtration as the object
of interest. To some extent, many benefits from the synthetic perspective come from
remembering these additional elements.
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1.1 Introducing τ

Recall that a module over the polynomial ring Z[x] is the same as an abelian group with
an endomorphism. Using this, we can give a different description of filtered abelian
groups, as follows. We reserve the letter τ as a formal variable for the polynomial ring
Z[τ]. We view this as a graded ring by giving τ degree −1. A filtered abelian group
A : Zop → Ab has an underlying graded abelian group, and the transition maps can be
viewed as a graded Z[τ]-module structure on this graded abelian group. This determines
a functor FilAb → ModZ[τ](grAb).

Proposition 1.12. The functor

FilAb ≃−→ ModZ[τ](grAb)

is a symmetric monoidal equivalence, where we regard grAb as having the symmetric monoidal
structure without any signs in the swap maps.

Mathematically, there is nothing deep about this statement. The value is in the human
aspect: it can be less mentally taxing to think in terms of algebraic equations involving
τ, than it is to picture the diagram that is a filtered abelian group. Even for classical
filtrations this is very helpful, particularly when recording filtration jumps and hidden
relations. We explore these benefits through a number of examples.

Remark 1.13. Certain properties of filtered abelian groups can be rephrased using τ.

■ A filtered abelian group is a classical filtration if and only if the corresponding
Z[τ]-module is τ-power torsion free.

■ The colimit of a filtered abelian group A can be viewed as inverting τ on A. More
precisely, there is a symmetric monoidal equivalence

ModZ[τ±](grAb) ≃ Ab

given by evaluation at degree 0. We write (−)τ=1 for the composite[2]

ModZ[τ](grAb) ModZ[τ±](grAb) ≃ Ab.τ−1

Under the equivalence between FilAb with ModZ[τ](grAb), the functor A 7→ A−∞

becomes the functor A 7→ Aτ=1.

■ A filtered abelian group is derived complete if and only if the corresponding Z[τ]-
module is τ-adically complete. This is proved in the same way as Proposition 1.16
below, together with a similar identification as for the case of colimits.

[2]Alternatively, one can define (−)τ=1 as taking the quotient by τ − 1. This explains the loss of the grading,
because τ − 1 is not a homogeneous element.
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Definition 1.14. Let A be an abelian group. The p-adic filtration on A is the filtered
abelian group

· · · A A A · · · ,
p p p

which we index to be constant from degree 0 onwards. If A is a commutative ring, then
this is naturally a filtered commutative ring.

The induced classical filtration is

Fs = ps A ⊆ A.

Note, however, that the maps in the filtration itself need not be injective, as A might
contain p-torsion. The additional information in the p-adic filtration of Definition 1.14
is that it remembers all possible choices of p-divisions of elements. This filtration is a
classical filtration precisely when the abelian group is p-torsion free, or in other words,
when p-divisions are unique.

Example 1.15. The abelian group Z is p-torsion free for all p. The graded Z[τ]-algebra
corresponding to the p-adic filtration on Z is

Z[τ, p̃]/(τ · p̃ = p) where | p̃| = 1.

We think of p̃ as a refinement of p ∈ Z that records the fact that p has filtration 1.

The fact that the filtration is constant from filtration 0 onward translates to the fact that
in the Z[τ]-module, multiplication by τ is an isomorphism in degrees zero and below.
The element 1 is not τ-divisible however, reflecting the fact that the transition map from
filtration 1 to filtration 0 is not surjective. The elements that are of filtration at least 1
correspond to the elements that are τ-divisible. ▲

It would have been more appropriate to consider Zp instead of Z in the previous ex-
ample, because the p-adic filtration on Z is not derived complete. In general, we have the
following.

Proposition 1.16. Let A be an abelian group. Then the p-adic filtration on A is derived complete
if and only if A is p-complete as an abelian group, i.e., if the natural map

A −→ A∧
p := lim

k
A/pk

is an isomorphism.
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Proof. Consider the diagram

...
...

...

A A A/p3

A A A/p2

A A A/p.

p

p3

p

p2

p

Taking limits in the vertical direction, we get an exact sequence

0 −→ L −→ A −→ A∧
p −→ K −→ 0

where
L = lim(· · · p−→ A

p−→ A) and K = lim1(· · · p−→ A
p−→ A).

These are precisely the limit and first-derived limit of the p-adic filtration. In other words,
we see that A → A∧

p is an isomorphism if and only if the p-adic filtration on A is derived
complete. ■

In Remark 1.11, we remarked that in a classically filtered ring, the filtration of elements is
subadditive. The corresponding Z[τ]-algebra records this very elegantly.

Example 1.17. Consider the ring

A = Z[η, ν]/(2η = 0, 8ν = 0, 4ν = η3).

We give A a classical filtration by letting both η and ν be of filtration 1, and all of Z be
of filtration 0. The relation 4 · ν = η3 is then a jump in filtration: 4 · ν lands in F1, but
happens to land in the smaller subgroup F3. In particular, we do not see this relation on
the associated graded.

The corresponding Z[τ]-algebra keeps track of this more clearly. This is the graded algebra
given by

Z[τ, η, ν]/(2η, 8ν, 4ν = τ2η3) where |η| = |ν| = 1.

In some sense, we were forced to insert a τ2-term in the last relation: unlike filtered rings,
graded rings do not allow for a grading-jump under multiplication. Since τ has degree
−1, the relation 4ν = τ2η3 now respects this rule.

Note that, unlike in Example 1.15, we do not write η̃ or ν̃, but instead use the symbols η

and ν to directly record the filtration of the elements in the ring A. We did not do this
in Example 1.15, because the symbol p is usually reserved for 1 + · · ·+ 1, and it is a bad
idea to break this convention. ▲
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Elements that are in the kernel of the transition map now translate to elements that are
τ-torsion. This will become especially important when dealing with spectral sequences:
there, τ-power torsion will encode the presence of differentials.

Variant 1.18. There is an obvious variant of all of the above for graded abelian groups.
A filtered graded abelian group is a functor Zop → grAb. Note that this means that the
transition maps preserve degrees.

We give grAb the symmetric monoidal structure with the Koszul sign rule. Again using
Day convolution, we get a symmetric monoidal structure on FilgrAb.

We view Z[τ] as a bigraded ring by giving τ bidegree (0,−1). We give bigrAb the
symmetric monoidal structure with the Koszul sign rule according to the second variable.
This results in a symmetric monoidal equivalence

FilgrAb ≃−→ ModZ[τ](bigrAb).

Here the first grading is the internal grading, and the second grading is the grading
arising from the filtration. There is a sign rule for swapping elements according to their
internal grading; the filtration does not play a role in these signs. For more motivation for
this indexing convention, see. refs to later stuff

2 Filtered spectra

In a classical filtration, the associated graded tell us how the groups “grow” as we move
down in filtration. In a filtered abelian group as in Definition 1.7 however, these groups
can also “shrink”, but this is no longer captured by the associated graded. If we want to
take both of these behaviours into account at once, we need to work in the derived setting
instead.

Remark 2.1. Although what follows is written in the language of the ∞-category of spectra,
this is not strictly necessary. Readers more comfortable with chain complexes can work
with these instead, replacing the cofibre sequences of spectra with short exact sequences
of chain complexes (or better, with the mapping cone of a map of chain complexes), and
replacing homotopy groups of spectra with homology groups of chain complexes. Short
exact sequences of chain complexes induce long exact sequences on homology, and this is
all we need.

Definition 2.2.

(1) A filtered spectrum is a functor Zop → Sp, where we view Z as a poset under the
usual ordering. We write

FilSp := Fun(Zop, Sp)

for the ∞-category of filtered spectra.
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(2) If X : Zop → Sp is a filtered spectrum, then we write X∞ and X−∞ for its limit and
colimit, respectively.

(3) The smash product of spectra induces a presentably symmetric monoidal structure
on FilSp via Day convolution. A filtered E∞-ring is an E∞-algebra object in FilSp.

Remark 2.3. Indexed in this way, it might be better to refer to a functor Zop → Sp as a
tower of spectra. We will be stubborn however and continue calling it a filtration, thinking
of it as a cohomologically-indexed filtration. This is also the reason why we use superscripts
instead of subscripts for the indices.

Remark 2.4. Informally, a filtered spectrum is a diagram of spectra

· · · −→ X1 −→ X0 −→ X−1 −→ · · · .

In fact, this description is not far from the formal one: a filtered spectrum is uniquely
determined by the spectra and the maps between them. Conversely, any collection of
spectra { Xn }n together with maps { Xn → Xn−1 }n corresponds to filtered spectrum,
uniquely up to equivalence. Informally, this means there are no higher coherences
between the transition maps. See [Ari21, Proposition 3.3, Corollary 3.4] for a proof. As a
result, it is easy to construct filtered spectra by hand. When constructing functors into
filtered spectra however, it might be easier (or even necessary) to write down coherent
definitions, rather than describing the values by hand.

Definition 2.5. Recall that homotopy groups of spectra form a lax symmetric monoidal
functor π∗ : Sp → grAb, where grAb has the Koszul sign rule for twist maps. We therefore
obtain a lax symmetric monoidal functor

FilSp −→ FilgrAb, X 7−→ π∗X.

We refer to this functor as the (filtered) bigraded homotopy groups, and write

πn,sX = πn(Xs).

It is more convenient to denote this using the formal parameter τ.

Variant 2.6. Using the equivalence of Variant 1.18, we can rewrite this as a lax symmetric
monoidal functor

π∗,∗ : FilSp −→ ModZ[τ](bigrAb).

The action of τ on πn(Xs) is the map given by the effect of the map Xs → Xs−1 on πn.

Later we will lift τ on π∗,∗X to a self-map on the filtered spectrum X itself. For now, we
only think of it as a way to work with the bigraded homotopy groups.

Definition 2.7. Let X be a filtered spectrum. The associated graded of X is the graded
spectrum Gr X given by

Grs X := cofib(Xs+1 → Xs).
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Using that cofibres are functorial, this results in a functor

Gr : FilSp −→ grSp.

Notation 2.8. Generally, we will use Greek letters to denote elements in the homotopy
groups of a filtered spectrum, and use Roman letters to denote elements in the homotopy
groups of the associated graded. maybe move

somewhere else

As the associated graded Grs X sits, on homotopy groups, in a long exact sequence with
Xs+1 and Xs, it measures both how the transition map Xs+1 → Xs grows and shrinks
the homotopy groups. This makes it even more useful for understanding the homotopy
groups of the colimit.

The first step is to cut this task up into steps, by introducing a classical filtration on these
homotopy groups.

somewhere: motivation for filtered spectra, saying that map of filtered spectra is an iso iff
it’s an iso on the limit and the associated graded

Definition 2.9. Let X be a filtered spectrum. The induced (classical) filtration on πnX−∞

is the filtration given by

Fs πnX−∞ := im(πnXs → πnX−∞).

Note that, because π∗ : Sp → grAb preserves filtered colimits, this is the same as the
classical filtration on πnX−∞ induced by the filtered abelian group πnX. In particular, the
classical filtration on πnX−∞ has no elements of filtration −∞.

In practise, it is not easy to compute the homotopy groups πnXs directly, so we should
not compute this filtration from the definition. What is usually much more accessible is
the associated graded of the filtered spectrum, but carries considerably less information.
One might try and invest the associated graded with as much structure as possible, so
that it starts to remember the homotopy of the filtered spectrum itself. This is precisely
what a spectral sequence does.

3 Spectral sequences

Before giving a formal definition, we begin with a more informal diagram chase to
illustrate the inner workings of a spectral sequence. This is meant simultaneously as an
introduction to spectral sequences from the perspective of filtered spectra, as well as to
explain and motivate our indexing conventions. In particular, we will see that the natural
choice of indexing results in what is commonly known as Adams grading. you make a sim-

ilar remark down
the line. merge or
do something else
to them
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Remark 3.1. Not every spectral sequence arises from a filtered spectrum, but in practise
they do. In these notes, we will for all intents and purposes equate the notion of a filtered
spectrum and a spectral sequence.

Remark 3.2. It is also possible to orient the situation so that a filtration lets us compute the
homotopy groups of the limit rather than the colimit. This present a few more technical
hurdles to overcome. To some extent, one can flip between the two situations; we discuss boardman ref?

this in ??.

remark about generality. it should all generalise to working in a general stable cat, with
htpy replaced by mapping out of a compact object (to ensure that filtered colimits are fine),
or more generally something where sequential colimits are fine. Then also mention Lurie’s
setup using a t-structure, which I guess is slightly different but related.

Before formalising this approach and making it functorial, we give a more hands-on
description of what a spectral sequence is trying to do. For simplicity, and since this
covers most of our use cases, throughout this section we only consider the case where the
filtered spectrum is constant after degree 0:

· · · −→ X2 −→ X1 −→ X0 ∼=−→ X−1 ∼=−→ · · · .

We will as a result simply ignore the spectra in negative filtration. Our goal then is to
understand π∗X0.

We may do this one degree at a time, so henceforth we fix an integer n. Hitting the above
diagram with the functor πn, we obtain a diagram of abelian groups:

· · · −→ πnX2 −→ πnX1 −→ πnX0.

This filtered abelian group induces a classical filtration on πnX0, and this is what we aim
to understand. Our first job then should be to understand when an element in πnX0 is in
the image of πnX1; in other words, determine which elements have filtration at least 1.

3.1 Using the associated graded

We have a cofibre sequence
X1 −→ X0 −→ Gr0 X,

leading to a long exact sequence

· · · −→ πnX1 −→ πnX0 −→ πn Gr0 X −→ · · · .

This allows us to test whether α ∈ πnX0 has filtration at least 1: this happens if and only
if it goes to zero under the map πnX0 → πn Gr0 X. This pattern continues: if α ∈ πnX has
filtration at least 1, we then ask if it filtration is at least 2. Choosing a lift to πnX1, we look
at the associated graded Gr1 X, whose homotopy sits in a long exact sequence

· · · −→ πnX2 −→ πnX1 −→ πn Gr1 X −→ · · · ,
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and we can iterate this procedure until α does not lift further, at which point we have
determined the filtration of α.

This way of thinking only goes so far: it presupposes that we understand the elements of
πnXs, which we usually do not. In practise, what is more understandable is the homotopy
of the associated graded. Instead of starting with the πnXs, we will start with the groups
πn Grs X for all s, and then try to piece the πnXs back together from this data. This
presents two issues:

(1) not every element in πn Grs X comes from πnXs (in other words, there are “fake
elements”),

(2) even if an element in πn Grs X lifts to πnXs (in other words, it is not “fake”), then it
may map to zero in πnX0.

We can solve both of these issues using the same mechanism. We equip the homotopy of
the associated graded with more information that will make it “remember” the homotopy
of the filtered spectrum. This additional information comes in the form of self-maps on
the associated graded, known as the differentials. Concretely, a differential will connect a
“fake” element to an element that maps to zero under (a composite of) the transition maps.
As a result, we see that the purpose of these “fake” elements is to introduce relations in
the homotopy of π∗X0.

3.2 Differentials: obstructions to lifting

First, let us address issue (1). For this, we use the long exact sequence

· · · −→ πnXs+1 −→ πnXs −→ πn Grs X −→ πn−1Xs+1 −→ · · · ,

which tells us that an element in πn Grs X comes from πnXs if and only if it maps to
zero in πn−1Xs+1. The question, then, is how explicit we can make this condition, where
‘explicit’ refers to describing it in terms of the associated graded as much as possible. It
would also be helpful to organise this information in a digestible way.

To make notation easier, we will focus on the case s = 0. Our situation is summarised by
the diagram

· · · X2 X1 X0

Gr0 X,
∂

where the dashed arrow indicates that the map is of degree 1: it is the boundary map
∂ : Gr0 X → ΣX1 of a cofibre sequence. By exactness, an element a ∈ πn Gr0 X comes
from πnX0 if and only if its image in πn−1X1 is zero. However, like we said before, we
usually do not know much about the homotopy groups of X1, so this is not a helpful
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description. To approximate the question of the image ∂a ∈ πn−1X1 being zero, we first
ask if its image in the associated graded X1 → Gr1 X is zero:

· · · X2 X1 X0

Gr1 X Gr0 X.
∂

Write d1(a) for the image of ∂a in πn−1 Gr1 X. If this is nonzero, then ∂a ̸= 0 as well, so in
particular we learn that a is not in the image of πnX0. If d1(a) is zero however, then we
are still not done: all we know is that ∂a ∈ πn−1X1 lifts to πn−1X2. Choosing a lift, we
can ask the same question, testing whether this element is zero by looking at its image in
πn−1 Gr2 X:

· · · X2 X1 X0

Gr2 X Gr0 X.
∂

This choice will not be unique, and neither will the resulting class in πn−1 Gr2 X; the class
in πn−1 Gr2 X is only well defined up to the image of d1. We write d2(a) for this element
in (πn−1 Gr2 X)/d1. If d2(a) is nonzero, then ∂a is also nonzero. If d2(a) is zero, then we
continue the story, and can define d3(a) in πn−1 Gr3 X (only well defined up to d1 and d2),
et cetera.

We obtain inductively defined elements dr(a) for r ⩾ 1. If they all vanish, then our class
a lifts to an element of the limit lims Xs of the filtered spectrum. This gets us into the
tricky waters of convergence issues. In good situations, this limit vanishes; let us assume
this is the case. This is good news: it means that we can detect if ∂a ∈ πn−1X1 is zero by
checking if the dr(a) are zero for all r ⩾ 1. This, in turn, means that we can answer the
question whether a ∈ πn Gr0 X comes from πnX.

In summary then: we have an inductively defined list of differentials dr(a), which (in good
cases) vanish if and only if a comes from an element in πnX. While so far we only started
with classes in πn Gr0, the same applies when starting with an element of πn Grs, which
lifts to πnXs if and only if all differentials on it vanish.

3.3 Kernels of transition maps

On to issue (2), which is asking what the kernel of πnXs → πnX0 is. Since the map
Xs → X0 is a composite of s maps, we can focus on the map Xs → Xs−1 and iterate this
procedure. Here we will encounter some of the awkwardness of working solely in terms
of the associated graded. To illustrate this, we start with an element α ∈ πnXs, and write
a for its image in πn Grs X. Our aim is to understand whether α maps to zero in πnXs−1.
We have a long exact sequence

· · · −→ πn+1 Grs−1 X −→ πnXs −→ πnXs−1 −→ · · · ,
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so by exactness, α maps to zero in πnXs−1 if and only if it is in the image of the map
πn+1 Grs X → πnXs. Notice that in terms of a, this is equivalent to the existence of an
element b ∈ πn+1 Grs−1 such that d1(b) = a. Iterating this procedure, we find that if the
element α ∈ πnXs maps to a nonzero element in πnX if and only if a is not in the image
of d1, . . . , ds.

Remark 3.3. It might appear there is an asymmetry in the above: to resolve issue (1),
we had to check that infinitely many differentials on a vanish, whereas for issue (2)
we only have to check a condition involving finitely many differentials. This is due to
the simplifying assumption we made earlier that the filtered spectrum is constant after
filtration 0. This is equivalent to the associated graded being zero in negative filtrations. In
effect, this means that differentials originating in filtration below 0 automatically vanish,
so that the condition of not being hit by them is vacuous.

3.4 Choosing lifts

Phrasing this solely in terms of the associated graded runs into some slightly delicate
matters. By this we mean that we do not start with a class α ∈ πnXs, but only with a class
a ∈ πn Grs X. If d1(a) = · · · = ds(a) = 0, then any lift of a to πnXs will map to a nonzero
element in πnX0. However, if dr(a) = 0 for some r ⩽ s, then we only learn that there exists
a lift of a to πnXs that will map to zero in πnXs−r. It is not guaranteed that every lift will
satisfy this: if α ∈ πnXs is a lift of a, then for any β ∈ πnXs that comes from πnXs+1, the
element α + β also lifts a. But the associated graded has no control over β: it maps to
zero in πn Grs X, so from the point of view of a, it is invisible. In fact, β need not even
map to zero in πnX0. The summary then is that the associated graded πn Grs X only sees
phenomena up to higher filtration.

This is a problem that we simply have to live with if all we understand is the associated
graded. It can be delicate matter to check that a lift of an element hit by a dr-differential is
the lift that dies r filtrations down. In practise, one might be able to bootstrap this together
by comparing different spectral sequences: in one spectral sequences, there might be no
elements of higher filtration, so that there are no problems choosing a lift. This choice can
then be transported to different spectral sequence where it is not clear how to choose this
lift. We will see examples of this later.

3.5 Graphical depiction of spectral sequences

At this point, we need a way to organise all of this information in a way to make it more
approachable for humans. Define

En,s
1 := πn Grs X,

and define, for every n, s, the first differential

d1 : En,s
1 −→ En−1, s+1

1

15



as the boundary map En,s
1 → πn−1Xs+1 followed by the projection πn−1Xs+1 → En−1, s+1

1 .

We depict these by letting the horizontal axis correspond to the stem n, and the vertical
axis correspond to the filtration s. The differential d1 goes one to the left, and one up.

Picture of the spectral sequence

Missing

figure

finish. probably some story about how you depict filtration vertically, and the stems you’re
interested in horizontally.

The differential dr goes one to the left, and r units up. This map is however only well
defined after taking homologies for the preceding differentials d1, . . . , dr−1. We therefore
inductively define, for r ⩾ 2,

En,s
r := Hn,s(E∗,∗

r−1, dr−1) =
ker(dr−1 : En, s

r−1 → En−1, s+r−1
r−1 )

im(dr−1 : En+1, s−r+1
r−1 → En, s

r−1)
.

Roughly speaking, doing this process infinitely many times results in page ∞, denoted
En,s

∞ . In good cases, this is isomorphic to the associated graded of the induced filtration on
πnX0:

En,s
∞

∼=
Fs πnX0

Fs+1 πnX0 .

In summary then: by passing from the filtered spectrum to the associated graded, we
introduced “fake” elements. These elements are responsible for recording which elements
die under the transition maps πnXs → πnXs−1. Taking homology for a dr-differential
removes both the fake elements, and kills elements that die under Xs → Xs−r. Letting
all differentials run brings us to the associated graded of the filtration we were trying to
understand.

3.6 Reformulation in terms of τ

introduce τ-module htpy group

The diagrams we have been looking at up till now can be difficult to keep in one’s head.
We can rephrase everything in terms of τ, which can help alleviate some of this difficulty. bad sentence
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