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We will now begin our study of synthetic spectra. We do not focus on any constructions
for the moment, but defer that to a later lecture. After listing some of the basic categorical
properties, we import all of the previous results about τ and spectral sequences into
the synthetic setting. This in particular lets us think of synthetic spectra as having an
underlying spectral sequence. The main goal of this lecture is to show that for many
synthetic spectra (the synthetic analogues of spectra), this agrees with the Adams spectral
sequence as it is usually defined. However, this is merely to demonstrate how to work
with synthetic spectra: as we will see later, there are many benefits to working with
synthetic spectra rather than with just their underlying spectral sequences.

We do not assume any previous knowledge on what the Adams spectral sequence is,
and so include a brief introductory section on this. To those who have worked with the
Adams spectral sequence before, this serves as a reminder of some of the basic properties.
Those who do not yet have experience with it should read this section to get a feeling for
what to expect from the Adams spectral sequence: everything, and more, we will derive
from synthetic spectra.

1 Motivation: the Adams spectral sequence

Let E be a fixed spectrum. We can use E-homology to study maps between spectra. If the
map is nonzero on E-homology, then it was nonzero to begin with. Surprisingly, the story
does not end if the map is zero on E-homology.

Definition 1.1. Let X and Y be spectra. The E-based Adams filtration on [Y, X] is the
classical filtration where, for s ⩾ 1, a map f : Y → X is in Fs[Y, X] if it can be written as a
composite of s maps, each of which is zero on E∗-homology. We define F0[Y, X] := [Y, X],
leading to a classical filtration

· · · ⊆ F2[Y, X] ⊆ F1[Y, X] ⊆ F0[Y, X] = [Y, X].

This definition naturally extends to a filtration on the graded abelian group [Y, X]∗ =

[Σ∗Y, X].
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some remark about E-homology vs E-null

Usually we apply this when Y is the sphere, leading to a filtration on the homotopy
groups of X.

If f : Y → X is zero on E-homology, then it may appear that there is not much we can do
with it. We can however perform the following trick: completing f into a cofibre sequence

Y −→ X −→ Z −→ ΣY,

we see that on E∗-homology, the long exact sequence splits up into a short exact sequence

0 −→ E∗(X) −→ E∗(Z) −→ E∗−1(Y) −→ 0. (1.2)

In other words, the fact that f is zero on E∗-homology realises E∗(Z) as an extension of
E∗−1(Y) by E∗(X). This extension could be nontrivial.

In an example however, we see that we have to be careful what type of extension we mean.
If E is a homotopy ring spectrum, then one natural guess is to talk about an extension of
E∗-modules, but this can be very uninteresting.

Example 1.3. If E = Fp, then every extension of E∗-modules splits. We can drastically
improve the situation by observing that the Fp-homology of a spectrum has a natural
(co)action by the dual Steenrod algebra, i.e., by A∗ := π∗(Fp � Fp). At least if X and
Y are finite spectra, then this is dual to the action of the Steenrod powers on their Fp-
cohomology; if X and Y are not finite, then it is better to not dualise and work with this
homological version.

Since the maps in the short exact sequence (1.2) naturally respect this action, it is an
extension of A∗-comodules, and this is often nontrivial, even if X and Y are both spheres.
For instance, consider the Hopf map η : S1 → S and E = F2. On cohomology, we have a
short exact sequence

0 −→ H∗(S2; F2) −→ H∗(cofib η; F2) −→ H∗(S; F2) −→ 0.

This extension does not split as a module over the Steenrod algebra: the middle term is
F2 in degrees 0 and 2, but these have a nontrivial Sq2 between them. (Indeed, it is a shfit
of H∗(RP2; F2).) ▲

We can do something similar for more general E, although we do need a number of
restrictions on E to ensure that the appropriate notion of comodules is well behaved.

Definition 1.4. Let E be a homotopy associative ring spectrum. We say that E is of do we wanna say
more? compare
to flatness? (see
earlier drafts)

Adams type if E can be written as a filtered colimit

E = colim
α

Eα

where each Eα is a finite spectrum such that E∗(Eα) is projective as a (left) E∗-module.
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ALSO: add discussion of how restrictive it is (devinatz’s theorem on landweber ones, but
also that KO isn’t, etc)

In the end, if E is of Adams type, then there is an abelian category ComodE∗E(grAb) of
E∗E-comodules in graded abelian groups, and E∗ naturally lifts to a homology theory
valued in these comodules. We will usually abbreviate this category by ComodE∗E. In the
end, the short exact sequence (1.2) defines an element in

Ext1
E∗E(E∗−1(Y), E∗(X)).

It may turn out that this extension is trivial. It turns out that we can continue this process,
ending up with classes in higher and higher Ext groups. At this point, it is useful to
introduce some notation.

Notation 1.5. Let s and t be integers, and M and N be E∗E-comodules. We write

Exts,t
E∗E(M, N) := Exts(M[t], N),

where square brackets indicate a grading shift: (M[t])n = Mn−t.

Remark 1.6. In the above indexing convention, s is indexed cohomologically (being an
Ext degree), while t is indexed homologically. We use homological indexing on t so that
shifts in homology correspond to shifts of spectra: E∗(ΣtX) ∼= E∗(X)[t].

With this notation, the extension (1.2) is an element of Ext1,1(E∗(Y), E∗(X)). It turns out
that this class is the obstruction to f being the composite of two maps that are both zero
on E-homology, i.e., the obstruction to having E-Adams filtration at least 2. If it does have
filtration at least 2, then there is a class in

Ext2,2
E∗E(E∗(Y), E∗(X)),

and this pattern continues.

With the idea that this homological algebra can see a lot about maps between spectra, one
can ask to go the other way: starting with a class in an Ext group as above, we can ask if it
comes from a map of spectra. This will lead to the E-based Adams spectral sequence, which
is of the form

En, s
2 = Exts, n+s

E∗E (E∗(Y), E∗(X)) =⇒ [Y, X]n.

We do not mean to say that this always converges: at the very least, this spectral sequence
will never be able to see more than maps between the E-localisations of Y and X. If we
replace [Y, X]n by [Y, LEX]n, then in most cases we get (at least conditional) convergence.
In general we only see an approximation to the E-localisation, known as the E-nilpotent
completion.

Remark 1.7. The original case introduced by Adams is where E = Fp, and is often simply
referred to as the Adams spectral sequence. For E = MU or BP, the resulting spectral
sequence is known as the Adams–Novikov spectral sequence.
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Remark 1.8. For our purposes, the reason we index this spectral sequence to start on page
2 is for convenience. Usually, the Adams spectral sequence comes about through a choice
of resolution for X, leading to a first page whose cohomology groups are the above Ext
groups. This first page however depends on the choice of resolution. Our later approach
will be independent of choices, and as a result does not see this first page.

We could at this point define the Adams spectral sequence by defining a filtered spectrum
that is the analogue of Definition 1.1. While knowing this is useful, we will take a shortcut
and go straight to the modern approach: synthetic spectra. This recovers the other approach
(and more) as follows: there are functors ν : Sp → SynE and σ : SynE → FilSp. Their
composite Sp → FilSp will turn out to be the Adams spectral sequence, but one can get a
lot more mileage out of it by studying the object we get before applying σ. The reason
for this is that synthetic spectra are a categorification of the Adams spectral sequence:
the Adams spectral sequence for [Y, X] is naturally captured by maps from νY to (certain
shifts of) νX.

2 Categorical properties

Construction 2.1. Let E be a homotopy associative ring spectrum of Adams type. In
[Pst22], Pstrągowski constructs a symmetric monoidal ∞-category SynE of E-based syn-
thetic spectra, together with a unital lax symmetric monoidal functor ν : Sp → SynE. We
call ν the synthetic analogue functor.

We may refer to E-based synthetic spectra as E-synthetic spectra, or even simply by synthetic
spectra if E is clear from the context. On the opposite end, when we want to vary the
variable E, we write νE for ν, emphasising it as the E-synthetic analogue.

Remark 2.2. Although the notation seems to suggest otherwise, the symmetric monoidal
∞-category SynE depends on much less data than the ring spectrum E. This is because the
E-based Adams spectral sequence depends only on the E∗-epimorphisms, and not on E
itself. In the case of synthetic spectra, the precise statement is that the symmetric monoidal
∞-category SynE only depends on the class of finite spectra that are E∗-projective, together
with the E∗-epimorphism class on these. (This is evident from the construction of SynE;
see.) In particular, SynE is not sensitive to a potential coherent multiplicative structure on reference

E (nor does it require it for its construction as a symmetric monoidal ∞-category).

Notation 2.3. For the rest of this lecture, E denotes a fixed choice of a homotopy associat-
ive ring spectrum of Adams type.

Before we dive into the specifics of synthetic spectra, we discuss some general properties
of this ∞-category. The following terminology will be helpful.

Definition 2.4. A spectrum P is called finite E-projective if it is a finite spectrum and if
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E∗P is projective as a left E∗-module.[1] We write Spfp
E for the full subcategory of Sp on

the finite E-projective spectra.

For example, for every E, every sphere is finite E-projective. Beware that Spfp
E is not a

stable subcategory of Sp.

Proposition 2.5.

(1) The ∞-category SynE is stable.

(2) The ∞-category SynE is presentable, and the symmetric monoidal structure preserves
colimits in each variable separately; that is to say, SynE is presentably symmetric monoidal.

(3) If P is a finite E-projective spectrum, then νP is a compact and dualisable object in SynE.
In particular, the monoidal unit is compact.

(4) As a stable ∞-category, SynE is generated under colimits by the synthetic analogues of the
spheres ν(Sn) for n ∈ Z. In particular, SynE is compactly generated by dualisables.

(5) The monoidal ∞-category is rigid in the sense that an object is compact if and only if it is
dualisable.

Proof. ■ References

Remark 2.6 (Cellularity). Currently, what we denote by SynE is a slight modification of
Pstrągowski’s category: we work with ∞-category cellular synthetic spectra. This, by
definition, is the smallest stable subcategory Syncell

E of Pstrągowski’s SynE that is closed
under colimits and contains the synthetic analogues of the spheres ν(Sn). We do this to
make Proposition 2.5 (4) true; in general, one has to work with the synthetic analogues of
all finite E-projectives in the place of the spheres. We do this for two reasons: first, none
of the applications for spectral sequences change under this modification, and second,
a number of desirable properties are only true for the cellular subcategory. For many E,
the cellular subcategory is simply equal to SynE. The author does not know if it holds in
general, but also does not know of a counterexample. We discuss this more in. For the ref

rest of the lecture, we write Syncell
E for SynE.

Next, we turn to properties of the functor ν.

Proposition 2.7.

(1) The functor ν : Sp → SynE is fully faithful, additive, and preserves filtered colimits. In
particular, ν preserves arbitrary coproducts.

[1]This should not be confused with what one might call an E-finite projective spectrum, meaning a spectrum
P such that E∗P is a finite projective E∗-module. This need not imply that the spectrum P is itself finite, an
assumption we very intentionally require on P.
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(2) Consider a cofibre sequence of spectra

X Y Z.
f g

Then the sequence

νX νY νZ
ν f νg

is a cofibre sequence of synthetic spectra if and only if

0 E∗X E∗Y E∗Z 0
f∗ g∗

is short exact, or in other words, if the boundary map Z → ΣX is zero on E∗-homology.

(3) The comparison map νX � νY → ν(X � Y) coming from the lax symmetric monoidal
structure on ν is an isomorphism whenever X or Y is a filtered colimit of finite E-projective
spectra.

More generally, if the E∗-homology of X or Y is flat as an E∗-module, then the map
νX � νY → ν(X � Y) is a νE-equivalence.

Proof. ■ references

Both conditions of Proposition 2.7 (3) are a type of flatness condition. This is obvious for
the second one. For the first, compare this with the algebraic result that a module over a
ring is flat if and only if it can be written as a filtered colimit of finite free modules; see
[Stacks, Tag 058G].

Example 2.8. The definition of Adams type directly implies that νE � X → ν(E � X) is
an isomorphism for all spectra X. ▲

Example 2.9. Suppose E = Fp, or more generally a spectral field. Then every finite
spectrum is E-projective. The smallest subcategory of Sp that contains all finite spectra
and is closed under filtered colimits is equal to all of Sp. As a result, we learn from
Proposition 2.7 (3) that the E-synthetic analogue is a strong symmetric monoidal functor
if E is a spectral field. ▲

Take particular note that ν is not an exact functor, even though it is a functor between stable
∞-categories. For example, Proposition 2.7 (2) implies that Σ(νX) ∼= ν(ΣX) if and only if
E∗X = 0. In terms of the E-Adams spectral sequences, asking to have zero E-homology is
a very degenerate case, so the functor ν practically never preserves suspensions.

The difference between suspending in spectra and in synthetic spectra has a conceptual
meaning as well: the former has the effect of shifting its Adams spectral sequence one to
the right, while suspending its synthetic analogue also shifts it down by one filtration.
This is made precise by the following definition of the synthetic bigraded spheres. The
indexing convention we use here turns out to be the most practical.
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Definition 2.10 (Synthetic bigraded spheres). Let n and s be integers.

(1) The synthetic (n, s)-sphere is

Sn,s := Σ−s ν(Sn+s).

We refer to n as the stem, and to s as the filtration.

(2) We write Σn,s : SynE → SynE for the functor given by tensoring with Sn,s on the left.

(3) We write πn,s : SynE → Ab for the functor

πn,s(−) := [Sn,s, −].

(4) The map τ : S0,−1 → S0,0 is the colimit-comparison map

τ : S0,−1 = Σ(νS−1) −→ νS = S0,0.

If now X is a synthetic spectrum, then tensoring it with the map τ : S0,−1 → S results
in a map Σ0,−1X → X. This turns π∗,∗ into a functor SynE → ModZ[τ](bigrAb).

Note that Proposition 2.5 (4) says that the collection of bigraded spheres form a set of com-
pact generators for SynE. As a result, bigraded homotopy groups detect isomorphisms. cite yanovski’s

paper

Remark 2.11. If X is a spectrum, then we also have the natural colimit-comparison map
Σ(νX) → ν(ΣX). This coincides with the map τ � νX: see [Pst22, Proposition 4.28].

Example 2.12.

(1) For every n, the synthetic spectrum ν(Sn) is the bigraded sphere Sn,0. Later we will
see that these are the only synthetic spheres that are in the essential image of ν: see
Example 4.5. This the first instance where we see that ν places everything in Adams
filtration zero. more about this

later!!

We will abuse notation and abbreviate S0,0 simply by S, and refer to it as the synthetic
sphere. It is the unit for the monoidal structure on SynE (because ν is unital). Most
of the time, the context will allow one to see whether the sphere spectrum or the
synthetic sphere is meant by this notation.

(2) If X is a spectrum, then we have a natural isomorphism Σn,0 νX ∼= ν(ΣnX).

(3) Categorical suspension is given by the bigraded suspension Σ1,−1. ▲

While the grading convention of Definition 2.10 has become more standard, it is not the
only one in the literature. We refer to the above indexing as Adams grading of synthetic
spectra. This is not the convention used in [Pst22], which instead follows the motivic
grading. Unless explicitly said otherwise, we will not use motivic grading in these notes.
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Remark 2.13 (Motivic grading). The motivic grading on synthetic spectra is to define

St,w := Σw−t ν(Sw).

Conversion from Adams to motivic grading is given by

(n, s) 7−→ (n, n + s),

and conversion from motivic to Adams grading is given by

(t, w) 7−→ (t, w − t).

The only cases in which motivic grading agrees with Adams grading is the case where
t = 0. (In particular, the map τ from Definition 2.10 (4) has bidegree (0,−1) in both rewrite sentence

conventions.) In [Pst22], the degree w is called the weight, and the difference t − w is
called the Chow degree. In Adams grading, the weight of Sn,s is given by n + s, while the
Chow degree is given by −s. The motivic grading is designed to match with the standard
indexing conventions of motivic homotopy theory; see for more information. ref

Remark 2.14. In the specific case of Fp-synthetic spectra, it is becoming more and more
common to use the letter λ to denote the map otherwise denoted by τ. This is done to ac- add citations

commodate for computations that involve both BP-synthetic and Fp-synthetic arguments
at the same time. Because this document is not aimed at these computations, we will still
use the letter τ even in the Fp-synthetic case.

3 Synthetic spectra as a deformation

need to somehow shoe-horn in the overarching story: we want to understand the structure
of this category (that includes knowing what the morphisms between the objects are; this is
a segue for the geometric Adams filtration)

At this point, it is natural to ask what the relationship is between the synthetic bigraded
spheres Definition 2.10 and the filtered bigraded spheres. The map τ from Definition 2.10
realises SynE as a deformation in the sense of ????.

Lemma 3.1. There is a natural symmetric monoidal structure on the functor Z → SynE given
by the multiplication-by-τ tower on the unit:

· · · S0,−1 S S0,1 · · · .τ τ τ τ

Proof. We will prove this later as. ■ ref to later section
on constructions

Notation 3.2. By the universal property of FilSp from ??, the symmetric monoidal functor
Z → SynE from Lemma 3.1 induces an adjunction

FilSp SynE

ρ

σ
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where the left adjoint ρ is a symmetric monoidal functor. As a result, the functor σ is
naturally lax symmetric monoidal. We refer to σ as the signature functor. cite Lurie/that

other paper

Remark 3.3. As a special case of ??, the functor σ can be described as follows. Write
map(−,−) for the mapping spectrum functor of the stable ∞-category SynE. Then σ

is given by levelwise applying map(S,−) to the multiplication-by-τ tower functor. In
diagrams: for X ∈ SynE, the filtered spectrum σX is given by

· · · map(S, Σ0,−1X) map(S, X) map(S, Σ0,1X) · · · .τ τ τ τ

Since τ is an endomorphism of the synthetic sphere, and every synthetic spectrum is
canonically a module over the synthetic sphere, it does not matter whether we view the
connecting maps as coming from multiplication by τ on the first or the second argument.

Remark 3.4. The adjunction ρ ⊣ σ is very close to a monadic adjunction. More precisely, it
is a monadic adjunction if and only if SynE is cellular in the sense of. What requires more add ref to remark

and sectionassumptions is to then identify the monad on filtered spectra without making reference
to the synthetic category. We will discuss this more in. add ref

By definition, the functor ρ sends τ to the synthetic map τ as defined in Definition 2.10 (4).
We can now import everything we did in filtered spectra. For example, as ρ is symmetric edit this para-

graph (is out of
place)

edit

monoidal and exact, the E∞-ring structure on Cτ in filtered spectra pushes forward to an
E∞-ring structure on the cofibre Cτ formed in synthetic spectra.

segue

3.1 Synthetic homotopy groups and the signature spectral sequence

The deformation picture tells us how to understand of the bigraded homotopy groups of a
synthetic spectrum. This comes from a comparison of the filtered and synthetic bigraded
spheres. To avoid confusion, we will for the moment distinguish these by writing

Sn,s
fil and Sn,s

syn

for the filtered and synthetic spheres, respectively, and similarly πfil
∗,∗ and π

syn
∗,∗ for the

homotopy groups.

Proposition 3.5. Let n and s be integers.

(1) We have isomorphisms
ρ(Sn,s

fil ) = Sn, s−n
syn ,

and the functor ρ sends the filtered map τfil to the synthetic map τsyn.

(2) We have natural isomorphisms, where X ∈ SynE,

π
syn
n,s (X) = πfil

n, s+n(σX),

and the map τfil : Σ0,−1 σX → σX is given by σ applied to τsyn : Σ0,−1X → X.
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(3) The functor σ is conservative and preserves filtered colimits.

Proof.

write the rest

From the formula for σ of Remark 3.3, we learn that σX = 0 if and only if π
syn
∗,∗ X = 0. The

bigraded homotopy groups detect isomorphisms of synthetic spectra, so this implies σ is refer back. maybe
make that state-
ment a proposi-
tion

conservative.

The fact that σ preserves filtered colimits follows from the fact that ρ sends a collection of
compact generators of FilSp (namely, the filtered spheres) to compact objects in SynE. In
more detail: fix a filtered diagram I in SynE. We have a chain of isomorphisms

Map(Sn,s
fil , colim σI) ∼= colim Map(Sn,s

fil , σI)
∼= colim Map(ρ(Sn,s

fil ), I)
∼= Map(ρ(Sn,s

fil ), colim I)
∼= Map(Sn,s

fil , σ colim I),

where for the first isomorphism we used that Sn,s
fil is compact in FilSp, and for the third

we used that ρ(Sn,s
fil ) = Sn, s−n

syn is compact in SynE. Because bigraded filtered homo-
topy groups detect equivalences of filtered spectra, we learn from this that colim σI →
σ(colim I) is an isomorphism of filtered spectra. ■ I think this argu-

ment is actually
showing ρ pre-
serves compact-
ness in general

Corollary 3.6. Let X be a synthetic spectrum.

(1) We have a natural isomorphism of graded Z[τ]-modules

πn,∗(X) ∼= πn, ∗+n(σX).

(2) We have natural isomorphisms of filtered spectra

σ(Cτ � X) ∼= Cτ � σ(X) and σ(X[τ−1]) ∼= σ(X)[τ−1].

Remark 3.7. The above reindexing formula is merely a consequence of the way we usually
index Adams spectral sequences. It is customary to start Adams spectral sequences as
beginning on the second page, while in previous chapters, we indexed spectral sequences
associated to filtered spectra to start on the first page. The indexing conventions for
synthetic and filtered bigraded spheres reflect these choices, and as a result are incom-
patible. The reindexing (n, s) 7→ (n, s − n) of Proposition 3.5 is precisely the algebraic
page-turning of. need better name

add refWarning 3.8. Even though ρ(Sn,s
fil ) is a bigraded synthetic sphere, the filtered spectrum

σ(Sn,s
syn) is very different from a bigraded filtered sphere. Indeed, the spectral sequence

associated to a filtered sphere is uninteresting, while the spectral sequence associated earlier remark
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to σ(Sn,s
syn) is (a shift of) the E-Adams spectral sequence for the sphere spectrum, which

is very interesting and highly nontrivial. In particular, ρ is very far from preserving
bigraded homotopy groups.

Combining Corollary 3.6 with the filtered Omnibus ??, we obtain an interpretation of the
bigraded homotopy groups of a synthetic spectrum X: it captures the spectral sequence
associated to σ(X). Accordingly, we will refer to this as the signature spectral sequence
of X. In keeping with synthetic conventions, we will reindex it to start on the second
page. In this form, it looks like

En,s
2 = πn,s(Cτ � X) =⇒ πn(X[τ−1]).

Here we drop the second index on the homotopy of X[τ−1]: any choice of index yields an
isomorphic group (or, more functorially, we take the colimit over the second index).

The filtered Omnibus Theorem translates directly into a synthetic Omnibus Theorem,
where it is more convenient to reindex everything to make the differentials one longer.
For example, if a class is hit by a dr-differential, this class lifts to an element α in the
synthetic homotopy groups such that τr−1 · α = 0; cf. ?? ??. For the sake of brevity, we
will not restate the resulting Omnibus Theorem here, but leave it to the reader to reindex
the previous one.

Of course, all of this raises the question what spectral sequence this is concretely. Ac-
cordingly, we should understand what τ-invertible synthetic spectra and Cτ-modules
in synthetic spectra are. The first ends up being the same as in filtered spectra, but the
second is very different, and is what makes synthetic spectra what they are. After we
have done this, we will analyse the signature of a synthetic analogue, and identify it
with the Adams spectral sequence in the usual sense. Combining this with the synthetic
Omnibus Theorem recovers the version of Burklund–Hahn–Senger. cite again? or

refer back to
earlier discussion?

3.2 Inverting τ

Recall that the functor ν : Sp → SynE is fully faithful. However, since it is not an exact
functor, we should not think too strongly of the image of ν as an embedding of spectra into
synthetic spectra. If we make ν exact in a universal way, this does result in an embedding
of spectra into synthetic spectra, and these happen to be exactly the τ-invertible synthetic
spectra.

The exact same discussion as in ?? applies here. A synthetic spectrum is called τ-invertible
if the endomorphism τ on it is an isomorphism. This is again a smashing localisation,
being given by tensoring with the τ-inversion of the synthetic sphere. Since ρ in particular
makes SynE tensored over FilSp, one can equivalently describe this as being the modules
over ρ(S[τ−1]). This is indeed the same because ρ preserves colimits and sends τ to τ by
Proposition 3.5.
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What is not automatic is that SynE[τ
−1] is equivalent to spectra. This is true, but requires

additional analysis.

Definition 3.9. Writeよ : Sp → SynE for the functor ν(−)[τ−1].

By definition,よ lands in τ-invertible synthetic spectra.

Theorem 3.10 ([Pst22], Theorem 4.37). The functorよ is fully faithful, exact, and symmetric
monoidal, and restricts to a symmetric monoidal equivalence

よ : Sp ≃−→ SynE[τ
−1].

As before, we will write (−)τ=1 for the composite

SynE SynE[τ
−1] ≃ Sp.τ−1

Because τ−1 is left adjoint to the inclusion, it follows that we have an adjunction

SynE Sp.
(−)τ=1

よ

Example 3.11. Recall the definition Sn,s = Σ−sν(Sn+s) from Definition 2.10. As τ-
inversion is an exact functor on synthetic spectra, it preserves suspensions, so we find
that

Sn,s[τ−1] = Σ−sν(Sn+s)[τ−1] = Σ−sよ(Sn+s) ∼=よ(Sn).

In other words, (Sn,s)τ=1 = Sn. We can think of this as saying that inverting τ forgets the
Adams filtration. ▲ in the lectures as

a whole, need to
bring the use of
synthetic spectra
as “remembering
the Adams filtra-
tion” more!

Said differently: the functor (−)τ=1 is a right inverse to ν. In this way, one can think of
SynE as a type of bundle over Sp, of which ν is a section.

Y is the zero sec-
tion, ν is an inter-
esting section

make this more
centerstage

3.3 Modding out by τ and the homological t-structure

While τ-invertible spectra do not look different from τ-invertible filtered spectra, things
look very different when we look at the cofibre of τ in synthetic spectra. Understanding
modules over it relies on one of the most important categorical tools for interacting with
synthetic spectra: the homological t-structure.

As the name suggests, the key feature of the homological t-structure is that it looks
at νE-homology of E-synthetic spectra to measure (co)connectivity, not at the bigraded
homotopy groups. This is both an upside and a downside: due to the special role that E
plays for E-synthetic spectra, this homology tends to be a lot simpler than the homotopy.
On the other hand, this means that taking truncations or connective covers can have very
unpredictable effects on bigraded homotopy groups.
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Theorem 3.12. There exists a unique accessible t-structure on SynE that satisifes the following.

(a) A synthetic spectrum X is connective if and only if

νEn,s(X) = 0 whenever s > 0.

(b) A synthetic spectrum X is 0-truncated if and only if X is νE-local and

νEn,s(X) = 0 whenever s < 0.

(c) The connective cover τ⩾0X → X induces an isomorphism

νEn,s(τ⩾0X)
∼=−→ νEn,s(X) whenever s ⩽ 0.

Likewise, the 0-truncation X → τ⩽0X induces an isomorphism

νEn,s(X)
∼=−→ νEn,s(τ⩽0X) whenever s ⩾ 0.

(d) The t-structure is right complete (but in general, not even left separated). suppose all spec-
tra have nonvan-
ishing E homo-
logy. is Syn left
separated then?

(e) The t-structure is compatible with the monoidal structure.

(f) There exists a monoidal equivalence of categories

Syn♡
E ≃ ComodE∗E

such that there exists a commutative diagram of lax monoidal functors

Sp Syn♡
E

ComodE∗E.

τ⩽0τ⩾0ν

E∗(−)
≃

Moreover, if E is homotopy commutative, then these equivalences are naturally symmetric
monoidal. need a comment

somewhere that
these symmet-
ric monoidal-
ity issues only
arise when com-
paring a previ-
ously constructed
abelian category
with a topologic-
ally defined one.
(your thought
of “if you do not
cross these realms,
then you do not
have any sym-
metry issues”).
though I think
that this would be
the first instance
where we see this
in action?

We refer to this t-structure as the homological t-structure on SynE.

Proof. Property (a) determines this t-structure uniquely, and is formal. Property (b)

Lurie

follows from this using the Adams type property of E, and (c) follows directly from it.

do we want to
spell this out in
these notes?

write the rest

The difficult part is the identification of the heart; see. ■

Piotr

Remark 3.13. The name homological t-structure is taken from [BHS23, Appendix A]. In
[Pst22, Section 4.2], it called the natural t-structure.
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Remark 3.14. The description of the connective objects is somewhat confusing, in that an
object is connective when certain groups in a positive degree vanish. This clash is because
the filtration in Adams spectral sequences is indexed cohomologically, while we usually
index t-structures homologically (at least in homotopy theory). Arguably, it would be less
confusing to index this t-structure cohomologically instead (as is more common in, e.g.,
algebraic geometry), writing τ⩽0 for what we normally write as τ⩾0, and τ⩾0 for τ⩽0.

should we do
that?

Warning 3.15. Often with t-structures, one writes π♡
n for the functor Σ−n τ⩽nτ⩾n con-

sidered as landing in the heart of the t-structure. Because this t-structure is more con-
cerned with homology than homotopy, this can get confusing: the functor π♡

n is not
related to bigraded homotopy groups. Instead, we have an isomorphism

π♡
n (X) ∼= νE∗+n,−n(X).

Note also the minus sign in the filtration on the right-hand side; this is again due to the
difference between homological and cohomological grading of Remark 3.14. To avoid the
potential confusion with the bigraded homotopy groups, we will generally not use the
notation π♡

n and work directly with the νE-homology.

As we have not yet computed anything in synthetic spectra, it is at this point not clear
if we have any examples of connective or truncated synthetic spectra. Shortly, we will
compute the νE-homology of synthetic analogues, and in particular find that all synthetic
analogues are connective (even if the original spectrum is not); see Example 4.5. In fact,
we will see that for all X, we have also include state-

ment about white-
head tower? at
that point, phrase
things as a pro-
position. emphase
the two roles that
ν → よ plays: it
gives the source
a univ prop by
saying it’s a conn
cover, while it
gives the target
a univ prop by
saying it’s tau in-
version

νX ∼= τ⩾0よ(X).

Remark 3.16. The functor ν : Sp → SynE does not have a left or right adjoint, as it is
not even an exact functor. When considered as landing in connective synthetic spectra
however, its categorical properties improve: it is then right adjoint to inverting τ. This
follows from the relation ν = τ⩾0 ◦よ and by pasting adjunctions, using thatよ is right
(and left) adjoint to τ−1 (being its inverse) as a functor to τ-invertible synthetic spectra:
the horizontal composites in

Sp SynE[τ
−1] SynE (SynE)⩾0

よ τ⩾0

τ−1

form the adjunction

Sp (SynE)⩾0.
ν

(−)τ=1

Using the homological t-structure, one can show the following.
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Theorem 3.17. There is an equivalence of monoidal ∞-categories only fully faithful
in general

ModCτ(SynE) ≃ StableE∗E.

If E is homotopy commutative, then this equivalence is naturally symmetric monoidal.

explain Stable

4 The signature of a synthetic analogue

Definition 4.1. The E-based Adams filtration is the functor σ ◦ νE : Sp → FilSp.

The first thing we will prove is that, on suitable spectra, this coincides with the E-Adams
spectral sequence as it is usually defined. However, the point of this is not to let go of its
synthetic origins, but it serves as an illustration of how to work with synthetic spectra.[2]

edit (also foot-
note)One can interact with the Adams spectral sequence entirely through the category theory

of synthetic spectra.

Remark 4.2. The functor σ ◦ νE is a composite of two lax symmetric monoidal functors,
making it into a symmetric monoidal functor. For general E, it is not known how to
directly construct this structure on the Adams filtration as it is usually defined. This is one bad sentence

of the great benefits of synthetic spectra: to define the symmetric monoidal ∞-category
SynE, we merely require E to be a homotopy associative ring spectrum. By contrast, to
turn the standard definition of the E-Adams filtration into a lax symmetric monoidal
functor, one would need an E∞-structure on E. Such a structure does not always exist in
cases of interest (e.g., BP or Morava K-theory), and the Adams spectral sequence does not
depend on it, so this is not desirable. The version in Definition 4.1 does not have any of
these defects. only defect is that

it requires E to be
of Adams type.
but we’ll address
that later

Irakli–Piotr, Re-
mark 5.62 (and
other places?)

Need to give a literature overview. the account here follows CDvN, but that in and of
itself is a collection and rewording of many different things

talk about the LES

explanation of result: Adams sseq of a spectrum is zero in negative filtrations, so nothing
changes, so tau is an iso there.

The following holds for homotopy classes of maps Y → X between two spectra, but for
simplicity we record it only for homotopy groups.

Proposition 4.3 ([Pst22], Theorem 4.58). Let X be a spectrum. Then for all s ⩽ 0 and all n,
inverting τ induces a natural isomorphism

πn,s(νX)
∼=−→ πnX.

[2]In particular, those readers not familiar with the Adams spectral sequence should not despair.

15



Phrased differently, it induces a natural isomorphism of bigraded Z[τ]-modules

π∗,⩽0(νX) ∼= π∗(X)[τ],

where πnX is placed in bidegree (n, 0).

Proof. We note that Exts,t
E∗E(E∗, E∗X) = 0 whenever s < 0. Part of the long exact sequence

from ?? reads

Exts−2, n+s−1
E∗E (E∗, E∗X) πn,s(νX) πn, s−1(νX) Exts−1, n+s−1

E∗E (E∗, E∗X)τ

If s ⩽ 0, we therefore see that the two outer terms vanish, so that the map in the middle is
an isomorphism. As a result, we only have to compute πn,0(νX). Because Sn,0 = νSn, the
fact that ν is fully faithful implies that the map πn,0(νX) → πnX is an isomorphism. ■

For a particularly nice class of spectra, this computes the entirety of the synthetic homo-
topy groups.

Proposition 4.4 ([Pst22], Proposition 4.60). Let M be a spectrum admitting a homotopy
E-module structure. Then we have an isomorphism of bigraded Z[τ]-modules

π∗,∗(νM) ∼= π∗(M)[τ]

where πn M is placed in bidegree (n, 0).

Proof. Using the previous result, we only have to show that πn,s(νM) vanishes when
s ⩾ 1. We first show this for s = 1. Since M is a homotopy E-module, the Hurewicz
homomorphism

E∗(−) : πn M −→ HomE∗E(E∗[n], E∗M)

is an isomorphism. Under the isomorphism πn M ∼= πn,0(νM), the Hurewicz homo- Piotr remark 3.18,
though there is
a typo there (he
flips the Hom
term)

morphism is exactly the right-most map in the exact sequence

Ext−1, n
E∗E (E∗, E∗M) πn,1(νM) πn,0(νM) Ext0, n

E∗E(E∗, E∗M).τ

As the Ext group on the left vanishes, we learn that πn,1(νM) = 0 for all n.

Next, we consider the case s > 1. Since M is a homotopy E-module, it is a retract of
E � M (using the multiplication E � M → M and the unit map S → E tensored with
M). As a result, E∗M is a retract of E∗(E � M) ∼= E∗E �E∗ E∗M, so that E∗M is a retract of
an extended comodule. In particular, it is an injective comodule, implying that the Ext
groups

Exts,t
E∗E(E∗, E∗M)

vanish for all s ⩾ 1. By the long exact sequence, this means that multiplication by τ

τ : πn, s+1(νX)
∼=−→ πn,s(νX)

is an isomorphism for all s ⩾ 1. Since we previously showed that π∗,1(νM) = 0, this
finishes the proof. ■
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connectivity of synthetic analogues

Example 4.5. Recall from Example 2.8 that for all spectra X, we have an isomorphism
νE � νX ∼= ν(E � X). Because E � X is a homotopy E-module, we learn from Proposi-
tion 4.4 that

νE∗,∗(νX) = π∗,∗(νE � νX) ∼= π∗,∗(ν(E � X)) ∼= E∗(X)[τ].

In particular, by Theorem 3.12 (a), this shows that νX is connective in the homological
t-structure. We see why this is independent of the connectivity of X as a spectrum: this
only affects the stem variable, while the homological t-structure is concerned with the
filtration.

We can learn a number of things from this computation. First, we see that (unless E∗(X)

vanishes) the shift Σ0,s νX for s ̸= 0 is not in the essential image of ν.

Another consequence is that νE∗,∗(νX) is τ-torsion free. As a result, we learn that

νE∗,∗(Cτ � X) ∼= (νE∗,∗(νX))/τ ∼= E∗(X),

where we mean the quotient by τ in the (non-derived) algebraic sense. This explains
(apart from the νE-locality) why Cτ � νX is 0-truncated in the homological t-structure; cf.
Theorem 3.12 (b).

Finally, inverting τ on νE∗,∗(νX) yields

νE∗,∗(よX) = νE∗,∗(νX[τ−1]) ∼= E∗(X)[τ±].

This explains why νX →よX is a connective cover, and more generally, why the White-
head tower ofよX

· · · −→ τ⩾1よX −→ τ⩾0よX −→ τ⩾−1よX −→ · · ·

can be identified with the multiplication-by-τ tower on νX

· · · Σ0,−1 νX νX Σ0,1 νX · · · .τ τ τ τ ▲

We can restate this result in terms of the signature of νM.

Corollary 4.6. Let M be a spectrum admitting a homotopy E-module structure. Then there is a
natural symmetric monoidal isomorphism of filtered spectra

σ(νM) ∼= Wh(M).
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Proof. For every s, inverting τ induces a natural map of spectra should improve
this: previously
you showed
σ pres filtered
colimits and
hence commutes
with inverting τ.
making precise
what that means
should immedi-
ately give you
this

(σ(νM))s = mapSynE
(S, Σ0,−s νM) mapSp(S, M) ∼= M.τ−1

Because the transition maps in σ(νM) are induced by τ, they become isomorphisms after
inverting τ, so that this assembles to a natural transformation σ(νM) → Const(M). This
is even a symmetric monoidal natural transformation because τ-inversion is symmetric
monoidal. Proposition 4.4 implies that σ(νM) is connective in the diagonal t-structure on
filtered spectra from ??. Indeed, combining this with Proposition 3.5 (2), we see that

πn,s(σ(νM)) ∼= πn, s−n(νM)

vanishes whenever s − n > 0, that is, whenever n < s. As a result, the natural map
σ(νM) → Const(M) factors through a natural map

σ(νM) −→ τ
diag
⩾0 (Const(M)) = Wh(M).

Moreover, this factorisation is through a symmetric monoidal transformation, because
the diagonal t-structure on filtered spectra is monoidal (?? ??). To establish that it is an
isomorphism, it suffices to show that σ(νM)s → τ⩾s M is an isomorphism for all s. This
is the other part of Proposition 4.4. ■

We can now describe the signature of a general synthetic analogue, at least if the Adams
spectral sequence converges conditionally. Note that we will not use this formula directly
to compute with synthetic spectra, but rather it serves a check that we are talking about
the correct objects.

We require a brief digression on terminology. If E is a homotopy ring spectrum, then its
unit map S → E gives rise to a semicosimplicial spectrum ∆inj → Sp of the form

E•+1 = E E � E · · · .

This receives a map from S. Tensoring this with a spectrum X, we obtain a map

X −→ Tot(E•+1 � X). (4.7)

We say that X is E-nilpotent complete if this map is an isomorphism.

Theorem 4.8. There is a natural map of filtered spectra CDvN Proposi-
tion 1.25

σ(νX) −→ Tot(Wh(E•+1 � X))

and it is an isomorphism if X is E-nilpotent complete.
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Proof. Applying ν to the diagram X → E•+1 � X yields a map

νX −→ Tot(ν(E•+1 � X)). (4.9)

Using ??, we see that this map is canonically isomorphic to

νX −→ Tot((νE)•+1 � νX).

One can check that this is an isomorphism if and only if (4.7) is: see [BHS23, Proposi-
tion A.13].

Because σ preserves limits (being a right adjoint), applying σ to (4.9) yields a map

σνX −→ Tot(σν(E•+1 � X)).

We claim that this is of the claimed form. Indeed, for all n ⩾ 1, the synthetic spectrum
ν(E�n � X) is the synthetic analogue of a homotopy E-module, so Corollary 4.6 applies,
yielding

Tot(σν(E•+1 � X)) ∼= Tot(Wh(E•+1 � X)). ■

As a corollary, we get the Burklund–Hahn–Senger Omnibus.

Remark 4.10. It is natural to ask what happens when X is not E-nilpotent complete. In this
case, the comparison map is never an isomorphism, and σ(νX) is the preferable filtration.
As a simple example: if E∗(X) = 0, then

Tot(Wh(E•+1 � X)) = 0, while σ(νX) = Const(X).

This second claim is a rephrasing of the isomorphism π∗,∗(νX) ∼= π∗X[τ±], which follows
from Proposition 4.3. In general, the comparison map of Theorem 4.8 is the τ-completion
of the filtered spectrum; i.e., it is an isomorphism on associated graded, and the target has
a vanishing limit. The filtered σ(νX) always has colimit X, while the colimit of the other refer back to prev

discussionis (by definition) isomorphic to X if and only if X is E-nilpotent complete. This being said,
the filtration σ(νX) is of course of very limited use if X is not E-nilpotent complete. explain: limit of

σν is zero iff nil-
potent complete?
make that more
apparent in the
proof above

Remark 4.11. If E-synthetic spectra are cellular, then the above result can be strengthened

ref

to say that the comparison map is an isomorphism if and only if X is E-nilpotent complete.
Indeed, the map (4.9) is an isomorphism if and only if X is E-nilpotent complete, so we
need to exclude the possibility that σ kills its cofibre. Analysing the formula of σ, we see
that for A ∈ SynE, the filtered spectrum σA is zero if and only if π∗,∗A = 0. probably better to

say somewhere: if
cellular, then σ is
conservative.Remark 4.12. The left-hand side of the comparison map of Theorem 4.8 is naturally a lax

symmetric monoidal functor. Under very heavy assumptions on E, the right-hand side
also carries a natural lax symmetric monoidal structure, and the comparison map matches
these up.
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■ If E carries an E1-structure, then the semicosimplicial spectrum E•+1 naturally
extends to a cosimplicial spectrum ∆ → Sp. cite Mathew–

Naumann–Noel.
isn’t this in some
sense an iff?■ If E carries an E∞-structure, then this naturally lifts to a cosimplicial E∞-ring ∆ →

CAlg. Because the Whitehead filtration is a symmetric monoidal functor, the filtered ref

spectrum Wh(En+1 � X) is naturally a filtered E∞-ring for every n. Taking limits is
it’s not a ring!
also fix later
points

lax symmetric monoidal (being the right adjoint to a strong symmetric monoidal
functor), so Tot(Wh(E•+1 � X)) is then naturally an E∞-ring. In this case, the
comparison map of Theorem 4.8 is a symmetric monoidal natural transformation.

Remark 4.13. One can do something similar for the Adams spectral sequence for maps
[Y, X] for a general spectrum Y; this is the generality of [PP21, Proposition 5.56, The-
orem 5.60]. In this case, one would look at the filtered spectrum

· · · −→ map(νY, Σ0,−1 νX) −→ map(νY, νX) −→ map(νY, Σ0,1 νX) −→ · · ·

with τ as transition maps. This defines a functor Spop × Sp → FilSp. The colimit of this
filtered spectrum is map(Y, X), and the starting page of the spectral sequence (indexed to
be page 2) is of the form

Exts, n+s
E∗E (E∗(Y), E∗(X)).

In general however, this does not agree with the E-Adams spectral sequence as defined
through tensor-powers of E; for this, we would require E∗(Y) to be projective over E∗.
We discuss this issue more in. ref
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