Eq.
$$H_{*}(-;F_{p})$$
 is $S_{p} \longrightarrow Mad_{F_{p}}(S_{p}) \xrightarrow{T_{*}} grVat_{F_{p}}$.
Then $F_{p} \in grVat_{F_{p}}$ is ignorials, and F_{p} is ignorbal lift:
 $Hom_{F_{p}}(H_{*}(X;F_{p}),F_{p}) \stackrel{c}{=} H^{*}(X;F_{p}) \stackrel{c}{=} (X,F_{p}).$
But: $H_{*}(F_{p};F_{p}) = X_{*}$ is very different from $\pi_{*}(F_{p}) - F_{p}$.
Reason this fiels: $H_{*}(X;F_{p})$ as F_{p} -vis. does not encoded encode
about \times . Near to "add information" and A_{*} - convalues
 $S_{p} \longrightarrow Mad_{F_{p}}(S_{p})$
 $H_{*}(-;F_{p}) \stackrel{c}{=} \int_{T_{*}} \int_{T_{*}}$

Moreover, B is consonable over A for a left exact commond.
Eq. Converting = Convert G(gVect Fp) for C: V → Axe BV.
Rink: • This (B, H) is unique if it exists: adopted high this for a poset
• The proof does not help in finding an explicit B in practice.
Letter can bailed a "synthetic codegory" Synh (E) when h colopted.
Sz. Synthetic A-modules (Take it slow: split it up into two steps.)
A ∈ CAlg. Define synthetic cat for the Exd step for Maly:
Provide Rice policits Rice and the proof.

Then Syn_h (Mappi) is associated to adopted T₁ · Nod_h → Mad_h (grhl).
Gets t-structure: we leveluice t-str. using standard one a Sp.
Then
Syn_h (Mad_h)
$$\cong$$
 TSh₂ (Mad_h : Set) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while looking are
 \cong TSh₂ (Mad_h : Ab) because while and the (grhl)
 \cong Mad_h (grhl) because while and the grant are
 \cong Mad_h (grhl) is M in Napp(-, M).
Here was PSh₂ (Mad_h : S) \cong TSh₂ (Mad_h : Sy₂) \cong TSh₂ (Mad_h : Sp)
Them to lacks in Sy²⁰. Here:
Mad_h $\xrightarrow{-1}$ Syn² Teo Syn \cong Mad_h (grhl) is the
 $=$ TSh₂ (Mad_h : S) \cong D(h) $=$ D(h

\$4. Recollection on derived 10-cats.

Def: A preside so-can is an so-cal C at 2 sinks D with this
ref. C & Dyo.
A Continuent preside variable is a preside one that's presentable and
where Pland church are help exact.
If C is preside on
$$E = D_{20}$$
, then when d "n-truncated by," in E
agrees with the termination on D . $C_{2n} \otimes (D_{2n})_{2n}$.
Divide $E = E_{20}$, (Right conjute t-the india d $(D_{2n}) = S_{2n}(E)$)
Point-theorem: if SA als cosy E preside then
 $F_{1n}^{(n)}(D_{20}(R), E) \cong F_{1n}^{(n)}(A, E^{(2)})$.
To make precise, used some hypotheres:
 $F_{1n}^{(n)}(D_{20}(R), E) \cong L_{1n}^{(n)}(A, E^{(2)})$. E Gale linds (R_{1}, T_{1n})
 $L_{1n}^{(n)}(D_{20}(R), E) \cong L_{1n}^{(n)}(A, E^{(2)})$. E Gale linds (R_{1}, T_{1n})
 $D(SA) = D(SA) / E so-connective equates $\frac{1}{2}$.
 $M = Contrologies, mean some hypotheres:
 $F_{1n}^{(n)}(D_{20}(R), E) \cong L_{1n}^{(n)}(A, E^{(2)})$. E Gale linds (R_{1}, T_{1n})
 $L_{1n}^{(n)}(D_{20}(R), E) \cong L_{1n}^{(n)}(A, E^{(2)})$. E Gale linds (R_{1}, T_{1n})
 $D(SA) = D(SA) / E so-connective equates $\frac{1}{2}$. $\frac{1}{2}$ Souther $CSAS$
 $M = D(C)h = D(SA) / E so-connective equates $\frac{1}{2}$. $\frac{1}{2}$ Souther SAS
 $M = D(C)h = S(C)h - \frac{1}{2}$
 $M = D(C)h = S(C)h - \frac{1}{2}$
 $M = D(C)h = D(C)h / Eso-connective $\frac{1}{2}$ south rest $\frac{1}{2}$. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$. $\frac{1}{2}$ $\frac$$$$$$

the IR E x Good periods, then
G
$$D(C;h) \rightarrow E \cong G_0 \cdot X \rightarrow E^{V} + E \stackrel{h}{\longrightarrow} x \stackrel{h}{\longrightarrow} E^{V}$$

exact, admorphic $\cong G_0 \cdot X \rightarrow E^{V} + E \stackrel{h}{\longrightarrow} x \stackrel{h}{\longrightarrow} E^{V}$
exact, admorphic $\cong G_0 \cdot X \rightarrow E^{V} + E \stackrel{h}{\longrightarrow} x \stackrel{h}{\longrightarrow} E^{V}$
exact, admorphic $\exp (2\pi i \sum_{p \in V} x_{p}) + e \exp (2\pi i \sum_{p \in V} x_{p})$
Conduction: idea is: if $F = x_{p}$, the equily $S_{p}(x_{p}) \cong Gooder = e \cos k_{p}$
To generalize the would need to had a mitch varian P then mayor.
Universal and: $N = Th_{\Sigma}(E^{V}; Ser)$ (thele: ideales cologient Q T_{S})
and $h \cdot \times (\rightarrow (-, \times)_{C}$. (proving O by compactness)
Then define $D(C; h) \coloneqq Th_{\Sigma}(E^{V}; Sp)$.
Comparising subset K .
Left X to $PSi_{\Sigma}(E^{V}; Sp) \cdot take scales (as subset. B
containing $X \in PSi_{\Sigma}(E^{V})^{V}$.
Then define $D(E;h) \coloneqq Th_{\Sigma}(E^{V}; Sp) / R$.
5 Sother $E_{N}(-1:Sp) \rightarrow Good_{E_{N}} \in mid D(Sp; E_{N}(-1))$.
Reg: $Sym_{E}(Sp) \cong$ Ind Thick ($VP \mid P \in Sp_{E}^{V}$).
Now, Sp_{E}^{V} has movidal sit. Give thick ($VP \mid a$ mon or by
declaring x to be symetric monoridal on $P \in Sp_{E}^{V}$.
Now, Sp_{E}^{V} has movidal sit. Give the $(N = Th_{E} = O)^{V}$
Sorrectimes this becomes $Simpler : f_{E} E = 0$.
The perty such equilits give $Sym_{E} = 0$.
The perty is each equilits give $Sym_{E} = 0$.
The perty is each equilits give $Sym_{E} = 0$.
The perty is each equilits give $Sym_{E} = 0$.
The perty is each equilits give $Sym_{E} = 0$.
The perty is each equilits give $Sym_{E} = 0$ with $Paperity$.$

Variant Vession of E-ASS defined via $E^{\oplus \bullet \dagger 1}$. By categorical country, then is ab. cat. If with $F: Sp \rightarrow H$ adopted giving rise to this. But not clear how to describe this in general. If $P \in S_{CE}^{PP}$, then $Ext_{H}(F(P), F(X)) \stackrel{\text{\tiny def}}{=} F_{XE} \in (E_*P, E_*X)$.