
Foundations and Trends® in Programming

Languages

From Fine- to Coarse-Grained
Dynamic Information Flow Control

and Back
A Tutorial on Dynamic Information Flow

Suggested Citation: Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and
Deian Stefan (2023), “From Fine- to Coarse-Grained Dynamic Information Flow Control
and Back”, Foundations and Trends® in Programming Languages: Vol. 8, No. 1, pp
1–117. DOI: 10.1561/2500000046.

Marco Vassena
Utrecht University

m.vassena@uu.nl

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Deepak Garg
Max Planck Institute for Software Systems

dg@mpi-sws.org

Vineet Rajani
University of Kent

v.rajani@kent.ac.uk

Deian Stefan
University of California, San Diego

deian@cs.ucsd.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 3

2 Fine-Grained IFC Calculus 8
2.1 Dynamics . 10
2.2 Security . 16
2.3 Flow-Sensitive References 23

3 Coarse-Grained IFC Calculus 42
3.1 Dynamics . 44
3.2 Security . 50
3.3 Flow-Sensitive References 56

4 Verified Artifacts 67
4.1 Artifact Analysis . 68

5 Fine- to Coarse-Grained Program Translation 72
5.1 Types and Values . 72
5.2 Expressions . 73
5.3 References . 78
5.4 Correctness . 79
5.5 Recovery of Non-Interference 80

6 Coarse- to Fine-Grained Program Translation 84
6.1 Types and Values . 85
6.2 Expressions and Thunks 87
6.3 References . 89
6.4 Cross-Language Equivalence Relation 90
6.5 Correctness . 94
6.6 Recovery of Non-Interference 96

7 Related work 100
7.1 Relative Expressiveness of IFC Systems 100
7.2 Coarse-Grained Dynamic IFC 102
7.3 Fine-Grained Dynamic IFC 103
7.4 Label Introspection and Flow-Sensitive References 104
7.5 Proof Techniques . 104

8 Conclusion 107

References 108

From Fine- to Coarse-Grained
Dynamic Information Flow Control
and Back
Marco Vassena1, Alejandro Russo2, Deepak Garg3, Vineet Rajani4 and
Deian Stefan5

1Utrecht University, The Netherlands; m.vassena@uu.nl
2Chalmers University of Technology, Sweden; russo@chalmers.se
3Max Planck Institute for Software Systems, Germany; dg@mpi-sws.org
4University of Kent, UK; v.rajani@kent.ac.uk
5University of California, San Diego, USA; deian@cs.ucsd.edu

ABSTRACT
This tutorial provides a complete and homogeneous account
of the latest advances in fine- and coarse-grained dynamic
information-flow control (IFC) security. Since the 1970s, the
programming language and the operating system commu-
nities proposed different IFC approaches. IFC operating
systems track information flows in a coarse-grained fash-
ion, at the granularity of a process. In contrast, traditional
language-based approaches to IFC are fine-grained: they
track information flows at the granularity of program vari-
ables. For decades, researchers believed coarse-grained IFC
to be strictly less permissive than fine-grained IFC—coarse
grained IFC systems seem inherently less precise because
they track less information—–and so granularity appeared
to be a fundamental feature of IFC systems.

Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and Deian Stefan
(2023), “From Fine- to Coarse-Grained Dynamic Information Flow Control and
Back”, Foundations and Trends® in Programming Languages: Vol. 8, No. 1, pp 1–117.
DOI: 10.1561/2500000046.
©2023 M. Vassena et al.

2

We show that the granularity of the tracking system does not
fundamentally restrict how precise or permissive dynamic
IFC systems can be. To this end, we mechanize two mostly
standard languages, one with a fine-grained dynamic IFC
system and the other with a coarse-grained dynamic IFC
system, and prove a semantics-preserving translation from
each language to the other. In addition, we derive the stan-
dard security property of non-interference of each language
from that of the other, via our verified translation.
These translations stand to have important implications on
the usability of IFC approaches. The coarse- to fine-grained
direction can be used to remove the label annotation burden
that fine-grained systems impose on developers, while the
fine- to coarse-grained translation shows that coarse-grained
systems—which are easier to design and implement—can
track information as precisely as fine-grained systems and
provides an algorithm for automatically retrofitting legacy
applications to run on existing coarse-grained systems.

1
Introduction

Dynamic information-flow control (IFC) is a principled approach to
protecting the confidentiality and integrity of data in software systems.
Conceptually, dynamic IFC systems are very simple—they associate
security levels or labels with every bit of data in the system to subse-
quently track and restrict the flow of labeled data throughout the system,
e.g., to enforce a security property such as non-interference (Goguen
and Meseguer, 1982). In practice, dynamic IFC implementations are
considerably more complex—the granularity of the tracking system
alone has important implications for the usage of IFC technology. In-
deed, until somewhat recently (Roy et al., 2009; Stefan et al., 2017),
granularity was the main distinguishing factor between dynamic IFC
operating systems and programming languages. Most IFC operating
systems (e.g., Efstathopoulos et al., 2005; Zeldovich et al., 2006; Krohn
et al., 2007) are coarse-grained, i.e., they track and enforce informa-
tion flow at the granularity of a process or thread. Conversely, most
programming languages with dynamic IFC (e.g., Austin and Flanagan,
2009; Zdancewic, 2002; Hedin et al., 2014; Hritcu et al., 2013; Yang
et al., 2012) track the flow of information in a more fine-grained fashion,
e.g., at the granularity of program variables and references.

3

4 Introduction

Dynamic coarse-grained IFC systems in the style of LIO (Stefan
et al., 2017; Stefan et al., 2011; Stefan et al., 2012; Heule et al., 2015;
Buiras et al., 2015; Vassena et al., 2017) have several advantages over dy-
namic fine-grained IFC systems. Such coarse-grained systems are often
easier to design and implement—they inherently track less information.
For example, LIO protects against control-flow-based implicit flows by
tracking information at a coarse-grained level—to branch on secrets,
LIO programs must first taint the context where secrets are going to
be observed. Finally, coarse-grained systems often require considerably
fewer programmer annotations—unlike fine-grained ones. More specifi-
cally, developers often only need a single label-annotation to protect
everything in the scope of a thread or process responsible to handle
sensitive data.

Unfortunately, these advantages of coarse-grained systems give up
on the many benefits of fine-grained ones. For instance, one main
drawback of coarse-grained systems is that it requires developers to
compartmentalize their application in order to avoid both false alarms
and the label creep problem, i.e., wherein the program gets too “tainted”
to do anything useful. To this end, coarse-grained systems often create
special abstractions (e.g., event processes (Efstathopoulos et al., 2005),
gates (Zeldovich et al., 2006), and security regions (Roy et al., 2009))
that compensate for the conservative approximations of the coarse-
grained tracking approach. Furthermore, fine-grained systems do not
impose the burden of focusing on avoiding the label creep problem on
developers. By tracking information at fine granularity, such systems
are seemingly more flexible and do not suffer from false alarms and label
creep issues (Austin and Flanagan, 2009) as coarse-grained systems do.
Indeed, fine-grained systems such as JSFlow (Hedin et al., 2014) can
often be used to secure existing, legacy applications; they only require
developers to properly annotate the application.

This tutorial removes the division between fine- and coarse-grained
dynamic IFC systems and the belief that they are fundamentally differ-
ent. In particular, we show that dynamic fine-grained and coarse-grained
IFC are equally expressive. Our work is inspired by the recent work
of Rajani et al. (2017) and Rajani and Garg (2018), who prove similar
results for static fine-grained and coarse-grained IFC systems. Specifi-

5

cally, they establish a semantics- and type-preserving translation from a
coarse-grained IFC type system to a fine-grained one and vice-versa. We
complete the picture by showing a similar result for dynamic IFC sys-
tems that additionally allow introspection on labels at run-time. While
label introspection is meaningless in a static IFC system, in a dynamic
IFC system this feature is key to both writing practical applications
and mitigating the label creep problem (Stefan et al., 2017).

Using the Agda proof assistant (Norell, 2009; Bove et al., 2009), we
formalize a traditional fine-grained system (in the style of Austin and
Flanagan, 2009) extended with label introspection primitives, as well
as a coarse-grained system (in the style of Stefan et al., 2017). We then
define and formalize modular semantics-preserving translations between
them. Our translations are macro-expressible in the sense of Felleisen
(1991), i.e., they can be expressed as a pure source program rewriting.

We show that a translation from fine- to coarse-grained is possible
when the coarse-grained system is equipped with a primitive that limits
the scope of tainting (e.g., when reading sensitive data). In practice,
this is not an imposing requirement since most coarse-grained systems
rely on such primitives for compartmentalization. For example, Stefan
et al. (2017) and Stefan et al. (2012), provide toLabeled(·) blocks and
threads for precisely this purpose. Dually, we show that the translation
from coarse- to fine-grained is possible when the fine-grained system has
a primitive taint(·) that relaxes precision to keep the program counter
label synchronized when translating a program to the coarse-grained
language. While this primitive is largely necessary for us to establish
the coarse- to fine-grained translation, extending existing fine-grained
systems with it is both secure and trivial.

The implications of our results are multi-fold. The fine- to coarse-
grained translation formally confirms an old OS-community hypothesis
that it is possible to restructure a system into smaller compartments
to address the label creep problem—indeed our translation is a (naive)
algorithm for doing so. This translation also allows running legacy
fine-grained IFC compatible applications atop coarse-grained systems
like LIO. Dually, the coarse- to fine-grained translation allows devel-
opers building new applications in a fine-grained system to avoid the
annotation burden of the fine-grained system by writing some of the

6 Introduction

code in the coarse-grained system and compiling it automatically to the
fine-grained system with our translation. The technical contributions of
this monograph are:

• A pair of semantics-preserving translations between traditional dy-
namic fine-grained and coarse-grained IFC systems equipped with
label introspection and flow-insensitive references (Theorems 5
and 7).

• Two different proofs of termination-insensitive non-interference
(TINI) for each calculus: one is derived directly in the usual way
(Theorems 1 and 3), while the other is recovered via our verified
translation (Theorems 6 and 8).

• Mechanized Agda proofs of our results (~4,000 LOC).

This monograph is based on our conference paper (Vassena et al.,
2019) and extended with:

• A tutorial-style introduction to fine- and coarse-grained dynamic
IFC, which (i) illustrates their specific features and (apparent)
differences through examples, and (ii) supplements our proof
artifacts with general explanations of the proof techniques used.

• Flow-sensitive references, a key feature for boosting the permis-
siveness of dynamic IFC systems (Austin and Flanagan, 2009). We
extend both fine- and coarse-grained language with flow-sensitive
references (Sections 2.3 and 3.3), adapt their security proofs (The-
orems 2 and 4), and the verified translations to each other.

• A discussion and analysis of our extended proof artifact (~6,900
LOC)1. Our analysis finds that the security proofs for fine-grained
languages are between 43% and 74% longer than for coarse-grained
languages. These empirical results suggests that it is indeed easier
to reason about coarse-grained IFC languages than fine-grained
languages.

1The extended artifact is available at https://hub.docker.com/r/marcovassena/
granularity-ftpl and supersedes the artifact archived with the conference paper.

https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl

7

This tutorial is organized as follows. Our dynamic fine- and coarse-
grained IFC calculi are introduced in Sections 2 and 3, and then ex-
tended with flow-sensitive references in Sections 2.3 and 3.3, respectively.
We prove the soundness guarantees (i.e., termination-insensitive non-
interference) of the original languages (Sections 2.2 and 3.2), and of the
extended languages (Sections 2.3.3 and 3.3.3). In Section 4, we discuss
our mechanized proof artifacts and compare the security proofs of the
two calculi, before and after the extension. In Section 5, we present the
fine- to coarse-grained translation and a proof of non-interference for
the fine-grained calculus recovered from non-interference of the other
calculus through our verified translation. Section 6 presents similar
results in the other direction. Related work is described in Section 7
and Section 8 concludes the tutorial.

2
Fine-Grained IFC Calculus

In order to compare in a rigorous way fine- and coarse-grained dynamic
IFC techniques, we formally define the operational semantics of two
λ-calculi that respectively perform fine- and coarse-grained IFC dynam-
ically. Figure 2.1 shows the syntax of the dynamic fine-grained IFC
calculus λdFG, which is inspired by Austin and Flanagan (2009) and
extended with a standard (security unaware) type system Γ ⊢ e : τ

(omitted), sum and product data types and security labels ℓ ∈ L

that form a lattice (L ,⊑).1 In order to capture flows of information
precisely at run-time, the λdFG-calculus features intrinsically labeled
values, written rℓ, meaning that raw value r has security level ℓ. Com-
pound values, e.g., pairs and sums, carry labels to tag the security
level of each component, for example a pair containing a secret and a
public boolean would be written (trueH , falseL).2 Functional values
are closures (x.e, θ), where x is the variable that binds the argument in
the body of the function e and all other free variables are mapped to
some labeled value in the environment θ. The λdFG-calculus features

1The lattice is arbitrary and fixed. In examples we will often use the two point
lattice {L, H }, which only disallows secret to public flow of information, i.e., H ̸⊑ L.

2We define the boolean type bool = unit + unit, boolean values as raw values,
i.e., true = inl(()L), false = inr(()L) and if e then e1 else e2 = case e .e1 .e2.

8

9

Types: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L | Ref τ

Labels: ℓ, pc ∈ L

Addresses: n ∈ N
Environments: θ ∈ Var ⇀ Value

Raw Values: r ::= () | (x.e, θ) | inl(v) | inr(v) | (v1, v2) | ℓ | nℓ

Values: v ::= rℓ

Expression: e ::= x |λx.e | e1 e2 | () | ℓ | (e1, e2) | fst(e) | snd(e)
| inl(e) | inr(e) | case(e, x.e1, x.e2)
| getLabel | labelOf(e) | e1 ⊑? e2 | taint(e1, e2)
| new(e) | ! e | e1 := e2 | labelOfRef(e)

Type System: Γ ⊢ e : τ

Configurations: c ::= ⟨Σ, e⟩
Stores: Σ ∈ (ℓ : Label)→ Memory ℓ

Memory ℓ: M ::= [] | r : M

Figure 2.1: Syntax of λdFG.

a labeled partitioned store, i.e., Σ ∈ (ℓ : L) → Memory ℓ, where
Memory ℓ is the memory that contains values at security level ℓ. Each
reference carries an additional label annotation that records the label
of the memory it refers to—reference nℓ points to the n-th cell of the
ℓ-labeled memory, i.e., Σ(ℓ). Notice that this label has nothing to do
with the intrinsic label that decorates the reference itself. For exam-
ple, a reference (nH)L represents a secret reference in a public context,
whereas (nL)H represents a public reference in a secret context. Notice
that there is no order invariant between those labels—in the latter case,
the IFC runtime monitor prevents writing data to the reference to avoid
implicit flows. A program can create, read and write a labeled reference
via constructs new(e), !e and e1 := e2 and inspect its subscripted label
with the primitive labelOfRef(·).

10 Fine-Grained IFC Calculus

2.1 Dynamics

The operational semantics of λdFG includes a security monitor that
propagates the label annotations of input values during program execu-
tion and assigns security labels to the result accordingly. The monitor
prevents information leakage by stopping the execution of potentially
leaky programs, which is reflected in the semantics by not providing
reduction rules for the cases that may cause insecure information flow.3
In Figure 2.2, the relation ⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, v⟩ denotes the evaluation of
program e with initial store Σ that terminates with labeled value v

and final store Σ′. The environment θ stores the input values of the
program and is extended with intermediate results during function
application and case analysis. The subscript pc is the program counter
label (Sabelfeld and Myers, 2006)— it is a label that represents the
security level of the context in which the expression is evaluated. The
semantics employs the program counter label to (i) propagate and assign
labels to values computed by a program, and (ii) prevent implicit flow
leaks that exploit the control flow and the store (explained below).

In particular, when a program produces a value, the monitor tags
the raw value with the program counter label in order to record
the security level of the context in which it was computed. For this
reason all the introduction rules for ground and compound types
([Unit,Label,Fun,Inl,Inr,Pair]) assign security level pc to the result.
Other than that, these rules are fairly standard—we simply note that
rule [Fun] creates a closure by capturing the current environment θ.

When the control flow of a program depends on some intermediate
value, the program counter label is joined with the value’s label so that
the label of the final result will be tainted with the result of the inter-
mediate value. For instance, consider case analysis, i.e., case e x.e1 x.e2.
Rules [Case1] and [Case2] evaluate the scrutinee e to a value (either
inl(v)ℓ or inr(v)ℓ), add the value to the environment, i.e., θ[x 7→ v],
and then evaluate the appropriate branch with a program counter label
tainted with v’s security label, i.e., pc ⊔ ℓ. As a result, the monitor
tracks data dependencies across control flow constructs through the

3In this work, we ignore leaks that exploit program termination and prove
termination insensitive non-interference for λdFG (Theorem 1).

2.1. Dynamics 11

(Var)
⟨Σ, x⟩ ⇓θ

pc ⟨Σ, θ(x) ⊔ pc⟩
(Unit)
⟨Σ, ()⟩ ⇓θ

pc ⟨Σ, ()pc⟩
(Label)
⟨Σ, ℓ⟩ ⇓θ

pc ⟨Σ, ℓpc⟩

(Fun)
⟨Σ, λx.e⟩ ⇓θ

pc ⟨Σ, (x.e, θ)pc⟩

(App)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, (x.e, θ′)ℓ⟩
⟨Σ′, e2⟩ ⇓θ

pc ⟨Σ′′, v2⟩ ⟨Σ′′, e⟩ ⇓θ′[x 7→v2]
pc ⊔ ℓ ⟨Σ′′′, v⟩

⟨Σ, e1 e2⟩ ⇓θ
pc ⟨Σ′′′, v⟩

(Inl)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, v⟩
⟨Σ, inl(e)⟩ ⇓θ

pc ⟨Σ′, inl(v)pc⟩

(Inr)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, v⟩
⟨Σ, inr(e)⟩ ⇓θ

pc ⟨Σ′, inr(v)pc⟩

(Case1)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, inl(v1)ℓ⟩ ⟨Σ′, e1⟩ ⇓θ[x 7→v1]
pc ⊔ ℓ ⟨Σ′′, v⟩

⟨Σ, case(e, x.e1, x.e2)⟩ ⇓θ
pc ⟨Σ′′, v⟩

(Case2)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, inr(v2)ℓ⟩ ⟨Σ′, e2⟩ ⇓θ[x 7→v2]
pc ⊔ ℓ ⟨Σ′′, v⟩

⟨Σ, case(e, x.e1, x.e2)⟩ ⇓θ
pc ⟨Σ′′, v⟩

(Pair)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, v1⟩ ⟨Σ′, e2⟩ ⇓θ
pc ⟨Σ′′, v2⟩

⟨Σ, (e1, e2)⟩ ⇓θ
pc ⟨Σ′′, (v1, v2)pc⟩

(Fst)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, (v1, v2)ℓ⟩
⟨Σ, fst(e)⟩ ⇓θ

pc ⟨Σ′, v1 ⊔ ℓ⟩

(Snd)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, (v1, v2)ℓ⟩
⟨Σ, snd(e)⟩ ⇓θ

pc ⟨Σ′, v2 ⊔ ℓ⟩

Figure 2.2: Big-step semantics for λdFG (part I).

12 Fine-Grained IFC Calculus

(LabelOf)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, rℓ⟩
⟨Σ, labelOf(e)⟩ ⇓θ

pc ⟨Σ′, ℓℓ⟩

(GetLabel)
⟨Σ, getLabel⟩ ⇓θ

pc ⟨Σ′′, pcpc⟩

(⊑?-T)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, ℓ1
ℓ′

1⟩ ⟨Σ′, e2⟩ ⇓θ
pc ⟨Σ′′, ℓ2

ℓ′
2⟩ ℓ1 ⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓θ
pc ⟨Σ′′, inl(()pc)ℓ′

1 ⊔ ℓ′
2⟩

(⊑?-F)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, ℓ1
ℓ′

1⟩ ⟨Σ′, e2⟩ ⇓θ
pc ⟨Σ′′, ℓ2

ℓ′
2⟩ ℓ1 ̸⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓θ
pc ⟨Σ′′, inr(()pc)ℓ′

1 ⊔ ℓ′
2⟩

(Taint)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, ℓℓ′⟩ ℓ′ ⊑ ℓ ⟨Σ′, e2⟩ ⇓θ
ℓ ⟨Σ′′, v⟩

⟨Σ, taint(e1, e2)⟩ ⇓θ
pc ⟨Σ′′, v⟩

Figure 2.3: Big-step semantics for λdFG (part II).

label of the result. Function application follows the same principle. In
rule [App], since the first premise evaluates the function to some closure
(x.e, θ′) at security level ℓ, the third premise evaluates the body with
program counter label raised to pc ⊔ ℓ. The evaluation strategy is
call-by-value: it evaluates the argument before the body in the second
premise and binds the corresponding variable to its value in the envi-
ronment of the closure, i.e., θ′[x 7→ v2]. Notice that the security level of
the argument is irrelevant at this stage and that this is beneficial to not
over-tainting the result: if the function never uses its argument then the
label of the result depends exclusively on the program counter label,
e.g., (λx.()) y ⇓[y 7→ trueH]

L ()L. The elimination rules for variables
and pairs taint the label of the corresponding value with the program
counter label for security reasons. In rules [Var,Fst,Snd] the notation,
v ⊔ ℓ′ upgrades the label of v with ℓ′—it is a shorthand for rℓ ⊔ ℓ′ with
v = rℓ. Intuitively, public values must be considered secret when the
program counter is secret, for example x ⇓[x 7→ ()L]

H ()H .

2.1. Dynamics 13

2.1.1 Label Introspection

The λdFG-calculus features primitives for label introspection, namely
getLabel, labelOf(·) and ⊑?—see Figure 2.3. These operations allow
to respectively retrieve the current program counter label, obtain the
label annotations of values, and compare two labels (inspecting labels
at run-time is useful for controlling and mitigating the label creep
problem).

Enabling label introspection raises the question of what label should
be assigned to the label itself (in λdFG every value, including all label
values, must be annotated with a label). As a matter of fact, labels can be
used to encode secret information and thus careless label introspection
may open the doors to information leakage (Stefan et al., 2017). Notice
that in λdFG, the label annotation on the result is computed by the
semantics together with the result and thus it is as sensitive as the
result itself (the label annotation on a value depends on the sensitivity
of all values affecting the control-flow of the program up to the point
where the result is computed). This motivates the design choice to
protect each projected label with the label itself, i.e., ℓℓ and pcpc in
rules [GetLabel] and [LabelOf] in Figure 2.3. We remark that this
choice is consistent with previous work on coarse-grained IFC languages
(Buiras et al., 2014; Stefan et al., 2017), but novel in the context of fine
grained IFC.

Finally, primitive taint(e1, e2) temporarily raises the program coun-
ter label to the label given by the first argument in order to evaluate
the second argument. The fine-to-coarse translation in Section 5 uses
taint(·) to loosen the precision of λdFG in a controlled way and match
the coarse approximation of our coarse-grained IFC calculus (λdCG)
by upgrading the labels of intermediate values systematically. In rule
[Taint], the constraint ℓ′ ⊑ ℓ ensures that the label of the nested
context ℓ is at least as sensitive as the program counter label pc. In
particular, this constraint ensures that the operational semantics have
Property 1 (“the label of the result of any λdFG program is always at
least as sensitive as the program counter label”) even with rule [Taint].

Property 1. If ⟨Σ, e⟩ ⇓θ
pc ⟨Σ′, rℓ⟩ then pc ⊑ ℓ.

14 Fine-Grained IFC Calculus

(New)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, rℓ⟩ n = |Σ′(ℓ)|
⟨Σ, new(e)⟩ ⇓θ

pc ⟨Σ′[ℓ 7→ Σ′(ℓ)[n 7→ r]], (nℓ)pc⟩

(Read)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, nℓ
ℓ′⟩ Σ′(ℓ)[n] = r

⟨Σ, !e⟩ ⇓θ
pc ⟨Σ′, rℓ ⊔ ℓ′⟩

(Write)
⟨Σ, e1⟩ ⇓θ

pc ⟨Σ′, nℓ
ℓ1⟩ ℓ1 ⊑ ℓ ⟨Σ′, e2⟩ ⇓θ

pc ⟨Σ′′, rℓ2⟩ ℓ2 ⊑ ℓ

⟨Σ, e1 := e2⟩ ⇓θ
pc ⟨Σ′′[ℓ 7→ Σ′′(ℓ)[n 7→ r]], pc⟩

(LabelOfRef)
⟨Σ, e⟩ ⇓θ

pc ⟨Σ′, nℓ
ℓ′⟩

⟨Σ, labelOfRef(e)⟩ ⇓θ
pc ⟨Σ′, ℓℓ ⊔ ℓ′⟩

Figure 2.4: Big-step semantics for λdFG (references).

Proof. By induction on the given evaluation derivation.

2.1.2 References

We now extend the semantics presented earlier with primitives that
inspect, access and modify the labeled store via labeled references. See
Figure 2.4. Rule [New] creates a reference nℓ, labeled with the security
level of the initial content, i.e., label ℓ, in the ℓ-labeled memory Σ(ℓ) and
updates the memory store accordingly.4 Since the security level of the
reference is as sensitive as the content, which is at least as sensitive as
the program counter label by Property 1 (pc ⊑ ℓ) this operation does
not leak information via implicit flows. When reading the content of
reference nℓ at security level ℓ′, rule [Read] retrieves the corresponding
raw value from the n-th cell of the ℓ-labeled memory, i.e., Σ′(ℓ)[n] = r

and upgrades its label to ℓ ⊔ ℓ′ since the decision to read from that

4|M | denotes the length of memory M—memory indices start at 0.

2.1. Dynamics 15

particular reference depends on information at security level ℓ′. When
writing to a reference the monitor performs security checks to avoid leaks
via explicit or implicit flows. Rule [Write] achieves this by evaluating
the reference, i.e., (nℓ)ℓ1 and replacing its content with the value of
the second argument, i.e., rℓ2 , under the conditions that the decision
of “which” reference to update does not depend on data more sensitive
than the reference itself, i.e., ℓ1 ⊑ ℓ (not checking this would leak via
an implicit flow),5 and that the new content is no more sensitive than
the reference itself, i.e., ℓ2 ⊑ ℓ (not checking this would leak sensitive
information to a less sensitive reference via an explicit flow). Lastly,
rule [LabelOfRef] retrieves the label of the reference and protects it
with the label itself (as explained before) and taints it with the security
level of the reference, i.e., ℓℓ ⊔ ℓ′ to avoid leaks. Intuitively, the label of
the reference, i.e., ℓ, depends also on data at security level ℓ′ as seen in
the premise.

Other Extensions. We consider λdFG equipped with references as
sufficient foundation to study the relationship between fine-grained and
coarse-grained IFC. We remark that extending it with other side-effects
such as file operations, or other IO-operations would not change our
claims in Section 5 and 6. The main reason for this is that, typically,
handling such effects would be done at the same granularity in both
IFC enforcements. For instance, when adding file operations, both
fine- (e.g., Broberg et al., 2013) and coarse-grained (e.g., Russo et al.,
2009; Stefan et al., 2011; Efstathopoulos et al., 2005; Krohn et al.,
2007) enforcements are likely to assign a single flow-insensitive (i.e.,
immutable) label to each file in order to denote the sensitivity of its
content. Then, those features could be handled flow-insensitively in
both systems (e.g., Pottier and Simonet, 2003; Myers et al., 2006; Stefan
et al., 2011; Vassena and Russo, 2016), in a manner similar to what we
have just shown for references in λdFG.

Importantly, fine- and coarse-grained IFC are equally expressive
also when extended with flow-sensitive (i.e., mutable) labels. Unlike

5Notice that pc ⊑ ℓ1 by Property 1, thus pc ⊑ ℓ1 ⊑ ℓ by transitivity. An
implicit flow would occur if a reference is updated in a high branch, i.e., depending
on the secret, e.g., let x = new(0) in if secret then x := 1 else ().

16 Fine-Grained IFC Calculus

flow-insensitive labels, these labels can change during program execution
to reflect the current sensitivity of the content of various resources (e.g.,
references, files etc.). In order to show that fine- and coarse-grained IFC
equally support flow-sensitive features, we follow the same approach
described above. In particular, we add flow-sensitive references (Austin
and Flanagan, 2009) to λdFG (Section 2.3) and λdCG (Section 3.3) and
then complete our pair of verified semantics- and security-preserving
translations from one language to the other (Sections 5 and 6).

2.2 Security

We now prove that λdFG is secure, i.e., it satisfies termination insen-
sitive non-interference (TINI) (Goguen and Meseguer, 1982; Volpano
and Smith, 1997). Intuitively, the security condition says that no ter-
minating λdFG program leaks information, i.e., changing secret inputs
does not produce any publicly visible effect. The proof technique is
standard and based on the notion of L-equivalence, written v1 ≈L v2,
which relates values (and similarly raw values, environments, stores and
configurations) that are indistinguishable for an attacker at security
level L. For clarity we use the 2-points lattice, assume that secret data is
labeled with H and that the attacker can only observe data at security
level L. Our mechanized proofs are parametric in the lattice and in the
security level of the attacker.

2.2.1 L-Equivalence

L-equivalence for values and raw-values is defined formally by mutual
induction in Figure 2.5. Rule [ValueL] relates observable values, i.e.,
raw values labeled below the security level of the attacker. These values
have the same observable label (ℓ ⊑ L) and related raw values, i.e.,
r1 ≈L r2. Rule [ValueH] relates non-observable values, which may have
different labels not below the attacker level, i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L. In
this case, the raw values can be arbitrary. Raw values are L-equivalent
when they consist of the same ground value (i.e., rules [Unit] and
[Label]), or are homomorphically related for compound values. For
example, for the sum type the relation requires that both values are

2.2. Security 17

either a left or a right injection through rules [Inl] and [Inr]. Closures
are related by rule [Closure], if they contain the same function (up
to α-renaming)6 and L-equivalent environments, i.e., the environments
are L-equivalent pointwise. Formally, θ1 ≈L θ2 iff dom(θ1) ≡ dom(θ2)
and ∀x.θ1(x) ≈L θ2(x).

(ValueL)
ℓ ⊑ L r1 ≈L r2

r1
ℓ ≈L r2

ℓ

(ValueH)
ℓ1 ̸⊑ L ℓ2 ̸⊑ L

r1
ℓ1 ≈L r2

ℓ2

(Unit)
() ≈L ()

(Label)
ℓ ≈L ℓ

(Closure)
e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(Inl)
v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)
v1 ≈L v2

inr(v1) ≈L inr(v2)

(Pair)
v1 ≈L v′

1 v2 ≈L v′
2

(v1, v2) ≈L (v′
1, v′

2)

(RefL)
ℓ ⊑ L

nℓ ≈L nℓ

(RefH)
ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1ℓ1 ≈L n2ℓ2

Figure 2.5: L-equivalence for λdFG values and raw values.

We define L-equivalence for stores pointwise, i.e., Σ1 ≈L Σ2 iff for all
labels ℓ ∈ L , Σ1(ℓ) ≈L Σ2(ℓ). Memory L-equivalence relates arbitrary
ℓ-labeled memories if ℓ ̸⊑ L, and pointwise otherwise, i.e., M1 ≈L M2
iff M1 and M2 are memories labeled with ℓ ⊑ L, |M1| = |M2| and for all
n ∈ {0 . . |M1| − 1}, M1[n] ≈L M2[n]. Similarly, L-equivalence relates
any two secret references through rule [RefH], but requires the same
label and address for public references in rule [RefL]. We naturally lift
L-equivalence to initial configurations, i.e., c1 ≈L c2 iff c1 = ⟨Σ1, e1⟩,
c2 = ⟨Σ2, e2⟩, Σ1 ≈L Σ2 and e1 ≡α e2, and final configurations, i.e.,
c′

1 ≈L c′
2 iff c′

1 = ⟨Σ′
1, v1⟩, c′

2 = ⟨Σ′
2, v2⟩ and Σ′

1 ≈L Σ′
2 and v1 ≈L v2.

The L-equivalence relation defined above is reflexive, symmetric,
and transitive.

6Symbol ≡α denotes α-equivalence. In our mechanized proofs we use De Bruijn
indexes and syntactic equivalence.

18 Fine-Grained IFC Calculus

Σ1 Σ′
1

Σ2 Σ′
2

≈L

≈L ≈L

≈L

Figure 2.6: Square commutative diagram for stores (Lemma 2.1).

Property 2. Let x, y, z range over labeled values, raw values, environ-
ments, labeled memories, stores, and configurations:

1. Reflexivity. For all x, x ≈L x.

2. Symmetricity. For all x and y, if x ≈L y, then y ≈L x.

3. Transitivity. For all x, y, z, if x ≈L y and y ≈L z, then x ≈L z.

These properties simplify the security analysis of λdFG: they let
us reason about L-equivalent terms using commutative diagrams. For
example, consider the Square Commutative Diagram for Stores outlined
in Figure 2.6. In the diagram, the arrows connect L-equivalent stores
(e.g., the arrow from Σ1 to Σ′

1 indicates that Σ1 ≈L Σ′
1). The diagram

provides a visual representation of Lemma 2.1: solid arrows represent the
assumptions of the lemma and the dashed arrow represents the conclu-
sion. To prove the lemma, we have to show that the diagram commutes,
i.e., we need to construct a path from Σ′

1 to Σ′
2 using the solid arrows.

Thanks to Property 2, we can derive additional arrows to construct
this path. For example, we can reverse arrows using symmetricity (e.g.,
Σ′

1 ≈L Σ1 from Σ1 ≈L Σ′
1) and transitivity let us compose consecutive

arrows (e.g., Σ1 ≈L Σ′
2 from Σ1 ≈L Σ2 and Σ2 ≈L Σ′

2).

Lemma 2.1 (Square Commutative Diagram for Stores). If Σ1 ≈L Σ′
1,

Σ1 ≈L Σ2, Σ2 ≈L Σ′
2, then Σ′

1 ≈L Σ′
2.

Proof. We show that the square diagram commutes using symmetricity
(Property 2.2) and transitivity (Property 2.3) to draw the red arrows in
Figure 2.7.

2.2. Security 19

Σ1 Σ′
1

Σ2 Σ′
2

≈L

≈L

≈L

Figure 2.7: Proof of Lemma 2.1. The red arrows represent L-equivalent relations
derived via symmetricity and transitivity.

2.2.2 Termination-Insensitive Non-Interference

The security monitor of λdFG enforces termination-insensitive non-
interference. Intuitively, this property guarantees that terminating pro-
grams do not leak secret data into public values and memories of the
store. More formally, a program satisfies non-interference if, given indis-
tinguishable inputs (initial stores and environments), then it produces
outputs (final stores and values) that are also indistinguishable to the at-
tacker. We prove this result through two key lemmas: store confinement
and L-equivalence preservation. In the following, we give a high-level
overview of these lemmas and their proof, focusing on the general proof
technique and illustrative cases. We refer to our mechanized proof scripts
for complete proofs.

Store Confinement. At a high-level, store confinement ensures that
programs cannot leak secret data implicitly through observable side-
effects in the labeled store. Intuitively, the side-effects of programs
running in secret contexts must be confined to secret memories in the
labeled store to enforce security—programs that do otherwise may leak
and are therefore conservatively aborted by the security monitor. This
lemma holds for λdFG precisely because the constraints in rules [New]
and [Write] only allow programs to write memories labeled above the
program counter label. In particular, these constraints prevent programs
running in secret contexts from writing public memories, which remain
unchanged and thus indistinguishable to the attacker.

Lemma 2.2 (Store Confinement). For all configurations c = ⟨Σ, e⟩,
c′ = ⟨Σ′, v⟩, program counter labels pc ̸⊑ L, if c ⇓θ

pc c′, then Σ ≈L Σ′.

20 Fine-Grained IFC Calculus

Proof. The proof is by induction on the big-step reduction, using reflex-
ivity (Property 2.1) in the base cases and transitivity (Property 2.3) in
the inductive cases. In the inductive cases (e.g., [Case1]), we observe
that the program counter label of the nested computations is always at
least as sensitive as the initial program counter pc, and therefore above
the attacker’s label L, i.e., if pc ̸⊑ L, then pc ⊔ ℓ ̸⊑ L for any label ℓ.
The interesting cases are those that change the store, i.e., cases [New]
and [Write], where we use Property 1 to show that these rules can
modify only secret memories. For example, in case [New], the program
creates a reference in a secret context (pc ̸⊑ L). First, the program
computes a value labeled ℓ above the attacker’s label L, i.e., ℓ ̸⊑ L by
Property 1, and then allocates it in the corresponding secret memory
also labeled ℓ. Since ℓ ̸⊑ L, the original and the extended memory
are indistinguishable by the attacker and so are the initial and final
stores.

L-equivalence Preservation. Termination-insensitive non-interference
ensures that programs that receive L-equivalent inputs produce out-
puts that are also L-equivalent, i.e., terminating programs preserve
L-equivalence. Importantly, programs must preserve L-equivalence re-
gardless of the sensitivity of the context in which they are executed.
Therefore, we consider L-equivalence preservation in public and se-
cret contexts separately. Then, we combine these individual results to
prove L-equivalence preservation in arbitrary contexts, i.e., termination-
insensitive non-interference. More precisely, we prove two preservation
lemmas: the first relates executions in secret contexts (pc ̸⊑ L) involv-
ing arbitrary expressions, while the other relates executions of the same
expression in public contexts (pc ⊑ L).

The first lemma ensures that programs cannot leak secret data
implicitly through the program control-flow. For example, consider the
program if s then e1 else e2, which branches on a secret boolean s.
Depending on the value of s, this program evaluates either expression
e1 or e2, which may reveal the value of the secret through secret-
dependent store updates (e.g., if s then p := true else () for some
public reference p) or results (e.g., if s then true else false). This
lemma ensures that even these programs cannot leak secrets through

2.2. Security 21

the final result or observable changes to the stores. Formally, we have
to show that programs preserve L-equivalence in secret contexts even
if they evaluate different expressions, i.e., if Σ1 ≈L Σ2, ⟨Σ1, e1⟩ ⇓θ1

H c1
and ⟨Σ2, e2⟩ ⇓θ2

H c2, then c1 ≈L c2.
How should we prove this lemma? At first, we might try to prove it

directly by induction on the reduction steps. However, this approach is
not practical: since these executions involve arbitrary expressions, we
would have to reason about a large number of completely unrelated
reduction steps! Instead, we observe that these programs are executed
in secret contexts (pc = H), so they are restricted by the security
monitor to avoid leaks. From these restrictions, we establish two program
invariants to show that the final stores and values are L-equivalent: in
secret contexts, programs can (i) modify only secret memories (Store
Confinement), and (ii) produce results labeled secret (Property 1).
Notice that these invariants hold for individual executions: we still need
to combine them to relate the final configurations of the two executions.
To do that, we reason separately about the final stores and values. The
final stores are related via a Square Commutative Diagram (Figure 2.6),
while the secret results are trivially L-equivalent by rule [ValueH]
(Figure 2.5).

Lemma 2.3 (L-Equivalence Preservation in Secret Contexts). For all
program counter labels pc1 ̸⊑ L and pc2 ̸⊑ L, and arbitrary
expressions e1 and e2, if Σ1 ≈L Σ2, ⟨Σ1, e1⟩ ⇓θ1

pc1
c1, and ⟨Σ2, e2⟩ ⇓θ2

pc2
c2, then c1 ≈L c2.

Proof. Assume pc1 ̸⊑ L, pc2 ̸⊑ L, Σ1 ≈L Σ2, and let the final configu-
rations be c1 = ⟨Σ′

1, v1⟩ and c2 = ⟨Σ′
2, v2⟩. First, we apply Store Confine-

ment (Lemma 2.2) to ⟨Σ1, e1⟩ ⇓θ1
pc1
⟨Σ′

1, v1⟩ and ⟨Σ2, e2⟩ ⇓θ2
pc2
⟨Σ′

2, v2⟩
and obtain Σ1 ≈L Σ′

1 and Σ2 ≈L Σ′
2, respectively. Then, we con-

struct the Square Commutative Diagram for Stores (Lemma 2.1) using
Σ1 ≈L Σ2, Σ′

1 ≈L Σ1 Σ2 ≈L Σ′
2, and obtain Σ′

1 ≈L Σ′
2. To show that the

values v1 = r1
ℓ1 and v2 = r2

ℓ2 are L-equivalent, it suffices to show that
they are labeled secret. Since pc1 ̸⊑ L and pc2 ̸⊑ L by assumption,
pc1 ⊑ ℓ1 and pc2 ⊑ ℓ2 by Property 1, we have ℓ1 ̸⊑ L and ℓ2 ̸⊑ L,
and thus v1 = r1

ℓ1 ≈L r2
ℓ2 = v2 by rule [ValueH]. Since Σ′

1 ≈L Σ′
2 and

v1 ≈L v2, we have c1 = ⟨Σ′
1, v1⟩ ≈L ⟨Σ′

2, v2⟩ = c2, as desired.

22 Fine-Grained IFC Calculus

We now turn our attention to L-equivalence preservation in public
contexts. Unlike L-equivalence preservation in secret contexts, we must
inspect the program executions and examine their specific reduction
steps to prove this lemma. This is because these executions occur in a
public context (pc ⊑ L), therefore their side-effects and final results
may be observable by the attacker and so we have to verify that no
leaks occur in each case. Luckily, this task is simplified by the fact that
the initial configurations are L-equivalent and thus contain α-equivalent
expressions. Intuitively, this means that the two programs are synchro-
nized and proceed in lock-step. In other words, their reductions are
almost identical, i.e., the programs perform the same operation on L-
equivalent inputs and so produce L-equivalent outputs. This makes the
proof of this lemma straightforward in most cases. However, reductions
that involve control-flow expressions (e.g., case(e, x.e1, x.e2)) are more
complicated. In general, these programs may follow different paths and
evaluate different expressions: how can they preserve L-equivalence?
Intuitively, since the programs considered in this lemma are initially
synchronized, they can start following different paths only after branch-
ing on secret data. As a result, their program counter label gets tainted
and the programs enter a secret context, in which public side-effects are
not allowed and results are guaranteed to be labeled secret, as proved
in the previous lemma.

Lemma 2.4 (L-Equivalence Preservation in Public Contexts). For all
program counter labels pc ⊑ L, if c1 ≈L c2, θ1 ≈L θ2, c1 ⇓θ1

pc c′
1, and

c2 ⇓θ2
pc c′

2, then c′
1 ≈L c′

2.

Proof. Let c1 = ⟨Σ1, e1⟩ and c2 = ⟨Σ2, e2⟩ and proceed by induction on
the big-step reductions. Since c1 ≈L c2, we know that the initial stores
are L-equivalent, i.e., Σ1 ≈L Σ2, and the big-step reductions evaluate
α-equivalent expressions, i.e., e1 ≡α e2. As a result, the expressions step
following the same rule in most cases and thus produce L-equivalent
values and stores.

The interesting cases are those that influence the control-flow of the
program, where the two executions may deviate from each other, i.e.,
case [Case1], [Case2], and [App]. In these cases, the security label ℓ of
the scrutinee determines whether the two executions stay in a public

2.3. Flow-Sensitive References 23

context (ℓ ⊑ L) and remain synchronized on the same path, or not
(ℓ ̸⊑ L). For example, consider expression case(e, x.e1, x.e2), which
steps through rule [Case1] in the first reduction and either through
rule [Case1] or [Case2] in the second reduction (the opposite cases are
symmetric). If both rules step through rule [Case1], then the scrutinees
are both left injections, i.e., inl(v1)ℓ1 ≈L inl(v2)ℓ2 by induction hypoth-
esis. Then, we perform case analysis on the L-equivalence judgment
and have two sub-cases: [ValueL] and [ValueH]. In the first case, both
scrutinees are public, i.e., ℓ1 = ℓ2 ⊑ L and v1 ≈L v2 by rule [ValueL],
and the proof follows by induction. In the other case, both scrutinees
are secret, i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L by rule [ValueH], and the program
enters a secret context and we apply L-equivalence Preservation in Se-
cret Contexts (Lemma 2.3). Finally, if case(e, x.e1, x.e2) steps through
different rules (e.g., [Case1] and [Case2]), then the scrutinees must
be secret and thus we also apply L-equivalence Preservation in Secret
Contexts. In particular, it is impossible for L-equivalent public scrutinees
to have different injection. To see that, assume inl(v1)ℓ1 ≈L inr(v2)ℓ2

and ℓ1 = ℓ2 ⊑ L by rule [ValueL]. Then, we also have a proof that
the raw values are L-equivalent, i.e., inl(v1) ≈L inr(v2). But this is
impossible: raw values of sum type can be related only if they are the
same injection (i.e., rules [Inl] and [Inr] in Figure 2.5).

Finally, we combine the L-equivalence preservation lemmas from
above and prove termination-insensitive non-interference (TINI) for
λdFG.
Theorem 1 (λdFG-TINI). If c1 ⇓θ1

pc c′
1, c2 ⇓θ2

pc c′
2, θ1 ≈L θ2 and

c1 ≈L c2 then c′
1 ≈L c′

2.
Proof. By case analysis over the program counter label pc. If pc ⊑ L,
we apply L-equivalence Preservation in Public Contexts (Lemma 2.4).
If pc ̸⊑ L, we apply L-equivalence Preservation in Secret Contexts
(Lemma 2.3).

2.3 Flow-Sensitive References

This section extends λdFG with flow-sensitive references (Austin and
Flanagan, 2009), an important feature to boost the permissiveness of

24 Fine-Grained IFC Calculus

IFC systems. These references differ slightly from the labeled references
presented in Section 2.1.2, which are instead flow-insensitive. The key
difference between them lies in the way the IFC system treats their
label. In particular, the label of flow-insensitive references is immutable,
i.e., when a program creates a reference, the IFC monitor assigns it a
label, which remains fixed throughout the execution of the program.
In contrast, the label of flow-sensitive references is mutable. Intuitively,
the label of these references can change to reflect the sensitivity of the
data that they currently store. This change is completely transparent
to the program: when the program writes some data to a flow-sensitive
reference, the IFC monitor simply replaces the label of the reference
with the label of the new content. However, if added naively, mutable
labels open a new channel for implicitly leaking data, therefore, the
IFC monitor changes the labels of flow-sensitive references only as long
as this operation does not leak information.

In this section, we formally discuss the differences of flow-sensitive
references and their subtleties for security in the context of λdFG. First,
we show that flow-sensitive references are more permissive than flow-
insensitive references with an example.

Example 2.1. Consider the following program, which creates a new
reference, initially containing some public data p, overwrites it with
secret data s, and finally reads it back from the reference.

let r = new(p) in
r := s;
! r

The execution of the λdFG program above with program counter label
public, i.e., pc = L, environment θ = [p 7→ trueL, s 7→ falseH],
and empty store Σ = λℓ.[] is aborted by the IFC monitor with flow-
insensitive references from Section 2.1.2. Rule [New] (Figure 2.4) assigns
the fixed public label L to the reference, which then causes rule [Write]
to fail, as the program tries to write secret data (i.e., falseH) into a
public reference (i.e., 0L). In particular, the last premise of rule [Write]
does not hold (H ̸⊑ L) and thus the program gets stuck. Had the

2.3. Flow-Sensitive References 25

monitor not aborted the execution, the program would have leaked
the secret value of s. Specifically, the program would have written
the raw value of s, i.e., false, into the public L-labeled memory, from
where it would be extracted by the last instruction through rule [Read]
and labeled with L, i.e., falseL, causing the leak. In contrast, the
IFC monitor presented in this section and extended with flow-sensitive
references does not abort the program. The extended monitor allows
the program to write secret data into the public reference, but after
doing so, it upgrades the label of the reference from L to H to indicate
that it now contains secret data. As a result, when the program reads
back the reference in the last instruction, the result gets tainted with
H , i.e., falseH , thus eliminating the leak.

In the following, we extend λdFG with flow-sensitive references (Sec-
tion 2.3.1), define their operational semantics (Section 2.3.2), and finally
reestablish non-interference (Section 2.3.3).

2.3.1 Syntax

We introduce the syntax of λdFG extended with flow-sensitive references
in Figure 2.8a, where we omit the constructs and the syntactic categories
that remain unchanged. First, we annotate the type of references with
flow-sensitivity tags, e.g., Ref s τ , where the tag s allows programs to
distinguish between flow-insensitive (s = I) and flow-sensitive (s = S)
references. We do not introduce new constructs to create, write, and
read flow-sensitive references. Instead, we reuse the same constructs
introduced for flow-sensitive references (i.e., new(e), e1 := e2, !e, and
labelOfRef(e) from Figure 2.1)7 and rely on the type-level sensitivity
tag to determine which kind of reference is used.8 Raw values for flow-
sensitive references are plain addresses n ∈ N. Since the label of
flow-sensitive references is mutable (as explained above), these addresses
are not annotated with a label like flow-insensitive references (e.g.,
nℓ) and hence do not point into a labeled memory in the partitioned

7We do not bother to introduce separate constructs because the translations of
these constructs given in Sections 5 and 6 are the same for both kinds of references.

8In this presentation we assume that terms are implicitly well-typed. In our
mechanized proofs, terms are explicitly and intrinsically well-typed.

26 Fine-Grained IFC Calculus

Flow-sensitivity tags: s ::= I | S
Types: τ ::= · · · | Ref s τ

Raw Values: r ::= · · · | n
Heaps: µ ::= [] | rℓ : µ

Configurations: c ::= ⟨Σ, µ, e⟩

(a) Syntax.

(New-FS)
⟨Σ, µ, e⟩ ⇓θ

pc ⟨Σ′, µ′, v⟩ n = |µ′| µ′′ = µ′[n 7→ v]
⟨Σ, µ, new(e)⟩ ⇓θ

pc ⟨Σ′, µ′′, npc⟩

(Read-FS)
⟨Σ, µ, e⟩ ⇓θ

pc ⟨Σ′, µ′, nℓ⟩ µ′[n] = rℓ′

⟨Σ, µ, !e⟩ ⇓θ
pc ⟨Σ′, µ′, rℓ ⊔ ℓ′⟩

(LabelOfRef-FS)
⟨Σ, µ, e⟩ ⇓θ

pc ⟨Σ′, µ′, nℓ1⟩ µ′[n] = rℓ2

⟨Σ, µ, labelOfRef(e)⟩ ⇓θ
pc ⟨Σ′, µ′, ℓ2

ℓ1 ⊔ ℓ2⟩

(Write-FS)
⟨Σ, µ, e1⟩ ⇓θ

pc ⟨Σ′, µ′, nℓ⟩ ⟨Σ′, µ′, e2⟩ ⇓θ
pc ⟨Σ′′, µ′′, r2

ℓ2⟩
µ′′[n] = r1

ℓ1 ℓ ⊑ ℓ1 µ′′′ = µ′′[n 7→ r2
ℓ2 ⊔ ℓ]

⟨Σ, µ, e1 := e2⟩ ⇓θ
pc ⟨Σ′′, µ′′′, ()pc⟩

(b) Dynamics. The shaded constraint is the no-sensitive upgrade security check.

Figure 2.8: λdFG extended with flow-sensitive references.

2.3. Flow-Sensitive References 27

store. Instead, we store both the content and the label of flow-sensitive
references in the new, linear heap µ, which can contain data at different
security levels. Specifically, a flow-sensitive reference n of type Ref S τ

points to the n-th cell of the heap µ, i.e., µ[n] = rℓ, for some raw value
r of type τ at security level ℓ, which also represents the label of the
reference. Finally, we extend program configurations with a heap µ, e.g.,
c = ⟨Σ, µ, e⟩.

2.3.2 Dynamics

Figure 2.8b gives the semantics rules for the λdFG constructs that
operate on flow-sensitive references.9 Rule [New-FS] allocates a new
flow-sensitive reference in the heap at fresh address n = |µ′|, where value
v gets stored, i.e., µ′[n 7→ v]. Similarly to rule [New] (Figure 2.4), this
rule does not leak data through implicit flows because value v has secu-
rity level at least equal to the program counter label.10 Rule [Read-FS]
is also similar to rule [Read]. The rule reads reference n at security level
ℓ from the heap µ′, i.e., µ′[n] = rℓ′ , and upgrades the label of r to ℓ ⊔ ℓ′

to reflect the fact that reading this particular reference depends on infor-
mation at security level ℓ. Rule [LabelOfRef-FS] retrieves the label of
reference n by reading the corresponding cell in the heap, i.e., µ′[n] = rℓ2 ,
and protects it with the label itself and taints it with the security level of
the reference, i.e., ℓ2

ℓ1 ⊔ ℓ2 . Although the label of values in the heap repre-
sent also the label of the reference, we cannot obtain exactly the label of
the reference by reading the reference and then projecting the label of the
value, i.e., in general labelOfRef(e) ̸≡ labelOf(!e) for a flow-sensitive
reference e. To see this, suppose e evaluates to reference nℓ1 such that
µ[n] = rℓ2 for some raw value r. Then, expression labelOfRef(e) re-
sults in ℓ2

ℓ1 ⊔ ℓ2 through rule [LabelOfRef-FS], which is in general
different from (ℓ1 ⊔ ℓ2)ℓ1 ⊔ ℓ2 obtained from labelOf(!e) through rule
[LabelOf] (Figure 2.3) applied to rule [Read-FS]. Hence, we need to
define labelOfRef(·) as a primitive construct of the calculus.

9The rules from Figure 2.2-2.4 are adapted by simply threading the heap through
the intermediate evaluations.

10In particular, Property 1 holds also for λdFG extended with flow-sensitive
references.

28 Fine-Grained IFC Calculus

Rule [Write-FS] updates flow-sensitive references but, in contrast
to rule [Write], it also updates the label of the (flow-sensitive) reference.
In particular, the rule updates reference n at security level ℓ by writing
value r2

ℓ2 tainted with ℓ in the n-th cell of the heap, i.e., µ′′[n 7→ r2
ℓ2 ⊔ ℓ].

Notice that the label of the updated reference, i.e., ℓ2 ⊔ ℓ, depends only
on the security level of the data written into the reference and of the
reference that gets updated—this label can be completely different from
the label of the reference before the update, i.e., ℓ1 from µ′′[n] = r1

ℓ1 .
For example, the rule allows turning a public reference into a secret
one (i.e., changing the label of the reference from L to H) by writing
secret data into it (like in Example 2.1). Perhaps more surprisingly,
the rule also allows changing the label in the opposite direction (i.e.,
from H to L). For example, it is possible to make a secret reference
public by overwriting its content with public data (e.g., swap p and s in
Example 2.1). However, rule [Write-FS] is not completely unrestricted:
it includes a security check known as no-sensitive upgrade (NSU) to
avoid leaking information through implicit flows (Austin and Flanagan,
2009). Intuitively, this check (shaded in Figure 2.8b) prohibits updates
in which the decision to update a particular reference depends on
information that is more sensitive than the label of the reference itself.
The following example shows why this check is needed to avoid leaks.

Example 2.2. Consider the following program, which branches on secret
data, updates an initially public (flow-sensitive) reference in one branch,
and then reads back the reference.

let r = new(p) in
if s then r := s else ();
! r

Without the no-sensitive upgrade check described above, this program
leaks information through an implicit flow. Formally, we show that
the program above breaks non-interference (Theorem 1). Consider two
executions of the program with program counter label public, i.e.,
pc = L, and with two L-equivalent input environments, e.g., θ1 = [p 7→
trueL, s 7→ falseH] ≈L [p 7→ trueL, s 7→ trueH] = θ2. In the first

2.3. Flow-Sensitive References 29

execution with environment θ1, reference r is not updated, and thus the
result of the program is public value p = trueL. Instead, in the second
execution with environment θ2, the program updates reference r (rule
[Write-FS] without the NSU check) and thus we obtain the secret
value s = trueH as result. However, this breaks Theorem 1: the input
environments are L-equivalent, i.e., θ1 ≈L θ2, but the results of the
program are not, i.e., p = trueL ̸≈L trueH = s, because L ⊑ L, but
H ̸⊑ L (neither rule [ValueH] nor [ValueL] from Figure 2.5 apply).11

To avoid such leaks, we include the no-sensitive upgrade check in
rule [Write-FS] through the constraint ℓ ⊑ ℓ1, which ensures that
the decision of updating reference n depends on information at some
security level ℓ below the current label of the reference, i.e., ℓ1 from
µ′′[n] = r1

ℓ1 . This constraint causes the IFC monitor to abort the second
execution of the program above (H ̸⊑ L), which gets stuck and thus
satisfies (trivially) Theorem 1.

2.3.3 Security

λdFG extended with flow-sensitive references is also secure, i.e., it sat-
isfies termination insensitive non-interference. However, the theorem
for the extended calculus is more complicated than Theorem 1: it re-
quires a relaxed notion of L-equivalence up to a bijection, which relates
observable flow-sensitive references with different heap addresses, and
a side-condition on program configurations to rule out dangling refer-
ences (Banerjee and Naumann, 2005). In this section, we make these
differences rigorous and we reestablish non-interference.

The need for Bijections. Since the label of flow-sensitive references
can change throughout program execution, our semantics allocates cells
for both public and secret references in a single, unlabeled heap. An
unfortunate consequence of this design choice is that allocations made in
secret contexts can influence the addresses of public references allocated
in the rest of the program, which get shifted by the number of secret

11The mismatch in the label of the results can also be propagated to raw values
through the label introspection primitives. We refer to (Austin and Flanagan, 2009)
for a more elaborated example that leaks directly through raw values.

30 Fine-Grained IFC Calculus

references previously allocated. This can be problematic for security
because attackers can exploit these deterministic side-effects to leak
information through the address of public references (Hedin and Sands,
2006). However, the addresses considered in this work are opaque, i.e.,
programs cannot inspect and compare them, and so attackers cannot
use them to leak secrets. To show that, we extend the L-equivalence
relation from Section 2.2 with a bijection (Banerjee and Naumann,
2005), a one-to-one correspondence between heap addresses, which we
use to relate the addresses of references allocated in public contexts.

Definition 1 (Bijection). A bijection β : Addr ⇀ Addr is a bijective
finite partial function between heap addresses. Formally, for all addresses
n and n′, β(n) = n′ ⇐⇒ β−1(n′) = n, where β−1 is the inverse function
of β.

Notation and Auxiliary Definitions. In the following, we treat partial
functions as sets of input-output pairs and for clarity we write (n1, n2) ∈
β for β(n1) = n2, i.e., if the partial function β is defined on input
n1 and has output n2. We say that a bijection β′ extends another
bijection β, written β ⊆ β′, if and only if for all input-output pairs
(n1, n2), (n1, n2) ∈ β implies (n1, n2) ∈ β′. Bijection composition
is written β2 ◦ β1 = {(n1, n3) | (n1, n2) ∈ β1 ∧ (n2, n3) ∈ β2}
and the inverse operator as β−1 = {(n2, n1) | (n1, n2) ∈ β}. We
also define the domain and range of bijections in the obvious way, i.e.,
dom(β) = {n1 | (n1, n2) ∈ β}, and rng(β) = {n2 | (n1, n2) ∈ β}.
Furthermore, we write ιn for the finite, partial identity bijection defined
up to n, i.e., ιn = {(n′, n′) | n′ ∈ {0, . . . , n − 1}}. Identity bijections
satisfy the following laws.

Property 3 (Identity Laws). For all bijections β and n ∈ N:

1. Inverse Identity. ι−1
n ≡ ιn .

2. Absorb Left. If rng(β) ⊆ dom(ιn), then ιn ◦ β ≡ β.

3. Absorb Right. If dom(β) ⊆ rng(ιn), then β ◦ ιn ≡ β.

2.3. Flow-Sensitive References 31

L-Equivalence up to Bijection. Formally, we redefine L-equivalence as
a relation ≈β

L ⊆ Value × Value and write v1 ≈β
L v2 to indicate that val-

ues v1 and v2 are indistinguishable to an attacker at security level L up
to bijection β, which relates the heap addresses of corresponding observ-
able flow-sensitive references in v1 and v2. We extend the L-equivalence
relation for all other syntactic categories (raw values, memories, and
stores) with a bijection in the same way. Besides the bijection β, which
we only add to ≈L, all the rules from Figure 2.5 remain unchanged.
In particular, rules [RefL] and [RefH] for flow-insensitive references
simply ignore the bijection. Since we keep labeled memories partitioned
in the store and isolated from the heap, the problem of mismatching
addresses does not arise for flow-insensitive references. Intuitively, the
address space of public memories is completely independent from the
address space of secret memories, and thus allocations made in secret
contexts cannot influence the memory addresses of public references. As
a result, rule [RefL] guarantees that L-equivalent public references have
exactly the same memory address. In contrast, heap allocations made in
secret contexts can shift the heap addresses of observable flow-sensitive
references (as explained above), which then may not be necessarily
the same. Therefore, we relate observable flow-sensitive references with
possibly different addresses through the following new rule:

(Ref-FS)
(n1, n2) ∈ β

n1 ≈β
L n2

Rule [Ref-FS] relates references with arbitrary heap addresses n1 and
n2, as long as their addresses are “matched” by the bijection β, i.e.,
(n1, n2) ∈ β. Similarly, we define heap L-equivalence by relating heap
cells that are at corresponding addresses according to the bijection.

Definition 2 (Heap L-equivalence). Two heaps µ1 and µ2 are L-equi-
valent up to bijection β, written µ1 ≈β

L µ2, if and only if:

1. dom(β) ⊆ {0, . . . , |µ1| − 1},

2. rng(β) ⊆ {0, . . . , |µ2| − 1}, and

3. For all addresses n1 and n2, if (n1, n2) ∈ β, then µ1[n1] ≈β
L µ2[n2].

32 Fine-Grained IFC Calculus

In the definition above, the first two conditions require that the
domain and the range of β are contained in the address space of µ1 and
µ2, respectively.12 These side-conditions ensure that the heap addresses
considered in the third condition are valid, i.e., they point to some cell
in each heap. The definition of L-equivalence for heaps is complicated
by the fact that heaps can contain both public and secret cells, i.e., cells
allocated in public and secret contexts, respectively. In particular, the L-
equivalence relation needs to relate the values contained in corresponding
public cells, which are at possibly different addresses in the heaps.13

This task is simplified by the bijection β, which identifies exactly the
addresses of corresponding public cells. Therefore, the third condition
above ensures that the values contained in the cells at addresses related
by the bijection β, i.e., (n1, n2) ∈ β, are themselves L-equivalent, i.e.,
µ1[n1] ≈β

L µ2[n2]. Finally, we extend L-equivalence for configurations
with a bijection and additionally require their heaps to be related.
Formally, c1 ≈β

L c2 iff c1 = ⟨Σ1, µ1, v1⟩, c2 = ⟨Σ2, µ2, v2⟩, and all their
components are related, i.e., Σ1 ≈β

L Σ2, µ1 ≈β
L µ2, and v1 ≈β

L v2.
Next, we discuss some side-conditions over program configurations

and inputs that are needed for reasoning with L-equivalence relations
up to bijection.

Valid References. In Section 2.2, we proved that the L-equivalence
relation is reflexive, symmetric, and transitive, and showed how these
properties helped us structure and simplify the proof of non-interference.
Does the L-equivalence extended with bijection also enjoy these proper-
ties? Unfortunately, reflexivity does not hold unconditionally anymore
for L-equivalence relations up to bijection. The culprit of the problem
is in the definition of L-equivalence for heaps. In this case, proving
reflexivity requires showing that any heap is L-equivalent to itself up to
the identity bijection defined over its address space, i.e., ∀µ.µ ≈ι|µ|

L µ.
Technically, this property does not hold in general for any arbitrary
heap µ. To see this, consider for example the ill-formed heap µ′ = 1L : [],
which contains the dangling flow-sensitive reference 1L. In order to

12Heap addresses start at 0 just like memory addresses.
13Secret cells in each heap are simply disregarded as they may not necessarily

have a counterpart in the other heap.

2.3. Flow-Sensitive References 33

prove µ′ ≈ι1
L µ′, we must show that this dangling reference is L-

equivalent to itself up to bijection ι1 (Definition 2.3), i.e., 1L ≈ι1
L 1L,

which by rule [Ref-FS] would require a proof for the false statement
(1, 1) ∈ ι1 = {(0, 0)}. One may be tempted to repair reflexivity by
choosing a sufficiently large domain for the identity bijection, so that
also dangling references can be related (e.g., for µ′ we could pick ι2
and prove 1L ≈ι2

L 1L). Unfortunately, this is not possible without
breaking the first and the second condition of Definition 2. For any
heap µ, the identity bijection ι|µ| has the largest domain and range that
satisfies the side-conditions dom(ι|µ|) ⊆ {0 . . |µ| − 1} (Definition 2.1)
and rng(ι|µ|) ⊆ {0 . . |µ| − 1} (Definition 2.2).

The solution to this technical nuisance is to simply prove a weaker
version of reflexivity, which holds only for well-formed heaps (and
similarly values, stores, memories, and configurations) that contain
only valid (i.e., not dangling) references. Luckily, this restriction is
inconsequential in our setting because references are always valid in
λdFG. Intuitively, references are unforgeable: programs can only create
fresh, valid references through the new(·) construct. After creation
references simply remain valid throughout program execution: they
can be accessed, passed around, or stored, but never deallocated (we
simply provide no construct to do so) or tempered. We now formalize
this insight in the form of a valid judgment, which rules out dangling
reference from all the categories of the calculus together with the proof
that this judgment is an invariant of the operational semantics of λdFG.

Valid Judgment. Figure 2.9 defines a valid judgment for λdFG values
and configurations. These judgments ensure that all flow-sensitive refer-
ences values of a program configuration are valid (i.e., not dangling) in
a heap of a given size. For values (Figure 2.9a), this judgment takes the
form of n ⊢ Valid(v), which indicates that all heap addresses contained
in value v are valid in a heap of size n. This judgment is mutually
defined with similar judgments for raw values, i.e., n ⊢ Valid(r), and
environments n ⊢ Valid(θ). Importantly, rule [Valid-FS-Ref] disal-
lows dangling references: a flow-sensitive reference is valid if and only
if its heap address n′ is strictly smaller than the size n of the heap.
Notice that this judgment holds unconditionally for flow-insensitive

34 Fine-Grained IFC Calculus

values through rule [Valid-FI-Ref]. Intuitively, these references con-
tain memory addresses, which are not affected by the technical issue
described above. Most of the remaining rules are fairly straightforward:
they simply require that all sub-values are homogeneously valid in
heaps of the same size. For example, values rℓ is valid only if and
only if the raw value r is also valid (rule [Valid-Value]) and closures
(x.e, θ) are valid if and only if the value environment θ is also valid
(rule [Valid-Closure]).14 Environments θ are valid if they contain
only valid values, i.e., n ⊢ Valid(θ) iff ∀x ∈ dom(θ).n ⊢ Valid(θ(x)).
Similarly, valid stores Σ contain only valid memories, i.e., n ⊢ Valid(Σ)
iff ∀ℓ ∈ L .n ⊢ Valid(Σ(ℓ)), and so on for memories and heaps,
i.e., n ⊢ Valid(M) iff ∀n ∈ {0, . . . , |M | − 1}.n ⊢ Valid(M [n]) and
n ⊢ Valid(µ) iff ∀n ∈ {0, . . . , |µ| − 1}.n ⊢ Valid(µ[n]), respectively.
Finally, the judgments for initial and final configurations (Figure 2.9b)
instantiate the parameter n of the judgments above with the size of the
heap. For example, a configuration c = ⟨Σ, µ, e⟩ and input environment
θ are valid through rule [Valid-Inputs] if and only if all the compo-
nents of the configuration and the value environment are valid in the
heap of size n = |µ|, i.e., ⊢ Valid(c, θ) iff n ⊢ Valid(Σ), n ⊢ Valid(µ),
and n ⊢ Valid(θ). Rule [Valid-Final] is for final configurations and is
similar.

Before showing that this valid judgment is an invariant of the
semantics of λdFG, we prove two simple helping lemmas. The first
lemma shows that values that are valid in a heap of a certain size, are
also valid in any larger heap, while the second lemma shows that heaps
can only grow larger in the semantics of λdFG.

Lemma 2.5 (Valid Weakening). For all values v, environments θ, raw
values r and natural numbers n and n′:

1. If n ⊢ Valid(v) and n ⩽ n′, then n′ ⊢ Valid(v),

2. If n ⊢ Valid(r) and n ⩽ n′, then n′ ⊢ Valid(r)

3. If n ⊢ Valid(θ) and n ⩽ n′, then n′ ⊢ Valid(θ)

14Since expressions do not contain heap addresses or values (they belong to distinct
syntactic categories), we do not need to define a valid judgment for expressions.

2.3. Flow-Sensitive References 35

(Valid-Value)
n ⊢ Valid(r)
n ⊢ Valid(rℓ)

(Valid-FS-Ref)
n′ < n

n ⊢ Valid(n′)

(Valid-FI-Ref)
n ⊢ Valid(n′

ℓ)

(Valid-Closure)
n ⊢ Valid(θ)

n ⊢ Valid((x.e, θ))

(a) Judgment for values n ⊢ Valid(v) and raw values n ⊢ Valid(r) (selected cases).

(Valid-Inputs)
c = ⟨Σ, µ, e⟩

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(θ)
⊢ Valid(c, θ)

(Valid-Outputs)
c = ⟨Σ, µ, v⟩

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(v)
⊢ Valid(c)

(b) Judgments for valid program inputs and outputs in λdFG.

Figure 2.9: Some valid judgments for λdFG.

Proof. By mutual induction over the judgments and using transitivity
of ⩽ for the case [Valid-FS-Ref].

Lemma 2.6 (Heaps Only Grow). Let c = ⟨Σ, µ, e⟩, c′ = ⟨Σ′, µ′, v⟩, if
c ⇓θ

pc c′, then |µ| ⩽ |µ′|.

Proof. By induction on the big-step reduction. In particular, notice that
no rule deallocates cells from the heap, which can only grow through
rule [New-FS].

Property 4 (Valid Invariant). If c ⇓θ
pc c′ and ⊢ Valid(c, θ), then

⊢ Valid(c′).

36 Fine-Grained IFC Calculus

Proof. By induction on the big-step reduction and using Lemmas 2.5
and 2.6.

We now reconsider the properties of L-equivalence up to bijection.

Property 5. For all values, raw values, environments, memories, and
stores x, y, z, and n ∈ N:

1. Restricted Reflexivity. If n ⊢ Valid(x), then x ≈ιn
L x.

2. Symmetricity. If x ≈β
L y, then y ≈β−1

L x.

3. Transitivity. If x ≈β1
L y and y ≈β2

L z, then x ≈β2 ◦ β1
L z.

4. Weakening. If x ≈β
L y and β ⊆ β′, then x ≈β′

L y.

First, reflexivity up to a identity bijection ιn is restricted to program
constructs that are valid in a heap of size n, as explained above. In
a relation x ≈β

L y, the bijection β maps the heap addresses of x to
the corresponding heap addresses of y. Then, in order to obtain the
mapping from y to x, the bijection must be inverted in the symmetric
relation, i.e., y ≈β−1

L x. Similarly, when composing x ≈β1
L y and

y ≈β2
L z through transitivity, the bijections must also be composed, i.e.,

x ≈β2 ◦ β1
L z, so that the composed bijection β2 ◦ β1 first maps the

addresses of x to the corresponding addresses of y through β1, and then
the addresses of y to those of z through β2. Lastly, weakening allows to
relax a relation x ≈β

L y with an extended bijection β′ ⊇ β. All the
properties above hold also for L-equivalence for heaps (Definition 2),
with the exception for weakening, due to the side conditions on the
domain and range of the bijection.

We conclude this part with the square commutative digram for
heaps, outlined in Figure 2.10.15 In the diagram, the arrows connect
L-equivalent heaps up to a given bijection, e.g., the arrow from µ1 to µ′

1
labeled β1 indicates that µ1 ≈β1

L µ′
1. Compared to the square diagram

without bijections from Figure 2.6, this diagram is complicated by the
fact that the bijections must be composed and inverted appropriately,
as needed by symmetricity and transitivity, in order to obtain the

15We omit the analogous square commutative diagram for stores.

2.3. Flow-Sensitive References 37

µ1 µ′
1

µ2 µ′
2

β1

β β′ = β2 ◦ β ◦ β−1
1

β2

Figure 2.10: Square commutative diagram for heaps (Lemma 2.7). Solid arrows
represent the assumptions of the lemma and the dashed arrow represents the conclu-
sion. If β1 = ι|µ1|, β2 = ι|µ2|, then β′ is simply equal to β.

dashed arrow that completes the square. However, when β1 and β2 are
(appropriate) identity bijections, the bijection between the final heaps
can be simplified and shown to be equal to the bijection between the
initial heaps.

Lemma 2.7 (Square Commutative Diagram for Heaps). If µ1 ≈β
L µ2,

µ1 ≈β1
L µ′

1, and µ2 ≈β2
L µ′

2, then µ′
1 ≈

β′

L µ′
2, where β′ = β2 ◦ β ◦ β−1

1 .
Furthermore, if β1 = ι|µ1| and β2 = ι|µ2|, then µ′

1 ≈
β
L µ′

2.

Proof. By applying symmetricity (Property 5.2) and transitivity (Prop-
erty 5.3) like in Lemma 2.1, we obtain directly µ′

1 ≈
β′

L µ′
2 and β′ =

β2 ◦ β ◦ β−1
1 . If β1 = ι|µ1| and β2 = ι|µ2|, then β′ = ι|µ2| ◦ β ◦ ι−1

|µ1|. Us-
ing the identity laws (Property 3), we show that β′ = ι|µ2| ◦ β ◦ ι−1

|µ1| = β

and thus we have µ′
1 ≈

β
L µ′

2.

Termination-Insensitive Non-Interference. We now turn our atten-
tion to the termination-insensitive non-interference theorem for λdFG

extended with flow-sensitive references. First, the theorem assumes that
the initial configurations are L-equivalent up to a bijection, which we
use to account for secret-dependent heap allocations and hence relate
the heap addresses of corresponding public flow-sensitive references,
as explained above. Then, the theorem guarantees that the final con-
figurations are also L-equivalent, but up to some extended bijection.
Intuitively, programs may dynamically allocate new cells in the heap,
therefore the heap addresses contained in their final configurations must
be shown to be related with respect to the address space of the final
heaps. Additionally, the theorem explicitly assumes that the initial

38 Fine-Grained IFC Calculus

program configurations are valid and thus do not contain dangling refer-
ences. As explained before, this extra assumption is needed for technical
reasons and, besides having to explicitly propagate it as needed in our
mechanized proof scripts, it does not impact the security guarantees
of λdFG. The proof of this theorem is also structured on two key lem-
mas: store and heap confinement and L-equivalence preservation. In the
following, we focus on the changes needed to adapt these lemmas for
flow-sensitive references, heaps, and L-equivalence up to bijection.

Confinement guarantees that programs running in a secret context
cannot leak secret data implicitly through the program state, i.e., the
store and the heap. Formally, we show that if the program counter label
is above the attacker’s label (pc ̸⊑ L), then the initial store and heap
are L-equivalent to the final store and heap obtained at the end of the
execution, up to the identity bijection. In the lemma, L-equivalence is up
to the identity bijection defined over the address space of the initial heap.
Intuitively, this is because the references allocated in secret contexts
cannot be observed by the attacker, and therefore must be disregarded
by the bijection, which instead keeps track only of observable references,
i.e., those allocated in public contexts.

Lemma 2.8 (Store and Heap Confinement). For all configurations c =
⟨Σ, µ, e⟩, c′ = ⟨Σ′, µ′, v⟩, program counter labels pc ̸⊑ L, if ⊢
Valid(c, θ) and c ⇓θ

pc c′, then Σ ≈ι|µ|
L Σ′ and µ ≈ι|µ|

L µ′.

Proof. By induction on the big-step reduction and using the fact the
semantics preserves valid references (Property 4) to propagate the
valid judgment through the intermediate configurations. In particular,
we apply restricted reflexivity (Property 5.1) in the base cases, and
transitivity (Property 5.3) and the bijection identity laws (Property 3)
in the inductive cases. Intuitively, when we apply transitivity, we need
to show that the composition of identity bijections defined over different
heaps results in the identity bijection over the initial heap required
by the lemma. For example, to show that µ ≈ι|µ|

L µ′′ through some
intermediate heap µ′ such that µ ≈ι|µ|

L µ′ and µ′ ≈
ι|µ′|
L µ′′, we apply

transitivity and obtain µ ≈
ι|µ′| ◦ ι|µ|
L µ′′. Since heaps only grow in size

(Lemma 2.6), we have that |µ| ⩽ |µ′|, thus rng(ι|µ|) ⊆ dom(ι|µ′|)

2.3. Flow-Sensitive References 39

and ι|µ′| ◦ ι|µ| = ι|µ| by Property 3.2 and so we have µ ≈ι|µ|
L µ′′, as

required.

For L-equivalence preservation, we assume that the program inputs
are L-equivalent up to some bijection β and must show that the final
configurations are L-equivalent up to some extended bijection β′ ⊇ β.
Since we cannot predict, in general, how arbitrary programs allocate
references at run-time, in these lemmas we existentially quantify the
bijection β′ that relates the heap addresses in final configurations, but
guarantee that the final bijection β′ is at least as large as the initial
bijection β, i.e., β ⊆ β′. This invariant is critical for the proof, where the
inductive steps require combining L-equivalent values and environments
with different bijections. In particular, the fact that bijections only get
extended, e.g., β ⊆ β′, lets us lift L-equivalence relations up to a small
bijection β into L-equivalence relations up to a larger bijection β′ via
weakening (Property 5.4).

Like before, we prove two L-equivalence preservation lemmas, for
secret and public contexts, respectively, which we then combine in the
proof of termination-insensitive non-interference. For preservation in
secret contexts, we observe that the bijection that relates the final
configurations is exactly the same bijection that relates the initial
configurations.16 Since the program executions occur in secret contexts,
their allocations are secret-dependent and therefore not observable by
the attacker, which is reflected in the lemma by relating the initial and
final configurations with the same bijection. The proof technique for
this lemma is similar to that of the previous L-equivalence preservation
lemma. We consider each program execution individually and reason
independently about program state (i.e., heap and store) and values
in the final configurations. In particular, we apply store and heap
confinement to each execution and relate the initial and final program
states with the identity bijection, which are then combined in a square
commutative diagram (Figure 2.10) to relate the final configurations.

16This is a special case of L-equivalence preservation, where we can predict the
final bijection β, and therefore we omit the existential quantification. Notice that in
this case the invariant β ⊆ β is trivially satisfied.

40 Fine-Grained IFC Calculus

Lemma 2.9 (L-Equivalence Preservation in Secret Contexts). For all
program counter labels pc1 ̸⊑ L and pc2 ̸⊑ L, valid inputs ⊢
Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that c1 = ⟨Σ1, µ1, e1⟩, c2 =
⟨Σ2, µ2, e2⟩, Σ1 ≈β

L Σ2 and µ1 ≈β
L µ2, if ⟨Σ1, µ1, e1⟩ ⇓θ1

pc1
c1 and

⟨Σ2, µ2, e2⟩ ⇓θ2
pc2

c2, then c1 ≈β
L c2.

Proof. Assume pc1 ̸⊑ L, pc2 ̸⊑ L, Σ1 ≈β
L Σ2, µ1 ≈β

L µ2, and let
the final configurations be c1 = ⟨Σ′

1, µ′
1, v1⟩ and c2 = ⟨Σ′

2, µ′
2, v2⟩. First,

we apply Store and Heap Confinement (Lemma 2.8) to ⟨Σ1, µ1, e1⟩ ⇓θ1
pc1

⟨Σ′
1, µ′

1, v1⟩ and ⟨Σ2, µ2, e2⟩ ⇓θ2
pc2
⟨Σ′

2, µ2, v2⟩ and obtain µ1 ≈
ι|µ1|
L µ′

1
and µ2 ≈

ι|µ2|
L µ′

2, respectively. Then, we construct the Square Commu-
tative Diagram for Heaps (Lemma 2.7) using µ1 ≈β

L µ2, µ1 ≈
ι|µ1|
L µ′

1
and µ2 ≈

ι|µ2|
L µ′

2, and obtain µ′
1 ≈

β
L µ′

2. We derive Σ′
1 ≈

β
L Σ′

2 with a
similar construction and prove v1 ≈β

L v2 like in Lemma 2.3.

The proof of L-equivalence preservation in public contexts also
follows the same structure of the proof without heaps. In particular,
the proof is by simultaneous induction on the two big-step reductions
and relies on L-Equivalence Preservation in Secret Contexts when the
program executions deviate from each other at a secret-dependent
control-flow point. Here, we discuss only the interesting case where the
programs allocate a flow-sensitive reference and we must extend the
bijection with a new pair of matching addresses.

Lemma 2.10 (L-Equivalence Preservation in Public Contexts). For all
program counter labels pc ⊑ L, valid inputs ⊢ Valid(c1, θ1) and
⊢ Valid(c2, θ2), such that c1 ≈β

L c2, θ1 ≈β
L θ2, if c1 ⇓θ1

pc c′
1, and

c2 ⇓θ2
pc c′

2, then there exists an extended bijection β′ ⊇ β, such that
c′

1 ≈
β′

L c′
2.

Proof. From L-equivalence, i.e., c1 ≈β
L c2, the program expressions are

α-equivalent, therefore the two reductions step following the same rule
and produce L-equivalent results and perform L-equivalent operations
on the program store and heap. In particular, for rule [New-FS], the
programs allocate L-equivalent heap cells, e.g., v1 ≈β′

L v2 for some
extended bijection β′ ⊇ β by induction hypothesis, at fresh addresses
n1 = |µ′

1| and n2 = |µ′
2| of related heaps µ′

1 ≈
β′

L µ′
2, which remain

2.3. Flow-Sensitive References 41

related under the extended bijection β′′ = β′ ∪ {(n1, n2)} ⊇ β by
transitivity, i.e., µ1[n1 7→ v1] ≈β′′

L µ2[n2 7→ v2], and so produce related
references n1

L ≈β′′

L n2
L by rule [ValueL] applied to rule [Ref-FS].

Lastly, we combine the L-equivalence preservation lemmas for public
and secret contexts and prove termination-insensitive non-interference
for λdFG extended with flow-sensitive references.

Theorem 2 (λdFG-TINI with Bijections). For all program counter labels
pc and valid inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that
c1 ≈β

L c2, θ1 ≈β
L θ2, if c1 ⇓θ1

pc c′
1, and c2 ⇓θ2

pc c′
2, then there exists an

extended bijection β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Conclusion. Dynamic language-based fine-grained IFC, of which λdFG

is just a particular instance, represents an intuitive approach to tracking
information flows in programs. Programmers annotate input values with
labels that represent their sensitivity and a label-aware instrumented
security monitor propagates those labels during execution and computes
the result of the program together with a conservative approximation
of its sensitivity. The next section describes an IFC monitor that tracks
information flows at coarse granularity.

3
Coarse-Grained IFC Calculus

One of the drawbacks of dynamic fine-grained IFC is that the pro-
gramming model requires all input values to be explicitly and fully
annotated with their security labels. Imagine a program with many
inputs and highly structured data: it quickly becomes cumbersome, if
not impossible, for the programmer to specify all the labels. The label of
some inputs may be sensitive (e.g., passwords, pin codes, etc.), but the
sensitivity of the rest may probably be irrelevant for the computation,
yet a programmer must come up with appropriate labels for them as
well. The programmer is then torn between two opposing risks: over-
approximating the actual sensitivity can negatively affect execution
(the monitor might stop secure programs), under-approximating the
sensitivity can endanger security. Even worse, specifying many labels
manually is error-prone and assigning the wrong security label to a piece
of sensitive data can be catastrophic for security and completely defeat
the purpose of IFC. Dynamic coarse-grained IFC represents an attrac-
tive alternative that requires fewer annotations, in particular it allows
the programmer to label only the inputs that need to be protected.

42

43

Types: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L
| LIO τ | Labeled τ | Ref τ

Labels: ℓ, pc ∈ L

Addresses: n ∈ N
Environments: θ ∈ Var ⇀ Value

Values: v ::= () | (x.e, θ) | inl(v) | inr(v) | (v1, v2) | ℓ
| Labeled ℓ v | (t, θ) | nℓ

Expressions: e ::= x |λx.e | e1 e2 | () | ℓ | (e1, e2) | fst(e) | snd(e)
| inl(e1) | inr(e2) | case(e, x.e1, x.e2) | e1 ⊑? e2 | t

Thunks: t ::= return(e) | bind(e, x.e) | unlabel(e)
| toLabeled(e) | labelOf(e) | getLabel | taint(e)
| new(e) | ! e | e1 := e2 | labelOfRef(e)

Type System: Γ ⊢ e : τ

Configurations: c ::= ⟨Σ, pc, e⟩
Stores: Σ ∈ (ℓ : Label)→ Memory ℓ

Memory ℓ: M ::= [] | v : M

Figure 3.1: Syntax of λdCG.

Syntax. Figure 3.1 shows the syntax of λdCG, a standard simply-typed
λ-calculus extended with security primitives for dynamic coarse-grained
IFC, inspired by Stefan et al. (2011) and adapted to use call-by-value
instead of call-by-name to match λdFG. The λdCG-calculus features
both standard (unlabeled) values and explicitly labeled values. For
example, Labeled H true represents a secret boolean value of type
Labeled bool.1 The type constructor LIO encapsulates a security state
monad, whose state consists of a labeled store and the program counter
label. In addition to standard return(·) and bind(·) constructs, the

1As in λdFG, we define bool = unit + unit and if e then e1 else e2 =
case(e, .e1, .e2). Unlike λdFG values, λdCG values are not intrinsically labeled, thus
we encode boolean constants simply as true = inl(()) and false = inr(()).

44 Coarse-Grained IFC Calculus

(Thunk)
t ⇓θ (t, θ)

(Fun)
λx.e ⇓θ (x.e, θ)

(Var)
x ⇓θ θ(x)

(App)
e1 ⇓θ (x.e, θ′) e2 ⇓θ v2 e ⇓θ′[x 7→v2] v

e1 e2 ⇓θ v

(Case1)
e1 ⇓θ inl(v1) e1 ⇓θ[x 7→v1] v

case(e, x.e1, x.e2) ⇓θ v

(Case2)
e1 ⇓θ inr(v2) e2 ⇓θ[x 7→v2] v

case(e, x.e1, x.e2) ⇓θ v

Figure 3.2: Pure semantics: e ⇓θ v (selected rules).

monad provides primitives that regulate the creation and the inspection
of labeled values, i.e., toLabeled(·), unlabel(·) and labelOf(·), and
the interaction with the labeled store, allowing the creation, reading
and writing of labeled references nℓ through the constructs new(e), !e,
e1 := e2, respectively.2 The primitives of the LIO monad are listed in a
separate sub-category of expressions called thunk. Intuitively, a thunk
is just a description of a stateful computation, which only the top-level
security monitor can execute—a thunk closure, i.e., (t, θ), provides a
way to suspend nested computations.

3.1 Dynamics

In order to track information flows dynamically at coarse granularity,
λdCG employs a technique called floating-label, which was originally de-
veloped for IFC operating systems (e.g., Zeldovich et al., 2006; Zeldovich
et al., 2008) and that was later applied in a language-based setting. In
this technique, throughout a program’s execution, the program counter
label floats above the label of any value observed during program exe-
cution and thus represents (an upper bound on) the sensitivity of all
the values that are not explicitly labeled. For this reason, λdCG stores

2We extend λdCG with flow-sensitive references and heaps in Section 3.3.

3.1. Dynamics 45

(Force)
e ⇓θ (t, θ′) ⟨Σ, pc, t⟩ ⇓θ′ ⟨Σ′, pc′, v⟩

⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′, v⟩

(a) Forcing semantics: ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′, v⟩.

(Return)
e ⇓θ v

⟨Σ, pc, return(e)⟩ ⇓θ ⟨Σ, pc, v⟩

(Bind)
⟨Σ, pc, e1⟩ ⇓θ ⟨Σ′, pc′, v1⟩ ⟨Σ′, pc′, e2⟩ ⇓θ[x 7→v1] ⟨Σ′′, pc′′, v⟩

⟨Σ, pc, bind(e1, x.e2)⟩ ⇓θ ⟨Σ′′, pc′′, v⟩

(ToLabeled)
⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′, v⟩

⟨Σ, pc, toLabeled(e)⟩ ⇓θ ⟨Σ′, pc, Labeled pc′ v⟩

(Unlabel)
e ⇓θ Labeled ℓ v

⟨Σ, pc, unlabel(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, v⟩

(LabelOf)
e ⇓θ Labeled ℓ v

⟨Σ, pc, labelOf(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ℓ⟩

(GetLabel)
⟨Σ, pc, getLabel⟩ ⇓θ ⟨Σ, pc, pc⟩

(Taint)
e ⇓θ ℓ

⟨Σ, pc, taint(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ()⟩

(b) Thunk semantics: ⟨Σ, pc, t⟩ ⇓θ ⟨Σ′, pc′, v⟩.

Figure 3.3: Big-step semantics for λdCG.

46 Coarse-Grained IFC Calculus

the program counter label in the program configuration, so that the
primitives of the LIO monad can control it explicitly. In technical terms
the program counter is said to be flow-sensitive, i.e., it may assume
different values in the final configuration depending on the control flow
of the program.3

Like λdFG, the operational semantics of λdCG consists of a security
monitor that fully evaluates secure programs but prevents the execution
of insecure programs and similarly enforces termination-insensitive non-
interference (Theorem 3). The big-step operational semantics of λdCG

is structured in two parts: (i) a straightforward call-by-value side-effect-
free semantics for pure expressions (Figure 3.2), and (ii) a top-level
security monitor for monadic programs (Figure 3.3). The semantics
of the security monitor is further split into two mutually recursive
reduction relations, one for arbitrary expressions (Figure 3.3a) and one
specific to thunks (Figure 3.3b). These constitute the forcing semantics
of the monad, which reduces a thunk to a pure value and perform
side-effects. In particular, given the initial store Σ, program counter
label pc, expression e of type LIO τ for some type τ and input values θ

(which may or may not be labeled), the monitor executes the program,
i.e., ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′, v⟩ and gives an updated store Σ′, updated
program counter pc′ and a final value v of type τ , which also might not
be labeled. The execution starts with rule [Force], which reduces the
pure expression to a thunk closure, i.e., (t, θ′) and then forces the thunk
t in its environment θ′ with the thunk semantics.

The pure semantics is fairly standard—we report some selected
rules in Figure 3.2 for comparison with λdFG. A pure reduction, written
e ⇓θ v, evaluates an expression e with an appropriate environment
θ to a pure value v. Notice that, unlike λdFG, all reduction rules of
the pure semantics ignore security, even those that affect the control
flow of the program, like rules [App], [Case1], and [Case2]: they do
not feature the program counter label or label annotations. This is
because these reductions are pure—they cannot perform side-effects
and so leak sensitive data—and thus are inherently secure and need

3In contrast, we consider λdFG’s program counter flow-insensitive because it is
part of the evaluation judgment and its value changes only inside nested judgments.

3.1. Dynamics 47

not to be monitored (Vassena et al., 2017).4 For example, since pure
programs do not have access to the store, they cannot leak through
implicit flows, which are then a concern only for monadic programs.

How does the semantics prevent pure programs from performing side-
effects, without getting the program stuck and raising a false alarm? If
the pure evaluation reaches a side-effectful computation, i.e., thunk t, it
suspends the computation by creating a thunk closure that captures the
current environment θ (see rule [Thunk]).5 Notice that thunk closures
and function closures are distinct values created by different rules,
[Thunk] and [Fun] respectively.6 Function application succeeds only
when the function evaluates to a function closure (rule [App]). In the
thunk semantics, rule [Return] evaluates a pure value embedded in
the monad via return(·) and leaves the state unchanged, while rule
[Bind] executes the first computation with the forcing semantics, binds
the result in the environment i.e., θ[x 7→ v1], passes it on to the second
computation together with the updated state and returns the final result
and state. Rule [Unlabel] is interesting. Following the floating-label
principle, it returns the value wrapped inside the labeled value, i.e., v,
and raises the program counter with its label, i.e., pc ⊔ ℓ, to reflect
the fact that new data at security level ℓ is now in scope.

Floating-label based coarse-grained IFC systems like LIO suffer
from the label creep problem, which occurs when the program counter
gets over-tainted, e.g., because too many secrets have been unlabeled,
to the point that no useful further computation can be performed.
Primitive toLabeled(·) provides a mechanism to address this problem
by (i) creating a separate context where some sensitive computation
can take place and (ii) restoring the original program counter label

4The strict separation between side-effect-free and side-effectful code is a dis-
tinctive feature of coarse-grained IFC, which is crucial to lightweight approaches to
enforce security via software libraries (Russo et al., 2009; Buiras et al., 2015; Russo,
2015; Stefan et al., 2012)

5Notice that type preservation for the pure semantics preserves types exactly i.e.,
if Γ ⊢ e : τ , e ⇓θ v and ⊢ θ : Γ, then ⊢ v : τ , which reflects the suspending behavior
for the monadic type LIO τ . In contrast, type preservation for the thunk and forcing
semantics assumes that the expression (resp. thunk) has a monadic type, i.e., LIO τ
for some type τ , and guarantees that the final value has type τ .

6It would have also been possible to define thunk values in terms of function clo-
sures using explicit suspension and an opaque constructor wrapper, e.g., LIO (.t, θ).

48 Coarse-Grained IFC Calculus

afterwards. Rule [ToLabeled] formalizes this idea. Notice that the
result of the nested sensitive computation, i.e., v, cannot be simply
returned to the lower context—that would be a leak, so toLabeled(·)
wraps that piece of information in a labeled value protected by the final
program counter of the sensitive computation, i.e., Labeled pc′ v.7
Furthermore, notice that pc′, the label that tags the result v, is as
sensitive as the result itself because the final program counter depends
on all the unlabel(·) operations performed to compute the result.
This motivates why primitive labelOf(·) does not simply project the
label from a labeled value, but additionally taints the program counter
with the label itself in rule [LabelOf]–a label in a labeled value has
sensitivity equal to the label itself, thus the program counter label rises
to accommodate reading new sensitive data.

Lastly, rule [GetLabel] returns the value of the program counter,
which does not rise (because pc ⊔ pc = pc), and rule [Taint] simply
taints the program counter with the given label and returns unit (this
primitive matches the functionality of taint(·) in λdFG). Note that, in
λdCG, taint(·) takes only the label with which the program counter
must be tainted whereas, in λdFG, it additionally requires the expression
that must be evaluated in the tainted environment. This difference
highlights the flow-sensitive nature of the program counter label in
λdCG.

3.1.1 References

λdCG features flow-insensitive labeled references similar to λdFG and
allows programs to create, read, update and inspect the label inside
the LIO monad (see Figure 3.4). The API of these primitives takes
explicitly labeled values as arguments, by making explicit at the type
level, the tagging that occurs in memory, which was left implicit in
previous work (Stefan et al., 2017). Rule [New] creates a reference
labeled with the same label annotation as that of the labeled value it

7Stefan et al. (2017) have proposed an alternative flow-insensitive primitive, i.e.,
toLabeled(ℓ, e), which labels the result with the user-assigned label ℓ. In λdCG,
we use primitive toLabeled(e) because its flow-sensitive labeling semantics aligns
exactly with the semantics of λdFG, thus simplifying the translation between the
languages.

3.1. Dynamics 49

(New)
e ⇓θ Labeled ℓ v pc ⊑ ℓ n = |Σ(ℓ)|
⟨Σ, pc, new(e)⟩ ⇓θ ⟨Σ[ℓ 7→ Σ(ℓ)[n 7→ v]], pc, nℓ⟩

(Read)
e ⇓θ nℓ Σ(ℓ)[n] = v

⟨Σ, pc, !e⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, v⟩

(Write)
e1 ⇓θ nℓ1 e2 ⇓θ Labeled ℓ2 v ℓ2 ⊑ ℓ1 pc ⊑ ℓ1

⟨Σ, pc, e1 := e2⟩ ⇓θ ⟨Σ[ℓ1 7→ Σ(ℓ1)[n 7→ v]], pc, ()⟩

(LabelOfRef)
e ⇓θ nℓ

⟨Σ, pc, labelOfRef(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ℓ⟩

Figure 3.4: Big-step semantics for λdCG (references).

receives as an argument, and checks that pc ⊑ ℓ in order to avoid
implicit flows. Rule [Read] retrieves the content of the reference from
the ℓ-labeled memory and returns it. Since this brings data at security
level ℓ in scope, the program counter is tainted accordingly, i.e., pc ⊔ ℓ.
Rule [Write] performs security checks analogous to those in λdFG and
updates the content of a given reference and rule [LabelOfRef] returns
the label on a reference and taints the context accordingly.

We conclude this section by noting that the forcing and the thunk
semantics of λdCG satisfy Property 6 (“the final value of the program
counter label of any λdCG program is always at least as sensitive as the
initial value”).

Property 6.

• If ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′, v⟩ then pc ⊑ pc′.

• If ⟨Σ, pc, t⟩ ⇓θ ⟨Σ′, pc′, v⟩ then pc ⊑ pc′.

Proof. By mutual induction on the given evaluation derivations.

50 Coarse-Grained IFC Calculus

(LabeledL)
ℓ ⊑ L v1 ≈L v2

Labeled ℓ v1 ≈L Labeled ℓ v2

(LabeledH)
ℓ1 ̸⊑ L ℓ2 ̸⊑ L

Labeled ℓ1 v1 ≈L Labeled ℓ2 v2

(Inl)
v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)
v1 ≈L v2

inr(v1) ≈L inr(v2)

(F-Closure)
e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(T-Closure)
t1 ≡α t2 θ1 ≈L θ2

(t1, θ1) ≈L (t2, θ2)

(RefL)
ℓ ⊑ L

nℓ ≈L nℓ

(RefH)
ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1
ℓ1 ≈L n2

ℓ2

(PcH)
Σ1 ≈L Σ2 pc1 ̸⊑ L pc2 ̸⊑ L
⟨Σ1, pc1, v1⟩ ≈L ⟨Σ2, pc2, v2⟩

(PcL)
Σ1 ≈L Σ2 pc ⊑ L v1 ≈L v2

⟨Σ1, pc, v1⟩ ≈L ⟨Σ2, pc, v2⟩

Figure 3.5: L-equivalence for λdCG values (selected rules) and configurations.

3.2 Security

We now prove that λdCG is secure, i.e., it satisfies termination-insensitive
non-interference. The meaning of the security condition is intuitively
similar to that presented in Section 2.2 for λdFG— when secret inputs are
changed, terminating programs do not produce any publicly observable
effect—and based on a similar indistinguishability relation.

3.2.1 L-Equivalence

Figure 3.5 presents the definition of L-equivalence for the interest-
ing cases only. Firstly, L-equivalence for λdCG labeled values relates
public and secret values analogously to λdFG values. Specifically, rule

3.2. Security 51

[LabeledL] relates public labeled values that share the same observ-
able label, i.e., ℓ ⊑ L, and contain related values, i.e., v1 ≈L v2,
while rule [LabeledH] relates secret labeled values, with arbitrary
sensitivity labels not below L, i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L, and
contents. Secondly, L-equivalence relates standard (unlabeled) values
homomorphically. For example, values of the sum type are related
only as follows: inl(v1) ≈L inl(v′

1) iff v1 ≈L v′
1 through rule [Inl] and

inr(v2) ≈L inr(v′
2) iff v2 ≈L v′

2 through rule [Inr], i.e., we do not pro-
vide any rule to relate values with different injections, just like in λdFG.
Function and thunk closures are related by rules [F-Closure] and
[T-Closure], respectively. In the rules the function and the monadic
computations are α-equivalent and their environments are related, i.e.,
θ1 ≈L θ2 iff dom(θ1) ≡ dom(θ2) and ∀x.θ1(x) ≈L θ2(x). Labeled refer-
ences, memories and stores are related by L-equivalence analogously
to λdFG. Lastly, L-equivalence relates initial configurations with re-
lated stores, equal program counters and α-equivalent expressions (resp.
thunks), i.e., c1 ≈L c2 iff c1 = ⟨Σ1, pc1, e1⟩, c2 = ⟨Σ2, pc2, e2⟩, Σ1 ≈L Σ2,
pc1 ≡ pc2, and e1 ≡α e2 (resp. t1 ≡α t2 for thunks t1 and t2), and final
configurations with related stores and (i) equal public program counter
label, i.e., pc ⊑ L, and related values through rule [PcL], or (ii)
arbitrary secret program counter labels, i.e., pc1 ̸⊑ L and pc2 ̸⊑ L,
and arbitrary values through rule [PcH].

L-equivalence for λdCG is reflexive, symmetric, and transitive, simi-
larly to λdFG (Property 2), and so these properties can be combine to
derive a Square Commutative Diagram for λdCG Stores as well, analo-
gous to Figure 2.6.

3.2.2 Termination-Insensitive Non-Interference

We now formally prove that also the security monitor of λdCG is secure,
i.e., it enforces termination-insensitive non-interference (TINI). The
proof technique is the same used for λdFG and similarly based on
store confinement and L-equivalence preservation. However, since the
semantics of the security monitor of λdCG is defined by two mutually
recursive relations, i.e., the forcing and the thunk semantics, each lemma
is stated as a pair of lemmas (one for each semantics relation), which
are then proved by mutual induction.

52 Coarse-Grained IFC Calculus

Store Confinement. Store confinement ensures that programs running
in a secret context cannot leak data implicitly through the labeled store.
To prevent these leaks, the security monitor of λdCG aborts programs
that attempt to write public memories in secret contexts, as these
changes may depend on secret data and would be observable by the
attacker. Rules [New] and [Write] enforce exactly this security policy
by allowing programs to write memories only if they are labeled above
the program counter label.

Lemma 3.1 (Store Confinement). For all program counter labels pc ̸⊑ L,
initial configurations c, and final configurations c′ = ⟨Σ′, pc′, v⟩:

• If c = ⟨Σ, pc, e⟩ and c ⇓θ c′, then Σ ≈L Σ′.

• If c = ⟨Σ, pc, t⟩ and c ⇓θ c′, then Σ ≈L Σ′.

Proof. By mutual induction, using reflexivity in most base cases and
transitivity in case [Bind], where the program counter label remains
above the attacker’s level in the intermediate configuration by Property 6.
In the base cases [New] and [Write], the programs run with program
counter label secret, i.e., pc ̸⊑ L, and write a secret memory labeled ℓ

above pc, i.e., pc ⊑ ℓ, and thus also not observable by the attacker,
i.e., ℓ ̸⊑ L.

L-Equivalence Preservation. Next, we prove L-equivalence preserva-
tion in secret contexts, i.e., programs running with program counter
label secret (pc ̸⊑ L) cannot leak secret data implicitly through their
final value or observable changes to the store. In λdCG, values are not
intrinsically labeled like λdFG values, therefore the final values computed
by these programs may not be explicitly labeled. If these values are
unlabeled, how can we establish if they depend on secret data, or if they
are L-equivalent? Luckily, we can safely approximate the sensitivity of
these values with the program counter label.

The program counter label always represents an upper bound over
the sensitivity of all data not explicitly labeled in a program, including
its final value. This is precisely why λdCG stores it in the program

3.2. Security 53

configuration, so that the LIO monad can control it through the floating-
label mechanism explained above. Therefore, the fact that the program
counter label is secret in a final configuration indicates that the program
has unlabeled secret data and thus the final value may depend on secrets.
This approximation is sound, but also very conservative—in a secret
context, the result of a program must always be considered secret even
if the program has not actually used any secret data to compute it—and
central to the design of the coarse-grained IFC approach embodied by
λdCG.8

The L-equivalence relation for final configurations reflects this read-
ing of the program counter label for unlabeled values. Specifically, if both
program counter labels are secret, then rule [PcH] (Figure 3.5) simply
ignores the values in the configurations (because they may depend on
secret data) and only requires the stores to be L-equivalent.9 Then, to
prove L-equivalence preservation in secret contexts, we simply observe
that the program counter label can only increase during program execu-
tion (Property 6), thus programs that start in secret contexts must also
necessarily terminate in secret contexts. Therefore, we can apply rule
[PcH] provided that the final stores are L-equivalent, i.e., if we can show
that programs cannot leak implicitly through the public memories of
the store. To do that, we follow the same proof technique used for λdFG,
i.e., we first prove that the final stores are L-equivalent to the initial
stores by applying store confinement (Lemma 3.1) to each execution and
then derive L-equivalence of the final stores by constructing a square
commutative diagram (Figure 2.6).

Lemma 3.2 (L-Equivalence Preservation in Secret Contexts). For all
program counter labels pc1 ̸⊑ L and pc2 ̸⊑ L, and stores Σ1 ≈L Σ2:

• If ⟨Σ1, pc1, e1⟩ ⇓θ1 c1 and ⟨Σ2, pc2, e2⟩ ⇓θ2 c2, then c1 ≈L c2.

• If ⟨Σ1, pc1, t1⟩ ⇓θ1 c1 and ⟨Σ2, pc2, t2⟩ ⇓θ2 c2, then c1 ≈L c2.
8Due to this conservative behavior, coarse-grained IFC languages like λdCG may

seem inherently limited, compared to fine-grained languages like λdFG, which track
data-dependencies more precisely, i.e., the result gets labeled secret only if secret
data has been used to compute its value. In Section 5, we prove that λdCG can track
data-dependencies as precisely as λdFG.

9In particular, rule [PcH] accepts arbitrary final values just like rule [LabeledH]
for explicitly labeled values.

54 Coarse-Grained IFC Calculus

Proof. Assume pc1 ̸⊑ L, pc2 ̸⊑ L, Σ1 ≈L Σ2, and let c1 = ⟨Σ′
1, pc′

1, v1⟩
and c2 = ⟨Σ′

2, pc′
2, v2⟩. First, we apply store confinement (Lemma 3.1) to

each big-step reduction and obtain Σ1 ≈L Σ′
1 and Σ2 ≈L Σ′

2. These are
then combined with the assumption Σ1 ≈L Σ2 to form the commutative
square diagram for λdCG stores (Figure 2.6), which gives Σ′

1 ≈L Σ′
2.

Then, we observe that the program counter labels in the final config-
urations are secret, i.e., pc′

1 ̸⊑ L and pc′
2 ̸⊑ L by Property 6, and

therefore we have c1 ≈L c2 by rule [PcH].

Now, we consider L-equivalence preservation in public contexts.
Since λdCG separates pure computations from monadic computations in
different semantics judgments, we first need to prove that L-equivalence
is preserved also by the pure semantics. Notice that this separation is
not only beneficial for security, as explained above, but simplifies the
security analysis as well. For example, pure computations cannot inspect
secret data in a public context, as this operation requires performing a
side-effect. This is because, in public contexts, secret data is explicitly
protected through the Labeled type, which prevents programs from
inspecting secrets directly as they must first extract them via unlabel(·):
Labeled τ → LIO τ . The monadic type of this thunk indicates that
this computation may perform side-effects (i.e., tainting the program
counter label), which crucially, can be performed only by the security
monitor, in the thunk semantics.10 As a result, the execution of pure
programs in public contexts cannot depend on secret data—they simply
cannot access secrets in the first place—and so their (unlabeled) results
are always indistinguishable by the attacker.

Lemma 3.3 (Pure L-Equivalence Preservation). For all expressions e1 ≡α

e2 and environments θ1 ≈L θ2, if e1 ⇓θ1 v1 and e2 ⇓θ2 v2, then
v1 ≈L v2.

Proof. By induction on the big-step reductions, which must always step
according to the same rule. In the spurious cases, e.g., when expression
case(e, x.e1, x.e2) steps through rules [Case1] and [Case2], we show a
contradiction. In particular, assume that the executions follow different
paths, e.g., we have reductions e ⇓θ1 inl(v1) and e ⇓θ2 inr(v2) for the

10The pure semantics simply suspends the evaluation of thunks via rule [Thunk].

3.2. Security 55

scrutinee e. Then, we apply the induction hypothesis to these reductions
and obtain a proof for inl(v1) ≈L inr(v2). But this is impossible: L-
equivalence relates values of sum types only if they have the same
injection, i.e., rules [Inl] and [Inr] in Figure 3.5. Therefore, the two
executions must evaluate the scrutinee to the same injection and follow
the same path.

Similarly, the fact that λdCG requires programs to explicitly unlabel
secret data simplifies also the analysis of implicit flows in monadic
computations. This is because the control flow of λdCG programs can
only depend on unlabeled data, whose sensitivity is coarsely approx-
imated by the program counter label, as explained above. Since the
program counter label only gets tainted in response to specific monadic
actions (e.g., unlabel(e)), and not by regular control-flow construct
(e.g., case(e, x.e1, x.e2)), the evaluation of pure expressions cannot cause
implicit information flows. In particular, by encapsulating secret data in
the Labeled data type, λdCG makes all data dependencies—even those
implicit in the program control flow—explicit through the program
counter label.

Lemma 3.4 (L-Equivalence Preservation in Public Contexts). For all
public program counter labels pc ⊑ L, environments θ1 ≈L θ2, and
stores Σ1 ≈L Σ2:

• If e1 ≡α e2, ⟨Σ1, pc, e1⟩ ⇓θ1 c1, ⟨Σ2, pc, e2⟩ ⇓θ2 c2, then c1 ≈L c2;

• If t1 ≡α t2, ⟨Σ1, pc, t1⟩ ⇓θ1 c1, ⟨Σ2, pc, t2⟩ ⇓θ2 c2, then c1 ≈L c2.

Proof. The two lemmas are proved mutually, by simultaneous induction
on the big-step reductions. The forcing semantics has only a single
rule, i.e., [Force] in Figure 3.3a. Therefore, for the first lemma, we
simply apply Pure L-Equivalence Preservation (Lemma 3.3) to the
pure reductions e1 ⇓θ1 (t1, θ′

1) and e2 ⇓θ2 (t2, θ′
2), which gives

(t1, θ′
1) ≈L (t2, θ′

2), i.e., t1 ≡α t2 and θ′
1 ≈L θ′

2, so we complete the proof
by mutual induction with the lemma for thunks. For the second lemma,
we observe that the thunks are α-equivalent, i.e., t1 ≡α t2, therefore
their reductions always step according to the same rule. For example, in
case [Unlabel], the labeled values that get unlabeled are L-equivalent,

56 Coarse-Grained IFC Calculus

i.e., Labeled ℓ1 v1 ≈L Labeled ℓ2 v2, by Lemma 3.3 applied to the
pure reductions, and then we proceed by cases on the L-equivalence
judgment. (Notice that the store does not change in rule [Unlabel], so
the final stores are L-equivalent by assumption). In case [LabeledL],
the two values are labeled public, i.e., ℓ1 = ℓ2 ⊑ L, and the values are
related, i.e., v1 ≈L v2. Therefore, the program counter label in the final
configurations remain observable by the attacker, i.e., pc ⊔ ℓ1 ⊑ L
since pc ⊑ L and ℓ1 ⊑ L, and the final configurations are L-equivalent
by rule [PcL]. In case [LabeledH], the two values are labeled secret,
i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L, and the program counter label in the final
configurations are secret, i.e., pc ⊔ ℓ1 ̸⊑ L and pc ⊔ ℓ2 ̸⊑ L, and so
the configurations are L-equivalent by rule [PcH].

Finally, we prove termination-insensitive non-interference for λdCG

by combining the L-equivalence preservation lemmas above.

Theorem 3 (λdCG-TINI). If c1 ⇓θ1 c′
1, c2 ⇓θ2 c′

2, θ1 ≈L θ2 and
c1 ≈L c2 then c′

1 ≈L c′
2.

3.3 Flow-Sensitive References

We now continue our exploration of coarse-grained IFC by adding
flow-sensitive references to λdCG and then showing that the extended
language is secure. This extension is in many ways analogous to the
extension presented in Section 2.3 for λdFG. Therefore, we focus mainly
on the (apparently different) security checks performed by the security
monitor of λdCG and how they relate to those performed by the monitor
of λdFG. In Section 3.3.3, we formally establish the security guarantees
of λdCG extended with flow-sensitive references. Though the security
analysis of λdCG is also complicated by bijections like λdFG, we find that
the separation between pure and monadic computations in λdCG limits
the extra complexity of the analysis only to the monadic fragment of
the semantics. In particular, this extension does not affect the pure
fragment of the semantics and so adapting this part of the analysis is
straightforward. Finally, we leverage our mechanized proof scripts to
compare and analyze the security proofs of λdFG and λdCG and discuss
our findings in Section 4.

3.3. Flow-Sensitive References 57

3.3.1 Syntax

Figure 3.6 introduces the new syntactic constructs and semantics rules
for flow-sensitive references. First, we annotate the reference type con-
structor with a tag s ∈ {I , S }, which indicates the sensitivity of a
reference term. A plain address n : Ref S τ represents a flow-sensitive
reference pointing to a value of type τ , stored in the n-th cell of the
heap. Notice that these references are not annotated with a label repre-
senting the sensitivity of their content, like flow-insensitive references.
This is because flow-sensitive references are, by design, allowed to store
data at different security levels, i.e., the label of these references can
change throughout program execution. Thus, the references themselves
are unlabeled and, instead, the security monitor explicitly labels their
content in the heap when they are created and updated (see below).11

To ensure that values in the heap are always labeled, heaps µ are syntac-
tically defined as lists of explicitly labeled values Labeled ℓ v, whose
label ℓ represents the sensitivity of value v and, at the same time, the
label of any reference pointing to it. The heap is stored in program
configurations ⟨Σ, µ, pc, e⟩, where programs can access it through the
same thunk constructs used for flow-insensitive references, i.e., new(e),
e1 := e2, !e, and labelOfRef(e). As we explain next, these operations
must be regulated by the security monitor of λdCG to enforce security.

3.3.2 Dynamics

Figure 3.6 extends the thunk semantics with new rules that allow
programs to access the heap through flow-sensitive references without
leaking data. Rule [New-FS] creates a new reference by allocating a new
cell in the heap at fresh address n = |µ|, which is initialized with the
given labeled value argument, i.e., µ[n 7→ Labeled ℓ v]. Importantly,
the rule requires the label of the value to be above the program counter
label, i.e., pc ⊑ ℓ, to avoid leaks.12 Without this constraint, a program

11In contrast, flow-insensitive references are annotated with a fixed label, e.g., ℓ
for nℓ : Ref I τ , which represents (an upper bound over) the sensitivity of its content.
Since this label does not change, the content of the reference can be stored directly
in the memory labeled ℓ, without being explicitly labeled.

12This restriction, known as no write-down (Bell and La Padula, 1976), is a core
design principles of several static IFC libraries (Russo, 2015; Vassena et al., 2017),

58 Coarse-Grained IFC Calculus

Types: τ ::= · · · | Ref s τ

Values: v ::= · · · | n
Heap: µ ::= [] | Labeled ℓ v : µ

Configuration: c ::= ⟨Σ, µ, pc, e⟩

(a) Syntax.

(New-FS)
e ⇓θ Labeled ℓ v

pc ⊑ ℓ n = |µ| µ′ = µ[n 7→ Labeled ℓ v]
⟨Σ, µ, pc, new(e)⟩ ⇓θ ⟨Σ, µ′, pc, n⟩

(Read-FS)
e ⇓θ n µ[n] = Labeled ℓ v

⟨Σ, µ, pc, !e⟩ ⇓θ ⟨Σ, µ, pc ⊔ ℓ, v⟩

(LabelOfRef-FS)
e ⇓θ n µ[n] = Labeled ℓ

⟨Σ, µ, pc, labelOfRef(e)⟩ ⇓θ ⟨Σ, µ, pc ⊔ ℓ, ℓ⟩

(Write-FS)
e1 ⇓θ n e2 ⇓θ Labeled ℓ′ v µ[n] = Labeled ℓ

pc ⊑ ℓ µ′ = µ[n 7→ Labeled (pc ⊔ ℓ′) v]
⟨Σ, µ, pc, e1 := e2⟩ ⇓θ ⟨Σ, µ′, pc, ()⟩

(b) Dynamics. The shaded constraint corresponds to the no-sensitive upgrade security
check in λdFG.

Figure 3.6: λdCG extended with flow-sensitive references.

3.3. Flow-Sensitive References 59

could create a public reference in a secret context, which constitutes a
leak. Compare this rule with the corresponding rule for λdFG, i.e., rule
[New-FS] in Figure 2.8b. The security monitor of λdFG does not check
that the label of the value is above the program counter label—in fact
the rule does not contain any security check at all! Why must λdCG

include that check and instead λdFG can skip it? This is because that
check is redundant in λdFG: the constraint pc ⊑ ℓ performed by the
security monitor of λdCG is an invariant (Property 1) of the semantics
of λdFG. Intuitively, λdFG programs cannot create public references in
secret contexts because the result of a computation is always labeled
above the current program counter label. Since λdCG does not enjoy this
invariant, i.e., computations can return values labeled public even in
secret contexts, that check must be included in all the rules that perform
write side-effects (i.e., also in rules [New], [Write] for flow-insensitive
references in Figure 3.4) to avoid leaks.

Rule [Read-FS] reads a flow-sensitive reference by retrieving its
content from the heap, i.e., µ[n] = Labeled ℓ v, and returning its
value v. Importantly, the rule taints the program counter label, i.e.,
pc ⊔ ℓ, to indicate that data at security level ℓ is now in scope. Rule
[LabelOfRef-FS] is similar, but returns the label of the reference,
i.e., the same label ℓ that also annotates its content, and so it taints
the program counter label with the label itself, i.e., pc ⊔ ℓ.

Lastly, rule [Write-FS] updates the content of a flow-sensitive refer-
ence n with a new value Labeled ℓ′ v, which replaces the current value
stored in the heap, i.e., µ[n] = Labeled ℓ . Notice that the new value
can be less or even more sensitive than the old value, i.e., labels ℓ and ℓ′

can be in any relation. This is exactly why flow-sensitive references are, in
general, more permissive than flow-insensitive references also in λdCG.13

In the rule, the constraint pc ⊑ ℓ is analogous to the NSU check for
λdFG. (For convenience, these equivalent checks are shaded in Figure
2.8b and 3.6b). Intuitively, this check allows a reference update only if

which was not identified as such in dynamic IFC libraries (Stefan et al., 2011; Stefan
et al., 2017).

13In particular, Example 2.1 can be adapted to λdCG as well, i.e., program
r ← new(p); r := s; !r is aborted with flow-insensitive references, but accepted with
flow-sensitive references.

60 Coarse-Grained IFC Calculus

the decision to update that reference depends on data less sensitive than
the reference itself.14 Though the NSU checks in λdFG and λdCG protect
against the same type of implicit data leaks, they involve different labels,
i.e., the intrinsic label of the reference in λdFG and the program counter
label in λdCG. In λdFG, the sensitivity of the reference is represented by
its intrinsic label, which can then be used directly in the NSU check. In
contrast, λdCG does not feature intrinsic labels, therefore, we use the
program counter label as a coarse, but sound, approximation of the
sensitivity of the reference, hence the NSU check pc ⊑ ℓ. Notice that
when the new value is written in the heap, the rule taints its label with
the program counter label, i.e., µ[n 7→ Labeled (pc ⊔ ℓ′) v], for the
same reason. Intuitively, the sensitivity of the content is determined by
the new value, which is explicitly labeled ℓ′, and by the sensitivity of
the (unlabeled) reference, approximated by the program counter label
pc, i.e., the new content has sensitivity at most pc ⊔ ℓ′.15

3.3.3 Security

The security analysis of λdCG extended with flow-sensitive references is
very much similar to the analysis presented in Section 2.3.3 for λdFG.
In particular, the security monitor of λdCG allocates both public and
secret data in the same linear heap and so secret-dependent allocations
can influence the addresses of subsequent public references, just like in
λdFG. Although this can create a dependency between concrete heap
addresses and secret data, security is not at stake because references are
opaque in λdCG as well. To formally show that, we need to adapt the
L-equivalence relation, and consequently the security analysis, to use a
bijection to reason about corresponding references with secret-dependent,
yet indistinguishable, heap addresses.

L-Equivalence up to Bijection. Formally, we redefine L-equivalence as
a relation ≈β

L ⊆ Value × Value and add the bijection β to ≈L in all the
rules previously defined for λdCG. These rules do not use the bijection,

14λdCG would be insecure without this constraint. In particular, programs could
leak data through secret-dependent reference updates, similarly to Example 2.2.

15In addition, by tainting the label ℓ′ with the program counter label pc, the rule
automatically respects the no write-down restriction, i.e., pc ⊑ pc ⊔ ℓ′, hence no
explicit security check is needed like in rules [New], [Write], and [New-FS].

3.3. Flow-Sensitive References 61

which is needed instead only in the rules for flow-sensitive references and
heaps. In particular, two flow-sensitive references are indistinguishable
only if their heap addresses are matched by the bijection, i.e., we add
the following new rule:

(Ref-FS)
(n1, n2) ∈ β

n1 ≈β
L n2

Similarly, in the definition of L-equivalence for heaps, the addresses
related by the bijection identify corresponding heap cells, which must
be recursively related, as they can be read through related references.16

Definition 3 (Heap L-equivalence). Two heaps µ1 and µ2 are L-equi-
valent up to bijection β, written µ1 ≈β

L µ2, if and only if:

1. dom(β) ⊆ {0, . . . , |µ1| − 1},

2. rng(β) ⊆ {0, . . . , |µ2| − 1}, and

3. For all addresses n1 and n2, if (n1, n2) ∈ β, then µ1[n1] ≈β
L µ2[n2].

In the definition above, only the rules for labeled values can re-
late heap cells µ1[n1] ≈β

L µ2[n2]. This is because heaps are syntacti-
cally defined as a list of explicitly labeled values in Figure 3.6a, i.e.,
µ1[n1] = Labeled ℓ1 v1 for some label ℓ1 and value v1 and similarly
µ2[n2] = Labeled ℓ2 v2, and the only rules that give Labeled ℓ1 v1 ≈β

L
Labeled ℓ2 v2 are [LabeledL] and [LabeledH] in Figure 3.5.

Similarly to λdFG, the L-equivalence relation up to bijection for λdCG

satisfies restricted reflexivity, symmetricity, transitivity, and weakening
(i.e., Property 5), and so we can construct square commutative diagrams
for stores and heaps (i.e., Lemma 2.7) in λdCG as well. Notice that
reflexivity is restricted only to valid program constructs, i.e., values,
environments, memories, stores, heaps, and configurations that are
free of dangling flow-sensitive references, just like it is in λdFG and
for the same technical reasons. These side conditions are formalized

16Notice that these addresses are valid in the heap thanks to the first two side-
conditions, which ensure that the domain and range of the bijection are compatible
with the address space of the heaps. See also the explanation of Definition 2.

62 Coarse-Grained IFC Calculus

by straightforward judgments, e.g., n ⊢ Valid(θ) and n ⊢ Valid(v)
indicating that the references contained in value v and environment
θ are valid in a heap of size n, which are mutually and recursively
defined like in Figure 2.9. In these judgments, the size parameter n is
instantiated by the top-level judgment for program inputs and outputs
with the size of the current heap µ, i.e., n = |µ| as shown in Figure 3.7.
The fact that the security lemmas of λdCG assume valid configurations
does not actually weaken the security guarantees of the language: these
judgments are naturally preserved by the pure and monadic semantics
of λdCG.

(Valid-Inputs)
c = ⟨Σ, µ, pc e⟩

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(θ)
⊢ Valid(c, θ)

(Valid-Outputs)
c = ⟨Σ, µ, pc, v⟩

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(v)
⊢ Valid(c)

Figure 3.7: Judgments for valid program inputs and outputs in λdCG.

Property 7 (Valid Invariant).

1. If e ⇓θ v and n ⊢ Valid(θ), then n ⊢ Valid(v).

2. If c ⇓θ c′ and ⊢ Valid(c, θ), then ⊢ Valid(c′).

Termination-Insensitive Non-Interference. We now prove that λdCG

extended with flow-sensitive references enforces termination-insensitive
non-interference. This result is also based on two lemmas, i.e., store and
heap confinement and L-equivalence preservation, which are complicated
by the fact that L-equivalence is defined up to a bijection, similarly
to λdFG. These lemmas rely on bijections to relate flow-sensitive ref-
erences allocated in public contexts: these references are observable

3.3. Flow-Sensitive References 63

by the attacker, but their heap addresses may differ due to previous,
secret-dependent allocations. In contrast, references allocated in secret
contexts cannot be observed by the attacker and must be ignored by
the bijection. For example, in the store and heap confinement lemma,
we show that initial and final stores and heaps are L-equivalent, for
programs executed in secret contexts. Which bijection should we use to
relate the addresses of flow-sensitive references in this lemma? Intuitively,
the addresses of references already allocated in the initial configura-
tion remain unchanged in the final configuration (because references
cannot be tempered in λdCG), so they can be related by the identity
bijection. Furthermore, since references allocated in a secret context are
not observable by the attacker, the lemma shows L-equivalence up to a
identity bijection that ignores any new heap allocation performed by
the program, i.e., up to the identity bijection restricted to the domain
of the initial heap.

Lemma 3.5 (Store and Heap Confinement). For all program counter la-
bels pc ̸⊑ L, valid initial configurations and environments ⊢ Valid(c, θ),
and final configurations c′ = ⟨Σ′, µ′, pc′, v⟩:

• If c = ⟨Σ, µ, pc, e⟩ and c ⇓θ c′, then Σ ≈ι|µ|
L Σ′ and µ ≈ι|µ|

L µ′.

• If c = ⟨Σ, µ, pc, t⟩ and c ⇓θ c′, then Σ ≈ι|µ|
L Σ′ and µ ≈ι|µ|

L µ′.

Proof. Analogous to Lemma 2.8. Since λdCG encapsulates side-effects in
a monad, we need to explicitly propagate the valid judgment only in very
few cases compared to λdFG. In particular, we only apply Property 7.1
in rule [Force] and Property 7.2 in rule [Bind].

Next, we prove L-equivalence preservation in secret contexts. Since
the programs considered in this lemma run in a secret context, the ad-
dresses of the flow-sensitive references allocated during these executions
must be ignored by the bijection, i.e., the final configurations must be
L-equivalent up to the same bijection used for the initial configurations.
We prove that by constructing a square commutative diagram for heaps
and stores, similar to Figure 2.10. (We explain the construction for

64 Coarse-Grained IFC Calculus

heaps, stores are treated analogously).17 In the figure, heaps µ1 and µ2
are from the initial configurations of the lemma, while µ′

1 and µ′
2 are

the heaps from the final configurations. Since the initial configurations
are L-equivalent, we have the vertical edge on the left, i.e., µ1 ≈β

L µ2,
by assumption. Instead, the horizontal edges of the square are obtained
by applying store and heap confinement to each individual program
execution. In particular, the lemma shows that the initial and final
heaps in these executions are L-equivalent up to appropriate identity
bijections, i.e., µ1 ≈ι|µ1|

L µ′
1 and µ2 ≈ι|µ2|

L µ′
2, which ignore new

heap allocations, as explained above. Therefore, the bijection that re-
lates the final heaps from the vertical edge on the right of the square
can be simplified. Specifically, the identity bijections cancel out in the
composition with the bijection from the initial L-equivalence relation,
i.e., ι|µ2| ◦ β ◦ ι−1

|µ1| = β, and so the final heaps remain related up
to the same bijection β used for the initial heaps, i.e., µ′

1 ≈
β
L µ′

2. In
the following, we use dot-notation to access individual elements of a
configuration, e.g., we write c.pc to extract the program counter pc
from the configuration c = ⟨ , , pc, ⟩.

Lemma 3.6 (L-Equivalence Preservation in Secret Contexts). For all valid
inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections β, such that
c1.pc ̸⊑ L, c2.pc ̸⊑ L, and c1 ≈β

L c2, if c1 ⇓θ1 c′
1 and c2 ⇓θ2 c′

2, then
c′

1 ≈
β
L c′

2.

We now adapt the proof of L-equivalence in public contexts. The
references allocated by the program considered in this lemma are observ-
able by the attacker and so we have to construct an appropriate bijection
to relate their addresses in the final configurations. However, since these
allocations occur at run time and may depend on the program inputs,
we cannot, in general, predict the exact bijection needed to relate them.
Therefore, the final bijection is existentially quantified in the lemma,
so that the right bijection can be precisely constructed, depending on
the program execution, in each case of the proof itself. Unfortunately,
existential quantification also complicates the proof, which now involves

17Heaps and stores are very often treated homogeneously in proofs, therefore our
mechanized proof scripts pairs them up in a program state helper data structure to
shorten some proofs.

3.3. Flow-Sensitive References 65

reasoning about terms that are L-equivalent, but up to arbitrary bi-
jections, and so may not be combined together. To solve this issue,
the lemma additionally requires to prove an ordering invariant about
these bijections, i.e., that the final bijection extends the initial bijection.
Intuitively, this extra property solves the issue described above because
L-equivalent relations up to “smaller” bijections can be lifted to “larger”
bijections via weakening (Property 5.4), and so combined together.

It is worth pointing out that this issue is not specific to λdCG:
the security analysis of λdFG presents the same issue, which we solve
in the same way in Section 2.4. However, only the analysis of the
monadic fragment of the semantics of λdCG is affected by the issue
described above: the final bijection does not need to be quantified when
reasoning about the pure fragment of the semantics. This is because
pure reductions cannot allocate new references (they do not even have
access to a heap) and so the same bijection that relates their input
values can also relate their output values. This simplifies our formal
analysis, as previous lemmas and their proofs are largely unaffected by
the addition of bijections. For example, to adapt Lemma 3.3, i.e., Pure
L-Equivalence Preservation, for flow-sensitive references, we only need
to add the bijection β to the L-equivalent relations in the statement of
lemma: the proof requires no changes.

Lemma 3.7 (Pure L-Equivalence Preservation). For all expressions e1 ≡α

e2, bijections β, and environments θ1 ≈β
L θ2, if e1 ⇓θ1 v1 and e2 ⇓θ2 v2,

then v1 ≈β
L v2.

The separation between pure and monadic semantics fragments of
λdCG simplifies the L-equivalence preservation of monadic computations
as well. This is because most of the rules of this fragment of the semantics
only include pure reductions and so intermediate L-equivalent results
can be combined directly, i.e., no weakening is required in most cases.

Lemma 3.8 (L-Equivalence Preservation in Public Contexts). For all valid
initial inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections β, such
that c1.pc = c2.pc ⊑ L, c1 ≈β

L c2, and θ1 ≈β
L θ2, if c1 ⇓θ1 c′

1 and
c2 ⇓θ2 c′

2, then there exists an extended bijection β′ ⊇ β such that
c′

1 ≈
β′

L c′
2.

66 Coarse-Grained IFC Calculus

Finally, we combine L-equivalence preservation in public and secret
contexts and prove termination-insensitive non-interference for λdCG

extended with flow-sensitive references.

Theorem 4 (λdCG-TINI with Bijections). For all valid inputs ⊢ Valid(c1,

θ1) and ⊢ Valid(c2, θ2) and bijections β, such that c1 ≈β
L c2, θ1 ≈β

L θ2,
if c1 ⇓θ1 c′

1, and c2 ⇓θ2 c′
2, then there exists an extended bijection

β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Conclusion. At this point, we have formalized two calculi—λdFG and
λdCG—that perform dynamic IFC at fine and coarse granularity, respec-
tively. While they have some similarities, i.e., they are both functional
languages that feature labeled annotated data, references and label
introspection primitives, and ensure a termination-insensitive security
condition, they also have striking differences. First and foremost, they
differ in the number of label annotations—pervasive in λdFG and op-
tional in λdCG—with significant implications for the programming model
and usability. Second, they differ in the nature of the program counter,
flow-insensitive in λdFG and flow-sensitive in λdCG. Third, they dif-
fer in the way they deal with side-effects—λdCG allows side-effectful
computations exclusively inside the monad, while λdFG is impure, i.e.,
any λdFG expression can modify the state. This difference affects the
effort required to implement a system that performs language-based
fine- and coarse-grained dynamic IFC. In fact, several coarse-grained
IFC languages (Schmitz et al., 2018; Buiras et al., 2015; Jaskelioff and
Russo, 2011; Tsai et al., 2007; Russo et al., 2009; Russo, 2015) have
been implemented as an embedded domain specific language (EDSL) in
a Haskell library with little effort, exploiting the strict control that the
host language provides on side-effects. Adapting an existing language
to perform fine-grained IFC requires major engineering effort, because
several components (all the way from the parser to the runtime system)
must be adapted to be label-aware.

In the next section we discuss our verified artifacts of λdFG and
λdCG and compare their mechanized proofs of non-interference. Then,
in Section 5 and 6 we show that—despite their differences—these two
calculi are, in fact, equally expressive.

4
Verified Artifacts

We now discuss our verified artifacts, in which we model λdFG and
λdCG and provide machine-checked proofs of their security guarantees.
We have formalized these languages using Agda (Norell, 2009; Bove
et al., 2009), a dependently typed functional language and an interactive
proof assistant based on intuitionistic type theory. In our proof scripts,
we embed the syntax, the type system, and the semantics of λdFG

and λdCG into Agda data types, where we leverage dependent types
to maintain additional assumptions about terms and judgments. For
example, we use well-typed syntax and typed DeBrujin indexes to ensure
that expressions, values, and environments are intrinsically well-scoped
and well-typed (Abel et al., 2019), which in turn let us define type-
preserving big-step semantics judgments. In the following, we analyze our
artifact and find that the security proofs for λdFG are longer (between
43% and 74%) than those for λdCG. These empirical results suggest that
reasoning about the security of coarse-grained IFC languages is easier
than for fine-grained languages.

67

68 Verified Artifacts

Table 4.1: The table reports the size (Agda LOC excluding blank lines and comments)
of the proof scripts that formalize λdFG and λdCG and their security proofs with
flow-insensitive references (FI) and with also flow-sensitive references (FI + FS).

FI FI + FS
λdFG λdCG λdFG λdCG

Types 15 16 16 17
Syntax 82 85 86 93

Semantics 137 134 164 162
Valid - - 230 198

L-Equivalence 143 138 212 217
Security 222 155 409 235

Lattice 148 148
Store 152 112

Memory 153
Heap - 337

Bijection - 478
Other 66 485
Total 965 894 2,830 2,635

4.1 Artifact Analysis

Table 4.1 summarizes the size of our proof scripts. In the table, we report
the number of lines of Agda code needed to formalize different parts
of the fine- and coarse-grained languages (λdFG and λdCG) featuring
only flow-insensitive references (FI) and also with the addition of flow-
sensitive references (FI + FS).1

The bottom part of the table lists parts of the formalization that
are shared and reused for both languages, where categories Store,
Memory and Heap include also definitions and proofs relative to their

1FI is the companion artifact of the conference version of this work (Vassena
et al., 2019), available at https://hub.docker.com/r/marcovassena/granularity. We
developed artifact FI + FS by adding flow-sensitive references to artifact FI. The
extended artifact is available at https://hub.docker.com/r/marcovassena/granularity-
ftpl.

https://hub.docker.com/r/marcovassena/granularity
https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl

4.1. Artifact Analysis 69

Table 4.2: The table reports the size of the main parts of the formal security
analysis (Security) of λdFG and λdCG with and without flow-sensitive references.
Confinement refers to the store and heap confinement lemma, Secret Context
and Public Context to L-equivalence preservation in secret and public contexts,
respectively, and Pure Preservation to L-equivalence preservation for the pure
semantics fragment of λdCG.

FI FI + FS
λdFG λdCG λdFG λdCG

Confinement 51 24 89 44
Secret Context 13 23 16 29

Pure Preservation - 35 - 35
Public Context 138 46 273 85

Tini 9 17 10 21
Other 11 10 21 21
Total 222 155 409 235

L-equivalence relations and valid judgments.2 The line counts for basic
definitions (i.e., Types, Syntax, Semantics, and L-equivalence)
are roughly the same for the two languages, in both artifacts. The only
significant difference is in Security, which represents the size of the
scripts that state and prove the main security lemmas and theorems of
the languages. In particular, we find that the security proofs in λdFG are
about 43% longer than in λdCG in the artifact with only flow-insensitive
references (FI) and 74% longer for the languages extended with flow-
sensitive references (FI + FS). To understand better the reason behind
this gap, we compare Security in more detail in Table 4.2, which
reports the size of the following lemmas and theorems:

▷ Store and Heap Confinement

▷ L-Equivalence Preservation in Secret Context

▷ Pure L-Equivalence Preservation

▷ L-Equivalence Preservation in Public Context

▷ Termination-Insensitive Non-Interference
2We report only one number for Store and Memory because they are defined

together in the same module in FI, but in separate modules in FI + FS. In the second
artifact, Memory and Heap are also defined by instantiating a generic container
data structure for labeled data, which is counted in Other.

70 Verified Artifacts

First of all, we observe that in λdFG the Confinement lemma is
about twice as long as in λdCG. This is because side-effects can occur
in every reduction rule in λdFG, while most constructs in λdCG are
side-effect free and so we simply have to consider fewer cases in the
second proof. For the languages extended with flow-sensitive reference
(FI + FS), these proofs roughly double in size, as they additionally need
to consider the validity of program configurations in order to reason
about L-equivalence up to bijection. The size of Secret Context
and Tini is modest in both variants of each languages. Compared to
λdFG, λdCG requires twice as many lines of code for these results simply
because for this language each result has to be stated and proved twice,
once for the forcing semantics and once for the thunk semantics.

Public Context is the lemma where we observe the greatest gap
in the number of lines needed in λdFG and λdCG. In artifact FI, we find
that Public Context for λdFG is 70% longer than Public Context
and Pure Preservation for λdCG combined, and 128% longer when
considering also flow-sensitive references (FI + FS). Since all values are
intrinsically labeled in λdFG, those proofs have to explicitly (i) reason
about the sensitivity of program inputs and intermediate values in
most cases of the proof, and (ii) rule out implicit flows for control-flow
constructs. In contrast, most constructs in λdCG are security unaware
and so evaluated by the pure fragment of the semantics, where the
security analysis is straightforward. In particular, since pure reductions
cannot perform side-effects or inspect labeled data, no implicit flows
can arise in the proof of Pure Preservation, which follows by simple
induction (35 LOC). Only in the proof of Public Context for λdCG

we need to reason about data flows explicitly using security labels, but
even there implicit flows are less problematic, thanks to the monadic
structure of computations. The line counts for Public Context in FI
+ FS show that the extra complexity of dealing with valid assumptions
increases the size of the proofs in both languages, which grows by
85% for λdCG and 98% for λdFG.3 Not only the proofs of λdFG are
longer than λdCG, but they are also more complicated because they

3Importantly though, the addition of flow-sensitive references did not require
any change in the proof of Pure Preservation.

4.1. Artifact Analysis 71

often must (i) combine data related up to different bijections, and (ii)
propagate the assumption that program configurations are valid in
inductive cases. This results in an increased number of calls to helper
lemmas and properties in λdFG, compared to λdCG. For example, the
proof for Public Context in λdFG requires 22 calls to weakening
(Property 5.4) and 52 calls to valid invariant (Property 4), while the
same proof in λdCG requires only 4 calls in total.

5
Fine- to Coarse-Grained Program Translation

This section presents a provably semantics-preserving program trans-
lation from the fine-grained dynamic IFC calculus λdFG to the coarse-
grained calculus λdCG. At a high level, the translation performs two
tasks (i) it embeds the intrinsic label annotation of λdFG values into an
explicitly labeled λdCG value via the Labeled type constructor and (ii)
it restructures λdFG side-effectful expressions into monadic operations
inside the LIO monad.

5.1 Types and Values

Our type-driven approach starts by formalizing this intuition in the
function ⟨⟨ · ⟩⟩, which maps the λdFG type τ to the corresponding λdCG

type ⟨⟨τ⟩⟩ (see Figure 5.1a). The function is defined by induction on types
and recursively adds the Labeled type constructor to each existing
λdFG type constructor. For the function type τ1 → τ2, the result is addi-
tionally monadic, i.e., ⟨⟨τ1⟩⟩ → LIO ⟨⟨τ2⟩⟩. This is because the function’s
body in λdFG may have side-effects. Furthermore, the translation for
references types Ref s τ preserves the sensitivity tag of the reference,
i.e., Ref s ⟨⟨τ⟩⟩.

72

5.2. Expressions 73

⟨⟨unit⟩⟩ = Labeled unit
⟨⟨L ⟩⟩ = Labeled L

⟨⟨τ1 × τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩ × ⟨⟨τ2⟩⟩)
⟨⟨τ1 + τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩+ ⟨⟨τ2⟩⟩)
⟨⟨τ1 → τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩ → LIO ⟨⟨τ2⟩⟩)
⟨⟨Ref s τ⟩⟩ = Labeled (Ref s ⟨⟨τ⟩⟩)

(a) Types.

⟨⟨rℓ⟩⟩ = Labeled ℓ ⟨⟨r⟩⟩
⟨⟨()⟩⟩ = ()
⟨⟨ℓ⟩⟩ = ℓ

⟨⟨(v1, v2)⟩⟩ = (⟨⟨v1⟩⟩, ⟨⟨v2⟩⟩)
⟨⟨inl(v)⟩⟩ = inl(⟨⟨v⟩⟩)
⟨⟨inr(v)⟩⟩ = inr(⟨⟨v⟩⟩)
⟨⟨(x.e, θ)⟩⟩ = (x.⟨⟨e⟩⟩, ⟨⟨θ⟩⟩)
⟨⟨nℓ⟩⟩ = nℓ

⟨⟨n⟩⟩ = n

(b) Values.

Figure 5.1: Translation from λdFG to λdCG.

The translation for values (Figure 5.1b) is straightforward. Each
λdFG label tag becomes the label annotation in a λdCG labeled value.
The translation is homomorphic in the constructors on raw values.
The translation converts a λdFG function closure into a λdCG thunk
closure by translating the body of the function to a thunk, i.e., ⟨⟨e⟩⟩ (see
below), and translating the environment pointwise, i.e., ⟨⟨θ⟩⟩ = λx.⟨⟨θ(x)⟩⟩.
Finally, the translation preserves the memory address and the label
for flow-insensitive references, i.e., ⟨⟨nℓ⟩⟩ = nℓ, and the heap address for
flow-sensitive references, i.e., ⟨⟨n⟩⟩ = n.

5.2 Expressions

We show the translation of λdFG expressions to λdCG monadic thunks
in Figure 5.2. We use the standard do notation for readability.1 First,
notice that the translation of all constructs occurs inside a toLabeled(·)
block. This achieves two goals, (i) it ensures that the value that results
from a translated expression is explicitly labeled and (ii) it creates
an isolated nested context where the translated thunk can execute
without raising the program counter label at the top level. Inside the
toLabeled(·) block, the program counter label may rise, e.g., when

1Syntax do x ← e1; e2 desugars to bind(e1, x.e2) and syntax e1; e2 to
bind(e1, .e2).

74 Fine- to Coarse-Grained Program Translation

⟨⟨()⟩⟩ = toLabeled(return(()))
⟨⟨ℓ⟩⟩ = toLabeled(return(ℓ))
⟨⟨(λx.e)⟩⟩ =

toLabeled(return(λx.⟨⟨e⟩⟩))
⟨⟨inl(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
return(inl(lv)))
⟨⟨inr(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
return(inr(lv)))
⟨⟨(e1, e2)⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
return(lv1, lv2))
⟨⟨x⟩⟩ = toLabeled(unlabel(x))
⟨⟨e1 e2⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
v1 ← unlabel(lv1)
lv ← v1 lv2

unlabel(lv))
⟨⟨case(e, x.e1, x.e2)⟩⟩ =

toLabeled(do
lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
lv′ ← case(v, x.⟨⟨e1⟩⟩, x.⟨⟨e2⟩⟩)
unlabel(lv′))

⟨⟨fst(e)⟩⟩ = toLabeled(do
lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
unlabel(fst(v)))
⟨⟨snd(e)⟩⟩ = toLabeled(do

lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
unlabel(snd(v)))
⟨⟨e1 ⊑? e2⟩⟩ = toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
lu ← toLabeled(return(()))
v1 ← unlabel(lv1)
v2 ← unlabel(lv2)
return(if

v1 ⊑? v2

then inl(lu)
else inr(lu))

⟨⟨taint(e1, e2)⟩⟩ =
toLabeled(do

lv1 ← ⟨⟨e1⟩⟩
v1 ← unlabel(lv1)
taint(v1)
lv2 ← ⟨⟨e2⟩⟩
unlabel(lv2))

⟨⟨labelOf(e)⟩⟩ =
toLabeled(do

lv ← ⟨⟨e⟩⟩
labelOf(lv))

⟨⟨getLabel⟩⟩ =
toLabeled(getLabel))

Figure 5.2: Translation from λdFG to λdCG (expressions).

5.2. Expressions 75

some intermediate result is unlabeled, and the translation relies on
LIO’s floating-label mechanism to track dependencies between data of
different security levels. In particular, we will show later that the value
of the program counter label at the end of each nested block coincides
with the label annotation of the λdFG value that the original expression
evaluates to. For example, introduction forms of ground values (unit,
labels, and functions) are simply returned inside the toLabeled(·)
block so that they get tagged with the current value of the program
counter label just as in the corresponding λdFG introduction rules
([Label,Unit,Fun]). Introduction forms of compounds values such as
inl(e), inr(e) and (e1, e2) follow the same principle. The translation
simply nests the translations of the nested expressions inside the same
constructor, without raising the program counter label. This matches the
behavior of the corresponding λdFG rules [Inl,Inr,Pair].2 For example,
the λdFG reduction ((), ()) ⇓∅L (()L, ()L)L maps to a λdCG term that
reduces to Labeled L (Labeled L (), Labeled L ()) when started with
program counter label L.

The translation of variables gives some insight into how the λdCG

floating-label mechanism can simulate λdFG’s tainting approach. First,
the type-driven approach set out in Figure 5.1a demands that functions
take only labeled values as arguments, so the variables in the source
program are always associated to a labeled value in the translated
program. The values that correspond to these variables are stored in the
environment θ and translated separately, e.g., if θ(x) = rℓ in λdFG, then
x gets bound to ⟨⟨rℓ⟩⟩ = Labeled ℓ ⟨⟨r⟩⟩ when translated to λdCG. Thus,
the translation converts a variable, say x, to toLabeled(unlabel(x)),
so that its label gets tainted with the current program counter label.
More precisely, unlabel(x) retrieves the labeled value associated with
the variable, i.e., Labeled ℓ ⟨⟨r⟩⟩, taints the program counter with its
label to make it pc ⊔ ℓ, and returns the content, i.e., ⟨⟨r⟩⟩. Since
unlabel(x) occurs inside a toLabeled(·) block, the code above results
in Labeled (pc ⊔ ℓ) ⟨⟨r⟩⟩ when evaluated, matching precisely the
tainting behavior of λdFG rule [Var], i.e., x ⇓θ[x 7→rℓ]

pc rpc ⊔ ℓ.

2We name a variable lv if it gets bound to a labeled value, i.e., to indicate that
the variable has type Labeled τ .

76 Fine- to Coarse-Grained Program Translation

The elimination forms for other types (function application, pair
projections and case analysis) follow the same approach. For example,
the code that translates a function application e1 e2 first executes the
code that computes the translated function, i.e., lv1 ← ⟨⟨e1⟩⟩, then the
code that computes the argument, i.e., lv2 ← ⟨⟨e2⟩⟩ and then retrieves
the function from the first labeled value, i.e., v1 ← unlabel(lv1).3
The function v1 applied to the labeled argument lv2 gives a compu-
tation that gets executed and returns a labeled value lv that gets
unlabeled to expose the final result (the surrounding toLabeled(·)
wraps it again right away). The translation of case analysis is analogous.
The translation of pair projections first converts the λdFG pair into
a computation that gives a λdCG labeled pair of labeled values, say
Labeled ℓ (Labeled ℓ1 ⟨⟨r1⟩⟩, Labeled ℓ2 ⟨⟨r2⟩⟩) and removes the label
tag on the pair via unlabel, thus raising the program counter label
to pc ⊔ ℓ. Then, it projects the appropriate component and unlabels
it, thus tainting the program counter label even further with the label
of either the first or the second component. This coincides with the
tainting mechanism of λdFG for projection rules, e.g., in rule [Fst] where
fst(e) ⇓θ

pc r1
pc ⊔ ℓ ⊔ ℓ1 if e ⇓θ

pc (r1
ℓ1 , r2

ℓ2)ℓ.
Lastly, translating taint(e1, e2) requires (i) translating the expres-

sion e1 that gives the label, (ii) using taint(·) from λdCG to explic-
itly taint the program counter label with the label that e1 gives, and
(iii) translating the second argument e2 to execute in the tainted con-
text and unlabeling the result. The construct labelOf(e) of λdFG

uses the corresponding λdCG primitive applied on the corresponding
labeled value, say Labeled ℓ ⟨⟨r⟩⟩, obtained from the translated ex-
pression. Notice that labelOf(·) taints the program counter label in
λdCG, which rises to pc ⊔ ℓ, so the code just described results in
Labeled (pc ⊔ ℓ) ℓ, which corresponds to the translation of the
result in λdFG, i.e., ⟨⟨ℓℓ⟩⟩ = Labeled ℓ ℓ because pc ⊔ ℓ ≡ ℓ, since
pc ⊑ ℓ from Property 1. The translation of getLabel follows naturally

3Notice that it is incorrect to unlabel the function before translating the argument,
because that would taint the program counter label, which would raise at level, say
pc ⊔ ℓ, and affect the code that translates the argument, which was to be evaluated
with program counter label equal to pc by the original flow-insensitive λdFG rule
[App] for function application.

5.2. Expressions 77

(WkenType)
Γ \ x ⊢ e : τ

Γ ⊢ wken(x, e) : τ

(Wken)
e ⇓θ \ x v

wken(x, e) ⇓θ v

Figure 5.3: Typing and semantics rules of wken for λdCG.

by simply wrapping λdCG’s getLabel inside a toLabeled(·), which
correctly returns the program counter label labeled with itself, i.e.,
Labeled pc pc.

5.2.1 Note on Environments and Weakening

The semantics rules of λdFG and λdCG feature an environment θ for
input values that gets extended with intermediate values during program
evaluation and that may be captured inside a closure. Unfortunately,
this capturing behavior is undesirable for our program translation.
The program translation defined above introduces temporary auxiliary
variables that carry the value of intermediate results, e.g., the labeled
value obtained from running a computation that translates some λdFG

expression. When the translated program is executed, these values end
up in the environment, e.g., by means of rules [App] and [Bind], and
mix with the input values of the source program and output values as
well, thus complicating the correctness statement of the translation,
which now has to account for those extra variables as well. In order
to avoid this nuisance, we employ a special form of weakening that
allows shrinking the environment at run-time and removing spurious
values that are not needed in the rest of the program. In particular,
expression wken(x, e) has the same type as e if variables x are not free
in e, see the formal typing rule [WkenType] in Figure 5.3. At run-time,
the expression wken(x, e) evaluates e in an environment from which
variables x have been dropped, so that they do not get captured in any
closure created during the execution of e. Rule [Wken] is part of the
pure semantics of λdCG—the semantics of λdFG includes an analogous
rule.

78 Fine- to Coarse-Grained Program Translation

⟨⟨new(e)⟩⟩ =
toLabeled(do

lv ← ⟨⟨e⟩⟩
new(lv))

⟨⟨ ! e⟩⟩ =
toLabeled(do

lr ← ⟨⟨e⟩⟩
r ← unlabel(lr)
! r)

⟨⟨e1 := e2⟩⟩ =
toLabeled(do

lr ← ⟨⟨e1⟩⟩
lv ← ⟨⟨e2⟩⟩
r ← unlabel(lr)
r := lv)

toLabeled(return())
⟨⟨labelOfRef(e)⟩⟩ =

toLabeled(do
lr ← ⟨⟨e⟩⟩
r ← unlabel(lr)
labelOfRef(r))

Figure 5.4: Translation λdFG to λdCG (references).

We remark that this expedient is not essential—we can avoid it by
slightly complicating the correctness statement to explicitly account for
those extra variables. Nor is this expedient particularly interesting. In
fact, we omit wken from the code of the program translations to avoid
clutter (our mechanization includes wken in the appropriate places).

5.3 References

Figure 5.4 shows the program translation of λdFG primitives that access
the store and the heap via references. Notice that these translations are
the same for flow-insensitive and flow-sensitive references: they replicate
the behavior of λdFG primitives for each kind of reference using the
corresponding primitives of λdCG. Below we explain the translation for
flow-insensitive references, the discussion for flow-sensitive references is
analogous.

The translation of λdFG values wraps references in λdCG labeled
values (Figure 5.1b), so the translations of Figure 5.4 take care of
boxing and unboxing references. The translation of new(e) has a top-
level toLabeled(·) block that simply translates the content (lv ← ⟨⟨e⟩⟩)
and puts it in a new reference (new(lv)). The λdCG rule [New] (Figure

5.4. Correctness 79

3.4) assigns the label of the translated content to the new reference,
which also gets labeled with the original program counter label4, just as
in the λdFG rule [New] (Figure 2.4). In λdFG, rule [Read] reads from a
reference nℓ

ℓ′ at security level ℓ′ that points to the ℓ-labeled memory, and
returns the content Σ(ℓ)[n]ℓ ⊔ ℓ′

at level ℓ ⊔ ℓ′. Similarly, the translation
creates a toLabeled(·) block that executes to get a labeled reference
lr = Labeled ℓ′ nℓ, extracts the reference nℓ (r ← unlabel(lr)) tainting
the program counter label with ℓ′, and then reads the reference’s content
further tainting the program counter label with ℓ as well. The code
that translates and updates a reference consists of two toLabeled(·)
blocks. The first block is responsible for the update: it extracts the
labeled reference and the labeled new content (lr and lv resp.), extracts
the reference from the labeled value (r ← unlabel(lr)) and updates
it (r := lv). The second block, toLabeled(return()), returns unit at
security level pc, i.e., Labeled pc (), similar to the λdFG rule [Write].
The translation of labelOfRef(e) extracts the reference and projects
its label via the λdCG primitive labelOfRef(·), which additionally
taints the program counter with the label itself, similar to the λdFG

rule [LabelOfRef].

5.4 Correctness

In this section, we establish some desirable properties of the λdFG-
to-λdCG translation defined above. These properties include type and
semantics preservation as well as recovery of non-interference—a meta
criterion that rules out a class of semantically correct (semantics pre-
serving), yet elusive translations that do not preserve the meaning of
security labels (Rajani and Garg, 2018; Barthe et al., 2007).

We start by showing that the program translation preserves typing.
The type translation for typing contexts Γ is pointwise, i.e., ⟨⟨Γ⟩⟩ =
λx.⟨⟨Γ(x)⟩⟩.

Lemma 5.1 (Type Preservation). Given a well-typed λdFG expression,
i.e., Γ ⊢ e : τ , the translated λdCG expression is also well-typed, i.e.,
⟨⟨Γ⟩⟩ ⊢ ⟨⟨e⟩⟩ : LIO ⟨⟨τ⟩⟩.

4The nested block does not execute any unlabel(·) nor taint(·).

80 Fine- to Coarse-Grained Program Translation

Proof. By induction on the given typing derivation.

The main correctness criterion for the translation is semantics preser-
vation. Intuitively, proving this theorem ensures that the program trans-
lation preserves the meaning of secure λdFG programs when translated
and executed with λdCG semantics (under a translated environment).
In the theorem below, the translation of stores, memories, and heaps is
pointwise, i.e., ⟨⟨Σ⟩⟩ = λℓ.⟨⟨Σ(ℓ)⟩⟩, and ⟨⟨[]⟩⟩ = [] and ⟨⟨r : M ⟩⟩ = ⟨⟨r⟩⟩ : ⟨⟨M ⟩⟩
for each ℓ-labeled memory M , and ⟨⟨[]⟩⟩ = [] and ⟨⟨rℓ : µ⟩⟩ = ⟨⟨rℓ⟩⟩ : ⟨⟨µ⟩⟩ for
heaps µ. Furthermore, notice that in the translation, the initial and final
program counter labels are the same. This establishes that the program
translation preserves the flow-insensitive program counter label of λdFG

(by means of primitive toLabeled(·)).

Theorem 5 (Semantics Preservation of ⟨⟨ · ⟩⟩ : λdFG → λdCG).
For all well-typed λdFG programs e, if ⟨Σ, µ, e⟩ ⇓θ

pc ⟨Σ′, µ′, v⟩, then
⟨⟨⟨Σ⟩⟩, ⟨⟨µ⟩⟩, pc, ⟨⟨e⟩⟩⟩ ⇓⟨⟨θ⟩⟩ ⟨⟨⟨Σ′⟩⟩, ⟨⟨µ′⟩⟩, pc, ⟨⟨v⟩⟩⟩.

Proof. By induction on the given evaluation derivation using basic
properties of the security lattice and of the translation function.5

5.5 Recovery of Non-Interference

We conclude this section by constructing a proof of termination-insen-
sitive non-interference for λdFG (Theorem 2) from the corresponding the-
orem for λdCG (Theorem 4), using the semantics preserving translation
(Theorem 5), together with a property that the translation preserves L-
equivalence (Lemma 5.2), the validity of references (Lemma 5.4), as well
as a property to recover source L-equivalence from target L-equivalence
(Lemma 5.3). This result ensures that the meaning of labels is preserved
by the translation (Rajani and Garg, 2018; Barthe et al., 2007). In the
absence of such an artifact, one could devise a semantics-preserving
translation that simply does not use the security features of the target
language. While technically correct (i.e., semantics preserving), the

5In our mechanized proofs, this proof also requires the (often used) axiom of
functional extensionality.

5.5. Recovery of Non-Interference 81

translation would not be meaningful from the perspective of security.6
The following lemma shows that the translation of λdFG initial configu-
rations, defined as ⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, ⟨⟨µ⟩⟩, pc, ⟨⟨e⟩⟩⟩ if c = ⟨Σ, µ, e⟩, preserves
L-equivalence by lifting L-equivalence from source to target and back.
Since the translation preserves the address of references and the size of
the heap, the lemma relates the target configurations using the same
bijection that relates the source configurations.

Lemma 5.2 (⟨⟨ · ⟩⟩ preserves ≈β
L). For all program counter labels pc and

bijections β, c1 ≈β
L c2 if and only if ⟨⟨c1⟩⟩pc ≈β

L ⟨⟨c2⟩⟩pc.

Proof. By definition of L-equivalence for initial configurations in both
directions (Sections 2.2 and 3.2), using injectivity of the translation
function, i.e., if ⟨⟨e1⟩⟩ ≡α ⟨⟨e2⟩⟩ then e1 ≡α e2, in the if direction, and by
mutually proving similar lemmas for all categories.

The following lemma recovers L-equivalence of source final con-
figurations by back-translating L-equivalence of target final config-
urations. We define the translation for λdFG final configurations as
⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, ⟨⟨µ⟩⟩, pc, ⟨⟨v⟩⟩⟩ if c = ⟨Σ, µ, v⟩.

Lemma 5.3 (≈β
L recovery via ⟨⟨ · ⟩⟩). Let c1 = ⟨Σ1, µ1, r1

ℓ1⟩, c2 =
⟨Σ2, µ2, r2

ℓ2⟩ be λdFG final configurations. For all bijections β and
program counter label pc, such that pc ⊑ ℓ1 and pc ⊑ ℓ2, if
⟨⟨c1⟩⟩pc ≈β

L ⟨⟨c2⟩⟩pc then c1 ≈β
L c2.

Proof. By case analysis on the L-equivalence relation of the target final
configurations, two cases follow. First, through ⟨⟨c1⟩⟩ ≈β

L ⟨⟨c2⟩⟩ we recover
L-equivalence of the source stores, i.e., Σ1 ≈β

L Σ2, from that of the target
stores, i.e., ⟨⟨Σ1⟩⟩ ≈β

L ⟨⟨Σ2⟩⟩, and of the source heaps, i.e., µ1 ≈β
L µ2, from

the target heaps ⟨⟨µ1⟩⟩ ≈β
L ⟨⟨µ2⟩⟩. Then, the program counter in the

target configurations is either (i) above the attacker’s level [PcH], i.e.,
pc ̸⊑ L, and the source values are L-equivalent, i.e., r1

ℓ1 ≈β
L r2

ℓ2 by
6Note that such bogus translations are also ruled out due to the need to preserve

the outcome of any label introspection. Nonetheless, building this proof artifact
increases our confidence in the robustness of our translation. In contrast, if the
enforcement of IFC is static, then there is no label introspection, and this proof
artifact is extremely important, as argued in prior work (Rajani and Garg, 2018;
Barthe et al., 2007).

82 Fine- to Coarse-Grained Program Translation

rule [ValueH] applied to ℓ1 ̸⊑ L and ℓ2 ̸⊑ L (from pc ̸⊑ L and,
respectively, pc ⊑ ℓ1 and pc ⊑ ℓ2), or (ii) below the attacker’s level
[PcL], i.e., pc ⊑ L, then ⟨⟨r1

ℓ1⟩⟩ ≈β
L ⟨⟨r2

ℓ2⟩⟩ and the source values are
L-equivalent, i.e., r1

ℓ1 ≈β
L r2

ℓ2 , by Lemma 5.2 for values.

Recall that non-interference for λdCG extended with flow-sensitive
(Theorem 4) requires side conditions about the validity of program in-
puts, which must contain only valid heap addresses (see the ⊢ Valid(c, θ)
judgment in Figure 3.7). Thus, to recover non-interference for λdFG

through non-interference for λdCG, we need to instantiate these judg-
ments in the proof. Luckily, non-interference for λdFG also requires
similar side conditions (Figure 2.9), so we can fulfill these assumptions
by lifting the valid judgment for the source inputs into a valid judgment
for the translated inputs.

Lemma 5.4 (⟨⟨ · ⟩⟩ preserves ⊢ Valid(·)). For all program counters
pc, initial configurations c and environments θ, if ⊢ Valid(c, θ), then
⊢ Valid(⟨⟨c⟩⟩pc, ⟨⟨θ⟩⟩).

Finally, we recover termination insensitive non-interference for λdFG

through our semantics preserving translation to λdCG. Notice that the
theorem statement below is identical to Theorem 2, what is new is the
proof of the theorem, which relies on non-interference for λdCG and our
verified translation.

Theorem 6 (λdFG-TINI with Bijections via ⟨⟨ · ⟩⟩). For all program counter
labels pc and valid inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that
c1 ≈β

L c2, θ1 ≈β
L θ2, if c1 ⇓θ1

pc c′
1, and c2 ⇓θ2

pc c′
2, then there exists an

extended bijection β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Proof. We start by applying the fine to coarse grained program trans-
lation to the initial configurations and environments. By Theorem 5
(semantics preservation), we derive the corresponding λdCG reductions,
i.e., ⟨⟨c1⟩⟩pc ⇓⟨⟨θ1⟩⟩ ⟨⟨c′

1⟩⟩
pc and ⟨⟨c2⟩⟩pc ⇓⟨⟨θ2⟩⟩ ⟨⟨c′

2⟩⟩
pc. Then, we lift L-

equivalence of the initial configurations and environments from source
to target, i.e., from c1 ≈β

L c2 to ⟨⟨c1⟩⟩pc ≈β
L ⟨⟨c2⟩⟩pc and from θ1 ≈β

L θ2
to ⟨⟨θ1⟩⟩ ≈β

L ⟨⟨θ2⟩⟩ (Lemma 5.2), and similarly we lift the validity judg-
ments (Lemma 5.4), i.e., ⊢ Valid(⟨⟨c1⟩⟩, ⟨⟨θ1⟩⟩) and ⊢ Valid(⟨⟨c2⟩⟩, ⟨⟨θ2⟩⟩)

5.5. Recovery of Non-Interference 83

from ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), respectively. Then, we apply
λdCG-TINI with Bijections (Theorem 4) and obtain L-equivalence of the
target final configurations, i.e., ⟨⟨c′

1⟩⟩
pc ≈β′

L ⟨⟨c′
2⟩⟩

pc for some bijection
β′ ⊇ β. Finally, we recover L-equivalence of the final configurations
from target to source, i.e., from ⟨⟨c′

1⟩⟩
pc ≈β′

L ⟨⟨c′
2⟩⟩

pc to c′
1 ≈

β′

L c′
2, via

Lemma 5.3, applied to c′
1 = ⟨ , , r1

ℓ1⟩ and c′
2 = ⟨ , , r2

ℓ2⟩, and where
pc ⊑ ℓ1 and pc ⊑ ℓ2 by Property 1 applied to the source reductions,
i.e., c1 ⇓θ1

pc c′
1 and c2 ⇓θ2

pc c′
2.

6
Coarse- to Fine-Grained Program Translation

We now show a verified program translation in the opposite direction—
from the coarse grained calculus λdCG to the fine grained calculus λdFG.
The translation in this direction is more involved—a program in λdFG

contains strictly more information than its counterpart in λdCG, namely
the extra intrinsic label annotations that tag every value. The challenge
in constructing this translation is two-fold. On one hand, the translation
must come up with labels for all values. However, it is not always
possible to do this statically during the translation: Often, the labels
depend on input values and arise at run-time with intermediate results
since the λdFG calculus is designed to compute and attach labels at
run-time. On the other hand, the translation cannot conservatively
under-approximate the values of labels1—λdCG and λdFG have label
introspection so, in order to get semantics preservation, labels must
be preserved precisely. Intuitively, we solve this impasse by crafting a
program translation that (i) preserves the labels that can be inspected
by λdCG and (ii) lets the λdFG semantics compute the remaining label

1In contrast, previous work on static type-based fine-to-coarse grained translation
safely under-approximates the label annotations in types with the bottom label of
the lattice (Rajani and Garg, 2018). The proof of type preservation of the translation
recovers the actual labels via subtyping.

84

6.1. Types and Values 85

annotations automatically—we account for those labels with a cross-
language relation that represents semantic equivalence between λdFG

and λdCG modulo extra annotations (Section 6.4). The fact that the
source program in λdCG cannot inspect those labels—they have no value
counterpart in the source λdCG program—facilitates this aspect of the
translation. We elaborate more on the technical details later.

At a high level, an interesting aspect of the translation (that infor-
mally attests that it is indeed semantics-preserving) is that it encodes
the flow-sensitive program counter of the source λdCG program into
the label annotation of the λdFG value that results from executing the
translated program. For example, if a λdCG monadic expression starts
with program counter label pc and results in some value, say true,
and final program counter pc′, then the translated λdFG expression,
starting with the same program counter label pc, computes the same
value (modulo extra label annotations) at the same security level pc′,
i.e., the value truepc′ . This encoding requires keeping the value of the
program counter label in the source program synchronized with the pro-
gram counter label in the target program, by loosening the fine-grained
precision of λdFG at run-time in a controlled way.

6.1 Types and Values

Types. The λdCG-to-λdFG translation follows the same type-driven
approach used in the other direction, starting from the function J·K in
Figure 6.1a, that translates a λdFG type τ into the corresponding λdCG

type Jτ K. The translation is defined by induction on τ and preserves all
the type constructors standard types. Only the cases corresponding to
λdCG-specific types are interesting. In particular, it converts explicitly
labeled types, i.e., Labeled τ , to a standard pair type in λdFG, i.e., L ×
Jτ K, where the first component is the label and the second component
the content of type τ . Type LIO τ becomes a suspension in λdFG, i.e.,
the function type unit→ Jτ K that delays a computation and that can
be forced by simply applying it to the unit value ().

Values. The translation of values follows the type translation, as shown
in Figure 6.1b. Notice that the translation is indexed by the program

86 Coarse- to Fine-Grained Program Translation

JL K = L

JunitK = unit
Jτ1 → τ2 K = Jτ1 K→ Jτ2 K
Jτ1 + τ2 K = Jτ1 K + Jτ2 K
Jτ1 × τ2 K = Jτ1 K× Jτ2 K
JRef s τ K = Ref s Jτ K
JLabeled τ K = L × Jτ K
JLIO τ K = unit→ Jτ K

(a) Types.

J()Kpc = ()pc

JℓKpc = ℓpc

Jinl(v)Kpc = inl(JvKpc)pc

Jinr(v)Kpc = inr(JvKpc)pc

J(v1, v2)Kpc = (Jv1Kpc, Jv2Kpc)pc

J(x.e, θ)Kpc = (x.Je K, JθKpc)pc

J(t, θ)Kpc = (.Jt K, JθKpc)pc

JLabeled ℓ vKpc = (ℓℓ, JvKℓ)pc

JnℓKpc = (nℓ)pc

JnKpc = npc

(b) Values.

Figure 6.1: Translation from λdCG to λdFG (part I).

counter label (the translation is written JvKpc), which converts the λdCG

value v in scope of a computation protected by security level pc to
the corresponding fully label-annotated λdFG value. The translation
is pretty straightforward and uses the program counter label to tag
each value, following the λdCG principle that the program counter
label protects every value in scope that is not explicitly labeled. The
translation converts a λdCG function closure into a corresponding λdFG

function closure by translating the body of the function to a λdFG

expression (see below) and translating the environment pointwise, i.e.,
JθKpc = λx.Jθ(x)Kpc. A thunk value or a thunk closure, which denotes
a suspended side-effecful computation, is also converted into a λdFG

function closure. Technically, the translation would need to introduce
a fresh variable that would get bound to unit when the suspension
gets forced. However, the argument to the suspension does not have
any purpose, so we do not bother with giving a name to it and write
.Jt K instead. (In our mechanized proofs we employ unnamed De Bruijn

indexes and this issue does not arise.) The translation converts an
explicitly labeled value Labeled ℓ v, into a labeled pair at security
level pc, i.e., (ℓℓ, JvKℓ)pc. The pair consists of the label ℓ tagged with
itself, and the value translated at a security level equal to the label

6.2. Expressions and Thunks 87

J()K = ()
JℓK = ℓ

Jx K = x
Jλx.e K = λx.Je K
Je1 e2 K = Je1 KJe2 K
J(e1, e2)K = (Je1 K, Je2 K)
Jfst(e)K = fst(Je K)
Jsnd(e)K = snd(Je K)
Jinl(e)K = inl(Je K)
Jinr(e)K = inr(Je K)
Jcase (e, x.e1, x.e2)K

= case (Je K, x.Je1 K, x.Je2 K)
Je1 ⊑? e2 K = Je1 K ⊑? Je2 K
Jt K = λ .Jt K

(a) Expressions.

Jreturn(e)K = Je K
Jbind(e1, x.e2)K =

let x = Je1 K () in
taint(labelOf(x), Je2 K())

Junlabel(e)K =
let x = Je K in

taint(fst(x), snd(x))
JtoLabeled(e)K =

let x = Je K () in
(labelOf(x), x)

JlabelOf(e)K = fst(Je K)
JgetLabelK = getLabel
Jtaint(e)K = taint(Je K, ())

(b) Thunks.

Figure 6.2: Translation from λdCG to λdFG (part II).

annotation, i.e., JvKℓ. Notice that tagging the label with itself allows
us to translate the λdCG (label introspection) primitive labelOf(·) by
simply projecting the first component, thus preserving the label and its
security level across the translation.

6.2 Expressions and Thunks

The translation of pure expressions (Figure 6.2a) is trivial: it is homomor-
phic in all constructs, mirroring the type translation. The translation of
a thunk expression t builds a suspension explicitly with a λ-abstraction,
i.e., λ .Jt K, (the name of the variable is again irrelevant, thus we omit
it as explained above), and translates the thunk itself according to
the definition in Figure 6.2b. The thunk return(e) becomes Je K, since
return(·) does not have any side-effect. When two monadic computa-
tions are combined via bind(e1, x.e2), the translation (i) converts the
first computation to a suspension and forces it by applying unit (Je1 K ()),

88 Coarse- to Fine-Grained Program Translation

(ii) binds the result to x and passes it to the second computation,2
which is also converted, forced, and, importantly, iii) executed with a
program counter label tainted with the security level of the result of
the first computation (taint(labelOf(x), Je2 K ())). Notice that taint(·)
is essential to ensure that the second computation executes with the
program counter label set to the correct value—the precision of the
fine-grained system would otherwise retain the initial lower program
counter label according to rule [App] (Figure 2.2) and the value of the
program counter labels in the source and target programs would differ
in the remaining execution.

Similarly, the translation of unlabel(e) first translates the labeled
expression e (the translated expression does not need to be forced
because it is not of a monadic type), binds its result to x and then
projects the content in a context tainted with its label, as in taint(fst(x),
snd(x)). This closely follows λdCG’s [Unlabel] rule in Figure 3.3b.
The translation of toLabeled(e) forces the nested computation with
Je K (), binds its result to x and creates the pair (labelOf(x), x), which
corresponds to the labeled value obtained in λdCG via rule [ToLabeled].
Intuitively, the translation guarantees that the value of the final program
counter label in the nested computation coincides with the security level
of the translated result (bound to x). Therefore, the first component
contains the correct label and it is furthermore at the right security
level, because labelOf(·) protects the projected label with the label
itself in λdFG. Primitive labelOf(e) simply projects the first component
of the pair that encodes the labeled value in λdFG as explained above.
Lastly, getLabel in λdCG maps directly to getLabel in λdFG—rule
[GetLabel] in λdCG simply returns the program counter label and does
not raise its value, so it corresponds exactly to rule [GetLabel] in λdFG,
which returns label pc at security level pc. Similarly, taint(e) translates
to taint(Je K, ()), since rule [Taint] in λdCG taints the program counter
with the label that e evaluates to, say ℓ and returns unit with program
counter label equal to pc ⊔ ℓ, which corresponds to the result of the
translated program, i.e., ()pc ⊔ ℓ.

2Syntax let x = e1 in e2 where x is free in e2 is a shorthand for (λx.e2) e1.

6.3. References 89

Jnew(e)K =
let x = Je K in

new(taint(fst(x), snd(x)))
Je1 := e2 K =

Je1 K := (let x = Je2 K in taint(fst(x), snd(x)))
J ! e K = !Je K

JlabelOfRef(e)K = labelOfRef(Je K)

Figure 6.3: Translation from λdCG to λdFG (references).

6.3 References

Figure 6.3 shows the translation of primitives that access the store and
the heap via references. Like the translation in the opposite direction,
these translations work homogeneously for flow-insensitive and flow-
sensitive references, therefore we focus our discussion on flow-insensitive
references. Since λdCG’s rule [New] in Figure 3.4 creates a new reference
labeled with the label of the argument (which must be a labeled value),
the translation converts new(e) to an expression that first binds Je K to
x and then creates a new reference with the same content as the source,
i.e., snd(x), but tainted with the label in x , i.e., fst(x). Notice that the
use of taint(·) is essential to ensure that λdFG’s rule [New] in Figure
2.4 assigns the correct label to the new reference. Due to its fine-grained
precision, λdFG might have labeled the content with a different label
that is less sensitive than the explicit label that coarsely approximates
the security level in λdCG. Similarly, when updating a reference we
translate the new labeled value into a pair, i.e., let x = Je2 K, and taint
the content with the label of the labeled value projected from the pair,
i.e., taint(fst(x), snd(x)).3 The translation of the primitives that read
and query the label of a reference is trivial.

3Technically, tainting is redundant for flow-insensitive references, i.e., the trans-
lation Je1 K := snd(Je2 K) from the conference version of this work would preserve the
semantics for references Γ ⊢ e1 : Ref I τ . Since flow-insensitive references have a
fixed label, rule [Write] in both λdFG and λdCG accepts values less sensitive than
the reference and stores them in the memory labeled like the reference. In contrast,
the label of flow-sensitive references is not fixed and tainting is necessary to set the
correct label for the value written in the heap.

90 Coarse- to Fine-Grained Program Translation

6.4 Cross-Language Equivalence Relation

When a λdCG program is translated to λdFG via the program translation
described above, the λdFG result contains strictly more information
than the original λdCG result. This happens because the semantics of
λdFG tracks flows of information at fine granularity, in contrast with
λdCG, which instead coarsely approximates the security level of all
values in scope of a computation with the program counter label. When
translating a λdCG program, we can capture this condition precisely
for input values θ by homogeneously tagging all standard (unlabeled)
values with the initial program counter label, i.e., JθKpc. However, a
λdCG program handles, creates and mixes unlabeled data that originated
at different security levels at run-time, e.g., when a secret is unlabeled
and combined with previously public (unlabeled) data. Crucially, when
the translated program executes, the fine-grained semantics of λdFG

tracks those flows of information precisely and thus new labels appear
(these labels do not correspond to the label of any labeled value in
the source value nor to the program counter label). Intuitively, this
implies that the λdFG result will not be homogeneously labeled with
the final program counter label of the λdCG computation, i.e., if a
λdCG program terminates with value v and program counter label pc′,
the translated λdFG program does not necessarily result in JvKpc′ . The
following example illustrates this issue, which we then address via a
cross-language equivalence relation that correctly approximates the
additional labels computed by λdFG.

Example 6.1. Consider the execution of λdCG program e = taint(H);
return(x), i.e., ⟨Σ, L, taint(H); return(x)⟩ ⇓[x 7→ true] ⟨Σ, H , true⟩,
which taints the program counter label with H , and then returns true =
inl(()) and the store Σ unchanged.

Let Je K be the expression obtained by applying the program trans-
lation from Figure 6.2 to the example program:

Je K = λ .

let y = taint(H , ()) in
taint(labelOf(y), x)

6.4. Cross-Language Equivalence Relation 91

(Value)
ℓ1 ⊑ pc r1 �≈pc v2

r1
ℓ1 �≈pc v2

(Unit)
() �≈pc ()

(Label)
ℓ �≈pc ℓ

(Ref)
nℓ �≈pc nℓ

(Ref-FS)
n �≈pc n

(Inl)
v1 �≈pc v′

1

inl(v1) �≈pc inl(v′
1)

(Inr)
v2 �≈pc v′

2

inr(v2) �≈pc inr(v′
2)

(Pair)
v1 �≈pc v′

1 v2 �≈pc v′
2

(v1, v2) �≈pc (v′
1, v′

2)

(Fun)
θ1 �≈pc θ2

(x.Je K, θ1) �≈pc (x.e, θ2)

(Thunk)
θ1 �≈pc θ2

(.Jt K, θ1) �≈pc (t, θ2)

(Labeled)
v1 �≈ℓ v2

(ℓℓ, v1) �≈pc (Labeled ℓ v2)

Figure 6.4: Cross-language value equivalence modulo label annotations.

When we force the program Je K and execute it starting from program
counter label equal to L, and an input environment translated according
to the initial program counter label, i.e., x 7→ JtrueKL = inl(()L)L =
trueL, we do not obtain the translated result homogeneously labeled
with H :

⟨JΣK, Je K ()⟩ ⇓x 7→ [trueL]
L ⟨JΣK, trueH ⟩

= ⟨JΣK, inl(()L)H ⟩
̸= ⟨JΣK, inl(()H)H ⟩
= ⟨JΣK, JtrueKH ⟩

In particular, λdFG preserves the public label tag on data nested inside
the left injection, i.e., ()L in inl(()L)H above. This happens because
λdFG’s rule [Var] taints only the outer label of the value trueL when
it looks up variable x in program counter label H .

92 Coarse- to Fine-Grained Program Translation

Solution. In order to recover a notion of semantics preservation, we
introduce a key contribution of this work, a cross-language binary
relation that associates values of the two calculi that, in the scope of a
computation at a given security level, are semantically equivalent up to
the extra annotations present in the λdFG value.4 Technically, we use
this equivalence in the semantics preservation theorem in Section 6.5,
which existentially quantifies over the result of the translated λdFG

program, but guarantees that it is semantically equivalent to the result
obtained in the source program.

Concretely, for a λdFG value v1 and a λdCG value v2, we write v1 �≈pc
v2 if the label annotations (including those nested inside compound
values) of v1 are no more sensitive than label pc and its raw value
corresponds to v2. Figure 6.4 formalizes this intuition by means of
two mutually inductive relations, one for λdFG values and one for
λdFG raw values. In particular, rule [Value] relates λdFG value r1

ℓ1

and λdCG value v2 at security level pc if the label annotation on the
raw value r1 flows to the program counter label, i.e., ℓ1 ⊑ pc, and
if the raw value is in relation with the standard value, i.e., r1 �≈pc
v2. The relation between raw values and standard values relates only
semantically equivalent values, i.e., it is syntactic equality for ground
types ([Unit,Label,Ref,Ref-FS]), requires the same injection for
values of the sum type ([Inl,Inr]) and requires related components for
pairs ([Pair]).

Rules [Fun] (resp. [Thunk]) relates function (resp. thunk) clo-
sures only when environments are related pointwise, i.e., θ1 �≈pc θ2
iff dom(θ1) ≡ dom(θ2) and ∀x.θ1(x) �≈pc θ2(x), and the λdFG function
body x.Je K (resp. thunk body .Jt K) is obtained from the λdCG function
body e (resp. thunk t) via the program translation defined above. Lastly,
rule [Labeled] relates a λdCG labeled value Labeled ℓ v1 to a pair
(ℓℓ, v2), consisting of the label ℓ protected by itself in the first component
and value v2 related with the content v1 at security level ℓ (v1 �≈ℓ v2)
in the second component. This rule follows the principle of LIO that
for explicitly labeled values, the label annotation represents an upper

4This relation is conceptually similar to the logical relation developed by Rajani
and Garg (2018) for their translations with static IFC enforcement, but technically
different in the treatment of labeled values.

6.4. Cross-Language Equivalence Relation 93

bound on the sensitivity of the content. Stores are related pointwise,
i.e., Σ1 �≈ Σ2 iff Σ1(ℓ) �≈ Σ2(ℓ) for ℓ ∈ L , and ℓ-labeled memories
relate their contents respectively at security level ℓ, i.e., [] �≈ [] and
(r : M1) �≈ (v : M2) iff r �≈ℓ v and M1 �≈ M2 for λdFG and λdCG

memories M1, M2 : Memory ℓ. Heaps are also related pointwise, i.e.,
[] �≈ [] and (rℓ : µ1) �≈ (Labeled ℓ v : µ2) iff r �≈ℓ v and µ1 �≈ µ2,
where values at corresponding positions must additionally have the
same label. Lastly, we lift the relation to initial and final configurations.

Definition 4 (Cross-Language Equivalence of Configurations). For all
initial and final configurations:

▷ ⟨Σ1, µ1, Je K ()⟩ �≈ ⟨Σ2, µ2, pc, e⟩ iff Σ1 �≈ Σ2 and µ1 �≈ µ2,

▷ ⟨Σ1, µ1, Jt K⟩ �≈ ⟨Σ2, µ2, pc, t⟩ iff Σ1 �≈ Σ2 and µ1 �≈ µ2.

▷ ⟨Σ1, µ1, rpc⟩ �≈ ⟨Σ2, µ2, pc, v⟩ iff Σ1 �≈ Σ2, µ1 �≈ µ2, and r �≈pc v.

First, the relation requires the stores and heaps of initial and final
configurations to be related. Additionally, for initial configurations, the
relation requires the λdFG code to be obtained from the λdCG expression
(resp. thunk) via the program translation function J·K defined above
(similar to rules [Fun] and [Thunk] in Figure 6.4). Furthermore, in the
first case (expressions), the relation additionally forces the translated
suspension Je K by applying it to (), so that when the λdFG security
monitor executes the translated program, it obtains the result that
corresponds to the λdCG monadic program e. Finally, in the definition
for final configurations, the security level of the final λdFG result must
match the program counter label pc of the final λdCG configuration, and
the final λdCG result must correspond to the λdFG result up to extra
annotations at security level pc, i.e., r �≈pc v.

Before showing semantics preservation, we prove some basic proper-
ties of the cross-language equivalence relation that will be useful later.
The following property allows instantiating the semantics preservation
theorem with the λdCG initial configuration. The translation for initial
configurations is per-component, i.e., J⟨Σ, µ, pc, t⟩K = ⟨JΣK, JµK, Jt K⟩
and forcing for suspensions, i.e., J⟨Σ, µ, pc, e⟩K = ⟨JΣK, JµK, Je K ()⟩,
pointwise for stores, i.e., JΣK = λℓ.JΣ(ℓ)K, memories, i.e., J[]K = []

94 Coarse- to Fine-Grained Program Translation

and Jv : M K = JvKℓ : JM K for ℓ-labeled memory M , and heaps, i.e.,
J[]K = J[]K and JLabeled ℓ v : µK = JvKℓ : JµK.

Property 8 (Reflexivity of �≈). For all λdCG initial configurations c,
Jc K �≈ c.

Proof. The proof is by induction and relies on analogous properties for
all syntactic categories: for stores, JΣK �≈ Σ, for memories, JM K �≈ M ,
for heaps JµK �≈ µ, for environments JθKpc �≈pc θ, for values JvKpc �≈pc
v, for any label pc.

The next property guarantees that values and environments remain
in the relation when the program counter label rises.

Property 9 (Weakening). For all labels pc and pc′ such that pc ⊑ pc′,
and for all λdFG raw values r1, values v1 and environments θ1, and λdCG

values v2 and environments θ2:
▷ If r1 �≈pc v2 then r1 �≈pc′ v2

▷ If v1 �≈pc v2 then v1 �≈pc′ v2

▷ If θ1 �≈pc θ2 then θ1 �≈pc′ θ2

Proof. By mutual induction on the cross-language equivalence relation.

6.5 Correctness

With the help of the cross-language relation defined above, we can now
state and prove that the λdCG-to-λdFG translation is correct, i.e., it
satisfies a semantics-preservation theorem analogous to that proved for
the translation in the opposite direction. At a high level, the theorem
ensures that the translation preserves the meaning of a secure terminat-
ing λdCG program when executed under λdFG semantics, with the same
program counter label and translated input values. Since the translated
λdFG program computes strictly more information than the original
λdCG program, the theorem existentially quantify over the λdFG result,
but insists that it is semantically equivalent to the original λdCG result
at a security level equal to the final value of the program counter label,
using the cross-language relation just defined.

6.5. Correctness 95

We start by proving that the program translation preserves typing.

Lemma 6.1 (Type Preservation). If Γ ⊢ e : τ then JΓK ⊢ Je K : Jτ K.

Proof. By induction on the typing judgment.

Next, we prove semantics preservation of λdCG pure reductions. Since
these reductions do not perform any security-relevant operation (they
do not read or write state), they can be executed with any program
counter label in λdFG and do not change the state in λdFG.

Lemma 6.2 (J·K : λdCG → λdFG preserves Pure Semantics). If e ⇓θ v

then for any program counter label pc, λdFG store Σ, heap µ, and
environment θ′ such that θ′ �≈pc θ, there exists a raw value r, such that
⟨Σ, µ, Je K⟩ ⇓θ′

pc ⟨Σ, µ, rpc⟩ and r �≈pc v.

Proof. By induction on the given evaluation derivation and using basic
properties of the lattice.

Notice that the lemma holds for any input target environment θ′

in relation with the source environment θ at security level pc rather
than just for the translated environment JθKpc. Intuitively, we needed to
generalize the lemma so that the induction principle is strong enough
to discharge cases where (i) we need to prove reductions that use an
existentially quantified environment, e.g., [App], and (ii) when some
intermediate result at a security level other than pc gets added to the
environment, so the environment is no longer homogenously labeled
with pc. While the second condition does not arise in pure reductions,
it does occur in the reduction of monadic expressions considered in the
following theorem.

Theorem 7 (Thunk and Forcing Semantics Preservation via �≈). For all
λdFG environments θ1, initial configurations c1 and λdCG environments
θ2 and initial configuration c2, such that θ1 �≈c2.pc θ2 and c1 �≈ c2,
if c2 ⇓θ2 c′

2, then there exists a final configuration c′
1, such that

c1 ⇓θ1
c2.pc c′

1 and c′
1 �≈ c′

2.

Proof. By mutual induction on the given derivation for expressions and
thunks, using Lemma 6.2 for pure reductions, Weakening (Property 9),
and basic properties for operations on related stores and heaps.

96 Coarse- to Fine-Grained Program Translation

We finally instantiate the semantics-preservation theorem (Theo-
rem 7) with the translated input environment at security level pc, via
reflexivity of the cross-language relation (Property 8).

Corollary 1 (Semantics Preservation of J·K : λdCG → λdFG). For all λdCG

well-typed initial configurations c2 and environments θ, if c2 ⇓θ c′
2,

then there exists a final λdFG configuration c′
1 such that c′

1 �≈ c′
2 and

Jc2 K ⇓JθKpc
pc c′

1, where pc = c2.pc.

In the corollary above, the flow-sensitive program counter of the
source λdCG program gets encoded in the security level of the re-
sult of the λdFG translated program. For example, if ⟨Σ2, µ2, pc, e⟩ ⇓θ

⟨Σ′
2, µ′

2, pc′, v⟩ then, by Corollary 1 and unrolling Definition 4, there
exists a raw value r at security level pc′, a store Σ′

1, and a heap µ′
1 such

that ⟨JΣ2 K, Jµ2 K, Je K ()⟩ ⇓JθKpc
pc ⟨Σ′

1, µ′
1, rpc′⟩, r �≈pc′ v, Σ′

1 �≈ Σ′
2, and

µ′
1 �≈ µ′

2.

6.6 Recovery of Non-Interference

Similarly to our presentation of Theorem 6 for the translation in the op-
posite direction, we conclude this section with a sanity check—recovering
a proof of termination-insensitive non-interference (TINI) for λdCG

through the program translation defined above, semantics preservation
(Corollary 1), and λdFG non-interference (Theorem 2). By reproving
non-interference of the source language from the target language, we
show that our program translation is authentic.

To prove this result, we first need to prove that the translation
preserves L-equivalence (Lemma 6.3) and the validity of references
(Lemma 6.7), as well as a property for recovering source L-equivalence
from target L-equivalence through the cross-language relation (Lemma
6.6). The following lemma ensures that the translation of initial config-
urations preserves L-equivalence.

Lemma 6.3 (J·K preserves ≈β
L). For all bijections β and initial configu-

rations c1 and c2, if c1 ≈β
L c2, then Jc1 K ≈β

L Jc2 K.

Proof. By induction on the L-equivalence judgment and proving similar
lemmas for all syntactic categories.

6.6. Recovery of Non-Interference 97

The following lemmas recovers λdCG L-equivalence from λdFG L-
equivalence using the cross-language equivalence relation for values and
environments in public contexts.

Lemma 6.4 (≈β
L recovery from �≈L for values and envs). For all bijections

β and public program counter labels pc ⊑ L, for all λdFG values v1, v2,
raw values r1, r2, environments θ1, θ2, and corresponding λdCG values
v′

1, v′
2, and environments θ′

1, θ′
2:

▷ If v1 ≈β
L v2, v1 �≈pc v′

1 and v2 �≈pc v′
2, then v′

1 ≈
β
L v′

2,
▷ If r1 ≈β

L r2, r1 �≈pc v′
1 and r2 �≈pc v′

2, then v′
1 ≈

β
L v′

2,
▷ If θ1 ≈β

L θ2, θ1 �≈pc θ′
1 and θ2 �≈pc θ′

2, then θ′
1 ≈

β
L θ′

2.

Proof. The lemmas are proved mutually, by induction on the L-equi-
valence relation and the cross-language equivalence relations and using
injectivity of the translation function J·K for closure values.5

Next, we extend this result to program state, i.e., stores, memories,
and heaps.

Lemma 6.5 (≈β
L recovery from �≈ for state). For all bijections β, λdFG

memories M1, M2, stores Σ1, Σ2, heaps µ1, µ2, and corresponding λdCG

memories M ′
1, M ′

2, stores Σ′
1, Σ′

2, heaps µ′
1 and µ′

2:
▷ If M1 ≈β

L M2, M1 �≈ M ′
1 and M2 �≈ M ′

2, then M ′
1 ≈

β
L M ′

2,
▷ If Σ1 ≈β

L Σ2, Σ1 �≈ Σ′
1 and Σ2 �≈ Σ′

2, then Σ′
1 ≈

β
L Σ′

2,
▷ If µ1 ≈β

L µ2, µ1 �≈ µ′
1 and µ2 �≈ µ′

2, then µ′
1 ≈

β
L µ′

2.

Proof. By induction on the L-equivalence relation and the cross-lang-
uage equivalence relations and using Lemma 6.4.

The next lemma lifts the previous lemmas to final configurations.
5Technically, the function J·K presented in Section 6 is not injective. For example,

consider the type translation function from Figure 6.1a: JLabeled unitK = L ×
unit = JL × unitK but Labeled unit ̸= L × unit, and JLIO unitK = unit→
unit = Junit → unitK but LIO unit ̸= unit → unit. We make the translation
injective by (i) adding a wrapper type Id τ to λdFG, together with constructor
Id(e), a deconstructor unId(e) and raw value Id(v), and (ii) tagging security-
relevant types and terms with the wrapper, i.e., JLabeled τ K = Id (L × Jτ K) and
LIO τ = Id unit→ Jτ K. Adapting the translations in both directions is tedious but
straightforward; we refer the interested reader to our mechanized proofs for details.

98 Coarse- to Fine-Grained Program Translation

Lemma 6.6 (≈β
L recovery from �≈). Let c1 and c2 be λdFG final configu-

rations, let c′
1 and c′

2 be λdCG final configurations. If c1 ≈β
L c2, c1 �≈ c′

1
and c2 �≈ c′

2, then c′
1 ≈

β
L c′

2.

Proof. Let c1 = ⟨Σ1, µ1, v1⟩, c2 = ⟨Σ2, µ2, v2⟩, c′
1 = ⟨Σ′

1, µ′
1, pc1, v′

1⟩,
c′

2 = ⟨Σ′
2, µ′

2, pc2, v′
2⟩. From L-equivalence of the λdFG final configura-

tions, we have L-equivalence for the stores and the values, i.e., Σ1 ≈β
L Σ2

and v1 ≈β
L v2 from c1 ≈β

L c2 (Section 2.2). Similarly, we derive cross-
language equivalence relations for the components of the final config-
urations, i.e., respectively Σ1 �≈ Σ′

1, µ1 �≈ µ′
1, and v1 �≈pc1 v′

1 from
c1 �≈ c2, and Σ2 �≈ Σ′

2, µ2 �≈ µ′
2, and v2 �≈pc2 v′

2 from c2 �≈ c′
2

(Definition 4). First, the λdCG stores and heaps are L-equivalent, i.e.,
Σ′

1 ≈
β
L Σ′

2 and µ′
1 ≈

β
L µ′

2 by Lemma 6.5 for stores and heaps, respectively.
Then, two cases follow by case split on v1 ≈β

L v2. Either (i) both label
annotations on the values are not observable ([ValueH]), then the
program counter labels are also not observable (pc1 ̸⊑ L and pc2 ̸⊑ L
from v1 �≈pc1 v′

1 and v2 �≈pc2 v′
2) and c′

1 ≈
β
L c′

2 by rule [PcH] or (ii) the
label annotations are equal and observable by the attacker ([ValueL]),
i.e., pc1 ≡ pc2 ⊑ L, then v′

1 ≈
β
L v′

2 by Lemma 6.4 for values and
c′

1 ≈
β
L c′

2 by rule [PcL].

Before recovering non-interference, we show that the translation
preserves validity of references, i.e., the assumption of the TINI theorem
for λdFG extended with flow-sensitive references.

Lemma 6.7 (J·K preserves ⊢ Valid(·)). For all initial configurations c
and environments θ, if ⊢ Valid(c, θ), then ⊢ Valid(Jc K, JθKc.pc).

Finally, we combine these lemmas and prove TINI for λdCG through
our verified translation.

Theorem 8 (λdCG-TINI with Bijections via J·K). For all valid inputs ⊢
Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections β, such that c1 ≈β

L c2,
θ1 ≈β

L θ2, if c1 ⇓θ1 c′
1, and c2 ⇓θ2 c′

2, then there exists an extended
bijection β′ ⊇ β, such that c′

1 ≈
β′

L c′
2.

Proof. First, we apply the translation J·K : λdCG → λdFG to the initial
configurations c1 and c2 and the respective environments θ1 and θ2. Let

6.6. Recovery of Non-Interference 99

pc be the initial program counter label common to configurations c1 and
c2 (it is the same because c1 ≈L c2). Then, Semantics Preservation of J·K
(Corollary 1) ensures that there exist two λdFG configurations c′′

1 and c′′
2 ,

such that Jc1 K ⇓Jθ1Kpc
pc c′′

1 and c′′
1 �≈ c′

1, and Jc2 K ⇓Jθ2Kpc
pc c′′

2 and c′′
2 �≈ c′

2.
We then lift L-equivalence of source configurations and environments
to L-equivalence in the target language via Lemma 6.3, i.e., Jθ1Kpc ≈β

L
Jθ2Kpc from θ1 ≈β

L θ2 and Jc1 K ≈β
L Jc2 K from c1 ≈β

L c2. Similarly, we
lift the valid judgments for λdCG inputs to λdFG via Lemma 6.7, i.e.,
⊢ Valid(Jc1 K, Jθ1 K) and ⊢ Valid(Jc2 K, Jθ2 K) from ⊢ Valid(c1, θ1) and
⊢ Valid(c2, θ2), respectively. Then, we apply λdFG-TINI with Bijections
(Theorem 2) to the reductions i.e., Jc1 K ⇓Jθ1Kpc

pc c′′
1 and Jc2 K ⇓Jθ2Kpc

pc c′′
2 ,

which gives L-equivalence of the resulting configurations, i.e., c′′
1 ≈

β′

L c′′
2 ,

up to some bijection β′ ⊇ β. Then, we apply Lemma 6.6 to c′′
1 ≈

β′

L c′′
2 ,

c′′
1 �≈ c′

1, and c′′
2 �≈ c′

2, and recover L-equivalence for the source
configurations, i.e., c′

1 ≈
β′

L c′
2, up to the same bijection β′ ⊇ β.

7
Related work

7.1 Relative Expressiveness of IFC Systems

Fine- and Coarse-Grained IFC. Systematic study of the relative ex-
pressiveness of fine- and coarse-grained information flow control (IFC)
systems has started only recently. Rajani et al. (2017) initiated this
study in the context of static coarse- and fine-grained IFC, enforced via
type systems. In more recent work, Rajani and Garg (2018) show that
a fine-grained IFC type system, which they call FG, and two variants
of a coarse-grained IFC type system, which they call CG, are equally
expressive. Their approach is based on type-directed translations, which
are type- and semantics-preserving. For proofs, they develop logical
relations models of FG and the two variants of CG, as well as cross-
language logical relations. Our work and some of our techniques are
directly inspired by their work, but we examine dynamic IFC systems
based on runtime monitors. As a result, our technical development
is completely different. In particular, in our work we handle label in-
trospection, which has no counterpart in the earlier work on static
IFC systems, and which also requires significant care in translations.
Our dynamic setting also necessitated the use of tainting operators in
both the fine-grained and the coarse-grained systems. Furthermore, our

100

7.1. Relative Expressiveness of IFC Systems 101

languages and translations support flow-sensitive references, which are
not considered by Rajani et al. (2017), as the type-system of FG and
CG is only flow-insensitive.

Our coarse-grained system λdCG is the dynamic analogue of the
second variant of Rajani and Garg (2018)’s CG type system. This
variant is described only briefly in their paper (in Section 4, paragraph
“Original HLIO”) but covered extensively in Part-II of the paper’s
appendix. Rajani and Garg (2018) argue that translating their fine-
grained system FG to this variant of CG is very difficult and requires
significant use of parametric label polymorphism. The astute reader
may wonder why we do not encounter the same difficulty in translating
our fine-grained system λdFG to λdCG. The reason for this is that our
fine-grained system λdFG is not a direct dynamic analogue of Rajani
and Garg (2018)’s FG. In λdFG, a value constructed in a context with
program counter label pc automatically receives the security label pc. In
contrast, in Rajani and Garg (2018)’s FG, all introduction rules create
values (statically) labeled ⊥. Hence, leaving aside the static-vs-dynamic
difference, FG’s labels are more precise than λdFG’s, and this makes
Rajani and Garg (2018)’s FG to CG translation more difficult than our
λdFG to λdCG translation. In fact, in earlier work, Rajani et al. (2017)
introduced a different type system called FG−, a static analogue of
λdFG that labels all constructed values with pc (statically), and noted
that translating it to the second variant of CG is much easier (in the
static setting).

Flow-Insensitive and Flow-Sensitive IFC. Researchers have explored
the relative permissiveness of static and dynamic IFC systems with
respect to the flow-sensitivity of the analysis. Hunt and Sands (2006)
show that flow-sensitive static analysis are a natural generalization of
flow-insensitive analysis. In the dynamic settings, Buiras et al. (2014)
provide a semantics-preserving translation that embeds flow-sensitive
references into flow-insensitive references in LIO (Stefan et al., 2012).
Their embedding tracks the mutable label of references through an extra
level of indirection, i.e., they translate each flow-sensitive references
into a flow-insensitive reference, which points to another flow-insensitive
reference that stores the content. Interestingly, this result seems to

102 Related work

suggest that flow-sensitive references do not fundamentally increase
the expressiveness and permissiveness of dynamic coarse-grained IFC
systems. In contrast to our translations, however, their embedding is not
local (or macro-expressible using the terminology of Felleisen (1991)): it
relies on the flow-sensitive heap to assign a fixed label to flow-insensitive
references.

Some works also study the relative permissiveness of static and
dynamic IFC systems. As one would expected, dynamic flow-insensitive
analysis are more permissive than their static counterpart (Sabelfeld
and Russo, 2009). Russo and Sabelfeld (2010) show that, perhaps
surprisingly, this is not the case for flow-sensitive analysis, i.e., purely
dynamic and static flow-sensitive analysis are incomparable in terms
of permissiveness, and propose a more permissive class of hybrid IFC
monitors.

Other IFC Techniques. Balliu et al. (2017) develop a formal frame-
work to study the soundness and permissiveness trade-offs of dynamic
information-flow trackers, but their analysis is only with respect to
explicit and implicit flows. Bielova and Rezk (2016a) compare dynamic
and hybrid information-flow monitors for imperative languages with
respect to soundness and transparency. Secure multi-execution (SME)
is a dynamic IFC mechanisms that enforces security precisely, at the
cost of executing a program multiple times (Devriese and Piessens,
2010). Multiple facets (MF) simulates SME through a single execution
that maintains multiple views on data, but provides weaker security
guarantees than SME (Austin and Flanagan, 2012). Bielova and Rezk
(2016b) show that MF is not equivalent to SME (even when SME is
relaxed to enforce the same security condition as MF) and adapt MF
to provide the same guarantees of SME. Schmitz et al. (2018) unify MF
and SME in a single framework that combines their best features by
allowing programs to switch between the two mechanisms at run-time.

7.2 Coarse-Grained Dynamic IFC

Coarse-grained dynamic IFC systems are prevalent in security research
in operating systems (Efstathopoulos et al., 2005; Krohn et al., 2007;

7.3. Fine-Grained Dynamic IFC 103

Zeldovich et al., 2006). These ideas have also been successfully applied
to other domains, e.g., the web (Giffin et al., 2012; Stefan et al., 2014;
Yip et al., 2009; Bauer et al., 2015), mobile applications (Jia et al., 2013;
Nadkarni et al., 2016), IoT (Fernandes et al., 2016), and distributed
systems (Zeldovich et al., 2008; Pedersen and Chong, 2019; Cheng et al.,
2012). Our λdCG calculus is based on LIO, a domain-specific language
embedded in Haskell that rephrases OS-like IFC enforcement into a
language-based setting (Stefan et al., 2011; Stefan et al., 2012). Heule et
al. (2015) introduce a general framework for retrofitting coarse-grained
IFC in any programming language in which external effects can be
controlled. Co-Inflow (Xiang and Chong, 2021) extends Java with coarse-
grained dynamic IFC, which is implemented via compilation, similar
to our λdFG-to-λdCG translation. Laminar (Roy et al., 2009) unifies
mechanisms for IFC in programming languages and operating systems,
resulting in a mix of dynamic fine- and coarse-grained enforcement.

7.3 Fine-Grained Dynamic IFC

The dangerous combination of highly dynamic scripting languages
and third-party code in web pages (Nikiforakis et al., 2012) and IoT
platforms (Surbatovich et al., 2017; Ahmadpanah et al., 2021) has
stirred a line of work on dynamic fine-grained IFC systems for JavaScript
interpreters (Hedin et al., 2014), engines (Bichhawat et al., 2014b; Rajani
et al., 2015), and IoT apps (Bastys et al., 2018). Our λdFG calculus is
inspired by the calculus of Austin and Flanagan (2009), which we have
extended with flow-insensitive references and label introspection. In a
follow up work, Austin and Flanagan (2010) replace the no-sensitive
upgrade check with a permissive upgrade strategy, which tracks partially
leaked data to ensure it is not completely leaked. Breeze is conceptually
similar to our λdFG, except for the taint(·) primitive (Hritcu et al.,
2013). Breeze (Hritcu et al., 2013), JSFlow (Hedin and Sabelfeld, 2012),
and other dynamic fine-grained IFC languages (Bichhawat et al., 2021;
Austin et al., 2017) feature exception handling primitives, which allow
programs to recover from IFC violations without leaking data. Since
LIO (Stefan et al., 2017) features similar primitives, we believe that our
results extend also to IFC languages with exceptions.

104 Related work

7.4 Label Introspection and Flow-Sensitive References

In general, dynamic fine-grained IFC systems often do not support label
introspection, with Breeze (Hritcu et al., 2013) as notable exception.
Stefan et al. (2017) show that careless label introspection can leak data
and discuss alternative flow-sensitive and flow-insensitive APIs (see
Footnote 7). Xiang and Chong (2021) argue that the flow-sensitive API
does not provide a usable programming model (because inspecting a
label can unpredictably taint the program counter label) and use opaque
labeled values instead. To support label introspection securely, our calculi
protect each label with the label itself. Kozyri et al. (2019) generalizes
this mechanism to chains of labels of arbitrary length (where each
label defines the sensitivity of its predecessor) and study the trade-offs
between permissiveness and storage.

Several dynamic fine-grained IFC systems support references with
flow-sensitive labels (Hedin et al., 2014; Austin and Flanagan, 2010;
Austin and Flanagan, 2009; Bichhawat et al., 2014b). This design choice,
however, allows label changes to be exploited as a covert channel for
information leaks (Russo and Sabelfeld, 2010; Austin and Flanagan, 2010;
Austin and Flanagan, 2009). There are many approaches to preventing
such leaks—from using static analysis techniques (Sabelfeld and Myers,
2006), to disallowing label upgrades depending on sensitive data (i.e.,
no-sensitive-upgrades (Zdancewic, 2002; Austin and Flanagan, 2009)),
to avoiding branching on data whose labels have been upgraded (i.e.,
permissive-upgrades (Austin and Flanagan, 2010; Bichhawat et al., 2021;
Bichhawat et al., 2014a)). Buiras et al. (2014) extend LIO with flow-
sensitive references and explicitly protect the label of these references
with the program counter label at creation time. The semantics of λdCG

avoids keeping track of this extra label by using the label of the value
itself as a sound approximation (see rules [New-FS] and [Write-FS]
in Figure 3.6b), which corresponds precisely to the semantics of λdFG.

7.5 Proof Techniques for Termination-Insensitive Non-Interference

Since Goguen and Meseguer (1982) introduced the notion of non-
interference, different proof techniques for IFC languages have emerged.

7.5. Proof Techniques 105

Our proof technique based on L-equivalence preservation and confine-
ment dates back to the seminal work by Volpano et al. (1996) and is
similar to the proof by Austin and Flanagan (2009), although we do not
make any assumptions about the heap allocator. Instead, our treatment
of heap addresses is inspired by Banerjee and Naumann (2005): we
extend the L-equivalence relation with a bijection, which accounts pre-
cisely for different, yet indistinguishable addresses. Although bijections
can complicate the formal analysis, Vassena et al. (2017) argue that they
can be avoided by partitioning data structures per security level (as we
do here for the store). Moreover, the separation between pure computa-
tions and side-effects further simplifies the security analysis of monadic
languages like λdCG and, as we explain in Section 4, it leads to shorter
proofs than in impure languages like λdFG. Hirsch and Cecchetti (2021)
generalize this insight to other effects (non-termination and exceptions)
through a new proof technique for pure languages that provide effects
through a monad. In their fine-grained static IFC λ-calculus, Pottier
and Simonet (2003) represent secret values and expressions explicitly,
through a syntactic bracketed pair construct. This representation simpli-
fies the non-interference proof (which is derived from subject reduction),
but requires reasoning about a non-standard semantics.

Logical Relations. The first proofs of non interference that use logical
relations are for the pure fragment of the fine-grained static IFC lan-
guages by Zdancewic (2002) and Heintze and Riecke (1998). Rajani et al.
(2017) extend this proof technique for FG and CG, but their logical rela-
tion require step-indexed Kripke worlds (Birkedal et al., 2011) to avoid
circular arguments when reasoning about state. Recently, Gregersen
et al. (2021) develop a mechanized semantic model based on logical
relations on top of the Iris framework (Jung et al., 2018) for an expres-
sive fine-grained static IFC language. Proofs based on logical relations
for stateful languages feature two types of logical relations: a binary
relation for observable values (similar to L-equivalence), and a unary
relation for secret values, which provides a semantics interpretation of
the confinement lemma.

106 Related work

PER and Parametricity. Abadi et al. (1999) suggests a connection
between parametricty and non-interference, which is formalized through
a domain-theoretic semantics for the Dependency Core Calculus (DCC).
Sabelfeld and Sands (2001) develop this idea further with a general
semantics model of information flow based on partial equivalence rela-
tions (PER). Bowman and Ahmed (2015) prove non-interference for
DCC from parametricity by proving that their translation from DCC
into System F is fully abstract. Algehed and Bernardy (2019) simplifies
this proof by embedding DCC into the Calculus of Construction and
applies the same technique to derive a shorter proof for the core of
LIO (Stefan et al., 2017).

8
Conclusion

This tutorial presents a detailed and homogeneous account of dynamic
fine- and coarse-grained IFC security and unifies these paradigms, which
were considered fundamentally at odds with respect to precision and
permissiveness. To this end, we formalized two representative IFC lan-
guages that track information flows with fine and coarse granularity,
established their security guarantees using standard proof techniques,
and devised verified semantics- and security-preserving translations
between them. These results formally establish a connection between
dynamic fine- and coarse-grained enforcement for IFC, showing that
these paradigms are equally expressive under reasonable assumptions.
Indeed, this work provides a systematic way to bridging the gap between
a wide range of dynamic IFC techniques often proposed by the program-
ming languages (fine-grained) and operating systems (coarse-grained)
communities. As a consequence, this allows future designs of dynamic
IFC to choose a coarse-grained approach, which is easier to implement
and use, without giving up on the precision of fine-grained IFC.

107

References

Abadi, M., A. Banerjee, N. Heintze, and J. Riecke. (1999). “A Core
Calculus of Dependency”. In: Proc. ACM Symp. on Principles of
Programming Languages. 147–160.

Abel, A., G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schäfer,
and K. Stark. (2019). “POPLMark reloaded: Mechanizing proofs by
logical relations”. Journal of Functional Programming. 29: e19. doi:
10.1017/S0956796819000170.

Ahmadpanah, M. M., D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
(2021). “SandTrap: Securing JavaScript-driven Trigger-Action Plat-
forms”. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association. 2899–2916. url: https://www.usenix.org
/conference/usenixsecurity21/presentation/ahmadpanah.

Algehed, M. and J.-P. Bernardy. (2019). “Simple Noninterference from
Parametricity”. Proc. ACM Program. Lang. 3(ICFP). doi: 10.1145
/3341693.

Austin, T. H. and C. Flanagan. (2009). “Efficient Purely-Dynamic
Information Flow Analysis”. In: Proc. of the 9th ACM Workshop on
Programming Languages and Analysis for Security (PLAS ’09).

Austin, T. H. and C. Flanagan. (2010). “Permissive Dynamic Informa-
tion Flow Analysis”. In: Proc. of the 5th ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security. PLAS ’10.

108

https://doi.org/10.1017/S0956796819000170
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://doi.org/10.1145/3341693
https://doi.org/10.1145/3341693

References 109

Austin, T. H. and C. Flanagan. (2012). “Multiple Facets for Dy-
namic Information Flow”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. Philadelphia, PA, USA: Association for Comput-
ing Machinery. 165–178. doi: 10.1145/2103656.2103677.

Austin, T. H., T. Schmitz, and C. Flanagan. (2017). “Multiple Facets for
Dynamic Information Flow with Exceptions”. ACM Trans. Program.
Lang. Syst. 39(3). doi: 10.1145/3024086.

Balliu, M., D. Schoepe, and A. Sabelfeld. (2017). “We Are Family:
Relating Information-Flow Trackers”. In: ESORICS.

Banerjee, A. and D. A. Naumann. (2005). “Stack-based access control
and secure information flow”. Journal Functional Programming.
15(2): 131–177.

Barthe, G., T. Rezk, and A. Basu. (2007). “Security Types Preserving
Compilation”. Computer Languages, Systems & Structures. 33(2):
35–59. doi: 10.1016/j.cl.2005.05.002.

Bastys, I., M. Balliu, and A. Sabelfeld. (2018). “If This Then What?
Controlling Flows in IoT Apps”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’18. Toronto, Canada: Association for Computing Machinery.
1102–1119. doi: 10.1145/3243734.3243841.

Bauer, L., S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. (2015).
“Run-time Monitoring and Formal Analysis of Information Flows in
Chromium”. In: Proc. of the 22nd Annual Network & Distributed
System Security Symposium. Internet Society.

Bell, E. D. and J. L. La Padula. (1976). “Secure computer system:
Unified exposition and Multics interpretation”. Bedford, MA. url:
http://csrc.nist.gov/publications/history/bell76.pdf.

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2014a). “Gener-
alizing Permissive-Upgrade in Dynamic Information Flow Analysis”.
In: Proceedings of the Ninth Workshop on Programming Languages
and Analysis for Security. PLAS’14. Uppsala, Sweden: Association
for Computing Machinery. 15–24. doi: 10.1145/2637113.2637116.

https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/3024086
https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1145/3243734.3243841
http://csrc.nist.gov/publications/history/bell76.pdf
https://doi.org/10.1145/2637113.2637116

110 References

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2014b). “Infor-
mation Flow Control in WebKit’s JavaScript Bytecode”. In: Inter-
national Conference on Principles of Security and Trust (POST).
159–178.

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. (2021). “Permissive
runtime information flow control in the presence of exceptions”.
Journal of Computer Security. 29: 361–401. doi: 10.3233/JCS-2113
85.

Bielova, N. and T. Rezk. (2016a). “A Taxonomy of Information Flow
Monitors”. In: Principles of Security and Trust. Ed. by F. Piessens
and L. Viganò. Berlin, Heidelberg: Springer Berlin Heidelberg. 46–
67.

Bielova, N. and T. Rezk. (2016b). “Spot the Difference: Secure Multi-
execution and Multiple Facets”. In: Computer Security – ESORICS
2016. Cham: Springer International Publishing. 501–519.

Birkedal, L., B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang. (2011). “Step-Indexed Kripke Models over Recur-
sive Worlds”. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
POPL ’11. Austin, Texas, USA: Association for Computing Machin-
ery. 119–132. doi: 10.1145/1926385.1926401.

Bove, A., P. Dybjer, and U. Norell. (2009). “A Brief Overview of Agda –
A Functional Language with Dependent Types”. In: Theorem Prov-
ing in Higher Order Logics. Ed. by S. Berghofer, T. Nipkow, C.
Urban, and M. Wenzel. Berlin, Heidelberg: Springer Berlin Heidel-
berg. 73–78.

Bowman, W. J. and A. Ahmed. (2015). “Noninterference for Free”. In:
Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming. ICFP 2015. Vancouver, BC, Canada:
Association for Computing Machinery. 101–113. doi: 10.1145/2784
731.2784733.

Broberg, N., B. van Delft, and D. Sands. (2013). “Paragon for Practical
Programming with Information-Flow Control”. In: Proc. of the 11th
Asian Symposium on Programming Languages and Systems. APLAS
’13. 217–232.

https://doi.org/10.3233/JCS-211385
https://doi.org/10.3233/JCS-211385
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733

References 111

Buiras, P., D. Stefan, and A. Russo. (2014). “On Dynamic Flow-Sensitive
Floating-Label Systems”. In: Proc. of the 2014 IEEE 27th Computer
Security Foundations Symposium. CSF ’14. Washington, DC, USA:
IEEE Computer Society. 65–79. doi: 10.1109/CSF.2014.13.

Buiras, P., D. Vytiniotis, and A. Russo. (2015). “HLIO: Mixing Static
and Dynamic Typing for Information-Flow Control in Haskell”. In:
Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming. ICFP 2015. Vancouver, BC, Canada:
Association for Computing Machinery. 289–301. doi: 10.1145/2784
731.2784758.

Cheng, W., D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov. (2012). “Abstractions for Usable
Information Flow Control in Aeolus”. In: 2012 USENIX Annual
Technical Conference (USENIX ATC 12). Boston, MA: USENIX
Association. 139–151. url: https://www.usenix.org/conference/atc
12/technical-sessions/presentation/cheng.

Devriese, D. and F. Piessens. (2010). “Noninterference through Secure
Multi-execution”. In: Proc. of the 2010 IEEE Symposium on Security
and Privacy. SP ’10. IEEE Computer Society.

Efstathopoulos, P., M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. (2005). “Labels
and Event Processes in the Asbestos Operating System”. In: Proc.
of the 20th ACM symp. on Operating systems principles. SOSP ’05.

Felleisen, M. (1991). “On the Expressive Power of Programming Lan-
guages”. Sci. Comput. Program. 17(1-3): 35–75. doi: 10.1016/0167-
6423(91)90036-W.

Fernandes, E., J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A.
Prakash. (2016). “FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks”. In: USENIX Security Symposium.
531–548.

Giffin, D. B., A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell,
and A. Russo. (2012). “Hails: Protecting Data Privacy in Untrusted
Web Applications”. In: 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’12.

https://doi.org/10.1109/CSF.2014.13
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1016/0167-6423(91)90036-W

112 References

Goguen, J. and J. Meseguer. (1982). “Security Policies and Security
Models”. In: Proc. of IEEE Symposium on Security and Privacy.
IEEE Computer Society.

Gregersen, S. O., J. Bay, A. Timany, and L. Birkedal. (2021). “Mecha-
nized Logical Relations for Termination-Insensitive Noninterference”.
Proc. ACM Program. Lang. 5(POPL). doi: 10.1145/3434291.

Hedin, D., A. Birgisson, L. Bello, and A. Sabelfeld. (2014). “JSFlow:
Tracking Information Flow in JavaScript and its APIs”. In: Proc. of
the ACM Symposium on Applied Computing (SAC ’14).

Hedin, D. and D. Sands. (2006). “Noninterference in the presence of
non-opaque pointers”. In: Proc. of the 19th IEEE Computer Security
Foundations Workshop. IEEE Computer Society Press.

Hedin, D. and A. Sabelfeld. (2012). “Information-Flow Security for a
Core of JavaScript”. In: Proc. IEEE Computer Sec. Foundations
Symposium. IEEE Computer Society.

Heintze, N. and J. G. Riecke. (1998). “The SLam calculus: programming
with secrecy and integrity”. In: Proc. ACM Symp. on Principles of
Programming Languages. 365–377.

Heule, S., D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. (2015).
“IFC Inside: Retrofitting Languages with Dynamic Information Flow
Control”. In: Proc. of the Conference on Principles of Security and
Trust (POST ’15). Springer.

Hirsch, A. K. and E. Cecchetti. (2021). “Giving Semantics to Program-
Counter Labels via Secure Effects”. Proc. ACM Program. Lang.
5(POPL). doi: 10.1145/3434316.

Hritcu, C., M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett.
(2013). “All Your IFCException Are Belong to Us”. In: Proc. of the
2013 IEEE Symposium on Security and Privacy. SP ’13. Washington,
DC, USA: IEEE Computer Society. 3–17. doi: 10.1109/SP.2013.10.

Hunt, S. and D. Sands. (2006). “On flow-sensitive security types”. In:
Conference record of the 33rd ACM SIGPLAN-SIGACT Symp. on
Principles of programming languages. POPL ’06. Charleston, South
Carolina, USA: ACM. 79–90.

Jaskelioff, M. and A. Russo. (2011). “Secure Multi-execution in Haskell”.
In: Proc. Andrei Ershov International Conference on Perspectives
of System Informatics. LNCS. Springer-Verlag.

https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434316
https://doi.org/10.1109/SP.2013.10

References 113

Jia, L., J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushi-
ma, S. Kiyomoto, and Y. Miyake. (2013). “Run-Time Enforcement
of Information-Flow Properties on Android”. In: Proc. of the 18th
European Symposium on Research in Computer Security (ESORICS
’13). Springer.

Jung, R., R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D.
Dreyer. (2018). “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. Journal of Functional
Programming. 28: e20. doi: 10.1017/S0956796818000151.

Kozyri, E., F. B. Schneider, A. Bedford, J. Desharnais, and N. Tawbi.
(2019). “Beyond Labels: Permissiveness for Dynamic Information
Flow Enforcement”. In: 2019 IEEE 32nd Computer Security Founda-
tions Symposium (CSF). 351–35115. doi: 10.1109/CSF.2019.00031.

Krohn, M., A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. (2007). Information Flow Control for Standard OS
Abstractions. Stevenson, Washington, USA. doi: 10.1145/1294261.1
294293.

Myers, A. C., L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. (2006).
Jif 3.0: Java information flow. url: http://www.cs.cornell.edu/jif.

Nadkarni, A., B. Andow, W. Enck, and S. Jha. (2016). “Practical DIFC
Enforcement on Android.” In: USENIX Security Symposium. 1119–
1136.

Nikiforakis, N., L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. (2012). “You Are What You
Include: Large-Scale Evaluation of Remote Javascript Inclusions”.
In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA:
Association for Computing Machinery. 736–747. doi: 10.1145/2382
196.2382274.

Norell, U. (2009). “Dependently Typed Programming in Agda”. In:
Advanced Functional Programming: 6th International School, AFP
2008, Heijen, The Netherlands, May 2008, Revised Lectures. Ed. by
P. Koopman, R. Plasmeijer, and D. Swierstra. Berlin, Heidelberg:
Springer Berlin Heidelberg. 230–266. doi: 10.1007/978-3-642-04652-
0_5.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/CSF.2019.00031
https://doi.org/10.1145/1294261.1294293
https://doi.org/10.1145/1294261.1294293
http://www.cs.cornell.edu/jif
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5

114 References

Pedersen, M. V. and S. Chong. (2019). “Programming with Flow-
Limited Authorization: Coarser is Better”. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). 63–78. doi: 10.110
9/EuroSP.2019.00015.

Pottier, F. and V. Simonet. (2003). “Information Flow Inference for
ML”. ACM Trans. Program. Lang. Syst. 25(1): 117–158. doi: 10.11
45/596980.596983.

Rajani, V., I. Bastys, W. Rafnsson, and D. Garg. (2017). “Type Systems
for Information Flow Control: The Question of Granularity”. ACM
SIGLOG News. 4(1): 6–21. doi: 10.1145/3051528.3051531.

Rajani, V., A. Bichhawat, D. Garg, and C. Hammer. (2015). “Infor-
mation Flow Control for Event Handling and the DOM in Web
Browsers”. In: 2015 IEEE 28th Computer Security Foundations
Symposium. 366–379. doi: 10.1109/CSF.2015.32.

Rajani, V. and D. Garg. (2018). “Types for Information Flow Control:
Labeling Granularity and Semantic Models”. In: Proc. of the IEEE
Computer Security Foundations Symp. CSF ’18. IEEE Computer
Society.

Roy, I., D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
(2009). “Laminar: Practical Fine-grained Decentralized Information
Flow Control”. In: Proc. of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’09.
Dublin, Ireland: ACM. 63–74. doi: 10.1145/1542476.1542484.

Russo, A. (2015). “Functional Pearl: Two Can Keep a Secret, if One
of Them Uses Haskell”. In: Proc. of the 20th ACM SIGPLAN In-
ternational Conference on Functional Programming. ICFP 2015.
ACM.

Russo, A., K. Claessen, and J. Hughes. (2009). “A library for light-weight
Information-Flow Security in Haskell”. ACM SIGPLAN Notices
(HASKELL ’08). 44(Jan.): 13. doi: 10.1145/1543134.1411289.

Russo, A. and A. Sabelfeld. (2010). “Dynamic vs. Static Flow-Sensitive
Security Analysis”. In: Proc. of the 2010 23rd IEEE Computer
Security Foundations Symp. CSF ’10. IEEE Computer Society. 186–
199.

https://doi.org/10.1109/EuroSP.2019.00015
https://doi.org/10.1109/EuroSP.2019.00015
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/3051528.3051531
https://doi.org/10.1109/CSF.2015.32
https://doi.org/10.1145/1542476.1542484
https://doi.org/10.1145/1543134.1411289

References 115

Sabelfeld, A. and A. Russo. (2009). “From dynamic to static and back:
Riding the roller coaster of information-flow control research”. In:
Proc. Andrei Ershov International Conference on Perspectives of
System Informatics (PSI ’09). LNCS. Springer-Verlag.

Sabelfeld, A. and A. C. Myers. (2006). “Language-based Information-
flow Security”. IEEE J.Sel. A. Commun. 21(1): 5–19. doi: 10.1109
/JSAC.2002.806121.

Sabelfeld, A. and D. Sands. (2001). “A Per Model of Secure Information
Flow in Sequential Programs”. Higher Order Symbol. Comput. 14(1):
59–91. doi: 10.1023/A:1011553200337.

Schmitz, T., M. Algehed, C. Flanagan, and A. Russo. (2018). “Faceted
Secure Multi Execution”. In: Proc. of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18.
Toronto, Canada: ACM. 1617–1634. doi: 10.1145/3243734.3243806.

Stefan, D., A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.
(2012). “Addressing Covert Termination and Timing Channels in
Concurrent Information Flow Systems”. In: International Conference
on Functional Programming (ICFP). ACM SIGPLAN.

Stefan, D., A. Russo, D. Mazières, and J. C. Mitchell. (2017). “Flexible
Dynamic Information Flow Control in the Presence of Exceptions”.
Journal of Functional Programming. 27.

Stefan, D., A. Russo, J. C. Mitchell, and D. Mazières. (2011). “Flexible
Dynamic Information Flow Control in Haskell”. In: Proc. of the
4th ACM Symposium on Haskell. Haskell ’11. Tokyo, Japan: ACM.
95–106. doi: 10.1145/2034675.2034688.

Stefan, D., E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,
and D. Mazières. (2014). “Protecting Users by Confining JavaScript
with COWL”. In: Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. OSDI’14. Broom-
field, CO: USENIX Association. 131–146. url: http://dl.acm.org/c
itation.cfm?id=2685048.2685060.

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1145/3243734.3243806
https://doi.org/10.1145/2034675.2034688
http://dl.acm.org/citation.cfm?id=2685048.2685060
http://dl.acm.org/citation.cfm?id=2685048.2685060

116 References

Surbatovich, M., J. Aljuraidan, L. Bauer, A. Das, and L. Jia. (2017).
“Some Recipes Can Do More Than Spoil Your Appetite: Analyzing
the Security and Privacy Risks of IFTTT Recipes”. In: Proceedings
of the 26th International Conference on World Wide Web. WWW
’17. Perth, Australia: International World Wide Web Conferences
Steering Committee. 1501–1510. doi: 10.1145/3038912.3052709.

Tsai, T.-C., A. Russo, and J. Hughes. (2007). “A Library for Secure
Multi-threaded Information Flow in Haskell”. In: Proc. of the 20th
IEEE Computer Security Foundations Symposium (CSF’07). 187–
202. doi: 10.1109/CSF.2007.6.

Vassena, M. and A. Russo. (2016). “On Formalizing Information-Flow
Control Libraries”. In: Proc. of the 2016 ACM Workshop on Pro-
gramming Languages and Analysis for Security. PLAS ’16. Vienna,
Austria: ACM. 15–28. doi: 10.1145/2993600.2993608.

Vassena, M., A. Russo, P. Buiras, and L. Waye. (2017). “MAC A Verified
Static Information-Flow Control Library”. Journal of Logical and
Algebraic Methods in Programming. doi: https://doi.org/10.1016/j
.jlamp.2017.12.003.

Vassena, M., A. Russo, D. Garg, V. Rajani, and D. Stefan. (2019). “From
Fine- to Coarse-Grained Dynamic Information Flow Control and
Back”. Proc. ACM Program. Lang. 3(POPL). doi: 10.1145/3290389.

Volpano, D., G. Smith, and C. Irvine. (1996). “A Sound Type System
for Secure Flow Analysis”. J. Computer Security. 4(3): 167–187.

Volpano, D. and G. Smith. (1997). “Eliminating Covert Flows with Min-
imum Typings”. In: Proc. of the 10th IEEE workshop on Computer
Security Foundations. CSFW ’97. IEEE Computer Society.

Xiang, J. and S. Chong. (2021). “Co-Inflow: Coarse-grained Information
Flow Control for Java-like Languages”. In: Proceedings of the 2021
IEEE Symposium on Security and Privacy. Piscataway, NJ, USA:
IEEE Press.

Yang, J., K. Yessenov, and A. Solar-Lezama. (2012). “A Language for
Automatically Enforcing Privacy Policies”. In: Proc. of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’12. Philadelphia, PA, USA: ACM.
85–96. doi: 10.1145/2103656.2103669.

https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1109/CSF.2007.6
https://doi.org/10.1145/2993600.2993608
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/10.1145/3290389
https://doi.org/10.1145/2103656.2103669

References 117

Yip, A., N. Narula, M. Krohn, and R. Morris. (2009). “Privacy-preser-
ving Browser-side Scripting with BFlow”. In: Proc. of the 4th ACM
European Conference on Computer Systems. EuroSys ’09. ACM.

Zdancewic, S. A. (2002). “Programming Languages for Information
Security”. PhD thesis. Ithaca, NY, USA.

Zeldovich, N., S. Boyd-Wickizer, E. Kohler, and D. Mazières. (2006).
“Making Information Flow Explicit in HiStar”. In: Proceedings of the
7th USENIX Symposium on Operating Systems Design and Imple-
mentation - Volume 7. OSDI ’06. Seattle, WA: USENIX Association.
19–19. url: http://dl.acm.org/citation.cfm?id=1267308.1267327.

Zeldovich, N., S. Boyd-Wickizer, and D. Mazières. (2008). “Securing
Distributed Systems with Information Flow Control”. In: Proceed-
ings of the 5th USENIX Symposium on Networked Systems Design
and Implementation. NSDI’08. San Francisco, California: USENIX
Association. 293–308. url: http://dl.acm.org/citation.cfm?id=1387
589.1387610.

http://dl.acm.org/citation.cfm?id=1267308.1267327
http://dl.acm.org/citation.cfm?id=1387589.1387610
http://dl.acm.org/citation.cfm?id=1387589.1387610

	Introduction
	Fine-Grained IFC Calculus
	Dynamics
	Security
	Flow-Sensitive References

	Coarse-Grained IFC Calculus
	Dynamics
	Security
	Flow-Sensitive References

	Verified Artifacts
	Artifact Analysis

	Fine- to Coarse-Grained Program Translation
	Types and Values
	Expressions
	References
	Correctness
	Recovery of Non-Interference

	Coarse- to Fine-Grained Program Translation
	Types and Values
	Expressions and Thunks
	References
	Cross-Language Equivalence Relation
	Correctness
	Recovery of Non-Interference

	Related work
	Relative Expressiveness of IFC Systems
	Coarse-Grained Dynamic IFC
	Fine-Grained Dynamic IFC
	Label Introspection and Flow-Sensitive References
	Proof Techniques

	Conclusion
	References

