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We show that fine-grained and coarse-grained dynamic information-flow control (IFC) systems are equally

expressive. To this end, we mechanize two mostly standard languages, one with a fine-grained dynamic IFC

system and the other with a coarse-grained dynamic IFC system, and prove a semantics-preserving translation

from each language to the other. In addition, we derive the standard security property of non-interference

of each language from that of the other, via our verified translation. This result addresses a longstanding

open problem in IFC: whether coarse-grained dynamic IFC techniques are less expressive than fine-grained

dynamic IFC techniques (they are not!). The translations also stand to have important implications on the

usability of IFC approaches. The coarse- to fine-grained direction can be used to remove the label annotation

burden that fine-grained systems impose on developers, while the fine- to coarse-grained translation shows

that coarse-grained systems—which are easier to design and implement—can track information as precisely as

fine-grained systems and provides an algorithm for automatically retrofitting legacy applications to run on

existing coarse-grained systems.
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1 INTRODUCTION
Dynamic information-flow control (IFC) is a principled approach to protecting the confidentiality

and integrity of data in software systems. Conceptually, dynamic IFC systems are very simple—they

associate security levels or labels with every bit of data in the system to subsequently track and

restrict the flow of labeled data throughout the system, e.g., to enforce a security property such

as non-interference [Goguen and Meseguer 1982]. In practice, dynamic IFC implementations are

considerablymore complex—the granularity of the tracking system alone has important implications

for the usage of IFC technology. Indeed, until somewhat recently [Roy et al. 2009; Stefan et al.

2017], granularity was the main distinguishing factor between dynamic IFC operating systems and

Authors’ addresses: Marco Vassena, Chalmers University of Technology, Sweden, vassena@chalmers.se; Alejandro Russo,

Chalmers University of Technology, Sweden, russo@chalmers.se; Deepak Garg, Max Planck Institute for Software Systems,

Germany, dg@mpi-sws.org; Vineet Rajani, Max Planck Institute for Software Systems, Germany, vrajani@mpi-sws.org;

Deian Stefan, University of California San Diego, USA, deian@cs.ucsd.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART76

https://doi.org/10.1145/3290389

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 76. Publication date: January 2019.

https://doi.org/10.1145/3290389
https://doi.org/10.1145/3290389


76:2 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

programming languages. Most IFC operating systems (e.g., [Efstathopoulos et al. 2005; Krohn et al.

2007; Zeldovich et al. 2006]) are coarse-grained, i.e., they track and enforce information flow at the

granularity of a process or thread. Conversely, most programming languages with dynamic IFC

(e.g., [Austin and Flanagan 2009; Hedin et al. 2014; Hritcu et al. 2013; Yang et al. 2012; Zdancewic

2002]) track the flow of information in a more fine-grained fashion, e.g., at the granularity of

program variables and references.

Dynamic coarse-grained IFC systems in the style of LIO [Buiras et al. 2015; Heule et al. 2015;

Stefan et al. 2012, 2017, 2011; Vassena et al. 2017] have several advantages over dynamic fine-

grained IFC systems. Such coarse-grained systems are often easier to design and implement—they

inherently track less information. For example, LIO protects against control-flow-based implicit
flows by tracking information at a coarse-grained level—to branch on secrets, LIO programs must

first taint the context where secrets are going to be observed. Finally, coarse-grained systems often

require considerably fewer programmer annotations—unlike fine-grained ones. More specifically,

developers often only need a single label-annotation to protect everything in the scope of a thread

or process responsible to handle sensitive data.

Unfortunately, these advantages of coarse-grained systems give up on the many benefits of

fine-grained ones. For instance, one main drawback of coarse-grained systems is that it requires

developers to compartmentalize their application in order to avoid both false alarms and the label
creep problem, i.e., wherein the program gets too “tainted” to do anything useful. To this end,

fine-grained systems often create special abstractions (e.g., event processes [Efstathopoulos et al.

2005], gates [Zeldovich et al. 2006], and security regions [Roy et al. 2009]) that compensate for the

conservative approximations of the coarse-grained tracking approach. Furthermore, fine-grained

systems do not impose the burden of focusing on avoiding the label creep problem on developers. By

tracking information at fine granularity, such systems are seemingly more flexible and do not suffer

from false alarms and label creep issues [Austin and Flanagan 2009] as coarse-grained systems

do. Indeed, fine-grained systems such as JSFlow [Hedin et al. 2014] can often be used to secure

existing, legacy applications; they only require developers to properly annotate the application.

This paper removes the division between fine- and coarse-grained dynamic IFC systems and the

belief that they are fundamentally different. In particular, we show that dynamic fine-grained and

coarse-grained IFC are equally expressive. Our work is inspired by the recent work of Rajani et al.

[2017]; Rajani and Garg [2018], who prove similar results for static fine-grained and coarse-grained

IFC systems. Specifically, they establish a semantics- and type-preserving translation from a coarse-

grained IFC type system to a fine-grained one and vice-versa. We complete the picture by showing

a similar result for dynamic IFC systems that additionally allow introspection on labels at run-time.

While label introspection is meaningless in a static IFC system, in a dynamic IFC system this feature

is key to both writing practical applications and mitigating the label creep problem [Stefan et al.

2017].

Using Agda, we formalize a traditional fine-grained system (in the style of [Austin and Flanagan

2009]) extended with label introspection primitives, as well as a coarse-grained system (in the style

of [Stefan et al. 2017]). We then define and formalize modular semantics-preserving translations

between them. Our translations are macro-expressible in the sense of Felleisen [1991].

We show that a translation from fine- to coarse-grained is possible when the coarse-grained

system is equipped with a primitive that limits the scope of tainting (e.g., when reading sensitive

data). In practice, this is not an imposing requirement since most coarse-grained systems rely

on such primitives for compartmentalization. For example, Stefan et al. [2012, 2017], provide

toLabeled blocks and threads for precisely this purpose. Dually, we show that the translation

from coarse- to fine-grained is possible when the fine-grained system has a primitive taint(·) that
relaxes precision to keep the program counter label synchronized when translating a program to the
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Type: τ F unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L | Ref τ
Labels: ℓ, pc ∈ L
Address: n ∈ N
Environment: θ ∈ Var ⇀ Value
Raw Value: r F () | (x .e,θ ) | inl(v) | inr(v) | (v1,v2) | ℓ | nℓ
Value v F r ℓ

Expression: e F x |λx .e | e1 e2 | () | ℓ | inl(e) | inr(e) | case(e, x .e1, x .e2)
| (e1, e2) | fst(e) | snd(e) | getLabel | labelOf(e) | taint(e1, e2)
| new(e) | ! e | e1 := e2 | labelOfRef(e) | e1 ⊑? e2

Type System: Γ ⊢ e : τ
Configuration: c F ⟨Σ, e⟩
Store: Σ ∈ (ℓ : Label) → Memory ℓ
Memory ℓ: M F [ ] | r :M

Fig. 1. Syntax of λdFG .

coarse-grained language. While this primitive is largely necessary for us to establish the coarse- to

fine-grained translation, extending existing fine-grained systems with it is both secure and trivial.

The implications of our results are multi-fold. The fine- to coarse-grained translation formally

confirms an old OS-community hypothesis that it is possible to restructure a system into smaller

compartments to address the label creep problem—indeed our translation is a (naive) algorithm for

doing so. This translation also allows running legacy fine-grained IFC compatible applications atop

coarse-grained systems like LIO. Dually, the coarse- to fine-grained translation allows developers

building new applications in a fine-grained system to avoid the annotation burden of the fine-grained

system by writing some of the code in the coarse-grained system and compiling it automatically to

the fine-grained system with our translation. The technical contributions of this paper are:

• A pair of semantics-preserving translations between traditional dynamic fine-grained and

coarse-grained IFC systems equipped with label introspection (Theorems 3 and 5).

• Two different proofs of termination-insensitive non-interference (TINI) for each calculus: one

is derived directly in the usual way (Theorems 1 and 2), while the other is recovered via our

verified translation (Theorems 4 and 6).

• Mechanized Agda proofs of our results (~4,000 LOC)
1
.

The rest of this paper is organized as follows. Our dynamic fine- and coarse-grained IFC calculi

are introduced in Sections 2 and 3, respectively. We also prove their soundness guarantees (i.e.,

termination-insensitive non-interference). Section 4 presents the translation from the fine- to the

coarse-grained calculus and recovers the non-interference of the former from the non-interference

theorem of the latter. Section 5 has similar results in the other direction. Related work is described

in Section 6 and Section 7 concludes the paper.

2 FINE-GRAINED CALCULUS
In order to compare in a rigorous way fine- and coarse-grained dynamic IFC techniques, we formally

define the operational semantics of two λ-calculi that respectively perform fine- and coarse-grained

IFC dynamically. Figure 1 shows the syntax of the dynamic fine-grained IFC calculus λdFG , which
is inspired by Austin and Flanagan [2009] and extended with a standard (security unaware) type

1
Artifact available at https://hub.docker.com/r/marcovassena/granularity/
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system Γ ⊢ e :τ (omitted), sum and product data types and security labels ℓ ∈ L that form a lattice

(L ,⊑).2 In order to capture flows of information precisely at run-time, the λdFG -calculus features
intrinsically labeled values, written r ℓ , meaning that raw value r has security level ℓ. Compound

values, e.g., pairs and sums, carry labels to tag the security level of each component, for example a

pair containing a secret and a public boolean would be written (trueH , falseL).3 Functional values
are closures (x .e,θ ), where x is the variable that binds the argument in the body of the function

e and all other free variables are mapped to some labeled value in the environment θ . The λdFG -
calculus features a labeled partitioned stored, i.e., Σ ∈ (ℓ : L ) → Memory ℓ, where Memory ℓ
is the memory that contains values at security level ℓ. Each reference carries an additional label

annotation that records the label of the memory it refers to—reference nℓ points to the n-th cell

of the ℓ-labeled memory, i.e., Σ(ℓ). Notice that this label has nothing to do with the intrinsic label
that decorates the reference itself. For example, a reference (nH )L represents a secret reference in a

public context, whereas (nL)H represents a public reference in a secret context. Notice that there

is no order invariant between those labels—in the latter case, the IFC runtime monitor prevents

writing data to the reference to avoid implicit flows. A program can create, read and write a labeled

reference via constructs new(e), !e and e1 := e2 and inspect its subscripted label with the primitive

labelOfRef(·).

2.1 Dynamics
The operational semantics of λdFG includes a security monitor that propagates the label annotations

of input values during program execution and assigns security labels to the result accordingly. The

monitor prevents information leakage by stopping the execution of potentially leaky programs,

which is reflected in the semantics by not providing reduction rules for the cases that may cause

insecure information flow.
4
The relation ⟨Σ, e⟩ ⇓θpc ⟨Σ

′,v⟩ denotes the evaluation of program e
with initial store Σ that terminates with labeled value v and final store Σ′. The environment θ
stores the input values of the program and is extended with intermediate results during function

application and case analysis. The subscript pc is the program counter label [Sabelfeld and Myers

2006]— it is a label that represents the security level of the context in which the expression is

evaluated. The semantics employs the program counter label to (i) propagate and assign labels to

values computed by a program and (ii) prevent implicit flow leaks that exploit the control flow and

the store (explained below).

In particular, when a program produces a value, the monitor tags the raw value with the program

counter label in order to record the security level of the context in which it was computed. For this

reason all the introduction rules for ground and compound types ([Unit,Label,Fun,Inl,Inr,Pair])

assign security level pc to the result. Other than that, these rules are fairly standard—we simply

note that rule [Fun] creates a closure by capturing the current environment θ .
When the control flow of a program depends on some intermediate value, the program counter

label is joined with the value’s label so that the label of the final result will be tainted with the

result of the intermediate value. For instance, consider case analysis, i.e., case e x .e1 x .e2. Rules
[Case1] and [Case2] evaluate the scrutinee e to a value (either inl(v)ℓ or inr(v)ℓ), add the value to

the environment, i.e., θ [x 7→ v], and then execute the appropriate branch with a program counter

label tainted with v’s security label, i.e., pc ⊔ ℓ. As a result, the monitor tracks data dependencies

2
The lattice is arbitrary and fixed. In examples we will often use the two point lattice {L, H }, which only disallows secret

to public flow of information, i.e., H ̸⊑ L.
3
We define the boolean type bool = unit + unit, boolean values as raw values, i.e., true = inl(()L), false = inr(()L) and
if e then e1 else e2 = case e .e1 .e2.
4
In this work, we ignore leaks that exploit program termination and prove termination insensitive non-interference for
λdFG (Theorem 1).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 76. Publication date: January 2019.



From Fine- to Coarse-Grained Dynamic Information Flow Control and Back 76:5

(Var)

⟨Σ, x⟩ ⇓θpc ⟨Σ,θ (x) ⊔ pc⟩
(Unit)

⟨Σ, ()⟩ ⇓θpc ⟨Σ, ()
pc⟩

(Label)

⟨Σ, ℓ⟩ ⇓θpc ⟨Σ, ℓ
pc⟩

(Fun)

⟨Σ, λx .e⟩ ⇓θpc ⟨Σ, (x .e,θ )
pc⟩

(App)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′, (x .e,θ ′)ℓ⟩ ⟨Σ′, e2⟩ ⇓θpc ⟨Σ

′′,v2⟩ ⟨Σ′′, e⟩ ⇓θ
′[x 7→v2]

pc ⊔ ℓ
⟨Σ′′′,v⟩

⟨Σ, e1 e2⟩ ⇓θpc ⟨Σ
′′′,v⟩

(Inl)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′,v⟩

⟨Σ, inl(e)⟩ ⇓θpc ⟨Σ
′, inl(v)pc⟩

(Inr)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′,v⟩

⟨Σ, inr(e)⟩ ⇓θpc ⟨Σ
′, inr(v)pc⟩

(Case1)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, inl(v1)ℓ⟩ ⟨Σ′, e1⟩ ⇓

θ [x 7→v1]

pc ⊔ ℓ
⟨Σ′′,v⟩

⟨Σ, case(e, x .e1, x .e2)⟩ ⇓θpc ⟨Σ
′′,v⟩

(Case2)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, inr(v2)ℓ⟩ ⟨Σ′, e2⟩ ⇓

θ [x 7→v2]

pc ⊔ ℓ
⟨Σ′′,v⟩

⟨Σ, case(e, x .e1, x .e2)⟩ ⇓θpc ⟨Σ
′′,v⟩

(Pair)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′,v1⟩ ⟨Σ′, e2⟩ ⇓θpc ⟨Σ

′′,v2⟩

⟨Σ, (e1, e2)⟩ ⇓θpc ⟨Σ
′′, (v1,v2)

pc⟩

(Fst)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, (v1,v2)

ℓ⟩

⟨Σ, fst(e)⟩ ⇓θpc ⟨Σ
′,v1 ⊔ ℓ⟩

(Snd)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, (v1,v2)

ℓ⟩

⟨Σ, snd(e)⟩ ⇓θpc ⟨Σ
′,v2 ⊔ ℓ⟩

(Taint)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′, ℓℓ

′

⟩ ℓ′ ⊑ ℓ ⟨Σ′, e2⟩ ⇓θℓ ⟨Σ
′′,v⟩

⟨Σ, taint(e1, e2)⟩ ⇓θpc ⟨Σ
′′,v⟩

Fig. 2. Big-step semantics for λdFG (part I).

across control flow constructs through the label of the result. Function application follows the same

principle. In rule [App], since the first premise evaluates the function to some closure (x .e,θ ′) at
security level ℓ, the third premise evaluates the body with program counter label raised to pc ⊔ ℓ.
The evaluation strategy is call-by-value: it evaluates the argument before the body in the second

premise and binds the corresponding variable to its value in the environment of the closure, i.e.,

θ ′[x 7→ v2]. Notice that the security level of the argument is irrelevant at this stage and that this

is beneficial to not over-tainting the result: if the function never uses its argument then the label

of the result depends exclusively on the program counter label, e.g., (λx .()) y ⇓y 7→42
H

L ()L. The

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 76. Publication date: January 2019.
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(LabelOf)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, r ℓ⟩

⟨Σ, labelOf(e)⟩ ⇓θpc ⟨Σ
′, ℓℓ⟩

(GetLabel)

⟨Σ, getLabel⟩ ⇓θpc ⟨Σ
′′, pcpc⟩

(⊑?-T)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′, ℓ1

ℓ′
1⟩ ⟨Σ′, e2⟩ ⇓θpc ⟨Σ

′′, ℓ2
ℓ′
2⟩ ℓ1 ⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓θpc ⟨Σ
′′, inl(()pc)ℓ

′
1
⊔ ℓ′

2⟩

(⊑?-F)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′, ℓ1

ℓ′
1⟩ ⟨Σ′, e2⟩ ⇓θpc ⟨Σ

′′, ℓ2
ℓ′
2⟩ ℓ1 ̸⊑ ℓ2

⟨Σ, e1 ⊑? e2⟩ ⇓θpc ⟨Σ
′′, inr(()pc)ℓ

′
1
⊔ ℓ′

2⟩

Fig. 3. Big-step semantics for λdFG (part II).

elimination rules for variables and pairs taint the label of the corresponding value with the program

counter label for security reasons. In rules [Var,Fst,Snd] the notation, v ⊔ ℓ′ upgrades the label
of v with ℓ′—it is a shorthand for r ℓ ⊔ ℓ′

with v = r ℓ . Intuitively, public values must be considered

secret when the program counter is secret, for example x ⇓x 7→()
L

H ()H .

Label Introspection. The λdFG -calculus features primitives for label introspection, namely getLabel,
labelOf(·) and ⊑?—see Figure 3. These operations allow to respectively retrieve the current program

counter label, obtain the label annotations of values, and compare two labels (inspecting labels at

run-time is useful for controlling and mitigating the label creep problem).

Enabling label introspection raises the question of what label should be assigned to the label

itself (in λdFG every value, including all label values, must be annotated with a label). As a matter

of fact, labels can be used to encode secret information and thus careless label introspection may

open the doors to information leakage [Stefan et al. 2017]. Notice that in λdFG , the label annotation
on the result is computed by the semantics together with the result and thus it is as sensitive as

the result itself (the label annotation on a value depends on the sensitivity of all values affecting

the control-flow of the program up to the point where the result is computed). This motivates

the design choice to protect each projected label with the label itself, i.e., ℓℓ and pcpc in rules

[GetLabel] and [LabelOf] in Figure 2. We remark that this choice is consistent with previous work

on coarse-grained IFC languages [Buiras et al. 2014; Stefan et al. 2017], but novel in the context of

fine grained IFC.

Finally, primitive taint(e1, e2) temporarily raises the program counter label to the label given

by the first argument in order to evaluate the second argument. The fine-to-coarse translation in

Section 4 uses taint(·) to loosen the precision of λdFG in a controlled way and match the coarse
approximation of our coarse-grained IFC calculus (λdCG ) by upgrading the labels of intermediate

values systematically. In rule [Taint], the constraint ℓ′ ⊑ ℓ ensures that the label of the nested
context ℓ is at least as sensitive as the program counter label pc. In particular, this constraint ensures
that the operational semantics have Property 1 (“the label of the result is at least as sensitive as the
program counter label” ) even with rule [Taint].

Property 1. If ⟨Σ, e⟩ ⇓θpc ⟨Σ
′, r ℓ⟩ then pc ⊑ ℓ.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 76. Publication date: January 2019.
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(New)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, r ℓ⟩ n = |Σ′(ℓ)|

⟨Σ,new(e)⟩ ⇓θpc ⟨Σ
′[ℓ 7→ Σ′(ℓ)[n 7→ r ]], (nℓ)pc⟩

(Read)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, nℓℓ

′

⟩ Σ′(ℓ)[n] = r

⟨Σ, !e⟩ ⇓θpc ⟨Σ
′, r ℓ ⊔ ℓ′⟩

(Write)

⟨Σ, e1⟩ ⇓θpc ⟨Σ
′, nℓℓ1⟩ ℓ1 ⊑ ℓ ⟨Σ′, e2⟩ ⇓θpc ⟨Σ

′′, r ℓ2⟩ ℓ2 ⊑ ℓ

⟨Σ, e1 := e2⟩ ⇓θpc ⟨Σ
′′[ℓ 7→ Σ′′(ℓ)[n 7→ r ]], pc⟩

(LabelOfRef)

⟨Σ, e⟩ ⇓θpc ⟨Σ
′, nℓℓ

′

⟩

⟨Σ, labelOfRef(e)⟩ ⇓θpc ⟨Σ
′, ℓℓ ⊔ ℓ′⟩

Fig. 4. Big-step semantics for λdFG (references).

Proof. By induction on the given evaluation derivation.

References. We now extend the semantics presented earlier with primitives that inspect, access

and modify the labeled store via labeled references. See Figure 4. Rule [New] creates a reference

nℓ , labeled with the security level of the initial content, i.e., label ℓ, in the ℓ-labeled memory Σ(ℓ)
and updates the memory store accordingly.

5
Since the security level of the reference is as sensitive

as the content, which is at least as sensitive as the program counter label by Property 1 (pc ⊑ ℓ)
this operation does not leak information via implicit flows. When reading the content of reference

nℓ at security level ℓ′, rule [Read] retrieves the corresponding raw value from the n-th cell of the

ℓ-labeled memory, i.e., Σ′(ℓ)[n] = r and upgrades its label to ℓ ⊔ ℓ′ since the decision to read from

that particular reference depends on information at security level ℓ′. When writing to a reference

the monitor performs security checks to avoid leaks via explicit or implicit flows. Rule [Write]

achieves this by evaluating the reference, i.e., (nℓ)ℓ1 and replacing its content with the value of the

second argument, i.e., r ℓ2 , under the conditions that the decision of “which” reference to update

does not depend on data more sensitive than the reference itself, i.e., ℓ1 ⊑ ℓ (not checking this

would leak via an implicit flow)6, and that the new content is no more sensitive than the reference

itself, i.e., ℓ2 ⊑ ℓ (not checking this would leak sensitive information to a less sensitive reference

via an explicit flow). Lastly, rule [LabelOfRef] retrieves the label of the reference and protects it

with the label itself (as explained before) and taints it with the security level of the reference, i.e.,

ℓℓ ⊔ ℓ′
to avoid leaks. Intuitively, the label of the reference, i.e., ℓ, depends also on data at security

level ℓ′ as seen in the premise.

Other Extensions. We consider λdFG equipped with references as sufficient foundation to study

the relationship between fine-grained and coarse-grained IFC. We remark that extending it with

other side-effects such as file operations, or other IO-operations would not change our claims in

Section 4 and 5. The main reason for this is that, typically, handling such effects would be done at

the same granularity in both IFC enforcements. For instance, when adding file operations, both fine-

5 |M | denotes the length of memory M—memory indices start at 0.

6
Notice that pc ⊑ ℓ1 by Property 1, thus pc ⊑ ℓ1 ⊑ ℓ by transitivity. An implicit flow would occur if a reference is

updated in a high branch, i.e., depending on the secret, e.g., let x = new(0) in if secret then x := 1 else ().
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(ValueL)

ℓ ⊑ L r1 ≈L r2

r1
ℓ ≈L r2

ℓ

(ValueH )

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

r1
ℓ1 ≈L r2

ℓ2

(Unit)

() ≈L ()

(Label)

ℓ ≈L ℓ

(Closure)

e1 ≡α e2 θ1 ≈L θ2

(e1,θ1) ≈L (e2,θ2)

(Inl)

v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)

v1 ≈L v2

inr(v1) ≈L inr(v2)

(Pair)

v1 ≈L v
′
1

v2 ≈L v
′
2

(v1,v2) ≈L (v
′
1
,v ′

2
)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH )

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1ℓ1 ≈L n2ℓ2

Fig. 5. L-equivalence for λdFG values and raw values.

(e.g., [Broberg et al. 2013]) and coarse-grained (e.g., [Efstathopoulos et al. 2005; Krohn et al. 2007;

Russo et al. 2009; Stefan et al. 2011]) enforcements are likely to assign a single flow-insensitive label
to each file in order to denote the sensitivity of its content. Then, those features could be handled

flow-insensitively in both systems (e.g., [Myers et al. 2006; Pottier and Simonet 2003; Stefan et al.

2011; Vassena and Russo 2016]), in a manner similar to what we have just shown for references in

λdFG .

2.2 Security
We now prove that λdFG is secure, i.e., it satisfies termination insensitive non-interference (TINI)
[Goguen and Meseguer 1982; Volpano and Smith 1997]. Intuitively, the security condition says that

no terminating λdFG program leaks information, i.e., changing secret inputs does not produce any

publicly visible effect. The proof technique is standard and based on the notion of L-equivalence,
written v1 ≈L v2, which relates values (and similarly raw values, environments, stores and configu-

rations) that are indistinguishable for an attacker at security level L. For clarity we use the 2-points

lattice, assume that secret data is labeled with H and that the attacker can only observe data at

security level L. Our mechanized proofs are parametric in the lattice and in the security level of the

attacker. L-equivalence for values and raw-values is defined formally by mutual induction in Figure

5. Rule [ValueL] relates observable values, i.e., raw values labeled below the security level of the

attacker. These values have the same observable label (ℓ ⊑ L) and related raw values, i.e., r1 ≈L r2.
Rule [ValueH ] relates non-observable values, which may have different labels not below the at-

tacker level, i.e., ℓ1 ̸⊑ L and ℓ2 ̸⊑ L. In this case, the raw values can be arbitrary. Raw values are

L-equivalent when they consist of the same ground value ([Unit,Label]), or are homomorphically

related for compound values. For example, for the sum type the relation requires that both values

are either a left or a right injection ([Inl,Inr]). In particular, closures are related if they contain

the same function (up to α-renaming)
7
and L-equivalent environments, i.e., the environments are

L-equivalent pointwise. Formally, θ1 ≈L θ2 iff Dom(θ1) ≡ Dom(θ2) and ∀x .θ1(x) ≈L θ2(x).
We define L-equivalence for stores pointwise, i.e., Σ1 ≈L Σ2 iff for all labels ℓ ∈ L , Σ1(ℓ) ≈L

Σ2(ℓ). Memory L-equivalence relates arbitrary ℓ-labeled memories if ℓ ̸⊑ L, and pointwise

otherwise, i.e., M1 ≈L M2 iff M1 and M2 are memories labeled with ℓ ⊑ L, |M1 | = |M2 | and for all

7
Symbol ≡α denotes α -equivalence. In our mechanized proofs we use De Bruijn indexes and syntactic equivalence.
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Type: τ F unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L | LIO τ | Labeled τ | Ref τ
Labels: ℓ, pc ∈ L
Address: n ∈ N
Environment: θ ∈ Var ⇀ Value
Value: v F () | (x .e,θ ) | inl(v) | inr(v) | (v1,v2) | ℓ | Labeled ℓ v | (t,θ ) | nℓ
Expression: e F x |λx .e | e1 e2 | () | ℓ | inl(e1) | inr(e2) | case(e, x .e1, x .e2)

| (e1, e2) | fst(e) | snd(e) | e1 ⊑? e2 | t
Thunk t F return(e) | bind(e, x .e) | unlabel(e) | toLabeled(e) | labelOf(e)

| getLabel | taint(e) | new(e) | ! e | e1 := e2 | labelOfRef(e)
Type System: Γ ⊢ e : τ
Configuration: c F ⟨Σ, pc, e⟩
Store: Σ ∈ (ℓ : Label) → Memory ℓ
Memory ℓ: M F [ ] | v :M

Fig. 6. Syntax of λdCG .

n ∈ {0 . . |M1 | − 1}, M1[n] ≈L M2[n]. Similarly, L-equivalence relates any two secret references

(rule [RefH ]) but requires the same label and address for public references (rule [RefL]).

We naturally lift L-equivalence to initial configurations, i.e., c1 ≈L c2 iff c1 = ⟨Σ1, e1⟩, c2 = ⟨Σ2, e2⟩,
Σ1 ≈L Σ2 and e1 ≡α e2, and final configurations, i.e., c′

1
≈L c′

2
iff c′

1
= ⟨Σ′

1
,v1⟩, c′2 = ⟨Σ

′
2
,v2⟩ and

Σ′
1
≈L Σ′

2
and v1 ≈L v2.

We now formally state and prove that λdFG semantics preserves L-equivalence of configurations
under L-equivalent environments, i.e., termination-insensitive non-interference (TINI).

Theorem 1 (λdFG -TINI). If c1 ⇓
θ1
pc c′

1
, c2 ⇓

θ2
pc c′

2
, θ1 ≈L θ2 and c1 ≈L c2 then c′

1
≈L c′2.

Proof. By induction on the derivations.

Dynamic language-based fine-grained IFC, of which λdFG is just a particular instance, represents

an intuitive approach to tracking information flows in programs. Programmers annotate input

values with labels that represent their sensitivity and a label-aware instrumented security monitor

propagates those labels during execution and computes the result of the program together with a

conservative approximation of its sensitivity. The next section describes an IFC monitor that tracks

information flows at coarse granularity.

3 COARSE-GRAINED CALCULUS
One of the drawbacks of dynamic fine-grained IFC is that the programming model requires all

input values to be explicitly and fully annotated with their security labels. Imagine a program with

many inputs and highly structured data: it quickly becomes cumbersome, if not impossible, for the

programmer to specify all the labels. The label of some inputs may be sensitive (e.g., passwords,

pin codes, etc.), but the sensitivity of the rest may probably be irrelevant for the computation,

yet a programmer must come up with appropriate labels for them as well. The programmer is

then torn between two opposing risks: over-approximating the actual sensitivity can negatively

affect execution (the monitor might stop secure programs), under-approximating the sensitivity

can endanger security. Even worse, specifying many labels manually is error-prone and assigning

the wrong security label to a piece of sensitive data can be catastrophic for security and completely

defeat the purpose of IFC. Dynamic coarse-grained IFC represents an attractive alternative that
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requires fewer annotations, in particular it allows the programmer to label only the inputs that

need to be protected.

Figure 6 shows the syntax of λdCG , a standard simply-typed λ-calculus extended with security

primitives for dynamic coarse-grained IFC, inspired by Stefan et al. [2011] and adapted to use

call-by-value instead of call-by-name to match λdFG . The λdCG -calculus features both standard

(unlabeled) values and explicitly labeled values. For example, Labeled H true represents a secret
boolean value of type Labeled bool.8 The type constructor LIO encapsulates a security state monad,

whose state consists of a labeled store and the program counter label. In addition to standard

return(·) and bind(·) constructs, the monad provides primitives that regulate the creation and the

inspection of labeled values, i.e., toLabeled(·), unlabel(·) and labelOf(·), and the interaction with

the labeled store, allowing the creation, reading and writing of labeled references nℓ through the

constructs new(e), !e, e1 := e2, respectively. The primitives of the LIOmonad are listed in a separate

sub-category of expressions called thunk. Intuitively, a thunk is just a description of a stateful

computation, which only the top-level security monitor can execute—a thunk closure, i.e., (t,θ ),
provides a way to suspend computations.

3.1 Dynamics
In order to track information flows dynamically at coarse granularity, λdCG employs a technique

called floating-label, which was originally developed for IFC operating systems (e.g., [Zeldovich et al.

2006, 2008]) and that was later applied in a language-based setting. In this technique, throughout

a program’s execution, the program counter floats above the label of any value observed during

program execution and thus represents (an upper-bound on) the sensitivity of all the values that

are not explicitly labeled. For this reason, λdCG stores the program counter label in the program

configuration, so that the primitives of the LIO monad can control it explicitly (in technical terms

the program counter is flow-sensitive, i.e., it may assume different values in the final configuration

depending on the control flow of the program).
9

Like λdFG , the operational semantics of λdCG consists of a security monitor that fully evaluates

secure programs but prevents the execution of insecure programs and similarly enforces termination-
insensitive non-interference (Theorem 2). Figure 7 shows the big-step operational semantics of

λdCG in two parts: (i) a top-level security monitor for monadic programs and (ii) a straightforward

call-by-value side-effect-free semantics for pure expressions. The semantics of the security monitor

is further split into two mutually recursive reduction relations, one for arbitrary expressions (Fig. 7a)

and one specific to thunks (Fig. 7c). These constitute the forcing semantics of the monad, which

reduce a thunk to a pure value and perform side-effects. In particular, given the initial store Σ,
program counter label pc, expression e of type LIO τ for some type τ and input values θ (which may

or may not be labeled), the monitor executes the program, i.e., ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′,v⟩ and gives an
updated store Σ′, updated program counter pc′ and a final value v of type τ , which also might not

be labeled. The execution starts with rule [Force], which reduces the pure expression to a thunk

closure, i.e., (t,θ ′) and then forces the thunk t in its environment θ ′ with the thunk semantics.

The pure semantics is fairly standard—we report some selected rules in Fig. 7b for comparison

with λdFG . A pure reduction, written e ⇓θ v , evaluates an expression e with an appropriate

environment θ to a pure value v . Notice that, unlike λdFG , all reduction rules of the pure semantics

ignore security, even those that affect the control flow of the program, e.g., rule [App]: they do not

8
As in λdFG , we define bool = unit + unit and if e then e1 else e2 = case e .e1 .e2. Unlike λdFG values, λdCG values

are not intrinsically labeled, thus we encode boolean constants simply as true = inl() and false = inr().
9
In contrast, we consider λdFG ’s program counter flow-insensitive because it is part of the evaluation judgment and its

value changes only inside nested judgments.
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(Force)

e ⇓θ (t,θ ′) ⟨Σ, pc, t⟩ ⇓θ
′

⟨Σ′, pc′,v⟩

⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′,v⟩

(a) Forcing semantics: ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′,v⟩.

(Thunk)

t ⇓θ (t,θ )
(Fun)

λx .e ⇓θ (x .e,θ )
(Var)

x ⇓θ θ (x)

(App)

e1 ⇓θ (x .e,θ ′) e2 ⇓θ v2 e ⇓θ
′[x 7→v2] v

e1 e2 ⇓θ v

(b) Pure semantics: e ⇓θ v (selected rules).

(Return)

e ⇓θ v

⟨Σ, pc, return(e)⟩ ⇓θ ⟨Σ, pc,v⟩

(Bind)

⟨Σ, pc, e1⟩ ⇓θ ⟨Σ′, pc′,v1⟩ ⟨Σ′, pc′, e2⟩ ⇓θ [x 7→v1] ⟨Σ′′, pc′′,v⟩

⟨Σ, pc, bind(e1, x .e2)⟩ ⇓θ ⟨Σ′′, pc′′,v⟩

(ToLabeled)

⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′,v⟩

⟨Σ, pc, toLabeled(e)⟩ ⇓θ ⟨Σ′, pc, Labeled pc′ v⟩

(Unlabel)

e ⇓θ Labeled ℓ v

⟨Σ, pc, unlabel(e)⟩ ⇓θ ⟨Σ′, pc ⊔ ℓ,v⟩

(LabelOf)

e ⇓θ Labeled ℓ v

⟨Σ, pc, labelOf(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ℓ⟩

(GetLabel)

⟨Σ, pc, getLabel⟩ ⇓θ ⟨Σ, pc, pc⟩

(Taint)

e ⇓θ ℓ

⟨Σ, pc, taint(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ()⟩

(c) Thunk semantics: ⟨Σ, pc, t⟩ ⇓θ ⟨Σ′, pc′,v⟩.

Fig. 7. Big-step semantics for λdCG .
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(New)

e ⇓θ Labeled ℓ v pc ⊑ ℓ n = |Σ(ℓ)|

⟨Σ, pc,new(e)⟩ ⇓θ ⟨Σ[ℓ 7→ Σ(ℓ)[n 7→ v]], pc, nℓ⟩

(Read)

e ⇓θ nℓ Σ(ℓ)[n] = v

⟨Σ, pc, !e⟩ ⇓θ ⟨Σ, pc ⊔ ℓ,v⟩

(Write)

e1 ⇓θ nℓ1 e2 ⇓θ Labeled ℓ2 v ℓ2 ⊑ ℓ1 pc ⊑ ℓ1

⟨Σ, pc, e1 := e2⟩ ⇓θ ⟨Σ[ℓ1 7→ Σ(ℓ1)[n 7→ v]], pc, ()⟩

(LabelOfRef)

e ⇓θ nℓ

⟨Σ, pc, labelOfRef(e)⟩ ⇓θ ⟨Σ, pc ⊔ ℓ, ℓ⟩

Fig. 8. Big-step semantics for λdCG (references).

feature the program counter label or label annotations. They are also pure—they do not have access

to the store, thus only the security monitor needs to protect against implicit flows.
If the pure evaluation reaches a side-effectful computation, i.e., thunk t, it suspends the computa-

tion by creating a thunk closure that captures the current environment θ (see rule [Thunk]). Notice

that thunk closures and function closures are distinct values created by different rules, [Thunk] and

[Fun] respectively.
10
Function application succeeds only when the function evaluates to a function

closure (rule [App]). In the thunk semantics, rule [Return] evaluates a pure value embedded

in the monad via return(·) and leaves the state unchanged, while rule [Bind] executes the first

computation with the forcing semantics, binds the result in the environment i.e., θ [x 7→ v1], passes
it on to the second computation together with the updated state and returns the final result and

state. Rule [Unlabel] is interesting. Following the floating-label principle, it returns the value
wrapped inside the labeled value, i.e., v , and raises the program counter with its label, i.e., pc ⊔ ℓ,
to reflect the fact that new data at security level ℓ is now in scope.

Floating-label based coarse-grained IFC systems like LIO suffer from the label creep problem,

which occurs when the program counter gets over-tainted, e.g., because too many secrets have

unlabeled, to the point that no useful further computation can be performed. Primitive toLabeled(·)
provides amechanism to address this problem by (i) creating a separate context where some sensitive

computation can take place and (ii) restoring the original program counter label afterwards. Rule

[ToLabeled] formalizes this idea. Notice that the result of the nested sensitive computation, i.e.,

v , cannot be simply returned to the lower context—that would be a leak, so toLabeled(·) wraps
that piece of information in a labeled value protected by the final program counter of the sensitive

computation, i.e., Labeled pc′ v .11 Furthermore, notice that pc′, the label that tags the result v , is
as sensitive as the result itself because the final program counter depends on all the unlabel(·)
operations performed to compute the result. This motivates why primitive labelOf(·) does not
simply project the label from a labeled value, but additionally taints the program counter with the

10
It would have also been possible to define thunk values in terms of function closures using explicit suspension and an

opaque wrapper, e.g., LIO ( .t, θ ).
11
Stefan et al. [2017] have proposed an alternative flow-insensitive primitive, i.e., toLabeled(ℓ, e), which labels the result

with the user-assigned label ℓ. The semantics of λdFG forced us to use toLabeled(e).
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(LabeledL)

ℓ ⊑ L v1 ≈L v2

Labeled ℓ v1 ≈L Labeled ℓ v2

(LabeledH )

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

Labeled ℓ1 v1 ≈L Labeled ℓ2 v2

(Closure)

e1 ≡α e2 θ1 ≈L θ2

(e1,θ1) ≈L (e2,θ2)

(Thunk)

t1 ≡α t2 θ1 ≈L θ2

(t1,θ1) ≈L (t2,θ2)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH )

ℓ1 ̸⊑ L ℓ2 ̸⊑ L

n1ℓ1 ≈L n2ℓ2

(PcH )

Σ1 ≈L Σ2 pc
1
̸⊑ L pc

2
̸⊑ L

⟨Σ1, pc1,v1⟩ ≈L ⟨Σ2, pc2,v2⟩

(PcL)

Σ1 ≈L Σ2 pc ⊑ L v1 ≈L v2

⟨Σ1, pc,v1⟩ ≈L ⟨Σ2, pc,v2⟩

Fig. 9. L-equivalence for λdCG values (selected rules) and configurations.

label itself in rule [LabelOf]–a label in a labeled value has sensitivity equal to the label itself, thus

the program counter label rises to accommodate reading new sensitive data.

Lastly, rule [GetLabel] returns the value of the program counter, which does not rise (because

pc ⊔ pc = pc), and rule [Taint] simply taints the program counter with the given label and returns

unit (this primitive matches the functionality of taint(·) in λdFG ). Note that, in λdCG , taint(·) takes
only the label with which the program counter must be tainted whereas, in λdFG , it additionally
requires the expression that must be evaluated in the tainted environment. This difference highlights

the flow-sensitive nature of the program counter label in λdCG .

References. λdCG features flow-insensitive labeled references similar to λdFG and allows programs

to create, read, update and inspect the label inside the LIO monad (see Figure 8). The API of these

primitives takes explicitly labeled values as arguments, by making explicit at the type level, the

tagging that occurs in memory, which was left implicit in previous work [Stefan et al. 2017]. Rule

[New] creates a reference labeled with the same label annotation as that of the labeled value it

receives as an argument, and checks that pc ⊑ ℓ in order to avoid implicit flows. Rule [Read]

retrieves the content of the reference from the ℓ-labeled memory and returns it. Since this brings

data at security level ℓ in scope, the program counter is tainted accordingly, i.e., pc ⊔ ℓ. Rule
[Write] performs security checks analogous to those in λdFG and updates the content of a given

reference and rule [LabelOfRef] returns the label on a reference and taints the context accordingly.

We conclude this section by noting that the forcing and the thunk semantics of λdCG satisfy

Property 2 (“the final value of the program counter is at least as sensitive as the initial value” ).

Property 2.

• If ⟨Σ, pc, e⟩ ⇓θ ⟨Σ′, pc′,v⟩ then pc ⊑ pc′.
• If ⟨Σ, pc, t⟩ ⇓θ ⟨Σ′, pc′,v⟩ then pc ⊑ pc′.

Proof. By mutual induction on the given evaluation derivations.

3.2 Security
We now prove that λdCG is secure, i.e., it satisfies termination-insensitive non-interference. The
meaning of the security condition is intuitively similar to that presented in Section 2.2 for λdFG—
when secret inputs are changed, terminating programs do not produce any publicly observable
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effect—and based on a similar indistinguishability relation. Figure 9 presents the definition of

L-equivalence for the interesting cases only. Firstly, L-equivalence for λdCG labeled values relates

public and secret values analogously to λdFG values. Specifically, rule [LabeledL] relates public

labeled values that share the same observable label (ℓ ⊑ L) and contain related values, i.e.,v1 ≈L v2,
while rule [LabeledH ] relates secret labeled values, with arbitrary sensitivity labels not below L
(ℓ1 ̸⊑ L and ℓ2 ̸⊑ L) and contents. Secondly, L-equivalence relates standard (unlabeled) values

homomorphically. For example, values of the sum type are related only as follows: inl(v1) ≈L inl(v ′1)
iff v1 ≈L v

′
1
and inr(v2) ≈L inr(v ′2) iff v2 ≈L v

′
2
. Closures and thunks are related if the function and

the monadic computations are α-equivalent and their environments are related, i.e., θ1 ≈L θ2 iff
Dom(θ1) ≡ Dom(θ2) and ∀x .θ1(x) ≈L θ2(x). Labeled references, memories and stores are related

by L-equivalence analogously to λdFG . Lastly, L-equivalence relates initial configurations with
related stores, equal program counters and α-equivalent expressions (resp. thunks), i.e., c1 ≈L c2
iff c1 = ⟨Σ1, pc1, e1⟩, c2 = ⟨Σ2, pc2, e2⟩, Σ1 ≈L Σ2, pc1 ≡ pc

2
, and e1 ≡α e2 (resp. t1 ≡α t2 for thunks

t1 and t2), and final configurations with related stores and (i) equal public program counter, i.e.,

pc ⊑ L, and related values [PcL], or (ii) arbitrary secret public counters, i.e., pc1 ̸⊑ L and pc
2
̸⊑ L,

and arbitrary values [PcH ].

We now formally state and prove that λdCG semantics preserve L-equivalence under L-equivalent
environments, i.e., termination-insensitive non-interference (TINI).

Theorem 2 (λdCG -TINI). If c1 ⇓θ1 c′
1
, c2 ⇓θ2 c′

2
, θ1 ≈L θ2 and c1 ≈L c2 then c′

1
≈L c′2.

Proof. By induction on the derivations.

At this point, we have formalized two calculi—λdFG and λdCG—that perform dynamic IFC at fine
and coarse granularity, respectively. While they have some similarities, i.e., they are both functional

languages that feature labeled annotated data, references and label introspection primitives, and

ensure a termination-insensitive security condition, they also have striking differences. First and

foremost, they differ in the number of label annotations—pervasive in λdFG and optional in λdCG—
with significant implications for the programming model and usability. Second, they differ in the

nature of the program counter, flow-insensitive in λdFG and flow-sensitive in λdCG . Third, they differ

in the way they deal with side-effects—λdCG allows side-effectful computations exclusively inside

the monad, while λdFG is impure, i.e., any λdFG expression can modify the state. This difference

affects the effort required to implement a system that performs language-based fine- and coarse-

grained dynamic IFC. In fact, several coarse-grained IFC languages [Buiras et al. 2015; Jaskelioff

and Russo 2011; Russo 2015; Russo et al. 2009; Schmitz et al. 2018; Tsai et al. 2007] have been

implemented as an embedded domain specific language (EDSL) in a Haskell library with little

effort, exploiting the strict control that the host language provides on side-effects. Adapting an

existing language to perform fine-grained IFC requires major engineering effort, because several

components (all the way from the parser to the runtime system) must be adapted to be label-aware.

In the next two sections we show that—despite their differences—these two calculi are, in fact,

equally expressive.

4 FINE- TO COARSE-GRAINED PROGRAM TRANSLATION
This section presents a provably semantics-preserving program translation from the fine-grained

dynamic IFC calculus λdFG to the coarse-grained calculus λdCG . At a high level, the translation

performs two tasks (i) it embeds the intrinsic label annotation of λdFG values into an explicitly
labeled λdCG value via the Labeled type constructor and (ii) it restructures λdFG side-effectful
expressions into monadic operations inside the LIO monad. Our type-driven approach starts by

formalizing this intuition in the function ⟨⟨ · ⟩⟩, which maps the λdFG type τ to the corresponding

λdCG type ⟨⟨τ ⟩⟩ (see Figure 10a). The function is defined by induction on types and recursively adds
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⟨⟨unit⟩⟩ = Labeled unit
⟨⟨L ⟩⟩ = Labeled L

⟨⟨τ1 × τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩ × ⟨⟨τ2⟩⟩)
⟨⟨τ1 + τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩ + ⟨⟨τ2⟩⟩)
⟨⟨τ1 → τ2⟩⟩ = Labeled (⟨⟨τ1⟩⟩ → LIO⟨⟨τ2⟩⟩)
⟨⟨Ref τ ⟩⟩ = Labeled (Ref ⟨⟨τ ⟩⟩)

(a) Types.

⟨⟨r ℓ⟩⟩ = Labeled ℓ⟨⟨r ⟩⟩
⟨⟨()⟩⟩ = ()

⟨⟨ℓ⟩⟩ = ℓ

⟨⟨(v1,v2)⟩⟩ = (⟨⟨v1⟩⟩, ⟨⟨v2⟩⟩)

⟨⟨inl(v)⟩⟩ = inl(⟨⟨v⟩⟩)
⟨⟨inr(v)⟩⟩ = inr(⟨⟨v⟩⟩)
⟨⟨(x .e,θ )⟩⟩ = (x .⟨⟨e⟩⟩, ⟨⟨θ⟩⟩)
⟨⟨nℓ⟩⟩ = nℓ

(b) Values.

Fig. 10. Translation from λdFG to λdCG .

the Labeled type constructor to each existing λdFG type constructor. For the function type τ1 → τ2,
the result is additionally monadic, i.e., ⟨⟨τ1⟩⟩ → LIO⟨⟨τ2⟩⟩. This is because the function’s body in

λdFG may have side-effects. The translation for values (Figure 10b) is straightforward. Each λdFG

label tag becomes the label annotation in a λdCG labeled value. The translation is homomorphic in

the constructors on raw values. The translation converts a λdFG function closure into a λdCG thunk

closure by translating the body of the function to a thunk, i.e., ⟨⟨e⟩⟩ (see below), and translating the

environment pointwise, i.e., ⟨⟨θ⟩⟩ = λx .⟨⟨θ (x)⟩⟩.

Expressions. We show the translation of λdFG expressions to λdCG monadic thunks in Figure 11.

We use the standard do notation for readability.
12
First, notice that the translation of all constructs

occurs inside a toLabeled(·) block. This achieves two goals, (i) it ensures that the value that results

from a translated expression is explicitly labeled and (ii) it creates an isolated nested context where

the translated thunk can execute without raising the program counter label at the top level. Inside

the toLabeled(·) block, the program counter label may rise, e.g., when some intermediate result

is unlabeled, and the translation relies on LIO’s floating-label mechanism to track dependencies

between data of different security levels. In particular, we will show later that the value of the

program counter label at the end of each nested block coincides with the label annotation of the λdFG

value that the original expression evaluates to. For example, introduction forms of ground values

(unit, labels, and functions) are simply returned inside the toLabeled(·) block so that they get tagged
with the current value of the program counter label just as in the corresponding λdFG introduction

rules ([Label,Unit,Fun]). Introduction forms of compounds values such as inl(e), inr(e) and
(e1, e2) follow the same principle. The translation simply nests the translations of the nested

expressions inside the same constructor, without raising the program counter label. This matches

the behavior of the corresponding λdFG rules [Inl,Inr,Pair].
13
For example, the λdFG reduction

((), ()) ⇓∅L (()
L, ()L)

L
maps to a λdCG reduction that yields Labeled L (Labeled L (), Labeled L ())

when started with program counter label L.
The translation of variables gives some insight into how the λdCG floating-label mechanism can

simulate λdFG ’s tainting approach. First, the type-driven approach set out in Figure 10a demands

that functions take only labeled values as arguments, so the variables in the source program are

always associated to a labeled value in the translated program. The values that correspond to these

12
Syntax do x ← e1; e2 desugars to bind(e1, x .e2) and syntax e1; e2 to bind(e1, .e2).

13
We name a variable lv if it gets bound to a labeled value, i.e., to indicate that the variable has type Labeled τ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 76. Publication date: January 2019.



76:16 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan

⟨⟨()⟩⟩ = toLabeled(return(()))

⟨⟨ℓ⟩⟩ = toLabeled(return(ℓ))

⟨⟨(λx .e)⟩⟩ = toLabeled(return(λx .⟨⟨e⟩⟩))

⟨⟨inl(e)⟩⟩ = toLabeled( do
le← ⟨⟨e⟩⟩
return(inl(lv)))

⟨⟨inr(e)⟩⟩ = toLabeled( do
le← ⟨⟨e⟩⟩
return(inr(lv)))

⟨⟨(e1, e2)⟩⟩ = toLabeled( do
lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
return(lv1, lv2))

⟨⟨x⟩⟩ = toLabeled(unlabel(x))

⟨⟨e1 e2⟩⟩ = toLabeled( do
lv1 ← ⟨⟨e1⟩⟩
lv2 ← ⟨⟨e2⟩⟩
v1 ← unlabel(lv1)
lv ← v1 lv2
unlabel(lv))

⟨⟨case(e, x .e1, x .e2)⟩⟩ = toLabeled( do
lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
lv ′← case(v, x .⟨⟨e1⟩⟩, x .⟨⟨e2⟩⟩)
unlabel(lv ′))

⟨⟨fst(e)⟩⟩ = toLabeled( do
lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
unlabel(fst(v)))

⟨⟨snd(e)⟩⟩ = toLabeled( do
lv ← ⟨⟨e⟩⟩
v ← unlabel(lv)
unlabel(snd(v)))

⟨⟨taint(e1, e2)⟩⟩ = toLabeled( do
lv1 ← ⟨⟨e1⟩⟩
v1 ← unlabel(lv1)
taint(v1)
lv2 ← ⟨⟨e2⟩⟩
unlabel(lv2))

⟨⟨labelOf(e)⟩⟩ = toLabeled( do
lv ← ⟨⟨e⟩⟩
labelOf(lv))

⟨⟨getLabel⟩⟩ = toLabeled(getLabel)

Fig. 11. Translation from λdFG to λdCG (expressions).

variables are stored in the environment θ and translated separately, e.g., if θ (x) = r ℓ in λdFG , then
x gets bound to ⟨⟨r ℓ⟩⟩ = Labeled ℓ⟨⟨r ⟩⟩ when translated to λdCG . Thus, the translation converts a

variable, say x, to toLabeled(unlabel(x)), so that its label gets tainted with the current program

counter label. More precisely, unlabel(x) retrieves the labeled value associated with the variable,

i.e., Labeled ℓ⟨⟨r ⟩⟩, taints the program counter with its label to make it pc ⊔ ℓ, and returns the

content, i.e., ⟨⟨r ⟩⟩. Since unlabel(x) occurs inside a toLabeled(·) block, the code above results in
Labeled (pc ⊔ ℓ)⟨⟨r ⟩⟩ when evaluated, matching precisely the tainting behavior of λdFG rule [Var],

i.e., x ⇓θ [x 7→r ℓ ]
pc r pc ⊔ ℓ

.

The elimination forms for other types (function application, pair projections and case analysis)

follow the same approach. For example, the code that translates a function application e1 e2 first
executes the code that computes the translated function, i.e., lv1 ← ⟨⟨e1⟩⟩, then the code that

computes the argument, i.e., lv2 ← ⟨⟨e2⟩⟩ and then retrieves the function from the first labeled value,
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(WkenType)

Γ \ x ⊢ e : τ

Γ ⊢ wken x e : τ

(Wken)

e ⇓θ \ x v

wken x e ⇓θ v

Fig. 12. Typing and semantics rules of wken for λdCG .

i.e., v1 ← unlabel(lv1).14 The function v1 applied to the labeled argument lv2 gives a computation

that gets executed and returns a labeled value lv that gets unlabeled to expose the final result (the

surrounding toLabeled(·) wraps it again right away). The translation of case analysis is analogous.

The translation of pair projections first converts the λdFG pair into a computation that gives a

λdCG labeled pair of labeled values, say Labeled ℓ (Labeled ℓ1⟨⟨r1⟩⟩, Labeled ℓ2⟨⟨r2⟩⟩) and removes

the label tag on the pair via unlabel, thus raising the program counter label to pc ⊔ ℓ. Then,
it projects the appropriate component and unlabels it, thus tainting the program counter label

even further with the label of either the first or the second component. This coincides with the

tainting mechanism of λdFG for projection rules, e.g., in rule [Fst] where fst(e) ⇓θpc r1
pc ⊔ ℓ ⊔ ℓ1

if

e ⇓θpc (r1
ℓ1 , r2

ℓ2 )
ℓ
.

Lastly, translating taint(e1, e2) requires (i) translating the expression e1 that gives the label, (ii)
using taint(·) from λdCG to explicitly taint the program counter label with the label that e1 gives,
and (iii) translating the second argument e2 to execute in the tainted context and unlabeling the

result. The construct labelOf(e) of λdFG uses the corresponding λdCG primitive applied on the

corresponding labeled value, say Labeled ℓ⟨⟨r ⟩⟩, obtained from the translated expression. Notice

that labelOf(·) taints the program counter label in λdCG , which rises to pc ⊔ ℓ, so the code just

described results in Labeled (pc ⊔ ℓ) ℓ, which corresponds to the translation of the result in λdFG ,
i.e., ⟨⟨ℓℓ⟩⟩ = Labeled ℓ ℓ because pc ⊔ ℓ ≡ ℓ, since pc ⊑ ℓ from Property 1. The translation

of getLabel follows naturally by simply wrapping λdCG ’s getLabel inside a toLabeled(·), which
correctly returns the program counter label labeled with itself, i.e., Labeled pc pc.

Note on Environments. The semantics rules of λdFG and λdCG feature an environment θ for input

values that gets extended with intermediate values during program evaluation and that may be

captured inside a closure. Unfortunately, this capturing behavior is undesirable for our program

translation. The program translation defined above introduces temporary auxiliary variables that

carry the value of intermediate results, e.g., the labeled value obtained from running a computation

that translates some λdFG expression. When the translated program is executed, these values end

up in the environment, e.g., by means of rules [App] and [Bind], and mix with the input values

of the source program and output values as well, thus complicating the correctness statement

of the translation, which now has to account for those extra variables as well. In order to avoid

this nuisance, we employ a special form of weakening that allows shrinking the environment at

run-time and removing spurious values that are not needed in the rest of the program. In particular,

expression wken x e has the same type as e if variables x are not free in e, see the formal typing

rule [WkenType] in Figure 12. At run-time, the expression wken x e evaluates e in an environment

from which variables x have been dropped, so that they do not get captured in any closure created

14
Notice that it is incorrect to unlabel the function before translating the argument, because that would taint the program

counter label, which would raise at level, say pc ⊔ ℓ, and affect the code that translates the argument, which was to be

evaluated with program counter label equal to pc by the original flow-insensitive λdFG rule [App] for function application.
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⟨⟨new(e)⟩⟩ = toLabeled( do
lv ← ⟨⟨e⟩⟩
new(lv))
⟨⟨ ! e⟩⟩ = toLabeled( do
lr ← ⟨⟨e⟩⟩
r ← unlabel(lv)
! r )

⟨⟨e1 := e2⟩⟩ =
toLabeled( do
lr ← ⟨⟨e1⟩⟩
lv ← ⟨⟨e2⟩⟩
r ← unlabel(lr)
r := lv)

toLabeled(return())

⟨⟨labelOfRef(e)⟩⟩ =
toLabeled( do
lr ← ⟨⟨e⟩⟩
r ← unlabel(lv)
labelOfRef(r ))

Fig. 13. Translation λdFG to λdCG (references).

during the execution of e. Rule [Wken] is part of the pure semantics of λdCG—the semantics of λdFG

includes an analogous rule (the issue of contaminated environments arises in the translations in

both directions, thus both calculi feature wken). We remark that this expedient is not essential—we

can avoid it by slightly complicating the correctness statement to explicitly account for those extra

variables. Nor is this expedient particularly interesting. In fact, we omit wken from the code of the

program translations to avoid clutter (our mechanization includes wken in the appropriate places).

References. Figure 13 shows the program translation of λdFG primitives that access the store via

references. The translation of λdFG values wraps references in λdCG labeled values (Figure 10b), so

the translations of Figure 13 take care of boxing and unboxing references. The translation of new(e)
has a top-level toLabeled(·) block that simply translates the content (lv ← ⟨⟨e⟩⟩) and puts it in a new

reference (new(lv)). The λdCG rule [New] (Figure 8) assigns the label of the translated content to

the new reference, which also gets labeled with the original program counter label
15
, just as in the

λdFG rule [New] (Figure 4). In λdFG , rule [Read] reads from a reference nℓℓ
′

at security level ℓ′ that

points to the ℓ-labeled memory, and returns the content Σ(ℓ)[n]ℓ ⊔ ℓ′
at level ℓ ⊔ ℓ′. Similarly, the

translation creates a toLabeled(·) block that executes to get a labeled reference lr = Labeled ℓ′ nℓ ,
extracts the reference nℓ (r ← unlabel(lr)) tainting the program counter label with ℓ′, and then

reads the reference’s content further tainting the program counter label with ℓ as well. The code that
translates and updates a reference consists of two toLabeled(·) blocks. The first block is responsible
for the update: it extracts the labeled reference and the labeled new content (lr and lv resp.), extracts
the reference from the labeled value (r ← unlabel(lr)) and updates it (r := lv). The second block,

toLabeled(return()), returns unit at security level pc, i.e., Labeled pc (), similar to the λdFG rule

[Write]. The translation of labelOfRef(e) extracts the reference and projects its label via the λdCG

primitive labelOfRef(·), which additionally taints the program counter with the label itself, similar

to the λdFG rule [LabelOfRef].

4.1 Correctness
In this section, we establish some desirable properties of the λdFG -to-λdCG translation defined above.

These properties include type and semantics preservation as well as recovery of non-interference—a

meta criterion that rules out a class of semantically correct (semantics preserving), yet elusive

translations that do not preserve the meaning of security labels [Barthe et al. 2007; Rajani and Garg

2018].

15
The nested block does not execute any unlabel(·) nor taint(·).
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We start by showing that the program translation preserves typing. The type translation for

typing contexts Γ is pointwise, i.e., ⟨⟨Γ⟩⟩ = λx .⟨⟨Γ(x)⟩⟩.

Lemma 4.1 (Type Preservation). Given a well-typed λdFG expression, i.e., Γ ⊢ e : τ , the translated
λdCG expression is also well-typed, i.e., ⟨⟨Γ⟩⟩ ⊢ ⟨⟨e⟩⟩ : LIO⟨⟨τ ⟩⟩.

Proof. By induction on the given typing derivation. □

The main correctness criterion for the translation is semantics preservation. Intuitively, proving

this theorem ensures that the program translation preserves the meaning of secure λdFG programs

when translated and executed with λdCG semantics (under a translated environment). In the

theorem below
16
, the translation of stores and memories is pointwise, i.e., ⟨⟨Σ⟩⟩ = λℓ.⟨⟨Σ(ℓ)⟩⟩, and

⟨⟨[ ]⟩⟩ = [ ] and ⟨⟨r : M⟩⟩ = ⟨⟨r ⟩⟩ : ⟨⟨M⟩⟩ for each ℓ-labeled memory M . Furthermore, notice that in

the translation, the initial and final program counter labels are the same. This establishes that the

program translation preserves the flow-insensitive program counter label of λdFG (by means of

primitive toLabeled(·)).

Theorem 3 (Semantics Preservation of ⟨⟨ · ⟩⟩ :λdFG → λdCG ). Given a well-typed λdFG program
⟨Σ, e⟩ ⇓θpc ⟨Σ

′,v⟩, then ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨e⟩⟩⟩ ⇓⟨⟨θ ⟩⟩ ⟨⟨⟨Σ′⟩⟩, pc, ⟨⟨v⟩⟩⟩.

Proof. By induction on the given evaluation derivation using basic properties of the security

lattice and of the translation function.

Recovery of non-interference. We conclude this section by constructing a proof of termination-

insensitive non-interference for λdFG (Theorem 1) from the corresponding theorem for λdCG

(Theorem 2), using the semantics preserving translation (Theorem 3), together with a property that

the translation preserves L-equivalence as well (Lemmas 4.2 and 4.3). Doing so ensures that the

meaning of labels is preserved by the translation [Barthe et al. 2007; Rajani and Garg 2018]. In the

absence of such an artifact, one could devise a semantics-preserving translation that simply does not

use the security features of the target language.While technically correct (i.e., semantics preserving),

the translation would not be meaningful from the perspective of security.
17
The following lemma

shows that the translation of λdFG initial configurations, defined as ⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨e⟩⟩⟩ if
c = ⟨Σ, e⟩, preserves L-equivalence by lifting L-equivalence from source to target and back.

Lemma 4.2. For all program counter labels pc, c1 ≈L c2 if and only if ⟨⟨c1⟩⟩pc ≈L ⟨⟨c2⟩⟩pc .

Proof. By definition of L-equivalence for initial configurations in both directions (Sections 2.2

and 3.2), using injectivity of the translation function, i.e., if ⟨⟨e1⟩⟩ ≡α ⟨⟨e2⟩⟩ then e1 ≡α e2, in the if
direction, and by mutually proving similar lemmas for all categories: for stores, i.e., Σ1 ≈L Σ2 iff

⟨⟨Σ1⟩⟩ ≈L ⟨⟨Σ2⟩⟩, for memories, i.e., M1 ≈L M2 iff ⟨⟨M1⟩⟩ ≈L ⟨⟨M2⟩⟩, for environments, i.e., θ1 ≈L θ2
iff ⟨⟨θ1⟩⟩ ≈L ⟨⟨θ2⟩⟩, for values, i.e., v1 ≈L v2 iff ⟨⟨v1⟩⟩ ≈L ⟨⟨v2⟩⟩, and for raw values, i.e., r1 ≈L r2 iff
⟨⟨r1⟩⟩ ≈L ⟨⟨r2⟩⟩.
The following lemma recovers L-equivalence of source final configurations by back-translating

L-equivalence of target final configurations. We define the translation for λdFG final configurations
as ⟨⟨c⟩⟩pc = ⟨⟨⟨Σ⟩⟩, pc, ⟨⟨v⟩⟩⟩ if c = ⟨Σ,v⟩.

Lemma 4.3. Let c1 = ⟨Σ1, r1
ℓ1⟩, c2 = ⟨Σ2, r2

ℓ2⟩ be λdFG final configurations. For all program counter
label pc, such that pc ⊑ ℓ1 and pc ⊑ ℓ2, if ⟨⟨c1⟩⟩pc ≈L ⟨⟨c2⟩⟩pc then c1 ≈L c2.
16
The proof of Theorem 3 requires the (often used) axiom of functional extensionality in our mechanized proofs.

17
Note that such bogus translations are also ruled out due to the need to preserve the outcome of any label introspection.

Nonetheless, building this proof artifact increases our confidence in the robustness of our translation. In contrast, if the

enforcement of IFC is static, then there is no label introspection, and this proof artifact is extremely important, as argued in

prior work [Barthe et al. 2007; Rajani and Garg 2018].
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JL K = L

JunitK = unit
Jτ1 → τ2K = Jτ1K→ Jτ2K
Jτ1 + τ2K = Jτ1K + Jτ2K
Jτ1 × τ2K = Jτ1K × Jτ2K
JRef τ K = RefJτ K
JLabeled τ K = L × Jτ K
JLIO τ K = unit→ Jτ K

(a) Types.

J()Kpc = ()pc

JℓKpc = ℓpc

Jinl(v)Kpc = inl(JvKpc)pc

Jinr(v)Kpc = inr(JvKpc)pc

J(v1,v2)Kpc = (Jv1Kpc, Jv2Kpc)
pc

J(x .e,θ )Kpc = (x .JeK, JθKpc)pc

J(t,θ )Kpc = ( .JtK, JθKpc)pc

JLabeled ℓ vKpc = (ℓℓ, JvKℓ)
pc

JnℓKpc = (nℓ)pc

(b) Values.

Fig. 14. Translation from λdCG to λdFG (part I).

Proof. By case analysis on the L-equivalence relation of the target final configurations, two cases

follow. First, we recover L-equivalence of the source stores, i.e., Σ1 ≈L Σ2, from that of the target

stores, i.e., ⟨⟨Σ1⟩⟩ ≈L ⟨⟨Σ2⟩⟩ from ⟨⟨c1⟩⟩ ≈L ⟨⟨c2⟩⟩ in both cases. Then, the program counter in the target

configurations is either (i) above the attacker’s level [PcH ], i.e., pc ̸⊑ L, and the source values are

L-equivalent, i.e., r1ℓ1 ≈L r2ℓ2 by rule [ValueH ] applied to ℓ1 ̸⊑ L and ℓ2 ̸⊑ L (from pc ̸⊑ L and,

respectively, pc ⊑ ℓ1 and pc ⊑ ℓ2), or (ii) below the attacker’s level [PcL], i.e., pc ⊑ L, then
⟨⟨r1

ℓ1⟩⟩ ≈L ⟨⟨r2
ℓ2⟩⟩ and the source values are L-equivalent, i.e., r1ℓ1 ≈L r2ℓ2 , by Lemma 4.2 for values.

Theorem 4 (λdFG -TINI via ⟨⟨ · ⟩⟩). If c1 ⇓
θ1
pc c′

1
, c2 ⇓

θ2
pc c′

2
, θ1 ≈L θ2 and c1 ≈L c2 then c′

1
≈L c′2.

Proof. We start by applying the fine to coarse grained program translation to the initial configura-

tions and environments. By Theorem 3 (semantics preservation), we derive the corresponding λdCG

reductions, i.e., ⟨⟨c1⟩⟩pc ⇓⟨⟨θ1 ⟩⟩ ⟨⟨c′1⟩⟩
pc
and ⟨⟨c2⟩⟩pc ⇓⟨⟨θ2 ⟩⟩ ⟨⟨c′2⟩⟩

pc
. Then, we lift L-equivalence of the

initial configurations and environments from source to target, i.e., from c1 ≈L c2 to ⟨⟨c1⟩⟩pc ≈L ⟨⟨c2⟩⟩pc

and from θ1 ≈L θ2 to ⟨⟨θ1⟩⟩ ≈L ⟨⟨θ2⟩⟩ (Lemma 4.2), and apply λdCG -TINI (Theorem 2) to obtain

L-equivalence of the target final configurations, i.e., ⟨⟨c′
1
⟩⟩pc ≈L ⟨⟨c′2⟩⟩

pc
. Finally, we recover L-

equivalence of the final configurations from target to source, i.e., from ⟨⟨c′
1
⟩⟩pc ≈L ⟨⟨c′2⟩⟩

pc
to c′

1
≈L c′2,

via Lemma 4.3, applied to c′
1
= ⟨Σ1, r1

ℓ1⟩ and c′
2
= ⟨Σ2, r2

ℓ2⟩, and where pc ⊑ ℓ1 and pc ⊑ ℓ2 by
Property 1 applied to the source reductions, i.e., c1 ⇓

θ1
pc c′

1
and c2 ⇓

θ2
pc c′

2
.

5 COARSE- TO FINE-GRAINED PROGRAM TRANSLATION
We now show a verified program translation in the opposite direction—from the coarse grained

calculus λdCG to the fine grained calculus λdFG . The translation in this direction is more involved—a

program in λdFG contains strictly more information than its counterpart in λdCG , namely the extra

intrinsic label annotations that tag every value. The challenge in constructing this translation

is two-fold. On one hand, the translation must come up with labels for all values. However, it

is not always possible to do this statically during the translation: Often, the labels depend on

input values and arise at run-time with intermediate results since the λdFG calculus is designed to

compute and attach labels at run-time. On the other hand, the translation cannot conservatively
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under-approximate the values of labels
18
—λdCG and λdFG have label introspection so, in order to

get semantics preservation, labels must be preserved precisely. Intuitively, we solve this impasse

by crafting a program translation that (i) preserves the labels that can be inspected by λdCG and

(ii) lets the λdFG semantics compute the remaining label annotations automatically—we account

for those labels with a cross-language relation that represents semantic equivalence between λdFG

and λdCG modulo extra annotations (Section 5.1). The fact that the source program in λdCG cannot

inspect those labels—they have no value counterpart in the source λdCG program—facilitates this

aspect of the translation. We elaborate more on the technical details later.

At a high level, an interesting aspect of the translation (that informally attests that it is indeed

semantics-preserving) is that it encodes the flow-sensitive program counter of the source λdCG

program into the label annotation of the λdFG value that results from executing the translated

program. For example, if a λdCG monadic expression starts with program counter label pc and
results in some value, say true, and final program counter pc′, then the translated λdFG expression,

starting with the same program counter label pc, computes the same value (modulo extra label

annotations) at the same security level pc′, i.e., the value truepc
′

. This encoding requires keeping

the value of the program counter label in the source program synchronized with the program

counter label in the target program, by loosening the fine-grained precision of λdFG at run-time in

a controlled way.

Types. The λdCG -to-λdFG translation follows the same type-driven approach used in the other

direction, starting from the function J · K in Figure 14a, that translates a λdFG type τ into the

corresponding λdCG type Jτ K. The translation is defined by induction on τ and preserves all the type

constructors standard types. Only the cases corresponding to λdCG -specific types are interesting.
In particular, it converts explicitly labeled types, i.e., Labeled τ , to a standard pair type in λdFG ,
i.e., (L × Jτ K), where the first component is the label and the second component the content of

type τ . Type LIO τ becomes a suspension in λdFG , i.e., the function type unit→ Jτ K that delays a
computation and that can be forced by simply applying it to the unit value ().

Values. The translation of values follows the type translation, as shown in Figure 14b. Notice

that the translation is indexed by the program counter label (the translation is written JvKpc),
which converts the λdCG value v in scope of a computation protected by security level pc to the

corresponding fully label-annotated λdFG value. The translation is pretty straightforward and uses

the program counter label to tag each value, following the λdCG principle that the program counter

label protects every value in scope that is not explicitly labeled. The translation converts a λdCG

function closure into a corresponding λdFG function closure by translating the body of the function

to a λdFG expression (see below) and translating the environment pointwise, i.e., JθKpc = λx .Jθ (x)Kpc .
A thunk value or a thunk closure, which denotes a suspended side-effecful computation, is also

converted into a λdFG function closure. Technically, the translation would need to introduce a fresh
variable that would get bound to unit when the suspension gets forced. However, the argument

to the suspension does not have any purpose, so we do not bother with giving a name to it and

write .JtK instead. (In our mechanized proofs we employ unnamed De Bruijn indexes and this

issue does not arise.) The translation converts an explicitly labeled value Labeled ℓ v , into a labeled
pair at security level pc, i.e., (ℓℓ, JvKℓ)

pc
. The pair consists of the label ℓ tagged with itself, and

the value translated at a security level equal to the label annotation, i.e., JvKℓ . Notice that tagging
the label with itself allows us to translate the λdCG (label introspection) primitive labelOf(·) by

18
In contrast, previous work on static type-based fine-to-coarse grained translation safely under-approximates the label

annotations in types with ⊥ [Rajani and Garg 2018]. The proof of type preservation of the translation recovers the actual

labels via subtyping.
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J()K = ()
JℓK = ℓ
JxK = x
Jλx .eK = λx .JeK
Je1 e2K = Je1KJe2K
J(e1, e2)K = (Je1K, Je2K)
Jfst(e)K = fst(JeK)
Jsnd(e)K = snd(JeK)
Jinl(e)K = inl(JeK)
Jinr(e)K = inr(JeK)
Jcase (e, x .e1, x .e2)K
= case (JeK, x .Je1K, x .Je2K)

JtK = λ .JtK

(a) Expressions.

Jreturn(e)K = JeK
Jbind(e1, x .e2)K =
let x = Je1K() in
taint(labelOf(x), Je2K())

Junlabel(e)K =
let x = JeKin
taint(fst(x), snd(x))

JtoLabeled(e)K =
let x = JeK() in
(labelOf(x), x)

JlabelOf(e)K = fst(JeK)
JgetLabelK = getLabel
Jtaint(e)K = taint(JeK, ())

(b) Thunks.

Fig. 15. Translation from λdCG to λdFG (part II).

simply projecting the first component, thus preserving the label and its security level across the

translation.

Expressions and Thunks. The translation of pure expressions (Figure 15a) is trivial: it is homo-

morphic in all constructs, mirroring the type translation. The translation of a thunk expression t
builds a suspension explicitly with a λ-abstraction (the name of the variable is again irrelevant,

thus we omit it as explained above), and carries on by translating the thunk itself according to

the definition in Figure 15b. The thunk return(e) becomes JeK, since return(·) does not have any
side-effect. When two monadic computations are combined via bind(e1, x .e2), the translation (i)

converts the first computation to a suspension and forces it by applying unit (Je1K()), (ii) binds
the result to x and passes it to the second computation

19
, which is also converted, forced, and,

importantly, iii) executed with a program counter label tainted with the security level of the result

of the first computation (taint(labelOf(x), Je2K())). Notice that taint(·) is essential to ensure that

the second computation executes with the program counter label set to the correct value—the

precision of the fine-grained system would otherwise retain the initial lower program counter

label according to rule [App] and the value of the program counter labels in the source and target

programs would differ in the remaining execution.

Similarly, the translation of unlabel(e) first translates the labeled expression e (the translated
expression does not need to be forced because it is not of a monadic type), binds its result to x and

then projects the content in a context tainted with its label, as in taint(fst(x), snd(x)). This closely
follows λdCG ’s [Unlabel] rule. The translation of toLabeled(e) forces the nested computation with

JeK(), binds its result to x and creates the pair (labelOf(x), x), which corresponds to the labeled

value obtained in λdCG via rule [ToLabeled]. Intuitively, the translation guarantees that the value

of the final program counter label in the nested computation coincides with the security level of

the translated result (bound to x). Therefore, the first component contains the correct label and

19
Syntax let x = e1 in e2 where x is free in e2 is a shorthand for (λx .e2) e1.
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Jnew(e)K =
let x = JeKin
new(taint(fst(x), snd(x)))

Je1 := e2K = Je1K := snd(Je2K)

J ! eK = !JeK

JlabelOfRef(e)K = labelOfRef(JeK)

Fig. 16. Translation from λdCG to λdFG (references).

it is furthermore at the right security level, because labelOf(·) protects the projected label with

the label itself in λdFG . Primitive labelOf(e) simply projects the first component of the pair that

encodes the labeled value in λdFG as explained above. Lastly, getLabel in λdCG maps directly to

getLabel in λdFG—rule [GetLabel] in λdCG simply returns the program counter label and does

not raise its value, so it corresponds exactly to rule [GetLabel] in λdFG , which returns label pc at
security level pc. Similarly, taint(e) translates to taint(JeK, ()), since rule [Taint] in λdCG taints the

program counter with the label that e evaluates to, say ℓ and returns unit with program counter

label equal to pc ⊔ ℓ, which corresponds to the result of the translated program, i.e., ()pc ⊔ ℓ
.

References. Figure 16 shows the translation of primitives that access the store via references.

Since λdCG ’s rule [New] in Figure 8 creates a new reference labeled with the label of the argument

(which must be a labeled value), the translation converts new(e) to an expression that first binds JeK
to x and then creates a new reference with the same content as the source, i.e., snd(x), but tainted
with the label in x, i.e., fst(x). Notice that the use of taint(·) is essential to ensure that λdFG ’s rule
[New] in Figure 4 assigns the correct label to the new reference. Due to its fine-grained precision,

λdFG might have labeled the content with a different label that is less sensitive than the explicit

label that coarsely approximates the security level in λdCG . In contrast, updating a reference does

not require any tainting—both λdFG and λdCG accept values less sensitive than the reference in rule

[Write]. Thus, the translation e1 := e2 simply updates the translated reference with the content

of the labeled value projected from the translated pair, hence Je1 := e2K is Je1K := snd(Je2K). The
translation of the primitives that read and query the label of a reference is trivial.

5.1 Cross-Language Semantic Equivalence up to Extra Annotations
When a λdCG program is translated to λdFG via the program translation described above, the λdFG

result contains strictly more information than the original λdCG result. This happens because the

semantics of λdFG tracks flows of information at fine granularity, in contrast with λdCG , which
instead coarsely approximates the security level of all values in scope of a computation with the

program counter label. When translating a λdCG program, we can capture this condition precisely

for input values θ by homogeneously tagging all standard (unlabeled) values with the initial program

counter label, i.e., JθKpc . However, a λdCG program handles, creates and mixes unlabeled data that

originated at different security levels at run-time, e.g., when a secret is unlabeled and combined

with previously public (unlabeled) data. Crucially, when the translated program executes, the

fine-grained semantics of λdFG tracks those flows of information precisely and thus new labels

appear (these labels do not correspond to the label of any labeled value in the source value nor to

the program counter label). Intuitively, this implies that the λdFG result will not be homogeneously

labeled with the final program counter label of the λdCG computation, i.e., if a λdCG program

terminates with value v and program counter label pc′, the translated λdFG program does not
necessarily result in JvKpc

′

.
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(Value)

ℓ1 ⊑ pc r1 �≈pc v2
r1

ℓ1 �≈pc v2

(Unit)

() �≈pc ()
(Label)

ℓ �≈pc ℓ
(Ref)

nℓ �≈pc nℓ

(Inl)

v1 �≈pc v ′1
inl(v1) �≈pc inl(v ′1)

(Inr)

v2 �≈pc v ′2
inr(v2) �≈pc inr(v ′2)

(Pair)

v1 �≈pc v ′1 v2 �≈pc v ′2
(v1,v2) �≈pc (v ′1,v

′
2
)

(Fun)

θ1 �≈pc θ2
(x .JeK,θ1) �≈pc (x .e,θ2)

(Thunk)

θ1 �≈pc θ2
( .JtK,θ1) �≈pc (t,θ2)

(Labeled)

v1 �≈ℓ v2
(ℓℓ,v1) �≈pc (Labeled ℓ v2)

Fig. 17. Cross-language value equivalence modulo label annotations.

Example. Consider the λdCG program ⟨Σ, L, taint(H ); return(x)⟩ ⇓x 7→true ⟨Σ,H , true⟩, which
returns true = inl() and the store Σ unchanged, after tainting the program counter label with H .

Let e be the expression obtained by applying the program translation from Figure 15 to the example

program:

e = λ .

let y = taint(H , ()) in
taint(labelOf(y), x)

Interestingly, when we force the program e and execute it starting from program counter label equal

to L, and an input environment translated according to the initial program counter label (L in this

case), i.e., x 7→JtrueKL = inl(()L)
L
= trueL, we do not obtain the translated result homogeneously

labeled with H :

⟨JΣK, e ()⟩ ⇓x 7→trueL
L ⟨JΣK, trueH ⟩ = ⟨JΣK, inl(()L)H ⟩ , ⟨JΣK, inl(()H )H ⟩ = ⟨JΣK, JtrueKH ⟩

In particular, λdFG preserves the public label tag on data nested inside the left injection, i.e., ()L

in inl(()L)
H
above. This happens because λdFG ’s rule [Var] taints only the outer label of the value

trueL when it looks up variable x in program counter label H .

Solution. In order to recover a notion of semantics preservation, we introduce a key contribution

of this work, a cross-language binary relation that associates values of the two calculi that, in

the scope of a computation at a given security level, are semantically equivalent up to the extra

annotations present in the λdFG value.
20

Technically, we use this equivalence in the semantics

preservation theorem in Section 5.2, which existentially quantifies over the result of the translated

λdFG program, but guarantees that it is semantically equivalent to the result obtained in the source

program.

Concretely, for a λdFG value v1 and a λdCG value v2, we write v1 �≈pc v2 if the label annotations
(including those nested inside compound values) of v1 are no more sensitive than label pc and its

raw value corresponds tov2. Figure 17 formalizes this intuition by means of two mutually inductive

20
This relation is conceptually similar to the logical relation developed by Rajani and Garg [2018] for their translations with

static IFC enforcement, but technically different in the treatment of labeled values.
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relations, one for λdFG values and one for λdFG raw values. In particular, rule [Value] relates λdFG

value r1
ℓ1
and λdCG value v2 at security level pc if the label annotation on the raw value r1 flows to

the program counter label, i.e., ℓ1 ⊑ pc, and if the raw value is in relation with the standard value,

i.e., r1 �≈pc v2. The relation between raw values and standard values relates only semantically

equivalent values, i.e., it is syntactic equality for ground types ([Unit,Label,Ref]), requires the

same injection for values of the sum type ([Inl,Inr]) and requires the components to related for

pairs ([Pair]).

Rules [Fun] (resp. [Thunk]) relates function (resp. thunk) closures only when environments

are related pointwise, i.e., θ1 �≈pc θ2 iff Dom(θ1) ≡ Dom(θ2) and ∀x .θ1(x) �≈pc θ2(x), and the λdFG

function body x .JeK (resp. thunk body .JtK) is obtained from the λdCG function body e (resp. thunk
t) via the program translation defined above. Lastly, rule [Labeled] relates a λdCG labeled value

Labeled ℓ v1 to a pair (ℓℓ,v2), consisting of the label ℓ protected by itself in the first component and

value v2 related with the content v1 at security level ℓ (v1 �≈ℓ v2) in the second component. This

rule follows the principle of LIO that for explicitly labeled values, the label annotation represents

an upper bound on the sensitivity of the content. Stores are related pointwise, i.e., Σ1 �≈ Σ2 iff

Σ1(ℓ) �≈ Σ2(ℓ) for ℓ ∈ L , and ℓ-labeled memories relate their contents respectively at security

level ℓ, i.e., [ ] �≈ [ ] and (r1 : M1) �≈ (r2 : M2) iff r1 �≈ℓ r2 and M1 �≈ M2 for λ
dFG

and λdCG

memories M1,M2 :Memory ℓ. Lastly, we lift the relation to initial and final configurations.

Definition 1 (Eqivalence of Configurations). For all initial and final configurations:
• ⟨Σ1, JeK()⟩ �≈ ⟨Σ2, pc, e⟩ iff Σ1 �≈ Σ2,
• ⟨Σ1, JtK⟩ �≈ ⟨Σ2, pc, t⟩ iff Σ1 �≈ Σ2,
• ⟨Σ1, r

pc⟩ �≈ ⟨Σ2, pc,v⟩ iff Σ1 �≈ Σ2 and r �≈pc v .

For initial configurations, the relation requires the λdFG code to be obtained from the λdCG

expression (resp. thunk) via the program translation function J · K defined above (similar to rules

[Fun] and [Thunk] in Figure 17). Furthermore, in the first case (expressions), the relation addi-

tionally forces the translated suspension JeK by applying it to (), so that when the λdFG security

monitor executes the translated program, it obtains the result that corresponds to the λdCG monadic

program e. The third definition relates final configurations whenever the stores are related and the

security level of the final λdFG result corresponds to the program counter label pc of the final λdCG

configuration, and the final λdCG result corresponds to the λdFG result up to extra annotations at

security level pc, i.e., r �≈pc v .
Before showing semantics preservation, we prove some basic properties of the equivalence that

will be useful later. The following property allows instantiating the semantics preservation theorem

with the λdCG initial configuration. The translation for initial configurations is per-component, i.e.,

J⟨Σ, pc, t⟩K = ⟨JΣK, JtK⟩ and forcing for suspensions, i.e., J⟨Σ, pc, e⟩K = ⟨JΣK, JeK()⟩, pointwise for
stores, i.e., JΣK = λℓ.JΣ(ℓ)K, and memories, i.e., J[ ]K = [ ] and Jv : MK = JvKℓ : JMK for ℓ-labeled
memory M .

Property 3 (Reflexivity). For all λdCG initial configurations c, JcK �≈ c.

Proof. The proof is by induction and relies on analogous properties for all syntactic categories: for

stores, JΣK �≈ Σ, for memories, JMK �≈ M , for environments JθKpc �≈pc θ , for values JvKpc �≈pc v ,
for any label pc.
The next property guarantees that values and environments remain in the relation when the

program counter label rises.

Property 4 (Weakening). For all labels pc and pc′ such that pc ⊑ pc′, and for all λdFG raw
values r1, values v1 and environments θ1, and λdCG values v2 and environments θ2:
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• If r1 �≈pc v2 then r1 �≈pc′ v2
• If v1 �≈pc v2 then v1 �≈pc′ v2
• If θ1 �≈pc θ2 then θ1 �≈pc′ θ2

Proof. By mutual induction on the cross-language equivalence relation.

5.2 Correctness
With the help of the cross-language relation defined above, we can now state and prove that the

λdCG -to-λdFG translation is correct, i.e., it satisfies a semantics-preservation theorem analogous

to that proved for the translation in the opposite direction. At a high level, the theorem ensures

that the translation preserves the meaning of a secure terminating λdCG program when executed

under λdFG semantics, with the same program counter label and translated input values. Since the

translated λdFG program computes strictly more information than the original λdCG program, the

theorem existentially quantify over the λdFG result, but insists that it is semantically equivalent to

the original λdCG result at a security level equal to the final value of the program counter label,

using the cross-language relation just defined.

We start by proving that the program translation preserves typing.

Lemma 5.1 (Type Preservation). If Γ ⊢ e : τ then JΓK ⊢ JeK : Jτ K.

Proof. By straightforward induction on the typing judgment.

Next, we prove semantics preservation of λdCG pure reductions. Since these reductions do not

perform any security-relevant operation (they do not read or write state), they can be executed

with any program counter label in λdFG and do not change the state in λdFG .

Lemma 5.2 (J · K : λdCG → λdFG preserves Pure Semantics). If e ⇓θ v then for any program
counter label pc, λdFG store Σ, environment θ ′ such that θ ′ �≈pc θ , there exists a raw value r , such
that ⟨Σ, JeK⟩ ⇓θ ′pc ⟨Σ, r pc⟩ and r �≈pc v .

Proof. By induction on the given evaluation derivation and using basic properties of the lattice.

Notice that the lemma holds for any input target environment θ ′ in relation with the source

environment θ at security level pc rather than just for the translated environment JθKpc . Intuitively,
we needed to generalize the lemma so that the induction principle is strong enough to discharge

cases where (i) we need to prove reductions that use an existentially quantified environment, e.g.,

[App] and (ii) when some intermediate result at a security level other than pc gets added to the

environment, so the environment is no longer homogenously labeled with pc. While the second

condition does not arise in pure reductions, it does occur in the reduction of monadic expressions

considered in the following theorem.

Theorem 5 (J · K : λdCG → λdFG preserves Thunk and Forcing Semantics).

• Let c2 = ⟨Σ, pc, t⟩ be an initial λdCG configuration. If c2 ⇓θ2 c′
2
, then for all λdFG environ-

ments θ1 and initial configurations c1 such that θ1 �≈pc θ2 and c1 �≈ c2, there exists a final
configuration c′

1
, such that c1 ⇓

θ1
pc c′

1
and c′

1
�≈ c′

2
.

• Let c2 = ⟨Σ, pc, e⟩ be an initial λdCG configuration. If c2 ⇓θ2 c′
2
, then for all λdFG environ-

ments θ1 and initial configurations c1 such that θ1 �≈pc θ2 and c1 �≈ c2, there exists a final
configuration c′

1
, such that c1 ⇓

θ1
pc c′

1
and c′

1
�≈ c′

2
.

Proof (Sketch). Bymutual induction on the given derivations, using Lemma 5.2 for pure reductions

and Properties 2 and 4 in cases [Bind, ToLabeled, Unlabel, Read], basic properties of the lattice

and of the translation function (for operations on the store).
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We finally instantiate the semantics-preservation theorem with the translation of the input

values and the initial stores at security level pc.

Corollary 1 (Correctness). Let c2 = ⟨Σ, pc, e⟩, if c2 ⇓θ c′
2
, then there exists a final λdFG

configuration c′
1
such that Jc2K ⇓

JθKpc
pc c′

1
and c′

1
�≈ c′

2
.

Proof. By Property 3 and Theorem 5.

Notice that the flow-sensitive program counter of the source λdCG program gets encoded in the

security level of the result of the λdFG translated program. For example, if ⟨Σ2, pc, e⟩ ⇓θ ⟨Σ′2, pc
′,v⟩

then, by Corollary 1 and unrolling Definition 1, there exists a raw value r at security level pc′ and a
store Σ′

1
, such that ⟨JΣ2K, JeK()⟩ ⇓

JθKpc
pc ⟨Σ′

1
, r pc

′

⟩, r �≈pc′ v and Σ′
1

�≈ Σ′
2
.

Recovery of non-interference. Similarly to our presentation of Theorem 4 for the translation

in the opposite direction, we conclude this section with a sanity check—recovering a proof of

termination-insensitive non-interference (TINI ) for λdCG through the program translation defined

above, semantics preservation (Corollary 1), λdFG non-interference (Theorem 1), together with

a property that the translation preserves L-equivalence as well (Lemmas 5.3, 5.4 and 5.5). By

reproving non-interference of the source language from the target language, we show that our

program translation is authentic.

The following lemma ensures that the translation of initial configurations preserves L-equivalence.

Lemma 5.3. If c1 ≈L c2, then Jc1K ≈L Jc2K.

Proof. By induction on the L-equivalence judgment and proving similar lemmas for values, i.e.,

if v1 ≈L v2 then Jv1Kpc ≈L Jv2Kpc , for environments, i.e., if θ1 ≈L θ2 then Jθ1Kpc ≈L Jθ2Kpc , for any
label pc, for memories, i.e., if M1 ≈L M2 then JM1K ≈L JM2K, and for stores, i.e., if Σ1 ≈L Σ2 then

JΣ1K ≈L JΣ2K.
The following lemmas recovers λdCG L-equivalence from λdFG L-equivalence using the cross-

language equivalence relation for all the syntactic categories.

Lemma 5.4. For all public program counter labels pc ⊑ L, for all λdFG values v1, v2, raw values r1,
r2, environments θ1, θ2, memories M1, M2, stores Σ1, Σ2, and corresponding λdCG values v ′

1
, v ′

2
and

environments θ ′
1
, θ ′

2
, memories M ′

1
, M ′

2
, stores Σ′

1
, Σ′

2
:

• If v1 ≈L v2, v1 �≈pc v ′1 and v2 �≈pc v ′2, then v
′
1
≈L v

′
2
,

• If r1 ≈L r2, r1 �≈pc v ′1 and r2 �≈pc v ′2, then v
′
1
≈L v

′
2
,

• If θ1 ≈L θ2, θ1 �≈pc θ ′1 and θ2 �≈pc θ ′2, then θ
′
1
≈L θ

′
2
,

• If M1 ≈L M2, M1 �≈ M ′
1
and M2 �≈ M ′

2
, then M ′

1
≈L M ′2,

• If Σ1 ≈L Σ2, Σ1 �≈ Σ′
1
and Σ2 �≈ Σ′

2
, then Σ′

1
≈L Σ′

2
.

Proof. The lemmas are proved mutually, by induction on the L-equivalence relation and the

cross-language equivalence relations and using injectivity of the translation function J · K for closure
values.

21

The next lemma lifts the previous lemma final configurations.

Lemma 5.5. Let c1 and c2 be λdFG final configurations, let c′
1
and c′

2
be λdCG final configurations. If

c1 ≈L c2, c1 �≈ c′
1
and c2 �≈ c′

2
, then c′

1
≈L c′2.

21
Technically, the function J · K presented in Section 5 is not injective. For example, consider the type translation function

from Figure 14a: JLabeled unitK = L × unit = JL × unitK but Labeled unit , L × unit, and JLIO unitK = unit→
unit = Junit→ unitK but LIO unit , unit→ unit. We make the translation injective by (i) adding a wrapper type Id τ
to λdFG , together with constructor Id(e), a deconstructor unId(e) and raw value Id(v), and (ii) tagging security-relevant

types and terms with the wrapper, i.e., JLabeled τ K = Id (L × Jτ K) and LIO τ = Id unit→ Jτ K. Adapting the translations
in both directions is tedious but straightforward; we refer the interested reader to our mechanized proofs for details.
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Proof. Let c1 = ⟨Σ1,v1⟩, c2 = ⟨Σ2,v2⟩, c′1 = ⟨Σ
′
1
, pc

1
,v ′

1
⟩, c′

2
= ⟨Σ′

2
, pc

2
,v ′

2
⟩. From L-equivalence of

λdFG final configurations, it follows L-equivalence for the stores and the values, i.e., Σ1 ≈L Σ2 and

v1 ≈L v2 from c1 ≈L c2 (Section 2.2). Similarly, from cross-language equivalence of final λdFG and

λdCG configurations, it follows cross-language equivalence of their components, i.e., respectively

Σ1 �≈ Σ′
1
and v1 �≈pc

1

v ′
1
from c1 �≈ c2, and Σ2 �≈ Σ′

2
and v2 �≈pc

2

v ′
2
from c2 �≈ c′

2
(Definition 1).

First, we show that the λdCG stores are L-equivalent, i.e., Σ′
1
≈L Σ′

2
by Lemma 5.4 for stores, then

two cases follow by case split on v1 ≈L v2. Either (i) both label annotations on the values are not

observable ([ValueH ]), then the program counter labels are also not observable (pc
1
̸⊑ L and

pc
2
̸⊑ L from v1 �≈pc

1

v ′
1
and v2 �≈pc

2

v ′
2
) and c′

1
≈L c′2 by rule [PcH ] or (ii) the label annotations

are equal and observable by the attacker ([ValueL]), i.e., pc1 ≡ pc
2
⊑ L, then v ′

1
≈L v

′
2
by Lemma

5.4 for values and c′
1
≈L c′2 by rule [PcL].

Theorem 6 (λdCG -TINI via J · K). If c1 ⇓θ1 c′
1
, c2 ⇓θ2 c′

2
, θ1 ≈L θ2 and c1 ≈L c2, then c′

1
≈L c′2.

Proof. First, we apply the translation J · K : λdCG → λdFG to the initial configurations c1 and c2
and the respective environments θ1 and θ2. Let pc be the initial program counter label common to

configurations c1 and c2 (it is the same because c1 ≈L c2). Corollary 1 (Correctness) then ensures

that there exist two λdFG configurations c′′
1
and c′′

2
, such that Jc1K ⇓

Jθ1Kpc
pc c′′

1
and c′′

1
�≈ c′

1
, and

Jc2K ⇓
Jθ2Kpc
pc c′′

2
and c′′

2
�≈ c′

2
. We then lift L-equivalence of source configurations and environments

to L-equivalence in the target language via Lemma 5.3, i.e., Jθ1Kpc ≈L Jθ2Kpc and Jc1K ≈L Jc2K, and
apply Theorem 1 (λdFG -TINI ) to the reductions i.e., Jc1K ⇓

Jθ1Kpc
pc c′′

1
and Jc2K ⇓

Jθ2Kpc
pc c′′

2
, which gives

L-equivalence of the resulting configurations, i.e., c′′
1
≈L c′′

2
. Then, we apply Lemma 5.5 to c′′

1
≈L c′′

2
,

c′′
1

�≈ c′
1
, and c′′

2
�≈ c′

2
, and recover L-equivalence for the source configurations, i.e., c′

1
≈L c′2.

6 RELATEDWORK
Systematic study of the relative expressiveness of fine- and coarse-grained information flow control

(IFC) systems has started only recently. Rajani et al. [2017] initiated this study in the context of

static coarse- and fine-grained IFC, enforced via type systems. In more recent work, Rajani and

Garg [2018] show that a fine-grained IFC type system, which they call FG, and two variants of a

coarse-grained IFC type system, which they call CG, are equally expressive. Their approach is based

on type-directed translations, which are type- and semantics-preserving. For proofs, they develop

logical relations models of FG and the two variants of CG, as well as cross-language logical relations.

Our work and some of our techniques are directly inspired by their work, but we examine dynamic
IFC systems based on runtime monitors. As a result, our technical development is completely

different. In particular, in our work we handle label introspection, which has no counterpart in the

earlier work on static IFC systems, and which also requires significant care in translations. Our

dynamic setting also necessitated the use of tainting operators in both the fine-grained and the

coarse-grained systems.

Our coarse-grained system λdCG is the dynamic analogue of the second variant of Rajani and

Garg [2018]’s CG type system. This variant is described only briefly in their paper (in Section

4, paragraph “Original HLIO”) but covered extensively in Part-II of the paper’s appendix. Rajani

and Garg [2018] argue that translating their fine-grained system FG to this variant of CG is very

difficult and requires significant use of parametric label polymorphism. The astute reader may

wonder why we do not encounter the same difficulty in translating our fine-grained system λdFG

to λdCG . The reason for this is that our fine-grained system λdFG is not a direct dynamic analogue

of Rajani and Garg [2018]’s FG. In λdFG , a value constructed in a context with program counter

label pc automatically receives the security label pc. In contrast, in Rajani and Garg [2018]’s FG, all

introduction rules create values (statically) labeled ⊥. Hence, leaving aside the static-vs-dynamic
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difference, FG’s labels are more precise than λdFG ’s, and this makes Rajani and Garg [2018]’s FG

to CG translation more difficult than our λdFG to λdCG translation. In fact, in earlier work, Rajani

et al. [2017] introduced a different type system called FG
−
, a static analogue of λdFG that labels all

constructed values with pc (statically), and noted that translating it to the second variant of CG is

much easier (in the static setting).

Coarse-grained dynamic IFC systems are prevalent in security research in operating systems

[Efstathopoulos et al. 2005; Krohn et al. 2007; Zeldovich et al. 2006]. These ideas have also been

successfully applied to other domains, e.g., the web [Bauer et al. 2015; Giffin et al. 2012; Stefan et al.

2014; Yip et al. 2009], mobile applications [Jia et al. 2013; Nadkarni et al. 2016], and IoT [Fernandes

et al. 2016]. LIO is a domain-specific language embedded in Haskell that rephrases OS-like IFC

enforcement into a language-based setting [Stefan et al. 2012, 2011]. Heule et al. [2015] introduce a

general framework for coarse-grained IFC in any programming language in which external effects

can be controlled. Laminar [Roy et al. 2009] unifies mechanisms for IFC in programming languages

and operating systems, resulting in a mix of dynamic fine- and coarse-grained enforcement.

In general, dynamic fine-grained IFC systems often do not support label introspection. LIO [Stefan

et al. 2017, 2011] and Breeze [Hritcu et al. 2013] are notable exceptions. Breeze is conceptually

similar to our λdFG except for the taint(·) primitive. Different from our λdFG , there are dynamic

fine-grained IFC systems in which labels of references are flow-sensitive [Austin and Flanagan 2009,

2010; Bichhawat et al. 2014; Hedin et al. 2014]. This design choice, however, allows label changes to

be exploited as a covert channel for information leaks [Austin and Flanagan 2009, 2010; Russo and

Sabelfeld 2010]. There are many approaches to preventing such leaks—from using static analysis

techniques [Sabelfeld and Myers 2006], to disallowing label upgrades depending on sensitive data

(i.e., no-sensitive-upgrades [Austin and Flanagan 2009; Zdancewic 2002]), to avoiding branching

on data whose labels have been upgraded (i.e., permissive-upgrades [Austin and Flanagan 2010]).

Extending our results to a fine-grained dynamic IFC system with flow-sensitive references is an

interesting direction for future work.

7 CONCLUSION
We formally established a connection between dynamic fine- and coarse-grained enforcement for

IFC, showing that both are equally expressive under reasonable assumptions. Indeed, this work

provides a systematic way to bridging the gap between awide range of dynamic IFC techniques often

proposed by the programming languages (fine-grained) and operating systems (coarse-grained)

communities. As consequence, this allows future designs of dynamic IFC to choose a coarse-grained

approach, which is easier to implement and use, without giving up on the precision of fine-grained

IFC.
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