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Abstract. We present the foundations for a new dynamic information flow control
(IFC) parallel runtime system, LIOPAR. To our knowledge, LIOPAR is the first
dynamic language-level IFC system to (1) support deterministic parallel thread
execution and (2) eliminate both internal- and external-timing covert channels that
exploit the runtime system. Most existing IFC systems are vulnerable to external
timing attacks because they are built atop vanilla runtime systems that do not
account for security—these runtime systems allocate and reclaim shared resources,
e.g., CPU-time and memory, fairly between threads at different security levels.
While such attacks have largely been ignored—or, at best, mitigated—we demon-
strate that extending IFC systems with parallelism leads to the internalization
of these attacks. Our IFC runtime system design addresses these concerns by
hierarchically managing resources—both CPU-time and memory—and making
resource allocation and reclamation explicit at the language-level. We prove that
LIOPAR is secure, i.e., it satisfies timing-sensitive non-interference, even when
exposing clock and heap-statistics APIs.

1 Introduction
Language-level dynamic information flow control (IFC) is a promising approach to
building secure software systems. With IFC, developers specify application-specific,
data-dependent security policies. The language-level IFC system—often implemented
as a library or as part of a language runtime system—then enforces these policies auto-
matically, by tracking and restricting the flow of information throughout the application.
In doing so, IFC can ensure that different application components—even when buggy or
malicious—cannot violate data confidentiality or integrity.

The key to making language-level IFC practical lies in designing real-world pro-
gramming language features and abstractions without giving up on security. Unfor-
tunately, many practical language features are at odds with security. For example,
even exposing language features as simple as if-statements can expose users to tim-
ing attacks [43, 67]. Researchers have made significant strides towards addressing
these challenges—many IFC systems now support real-world features and abstractions
safely [10, 15, 21, 35, 44, 51, 52, 55, 58, 62, 63, 65, 71, 72]. To the best of our knowl-
edge, though, no existing language-level dynamic IFC supports parallelism. Yet, many
applications rely on parallel thread execution. For example, modern Web applications
typically handle user requests in parallel, on multiple CPU cores, taking advantage
of modern hardware. Web applications built atop state-of-the-art dynamic IFC Web



frameworks (e.g., Jacqueline [71], Hails [12, 13], and LMonad [46]), unfortunately, do
not handle user requests in parallel—the language-level IFC systems that underlie them
(e.g., Jeeves [72] and LIO [55]) do not support parallel thread execution.

In this paper we show that extending most existing IFC systems—even concurrent
IFC systems such as LIO—with parallelism is unsafe. The key insight is that most
IFC systems do not prevent sensitive computations from affecting public computations;
they simply prevent public computations from observing such sensitive effects. In
the sequential and concurrent setting, such effects are only observable to attackers
external to the program and thus outside the scope of most IFC systems. However, when
computations execute in parallel, they are essentially external to one another and thus do
not require an observer external to the system—they can observe such effects internally.

Consider a program consisting of three concurrent threads: two public threads—p0
and p1—and a secret thread—s0. On a single core, language-level IFC can ensure that
p0 and p1 do not learn anything secret by, for example, disallowing them from observing
the return values (or lack thereof) of the secret thread. Systems such as LIO are careful to
ensure that public threads cannot learn secrets even indirectly, e.g., via covert channels
that abuse the runtime system scheduler. In contrast, secret threads can leak information
to an external observer that monitors public events (e.g., messages from public threads)
by influencing the behavior of the public threads. For example, s0 can terminate (or not)
based on a secret and thus affect the amount of time p0 and p1 spend executing on the
CPU—if s0 terminated, the runtime allots the whole CPU to public threads, otherwise
it only allots, say, two thirds of the CPU to the public threads; this allows an external
attacker to trivially infer the secret (e.g., by measuring the rate of messages written to a
public channel). Unfortunately, such external timing attacks manifest internally to the
program when threads execute in parallel, on multiple cores. Suppose, for example, that
p0 and s0 are co-located on a core and run in parallel to p1. By terminating early (or
not) based on a secret, s0 affects the CPU time allotted to p0, which can be measured
by p1. For example, p1 can count the number of messages sent from p0 on a public
channel—the number of p0 writes indirectly leaks whether or not s0 terminated.

We demonstrate that such attacks are feasible by building several proof-of-concept
programs that exploit the way the runtime system allocate and reclaim shared resources
to violate LIO’s security guarantees. Then, we design a new dynamic parallel language-
level IFC runtime system called LIOPAR, which extends LIO to the parallel setting
by changing how shared runtime system resources—namely CPU-time and memory—
are managed. Ordinary runtime systems (e.g., GHC for LIO) fairly balance resources
between threads; this means that allocations or reclamations for secret LIO threads
directly affect resources available for public LIO threads. In contrast, LIOPAR makes
resource management explicit and hierarchical. When allocating new resources on
behalf of a thread, the LIOPAR runtime does not “fairly” steal resources from all threads.
Instead, LIOPAR demands that the thread requesting the allocation explicitly gives up a
portion of its own resources. Similarly, the runtime does not automatically relinquish the
resources of a terminated thread—it requires the parent thread to explicitly reclaim them.

Nevertheless, automatic memory management is an integral component of modern
language runtimes—high-level languages (e.g., Haskell and thus LIO) are typically
garbage collected, relieving developers from manually reclaiming unused memory. Un-



fortunately, even if memory is hierarchically partitioned, some garbage collection (GC)
algorithms, such as GHC’s stop-the-world, may introduce timing covert channels [47].
Inspired by previous work on real-time GCs (e.g., [3, 5, 6, 16, 45, 49]), we equip LIOPAR

with a per-thread, interruptible garbage collector. This strategy is agnostic to the particu-
lar GC algorithm used: our hierarchical runtime system only demands that the GC runs
within the memory confines of individual threads and their time budget.

In sum, this paper makes three contributions:
I We observe that several external timing attacks manifest internally in the presence of

parallelism and demonstrate that LIO, when compiled to run on multiple cores, is
vulnerable to such attacks (§2).

I In response to these attacks, we propose a novel parallel runtime system design that
safely manages shared resources by enforcing explicit and hierarchical resource
allocation and reclamation (§3). To our knowledge, LIOPAR is the first parallel
language-level dynamic IFC runtime system to address both internal and external
timing attacks that abuse the runtime system scheduler, memory allocator, and GC.

I We formalize the LIOPAR hierarchical runtime system (§4) and prove that it satisfies
timing-sensitive non-interference (§5); we believe that this is the first general purpose
dynamic IFC runtime system to provide such strong guarantees in the parallel
setting [67].
We remark that neither our attack nor our defense is tied to LIO or GHC—we

focus on LIO because it already supports concurrency. We believe that extending any
existing language-level IFC system with parallelism will pose the same set of challenges—
challenges that can be addressed using explicit and hierarchical resource management.
Supplemental materials (detailed formal definitions and proofs) can be found in Ap-
pendixes A and B while the source code for our attacks can be found in Appendix
C.

2 Internal manifestation of external attacks
In this section we give a brief overview of LIO and discuss the implications of shared,
finite runtime system resources on security. We demonstrate several external timing
attacks against LIO that abuse two such resources—the thread scheduler and garbage
collector—and show how running LIO threads in parallel internalizes these attacks.

2.1 Overview of concurrent LIO information flow control system
At a high level, the goal of an IFC system is to track and restrict the flow of informa-
tion according to a security policy—almost always a form of non-interference [14].
Informally, this policy ensures confidentiality, i.e., secret data should not leak to public
entities, and integrity, i.e., untrusted data should not affect trusted entities.

To this end, LIO tracks the flow of information at a coarse-granularity, by associating
labels with threads. Implicitly, the thread label classifies all the values in its scope and
reflects the sensitivity of the data that it has inspected. Indeed, LIO “raises” the label
of a thread to accommodate for reading yet more sensitive data. For example, when a
public thread reads secret data, its label is raised to secret—this reflects the fact that
the rest of the thread computation may depend on sensitive data. Accordingly, LIO uses
the thread’s current label or program counter label to restrict its communication. For
example, a secret thread can only communicate with other secret threads.



In LIO, developers can express programs that manipulate data of varying sensitivity—
for example programs that handle both public and secret data—by forking multiple
threads, at run-time, as necessary. However, naively implementing concurrency in an
IFC setting is dangerous: concurrency can amplify and internalize the termination covert
channel [1, 61], for example, by allowing public threads to observe whether or not
secret threads terminated. Moreover, concurrency often introduces internal timing covert
channels wherein secret threads leak information by influencing the scheduling behavior
of public threads. Both classes of covert channels are high-bandwidth and easy to exploit.

Stefan et al. [55] were careful to ensure that LIO does not expose these termination
and timing covert channels internally. LIO ensures that even if secret threads terminate
early, loop forever, or otherwise influence the runtime system scheduler, they cannot
leak information to public threads. But, secret threads do affect public threads with those
actions and thus expose timing covert channels externally—public threads just cannot
detect it. In particular, LIO disallows public threads from (1) directly inspecting the
return values (and thus timing and termination behavior) of secret threads, without first
raising their program counter label, and (2) observing runtime system resource usage
(e.g., elapsed time or memory availability) that would indirectly leak secrets.

LIO prevents public threads from measuring CPU-time usage directly—LIO does
not expose a clock API—and indirectly—threads are scheduled fairly in a round-robin
fashion [55]. Similarly, LIO prevents threads from measuring memory usage directly—
LIO does not expose APIs for querying heap statistics—and indirectly, through garbage
collection cycles (e.g., induced by secret threads) [47]—GHC’s stop-the-world GC
stops all threads. Like other IFC systems, the security guarantees of LIO are weaker in
practice because its formal model does not account for the GC and assumes memory to
be infinite [55, 58].

2.2 External timing attacks to runtime systems
Since secret threads can still influence public threads by abusing the scheduler and
GC, LIO is vulnerable to external timing and termination attacks, i.e., attacks that
leak information to external observers.To illustrate this, we craft several LIO programs
consisting of two threads: a public thread p that writes to the external channel observed
by the attacker and a secret thread s, which abuses the runtime to influence the throughput
of the public thread. The secret thread can leak in many ways, for example, thread s can:

1. fork bomb, i.e., fork thousands of secret threads that will be interleaved with p and
thus decrease its write throughput;

2. terminate early to relinquish the CPU to p and thus double its write throughput;
3. exhaust all memory to crash the program, and thus stop p from further writing to the

channel;
4. force a garbage collection which, because of GHC’s stop-the-world GC, will inter-

mittently stop p from writing to the channel.

These attacks abuse the runtime’s automatic allocation and reclamation of shared re-
sources, i.e., CPU time and memory. In particular, attack 1 hinges on the runtime
allocating CPU time for the new secret threads, thus reducing the CPU time allotted to
the public thread. Dually, attack 2 relies on it reclaiming the CPU time of terminated
threads—it reassigns it to public threads. Similarly, attacks 3 and 4 force the runtime



Core c0 Core c1

Secret Thread (s0) Public Thread (p0) Public Thread (p1)

if secret
then terminate
else forever skip

forever
(write chan p0)

for [1..n] (write chan p1)
ms <- read chan
w0 <- count p0 ms
w1 <- count p1 ms
return (w0 < w1)

Fig. 1: In this attack three threads run in parallel, colluding to leak secret secret. The two public
threads write to a public output channel; the relative number of messages written on the channel
by each thread directly leaks the secret (as inferred by p1). To affect the rate that p0 can write, s0
conditionally terminates—which will free up time on core c0 for p0 to execute.

to allocate all the available memory and preemptively reassign CPU time to the GC,
respectively.

These attacks are not surprising, but, with the exception of the GC-based attack [47],
they are novel in the IFC context. Moreover these attacks are not exhaustive—there
are other ways to exploit the runtime system—nor optimized—our implementation
leaks sensitive data at a rate of roughly 2bits/second4. Nevertheless, they are feasible
and—because they abuse the runtime—they are effective against language-level external-
timing mitigation techniques, including [55, 75]. The attacks are also feasible on other
systems—similar attacks that abuse the GC have been demonstrated for both the V8 and
JVM runtimes [47].

2.3 Internalizing external timing attacks
LIO, like almost all IFC systems, considers external timing out of scope for its attacker
model. Unfortunately, when we run LIO threads on multiple cores, in parallel, the allo-
cation and reclamation of resources on behalf of secret threads is indirectly observable
by public threads. Unsurprisingly, some of the above external timing attacks manifest
internally—a thread running on a parallel core acts as an “external” attacker. To demon-
strate the feasibility of such attacks, we describe two variants of the aforementioned
scheduler-based attacks which leak sensitive information internally to public threads.

Secret threads can leak information by relinquishing CPU time, which the runtime
reclaims and unsafely redistributes to public threads running on the same core. Our
attack program consists of three threads: two public threads—p0 and p1—and a secret
thread—s0. Fig. 1 shows the pseudo-code for this attack. Note that the threads are secure
in isolation, but leak the value of secret when executed in parallel, with a round robin
scheduler. In particular, threads p0 and s0 run concurrently on core c0 using half of
the CPU time each, while p1 runs in parallel alone on core c1 using all the CPU time.
Both public threads repeatedly write their respective thread IDs to a public channel.
The secret thread, on the other hand, loops forever or terminates depending on secret.
Intuitively, when the secret thread terminates, the runtime system redirects its CPU time
to p0, thus both p1 and p0 write at the same rate. In converse, when the secret thread
does not terminate early, p0 is scheduled in a round-robin fashion with s0 on the same
core and can thus only write half as fast as p1. More specifically:

4 A more assiduous attacker could craft similar attacks that leak at higher bit-rates.



I If secret = true, thread s0 terminates and the runtime system assigns all the
CPU time of core c0 to public thread p0, which then writes at the same rate as thread
p1 on core c1. Then, p0 writes as many times as p1, which then returns true.

I If secret = false, secret thread s0 loops and public thread p0 shares the CPU
time on core c0 with it. Then, p0 writes messages at roughly half the rate of thread p1,
which writes more often—it has all the CPU time on c1—and thus returns false.5

Secret LIO threads can also leak information by allocating many secret threads on
a core with public threads—this reduces the CPU-time available to the public threads.
For example, using the same setting with three threads from before, the secret thread
forks a spinning thread on core c1 by replacing command terminate with command
fork (forever skip) c1 in the code of thread s0 in Fig. 1. Intuitively, if secret
is false, then p1 writes more often than p0 before, otherwise the write rate of p1
decreases—it shares core c1 with the child thread of s0—and p0 writes as often as p1.

Not all external timing attacks can be internalized, however. In particular, GHC’s
approach to reclaiming memory via a stop-the-world GC simultaneously stops all threads
on all cores, thus the relative write rate of public threads remain constant. Interestingly,
though, implementing LIO on runtimes (e.g., Node.js as proposed by Heule et al. [17])
with modern parallel garbage collectors that do not always stop the world would internal-
ize the GC-based external timing attacks. Similarly, abusing GHC’s memory allocation
to exhaust all memory crashes all the program threads and, even though it cannot be
internalized, it still results in information leakage.

3 Secure, parallel runtime system
To address the external and internal timing attacks, we propose a new dynamic IFC
runtime system design. Fundamentally, today’s runtime systems are vulnerable because
they automatically allocate and reclaim resources that are shared across threads of
varying sensitivity. However, the automatic allocation and reclamation is not in itself a
problem—it is only a problem because the runtime steals (and grants) resources from
(and to) differently-labeled threads.

Our runtime system, LIOPAR, explicitly partitions CPU-time and memory among
threads—each thread has a fixed CPU-time and memory budget or quota. This allows
resource management decisions to be made locally, for each thread, independent of the
other threads in the system. For example, the runtime scheduler of LIOPAR relies on
CPU-time partitioning to ensure that threads always run for a fixed amount of time,
irrespective of the other threads running on the same core. Similarly, in LIOPAR, the
memory allocator and garbage collector rely on memory partitioning to be able to
allocate and collect memory on behalf of a thread without being influenced or otherwise
influencing other threads in the system. Furthermore, partitioning resources among
threads enables fine-grained control of resources: LIOPAR exposes secure primitives to
(i) measure resource usage (e.g., time and memory) and (ii) elicit garbage collection
cycles.

The LIOPAR runtime does not automatically balance resources between threads.
Instead, LIOPAR makes resource management explicit at the language level. When

5 The attacker needs to empirically find parameter n, so that p1 writes roughly twice as much as
thread p0 with half CPU time on core c0.



forking a new thread, for example, LIOPAR demands that the parent thread give up part
of its CPU-time and memory budgets to the children. Indeed, LIOPAR even manages
core ownership or capabilities that allow threads to fork threads across cores. This
approach ensures that allocating new threads does not indirectly leak any information
externally or to other threads. Dually, the LIOPAR runtime does not re-purpose unused
memory or CPU-time, even when a thread terminates or “dies” abruptly—parent threads
must explicitly kill their children when they wish to reclaim their resources.

To ensure that CPU-time and memory can always be reclaimed, LIOPAR allows
threads to kill their children anytime. Unsurprisingly, this feature requires restricting
the LIOPAR floating-label approach more than that of LIO—LIOPAR threads cannot
raise their current label if they have already forked other threads. As a result, in LIOPAR

threads form a hierarchy—children threads are always at least as sensitive as their
parent—and thus it is secure to expose an API to allocate and reclaim resources.
Attacks Revisited. LIOPAR enforces security against reclamation-based attacks be-
cause secret threads cannot automatically relinquish their resources. For example, our
hierarchical runtime system stops the attack in Fig. 1: even if secret thread s0 terminates
(secret = true), the throughput of public thread p0 remains constant—LIOPAR

does not reassign the CPU time of s0 to p0, but keeps s0 spinning until it gets killed.
Similarly, LIOPAR protects against allocation-based attacks because secret threads can-
not steal resources owned by other public threads. For example, the fork-bomb variant of
the previous attack fails because LIOPAR aborts command fork (forever skip)
c1—thread s0 does not own the core capability c1—and thus the throughput of p1 re-
mains the same. In order to substantiate these claims, we first formalize the design of the
hierarchical runtime system (§4) and establish its security guarantees (§5).
Trust model. This work addresses attacks that exploit runtime system resource man-
agement — in particular memory and CPU-time. We do not address attacks that exploit
other shared runtime system state (e.g., event loops [66], lazy evaluation [8, 62]), shared
operating system state (e.g., file system locks [25], events and I/O [23, 33]), or shared
hardware (e.g., caches, buses, pipelines and hardware threads [11, 48]) Though these are
valid concerns, they are orthogonal and outside the scope of this paper.

4 Hierarchical Calculus
In this section we present the formal semantics of LIOPAR. We model LIOPAR as
a security monitor that executes simply typed λ-calculus terms extended with LIO
security primitives on an abstract machine in the style of Sestoft [54]. The security
monitor reduces secure programs and aborts the execution of leaky programs.
Semantics. The state of the monitor, written (∆, pc, N | t ,S ), stores the state of a
thread under execution and consists of a heap ∆ that maps variables to terms, the
thread’s program counter label pc, the set N containing the identifiers of the thread’s
children, the term currently under reduction t and a stack of continuations S . Fig. 2
shows the interesting rules of the sequential small-step operational semantics of the
security monitor. The notation s  µ s ′ denotes a transition of the machine in state s
that reduces to state s ′ in one step with thread parameters µ = (h, cl).6 Since we are
interested in modeling a system with finite resources, we parameterize the transition

6 We use record notation, i.e., µ.h and µ.cl , to access the components of µ.



Label `, pc, cl ∈ L
Cores k ∈ {1 . . κ}, K ∈ P({1 . . κ})
Thread Id n ∈ N, N ∈ P(N)

Params. µ ::= (h, cl)
Heap ∆ ∈ Var ⇀ Term
Budgets h, b ∈ N

Type τ ::= () | τ1 → τ2 | Bool | L | LIO τ | Labeled τ
| TId | Core | P({1 . . κ}) | N

Value v ::= () | λx .t | True | False | ` | return t | Labeled ` t° | n | k | K
Term t ::= v | x | t1 t2 | if t1 then t2 else t3 | t1 >>= t2 | label t1 t2

| unlabel t | fork t1 t2 t3 t4 t5 | spawn t1 t2 t3 t4 t5 | kill t
| size | time | wait t | send t1 t2 | receive

CTerm t° ::= t such that fv(t) = ∅
Cont. C ::= x | then t2 else t3 | >>=t2 | label t | unlabel | fork t1 t2 t3 t4

| spawn t1 t2 t3 t4 | kill | send t
Stack S ::= [ ] | C : S
State s ::= (∆, pc, N | t ,S)

(APP1)
|∆| < µ.h fresh(x )

(∆, pc, N | t1 t2,S) µ (∆[x 7→ t2], pc, N | t1, x : S)

(APP2)
(∆, pc, N |λy .t , x : S) µ (∆, pc, N | t [x / y ],S)

(VAR)
x 7→ t ∈ ∆

(∆, pc, N | x ,S) µ (∆, pc, N | t ,S)

(BIND1)
(∆, pc, N | t1 >>= t2,S) µ (∆, pc, N | t1, >>=t2 : S)

(BIND2)
(∆, pc, N | return t1, >>=t2 : S) µ (∆, pc, N | t2 t1,S)

(LABEL1)
(∆, pc, N | label t1 t2,S) µ (∆, pc, N | t1, label t2 : S)

(LABEL2)
pc v ` v µ.cl t° = ∆∗(t)

(∆, pc, N | `, label t : S) µ (∆, pc, N | return (Labeled ` t°),S)

(UNLABEL1)
(∆, pc, N | unlabel t ,S) µ (∆, pc, N | t , unlabel : S)

(UNLABEL2)
pc t ` v µ.cl

(∆, pc, N | Labeled ` t , unlabel : S) µ (∆, pc t `,N | return t ,S)

Fig. 2: Sequential LIOPAR.



with the maximum heap size h ∈ N. Additionally, the clearance label cl represents an
upper bound over the sensitivity of the thread’s floating counter label pc. Rule [APP1]
begins a function application. Since our calculus is call-by-name, the function argument
is saved as a thunk (i.e., an unevaluated expression) on the heap at fresh location x and
the indirection is pushed on the stack for future lookups.7 Note that the rule allocates
memory on the heap, thus the premise |∆| < h forbids a heap overflow, where the
notation |∆| denotes the size of the heap ∆, i.e., the number of bindings that it contains.8

To avoid overflows, a thread can measure the size of its own heap via primitive size
(§4.2). If t1 evaluates to a function, e.g., λy .t , rule [APP2] starts evaluating the body,
in which the bound variable y is substituted with the heap-allocated argument x , i.e.,
t [x / y ]. When the evaluation of the function body requires the value of the argument,
variable x is looked up in the heap (rule [VAR]). In the next paragraph we present
the rules of the basic security primitives. The other sequential rules are available in
Appendix A.

Security Primitives. A labeled value Labeled ` t° of type Labeled τ consists of term t
of type τ and a label `, which reflects the sensitivity of the content. The annotation t°
denotes that term t is closed and does not contain any free variable, i.e., fv(t) = ∅. We
restrict the syntax of labeled values with closed terms for security reasons. Intuitively,
LIOPAR allocates free variables inside a secret labeled values on the heap, which then
leaks information to public threads with its size. For example, a public thread could
distinguish between two secret values , e.g., Labeled H x with heap ∆ = [x 7→ 42],
and Labeled H 0 with heap ∆ = ∅, by measuring the size of the heap. To avoid that,
labeled values are closed and the size of the heap of a thread at a certain security level, is
not affected by data labeled at different security levels. A term of type LIO τ is a secure
computation that performs side effects and returns a result of type τ . Secure computations
are structured using standard monadic constructs return t , which embeds term t in
the monad, and bind, written t1 >>= t2, which sequentially composes two monadic
actions, the second of which takes the result of the first as an argument. Rule [BIND1]
deconstructs a computation t1 >>= t2 into term t1 to be reduced first and pushes on the
stack the continuation >>=t2 to be invoked after term t1. 9 Then, the second rule [BIND2]
pops the topmost continuation placed on the stack (i.e., >>=t2) and evaluates it with the
result of the first computation (i.e., t2 t1), which is considered complete when it evaluates
to a monadic value, i.e., to syntactic form return t1. The runtime monitor secures the
interaction between computations and labeled values. In particular, secure computations
can construct and inspect labeled values exclusively with monadic primitives label and
unlabel respectively. Rules [LABEL1] and [UNLABEL1] are straightforward and follow
the pattern seen in the other rules. Rule [LABEL2] generates a labeled value at security

7 The calculus does not feature lazy evaluation. Sharing introduces the lazy covert channel, which
has already been considered in previous work [62].

8 To simplify reasoning, our generic memory model is basic and just counts the number of
bindings in the heap. It would be possible to replicate our results with more accurate memory
models, e.g., GHC’s tagless G-machine (STG)[24] (the basis for GHC’s runtime [40]), but that
would complicate the formalism.

9 Even though the stack size is unbounded in this model, we could account for its memory usage
by explicitly allocating it on the heap, in the style of Yang et al. [69].



level `, subject to the constraint pc v ` v cl , which prevents a computation from
labeling values below the program counter label pc or above the clearance label cl .10 The
rule computes the closure of the content, i.e., closed term t°, by recursively substituting
every free variable in term t with its value in the heap, written ∆∗(t). Rule [UNLABEL2]
extracts the content of a labeled value and taints the program counter label with its label,
i.e., it rises it to pc t `, to reflect the sensitivity of the data that is now in scope. The
premise pc t ` v cl ensures that the program counter label does not float over
the clearance cl . Thus, the run-time monitor prevents the program counter label from
floating above the clearance label (i.e., pc v cl always holds).

The calculus also includes concurrent primitives to allocate resources when forking
threads (fork and spawn in §4.1), reclaim resources and measure resource usage (kill ,
size, and time in §4.2), threads synchronization and communication (wait , send and
receive in Appendix A).

4.1 Core Scheduler
In this section, we extend LIOPAR with concurrency, which enables (i) interleaved
execution of threads on a single core and (ii) simultaneous execution on κ cores. To
protect against attacks that exploit the automatic management of shared finite resource
(e.g., those in §2.3), LIOPAR maintains a resource budget for each running thread and
updates it as threads allocate and reclaim resources. Since κ threads execute at the
same time, those changes must be coordinated in order to preserve the consistency
of the resource budgets and guarantee deterministic parallelism. For this reason, the
hierarchical runtime system is split in two components: (i) the core scheduler, which
executes threads on a single core, ensures that they respect their resource budgets and
performs security checks, and (ii) the top-level parallel scheduler, which synchronizes
the execution on multiple cores and reassigns resources by updating the resource budgets
according to the instructions of the core schedulers. We now introduce the core scheduler
and describe the top-level parallel scheduler in §4.3.

Syntax. Fig. 3 presents the core scheduler, which has access to the global state Σ =
(T,B,H , θ, ω), consisting of a thread pool map T , which maps a thread id to the
corresponding thread’s current state, the time budget map B, a memory budget map H ,
core capabilities map θ, and the global clock ω. Using these maps, the core scheduler
ensures that thread n: (i) performs B(n) uninterrupted steps until the next thread takes
over, (ii) does not grow its heap above its maximum heap size H (n), and (iii) has
exclusive access to the free core capabilities θ(n). Furthermore, each thread id n records
the initial current label when the thread was created (n.pc), its clearance (n.cl ), and the
core where it runs (n.k ), so that the runtime system can enforce security. Notice that
thread ids are opaque to threads—they cannot forge them nor access their fields.

Hierarchical Scheduling. The core scheduler performs deterministic and hierarchical
scheduling—threads lower in the hierarchy are scheduled first, i.e., parent threads are
scheduled before their children. The scheduler manages a core run queue Q , which
is structured as a binary tree with leaves storing thread ids and residual time budgets.
The notation nb indicates that thread n can run for b more steps before the next thread
runs. When a new thread is spawned, the scheduler creates a subtree with the parent

10 The labels form a security lattice (L ,t,v).



Thread Map T ∈ TId ⇀ State
Time Map B ∈ TId ⇀ N
Size Map H ∈ TId ⇀ N
Core Map θ ∈ TId ⇀ P({1 . . κ})
Clock ω ∈ N

Global State Σ ::= (T,B,H , θ, ω)

Core Queue Q ::= 〈nb〉 | 〈Q1 | Q2〉
Event e ::= ε | fork(∆,n, t , b, h)

| spawn(∆,n, t ,K )
| kill(n) | send(n, t)

STEP
Σ.T (n) = s µ = (Σ .H (n),n.cl) s  µ s ′

Q [〈n1+b〉] (n,s′,ε)−−−−−→Σ Q [〈nb〉]

FORK
Σ.T (n) = (∆, pc, N | b2, fork `L `H h2 t : S)

pc v `L n ′ ← freshTId(`L, `H,n.k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,fork(∆′,n′,t,b2,h2))−−−−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

SPAWN
Σ.T (n) = (∆, pc, N | k , spawn `L `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v `L n ′ ← freshTId(`L, `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawn(∆′,n′,t,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

STUCK
Σ.T (n) = s MaxHeapSize(s,Σ .H (n)) ∨UnlabelStuck(n, Σ.T ) ∨
ForkStuck(n,Σ .H , Σ.T ) ∨ SpawnStuck(s, θ(n)) ∨ValueStuck(s) ∨

WaitStuck(n, T ) ∨ ReceiveStuck(s) ∨KillStuck(s)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

CONTEXTSWITCH
s◦ = ([ ],⊥,∅ | return (), [ ])

Q [〈n0〉] (◦,s◦,ε)−−−−−→Σ Q [〈nΣ.B(n1)
1 〉, ..., 〈nΣ.B(n|Q|)

|Q| 〉]

Fig. 3: Concurrent LIOPAR.

thread on the left and the child on the right. The scheduler can therefore find the thread
with the highest priority by following the left spine of the tree and backtracking to the
right if a thread has no residual budget.11 We write Q [〈nb〉] to mean the first thread
encountered via this traversal is n with budget b. As a result, given the slice Q [〈n1+b〉],
thread n is the next thread to run, and Q [〈n0〉] occurs only if all threads in the queue

11 This procedure might reintroduce a timing channel that leaks the number of threads running
on the core. In practice, techniques from real time schedulers could be used to protect against
such timing channels. The model of LIOPAR does not capture the execution time of the runtime
system itself and thus this issue does not arise in the security proofs.



have zero residual budget. We overload this notation to represent tree updates: a rule
Q [〈n1+b〉]→ Q [〈nb〉] finds the next thread to run in queue Q and decreases its budget
by one.

Semantics. Fig. 3 formally defines the transition Q
(n,s,e)−−−−→Σ Q ′, which represents an

execution step of the core scheduler that schedules thread n in core queue Q , executes
it with global state Σ = (T,B,H , θ, ω) and updates the queue to Q ′. Additionally,
the core scheduler informs the parallel scheduler of the final state s of the thread and
requests on its behalf to update the global state by means of event message e. In rule
[STEP], the scheduler retrieves the next thread in the schedule, i.e., Q [〈n1+b〉] and its
state in the thread pool from the global state, i.e., Σ.T (n) = s. Then, it executes the
thread for one sequential step with its memory budget and clearance, i.e., s µ s ′ with
µ = (Σ .H (n),n.cl), sends the empty event ε to the parallel scheduler, and decrements
the thread’s residual budget in the final queue, i.e., Q [〈nb〉]. In rule [FORK], thread n
creates a new thread t with initial label `L and clearance `H, such that `L v `H and
pc v `L. The child thread runs on the same core of the parent thread, i.e., n.k , with
fresh id n ′, which is then added to the set of children, i.e., {n ′} ∪N . Since parent and
child threads do not share memory, the core scheduler must copy the portion of the
parent’s private heap reachable by the child’s thread, i.e., ∆′; we do this by copying
the bindings of the variables that are transitively reachable from t , i.e., fv∗(t , ∆), from
the parent’s heap ∆. The parent thread gives h2 of its memory budget Σ .H (n) to its
child. The conditions |∆| 6 h1 and |∆′| 6 h2, ensure that the heaps do not overflow
their new budgets. Similarly, the core scheduler splits the residual time budget of the
parent into b1 and b2 and informs the parallel scheduler about the new thread and its
resources with event fork(∆′,n ′, t , b2, h2), and lastly updates the tree Q by replacing
the leaf 〈n1+b1+b2〉 with the two-leaves tree 〈〈nb1〉|〈n ′b2〉〉, so that the child thread will
be scheduled immediately after the parent has consumed its remaining budget b1, as
explained above. Rule [SPAWN] is similar to [FORK], but consumes core capability
resources instead of time and memory. In this case, the core scheduler checks that
the parent thread owns the core where the child is scheduled and the core capabilities
assigned to the child, i.e., θ(n) = {k } ∪ K1 ∪ K2 for some set K2, and informs
the parallel scheduler with event spawn(∆′,n ′, t ,K1). Rule [STUCK] performs busy
waiting by consuming the time budget of the scheduled thread, when it is stuck and cannot
make any progress—the premises of the rule enumerate the conditions under which this
can occur (see Fig. 7 in Appendix A for details). Lastly, in rule [CONTEXTSWITCH] all
the threads scheduled in the core queue have consumed their time budget, i.e., Q [〈n0〉]
and the core scheduler resets their residual budget using the budget map Σ.B. In the
rule, the notation Q [〈nb

i 〉] selects the i-th leaf, where i ∈ {1 . . |Q |} and |Q | denotes
the number of leaves of tree Q and symbol ◦ denotes the thread identifier of the core
scheduler, which updates a dummy thread that simply spins during a context-switch or
whenever the core is unused.

4.2 Resource Reclamation and Observations
The calculus presented so far enables threads to manage their time, memory and core
capabilities hierarchically, but does not provide any primitive to reclaim their resources.
This section rectifies this by introducing (i) a primitive to kill a thread and return its



KILL2

Σ.T (n) = (∆, pc, {n ′} ∪N | n ′, kill : S) s = (∆, pc, N | return (),S)

Q [〈n1+b〉] (n,s,kill(n′))−−−−−−−−→Σ Q [〈nb〉]

UNLABEL2

pc t ` v µ.cl ∀ n ∈ N . pc t ` v n.pc

(∆, pc, N | Labeled ` t , unlabel : S) µ (∆, pc t `,N | return t ,S)

GC
R = fv∗(t ,∆) ∪ fv∗(S ,∆) ∆′ = {x 7→ ∆(x ) | x ∈ R}

〈∆, pc, N | gc t ,S〉 µ 〈∆′, pc, N | t ,S〉

APP-GC
|∆| ≡ µ.h

〈∆, pc, N | t1 t2,S〉 µ 〈∆, pc, N | gc (t1 t2),S〉

SIZE

〈∆, pc, N | size,S〉 µ 〈∆, pc, N | return |∆|,S〉

TIME
Σ.T (n) = (∆, pc, N | time,S) s = (∆, pc, N | return Σ.ω,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

Fig. 4: LIOPAR with resource reclamation and observation primitives.

resources back to the owner and (ii) a primitive to elicit a garbage collection cycle
and reclaim unused memory. Furthermore, we demonstrate that the runtime system
presented in this paper is robust against timing attacks by exposing a timer API allowing
threads to access a global clock.12 Intuitively, it is secure to expose this feature because
LIOPAR ensures that the time spent executing high threads is fixed in advanced, so timing
measurements of low threads remain unaffected. Lastly, since memory is hierarchically
partitioned, each thread can securely query the current size of its private heap, enabling
fine-grained control over the garbage collector.
Kill. A parent thread can reclaim the resources given to its child thread n ′, by executing
kill n ′. If the child thread has itself forked or spawned other threads, they are transitively
killed and their resources returned to the parent thread. The concurrent rule [KILL2]
in Fig. 4 initiates this process, which is completed by the parallel scheduler via event
kill(n ′). Note that the rule applies only when the thread killed is a direct child of the
parent thread—that is when the parent’s children set has shape {n ′}∪N for some set N .
Now that threads can unrestrictedly reclaim resources by killing their children, we must
revise the primitive unlabel , since the naive combination of kill and unlabel can result
in information leakage. This will happen if a public thread forks another public thread,

12 An external attacker can take timing measurements using network communications. An attacker
equipped with an internal clock is equally powerful but simpler to formalize [47].



then reads a secret value (raising its label to secret), and based on that decides to kill
the child. To close the leak, we modify the rule [UNLABEL2] by adding the highlighted
premise, causing the primitive unlabel to fail whenever the parent thread’s label would
float above the initial current label of one of its children.

Garbage Collection. Rule [GC] extends LIOPAR with a time-sensitive hierarchical
garbage collector via the primitive gc t . The rule elicits a garbage collection cycle which
drops entries that are no longer needed from the heap, and then evaluates t . The sub-heap
∆′ includes the portion of the current heap that is (transitively) reachable from the free
variables in scope (i.e. those present in the term, fv∗(t , ∆) or on the stack fv∗(S , ∆)).
After collection, the thread resumes and evaluates term t under compacted private heap
∆′.13 In rule [APP-GC], a collection is automatically triggered when the thread’s next
memory allocation would overflow the heap.

Resource Observations. All threads in the system share a global fine-grained clock ω,
which is incremented by the parallel scheduler at each cycle (see below). Rule [TIME]
gives all threads unrestricted access to the clock via monadic primitive time .

4.3 Parallel Scheduler
This section extends LIOPAR with deterministic parallelism, which allows to execute κ
threads simultaneously on as many cores. To this end, we introduce the top-level parallel
scheduler, which coordinates simultaneous changes to the global state by updating the
resource budgets of the threads in response core events (e.g., fork, spawn, and kill) and
ticks the global clock.

Semantics. Fig. 5 formalizes the operational semantics of the parallel scheduler, which
reduces a configuration c = 〈Σ,Φ〉 consisting of global state Σ and core map Φ
mapping each core to its run queue, to configuration c′ in one step, written c ↪→ c′,
through rule [PARALLEL] only. The rule executes the threads scheduled on each of
the κ cores, which all step at once according to the concurrent semantics presented
in §4.1–4.2, with the same current global state Σ. Since the execution of each thread
can change Σ concurrently, the top-level parallel scheduler reconciles those actions by
updating Σ sequentially and deterministically.14 First, the scheduler updates the thread
pool map T and core map Φ with the final state obtained by running each thread in
isolation, i.e., T ′ = Σ.T [ni 7→ si] and Φ′ = Φ[i 7→ Qi] for i ∈ {1 . . κ}. Then, it
collects all concurrent events generated by the κ threads together with their thread id,
sorts the events according to type, i.e., sort [(n1, e1), ..., (nκ, eκ)], and computes the
updated configuration by processing the events in sequence.15 In particular, new threads
are created first (event spawn(·) and fork(·) ), and then killed (event kill(·))—the
ordering between events of the same type is arbitrary and assumed to be fixed. Trivial
events (ε) do not affect the configuration and thus their ordering is irrelevant. The
function 〈〈es〉〉c computes a final configuration by processing a list of events in order,

13 In practice a garbage collection cycle takes time that is proportional to the size of the memory
used by the thread. That does not hinder security as long as the garbage collector runs on the
thread’s time budget.

14 Non-deterministic updates would make the model vulnerable to refinement attacks [41].
15 Since the clock only needs to be incremented, we could have left it out from the configuration

c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉; function 〈〈es〉〉c does not use nor change its value.



Queue Map Φ ∈ {1 . . κ} → Queue Configuration c ::= 〈T,B,H , θ, ω, Φ〉

PARALLEL

∀ i ∈ {1 . . κ}.Φ(i) (ni,si,ei)−−−−−−→Σ Qi T ′ = Σ.T [ni 7→ si] Φ′ = Φ[i 7→ Qi]
c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉 〈Σ′, Φ′′〉 = 〈〈sort [(n1, e1), ..., (nκ, eκ)]〉〉c

〈Σ,Φ〉 ↪→ 〈Σ′, Φ′′〉

next( , ε, c) = c

next(n1, fork(∆,n2, t , b, h), c)
= 〈T ′,B ′[n2 7→ b],H ′[n2 7→ h], θ′, ω, Φ〉
where 〈T,B,H , θ, ω, Φ〉 = c

s = (∆,n2.pc,∅ | t , [ ])
T ′ = T [n2 7→ s]
B ′ = B[n1 7→ B(n1)− b]
H ′ = H [n1 7→ H (n1)− h]
θ′ = θ[n2 7→ ∅]

next(n,kill(n ′), 〈T,B,H , θ, ω, Φ〉)
| n 6∈ Dom(T ) = 〈T,B,H , θ, ω, Φ〉
| n ∈ Dom(T ) = 〈T \N,B ′ \N,H ′ \N, θ′ \N,ω, Φ′〉
where N = J{n ′}KT

B ′ = B[n 7→ B(n) +
∑
i ∈ N,i.k=n.k B(i)]

H ′ = H [n 7→ H (n) +
∑
i ∈ N,i.k=n.k H (i)]

θ′ = θ[n 7→ θ(n) ∪
⋃
i ∈ N θ(i) ∪ {i.k | i ∈ N, i.k 6= n.k }]

Φ′ = λk .Φ[k 7→ Φ(k) \N ]

next(n1, spawn(∆,n2, t ,K ), c)
= 〈T ′,B ′,H ′, θ′[n2 7→ K ], ω, Φ′〉
where〈T,B,H , θ, ω, Φ〉 = c

s = (∆,n2.pc,∅ | t , [ ])
T ′ = T [n2 7→ s]
B ′ = B[n2 7→ B0]
H ′ = H [n2 7→ H0]
θ′ = θ[n1 7→ θ(n1) \ {n2.k } ∪K ]

Φ′ = Φ[n2.k 7→ 〈nB0
2 〉]

Fig. 5: Top-level parallel scheduler.

accumulating configuration updates (next(·) updates the current configuration by one
event-step): 〈〈(n, e) : es〉〉c = 〈〈es〉〉next(n,e,c). When no more events need processing,
the configuration is returned 〈〈[ ]〉〉c = c.

Event Processing. Fig. 5 defines function next(n, e, c), which takes a thread identifier
n , the event e that thread n generated, the current configuration and outputs the configura-
tion obtained by performing the thread’s action. The empty event ε is trivial and leaves the
state unchanged. Event (n1, fork(∆,n2, t , b, h)) indicates that thread n1 forks thread t
with identifier n2, sub-heap ∆, time budget b and maximum heap size h. The scheduler
deducts these resources from the parent’s budgets, i.e., B ′ = B[n1 7→ B(n1) − b]
and H ′ = H [n1 7→ H (n1) − h] and assigns them to the child, i.e., B ′[n2 7→ b] and
H ′[n2 7→ h].16 The new child shares the core with the parent—it has no core capabilities
i.e., θ′ = θ[n2 7→ ∅]—and so the core map is left unchanged. Lastly, the scheduler adds
the child to the thread pool and initializes its state, i.e., T [n2 7→ (∆,n2.`L,∅ | t , [ ])].
The scheduler handles event (n1, spawn(∆,n2, t ,K )) similarly. The new thread t gets
scheduled on core n2.k , i.e., Φ[n2.k 7→ 〈nB0

2 〉], where the thread takes all the time

16 Notice that |∆| < h by rule [FORK].



and memory resources of the core, i.e., B[n2 7→ B0] and H [n2 7→ H0], and extra
core capabilities K , i.e., θ′[n2 7→ K ]. For simplicity, we assume that all cores execute
B0 steps per-cycle and feature a memory of size H0. Event (n,kill(n ′)) informs the
scheduler that thread n wishes to kill thread n ′. The scheduler leaves the global state
unchanged if the parent thread has already been killed by the time this event is handled,
i.e., when the guard n 6∈ Dom(T ) is true—the resources of the child n ′ will have been
reclaimed by another ancestor. Otherwise, the scheduler collects the identifiers of the
descendants of n ′ that are alive (N = J{n ′}KT )—they must be killed (and reclaimed)
transitively. The set N is computed recursively by JNKT , using the thread pool T , i.e.,
J∅KT = ∅, J{n }KT = {n } ∪ JT (n).NKT and JN1 ∪ N2KT = JN1KT ∪ JN2KT . The
scheduler then increases the time and memory budget of the parent with the sum of
the budget of all its descendants scheduled on the same core, i.e.,

∑
i ∈ N,i.k=n.k B(i)

(resp.
∑
i ∈ N,i.k=n.k H (i))—descendants running on other cores do not share those

resources. The scheduler reassigns to the parent thread their core capabilities, which are
split between capabilities explicitly assigned but not in use, i.e.,

⋃
i ∈ N θ(i) and core

capabilities assigned and in use by running threads, i.e., {i.k | i ∈ N, i.k 6= n.k }.
Lastly, the scheduler removes the killed threads from each core, written Φ(i) \N , by
pruning the leaves containing killed threads and reassigning their leftover time budget to
their parent, see Appendix A.2 for details.

5 Security Guarantees
In this section we show that LIOPAR satisfies a strong security condition that ensures
timing-agreement of threads and rules out timing covert channels. In §5.1, we describe
our proof technique based on term erasure, which has been used to verify security
guarantees of functional programming languages [31], IFC libraries [7, 17, 59, 64? ]),
and an IFC runtime system [62]. In §5.2, we formally prove security, i.e., timing-sensitive
non-interference, a strong form of non-interference [14], inspired by Volpano and Smith
[67]—to our knowledge, it is considered here for the first time in the context of parallel
runtime systems. Works that do not address external timing channels [62, 65] normally
prove progress-sensitive non-interference, wherein the number of execution steps of a
program may differ in two runs based on a secret. This condition is insufficient in the
parallel setting: both public and secret threads may step simultaneously on different
cores and any difference in the number of execution steps would introduce external and
internal timing attacks. Similar to previous works on secure multi-threaded systems
[38, 53], we establish a strong low-bisimulation property of the parallel scheduler, which
guarantees that configurations that are indistinguishable to the attacker remain such and
execute in lock-step. Theorem 1 and Corollary 1 use this property to ensure that any two
related parallel programs execute in exactly the same number of steps.

5.1 Erasure Function
The term erasure technique relies on an erasure function, written εL(·), which rewrites
secret data above the attacker’s level L to special term •, in all the syntactic categories:
values, terms, heaps, stacks, global states and configurations.17 Once the erasure function
is defined, the core of the proof technique consists of proving an essential commutativity

17 For ease of exposition, we use the two-point lattices {L,H }, where H 6v L is the only
disallowed flow. Neither our proofs nor our model rely on this particular lattice.



relationship between the erasure function and reduction steps: given a step c ↪→ c′,
there must exist a reduction that simulates the original reduction between the erased
configurations, i.e., εL(c) ↪→ εL(c

′). Intuitively, if the configuration c leaked secret data
while stepping to c′, that data would be classified as public in c′ and thus would remain
in εL(c′)— but such secret data would be erased by εL(c) and the property would not
hold. The erasure function leaves ground values, e.g., (), unchanged and on most terms
it acts homomorphically, e.g., εL(t1 t2) = εL(t1) εL(t2). The interesting cases are for
labeled values, thread configurations, and resource maps. The erasure function removes
the content of secret labeled values, i.e., εL(Labeled H t°) = Labeled H •, and erases
the content recursively otherwise, i.e., εL(Labeled L t°) = Labeled L εL(t)°. The state
of a thread is erased per-component, homomorphically if the program counter label is
public, i.e., εL(∆,L, N, | t ,S ) = (εL(∆),L, N | εL(t), εL(S )), and in full otherwise,
i.e., εL(∆,H , N, | t ,S ) = (•, •, • | •, •). We give the full definition in Appendix B.

Resource Erasure. Resources must also be appropriately erased in order to satisfy the
simulation property, as LIOPAR manages resources explicitly. The erasure function
should preserve information about the resources (e.g., time, memory, and core capa-
bilities) of public threads, since the attacker can explicitly assign resources (e.g., with
fork and swap) and measure them (e.g., with size). But what about the resources of
secret threads? One might think that such information is secret and thus it should be
erased—intuitively, a thread might decide to assign, say, half of its time budget to its
secret child depending on secret information. However, public threads can also assign
(public) resources to a secret thread when forking: even though these resources currently
belong to the secret child, they are temporary—the public parent might reclaim them
later. Thus, we cannot associate the sensitivity of the resources of a thread with its pro-
gram counter label when resources are managed hierarchically, as in LIOPAR. Instead,
we associate the security level of the resources of a secret thread with the sensitivity of
its parent: the resources of a secret thread are public information whenever the program
counter label of the parent is public and secret information otherwise. Furthermore, since
resource reclamation is transitive, the erasure function cannot discard secret resources,
but must rather redistribute them to the hierarchically closest set of public resources, as
when killing them.

Time Budget. First, we project the identifiers of public threads from the thread pool T :
DomL(T ) = {nL | n ∈ Dom(T )∧T (n).pc ≡ L}, where notation nL indicates that
the program counter label of thread n is public. Then, the set P =

⋃
n ∈ DomL(T ){n } ∪

T (n).N contains the identifiers of all the public threads and their immediate children.18

The resources of threads n ∈ P are public information. However, the program counter
label of a thread n ∈ P is not necessarily public, as explained previously. Hence P can
be disjointly partitioned by program counter label: P = PL ∪ PH , where PL = {nL |
n ∈ P } and PH = {nH | n ∈ P }. Erasure of the budget map then proceeds on this
partition, leaving the budget of the public threads untouched, and summing the budget
of their secret children threads to the budgets of their descendants, which are instead
omitted. In symbols, εL(B) = BL ∪BH , where BL = {nL 7→ B(nL) | nL ∈ PL}
and BH = {nH 7→ B(nH) +

∑
i ∈ J{nH }KT B(i) | nH ∈ PH }.

18 The id of the spinning thread on each free core is also public, i.e., ◦k ∈ P for k ∈ {1 . . κ}.



Queue Erasure. The erasure of core queues follows the same intuition, preserving
public and secret threads n ∈ P and trimming all other secret threads nH 6∈ P .
Since queues annotate thread ids with their residual time budgets, the erasure function
must reassign the budgets of all secret threads n ′H 6∈ P to their closest ancestor
n ∈ P on the same core. The ancestor n ∈ P could be either (i) another secret
thread on the same core, i.e., nH ∈ P , or, (ii) the spinning thread of that core,
◦ ∈ P if there is no other thread n ∈ P on that core—the difference between these
two cases lies on whether the original thread n ′ was forked or spawned on that core.
More formally, if the queue contains no thread n ∈ P , then the function replaces
the queue altogether with the spinning thread and returns the residual budgets of the
threads to it, i.e., εL(Q) = 〈◦B〉 if ni 6∈ P and B =

∑
bi, for each leaf Q [〈nbi

i 〉]
where i ∈ {1 . . |Q |}. Otherwise, the core contains at least a thread nH ∈ P
and the erasure function returns the residual time budget of its secret descendants, i.e.,
εL(Q) = Q ↓L by combining the effects of the following mutually recursive functions:

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L)g (Q2 ↓L)

〈nb1
1H〉g 〈n

b2
2H〉 = 〈n

b1+b2
1H 〉

Q1 gQ2 = 〈Q1,Q2〉

The interesting case is 〈nb1
1H〉g 〈n

b2
2H〉, which reassigns the budget of the child (the right

leaf 〈nb2
2H〉) to the parent (the left leaf 〈nb1

1H〉), by rewriting the subtree into 〈nb1+b2
1H 〉.

5.2 Timing-Sensitive Non-Interference
The proof of timing-sensitive non-interference relies on two fundamental properties,
i.e., determinancy and simulation of parallel reductions. Determinancy requires that the
reduction relation is deterministic.

Proposition 1 (Determinism). If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equivalence in the statement denotes alpha-equivalence, i.e., up to the choice of
variable names. We now show that the parallel scheduler preserves L-equivalence of
parallel configurations.

Definition 1 (L-equivalence). Two configurations c1 and c2 are indistinguishable from
an attacker at security level L, written c1 ≈L c2, if and only if εL(c1) ≡ εL(c2).

Proposition 2 (Parallel Simulation). Given a parallel reduction step c ↪→ c′, then
εL(c) ↪→ εL(c

′).

By combining determinism (Proposition 1) and parallel simulation (Proposition
2), we prove progress-insensitive non-interference, which assumes progress of both
configurations.

Proposition 3 (Progress-Insensitive Non-Interference). If c1 ↪→ c′1, c2 ↪→ c′2 and
c1 ≈L c2, then c′1 ≈L c′2.

In order to lift this result to be timing-sensitive, we first prove time sensitive progress.
Intuitively, if a valid 19 configuration steps then any low equivalent parallel configuration
also steps.
19 A configuration is valid if satisfies several basic properties, e.g., it does not contain special term
•. See Appendix B for details



Proposition 4 (Time-Sensitive Progress). Given a valid configuration c1 and a paral-
lel reduction step c1 ↪→ c′1 and c1 ≈L c2, then there exists c′2, such that c2 ↪→ c′2.

Using progress-insensitive non-interference, i.e., Proposition 3 and time-sensitive progress,
i.e., Proposition 4 in combination, we obtain a strong L-bisimulation property between
configurations and prove timing-sensitive non-interference.

Theorem 1 (Timing-Sensitive Non-Interference). For all valid configurations c1 and
c2, if c1 ↪→ c′1 and c1 ≈L c2, then there exists a configuration c′2, such that c2 ↪→ c′2
and c′1 ≈L c′2.

The following corollary instantiates the timing-sensitive non-interference security the-
orem for a given LIOPAR parallel program, that explicitly rules out leaks via timing
channels. In the following, the notation ↪→u , denotes u parallel reduction steps, as usual.

Corollary 1. Given a well-typed LIOPAR program t of type Labeled τ1 → LIO τ2
and two closed secrets t1°, t2° :: τ1, let si = ([ ],L,∅, | t (Labeled H ti°), [ ]), ci =
(Ti, B,H , θ, 0, Φi), where Ti = [nL 7→ si, ◦j 7→ s◦ ], B = [nL 7→ B0, ◦j 7→ 0],
H = [nL 7→ H0, ◦j 7→ H0 ], θ = [nL 7→ {2 . . κ}, ◦j 7→ ∅], Φi = [1 7→ 〈si〉, 2 7→
〈◦2〉, ..., κ 7→ 〈◦κ〉 ], for i ∈ {1, 2}, j ∈ {1 . . κ} and thread identifier nL such that
n.k = 1 and n.cl = H . If c1 ↪→u c′1, then there exists configuration c′2, such that
c2 ↪→u c′2 and c′1 ≈L c′2.

To conclude, we show that the timing-sensitive security guarantees of LIOPAR extend to
concurrent single-core programs by instantiating Corollary 1 with κ = 1.

6 Limitations
Implementation. Implementing LIOPAR is a serious undertaking that requires a major
redesign of GHC’s runtime system. Conventional runtime systems freely share resources
among threads to boost performance and guarantee fairness. For instance, in GHC,
threads share heap objects to save memory space and execution time (when evaluating
expressions). In contrast, LIOPAR strictly partitions resources to enforce security—
threads at different security labels cannot share heap objects. As a result, the GHC
memory allocator must be adapted to isolate threads’ private heap, so that allocation
and collection can occur independently and in parallel. Similarly, the GHC “fair” round
robin scheduler must be heavily modified to keep track of and manage threads’ time
budget, to preemptively perform a context switch when their time slice is up.

Programming model. Since resource management is explicit, building applications atop
LIOPAR introduces new challenges—the programmer must explicitly choose resource
bounds for each thread. If done poorly, threads can spend excessive amounts of time
sitting idle when given too much CPU time, or garbage collecting when not given
enough heap space. The problem of tuning resource allocation parameters is not unique
to LIOPAR—Yang and Mazières’ [70] propose to use GHC profiling mechanisms to
determine heap size while the real-time garbage collector by Henriksson [16] required the
programmer to specify the worst case execution time, period, and worst-case allocation
of each high-priority thread. Das and Hoffmann [9] demonstrate a more automatic
approach—they apply machine learning techniques to statically determine upper bounds



on execution time and heap usage of OCaml programs. Similar techniques could be
applied to LIOPAR in order to determine the most efficient resource partitions. We further
remark that this challenge is not unique to real-time systems or LIOPAR; choosing
privacy parameters in differential privacy shares many similarities [22, 30]. Even though
LIOPAR programming model might seem overly restrictive, we consider it appropriate
for certain classes of applications (e.g., web applications and certain embedded systems).
To further simplify programming with LIOPAR, we intend to introduce privileges (and
thus declassification) similar to LIO [12, 59] or COWL [60]. Floating-label systems such
as LIO and LIOPAR often suffer from label creep issues, wherein the current label gets
tainted to a point where the computation cannot perform any useful side-effects [58].
Similar to concurrent LIO [57], LIOPAR relies on primitive —fork— to address label
creep20, but, at the cost of a restricted floating-label mechanisms, LIOPAR provides also
parallel execution, garbage collection, and APIs for heap statistics, elapsed time, and
kill.

7 Related work
There is substantial work on language-level IFC systems [10, 15, 21, 35, 44, 51, 52, 55,
58, 71, 72]. Our work builds on these efforts in several ways. Firstly, LIOPAR extends
the concurrent LIO IFC system [55] with parallelism—to our knowledge, this is the first
dynamic IFC system to support parallelism and address the internalization of external
timing channels. Previous static IFC systems implicitly allow for parallelism, e.g., Muller
and Chong’s [42], several works on IFC π-calculi [19, 20, 26], and Rafnsson et al. [50]
recent foundations for composable timing-sensitive interactive systems. These efforts,
howerver, do not model runtime system resource management. Volpano and Smith [67]
enforce a timing agreement condition, similar to ours, but for a static concurrent IFC
system. Mantel et al. [37] and Li et al. [32] prove non-interference for static, concurrent
systems, using rely-guarantee reasoning.

Unlike most of these previous efforts, our hierarchical runtime system also eliminates
classes of resource-based external timing channels, such as memory exhaustion and
garbage collection. Pedersen and Askarov [47], however, were the first to identify
automatic memory management to be a source of covert channels for IFC systems
and demonstrate the feasibility of attacks against both V8 and the JVM. They propose
a sequential static IFC language with labeled-partitioned memory and a label-aware
timing-sensitive garbage collector, which is vulnerable to external timing attacks and
satisfies only termination-insensitive non-interference.

Previous work on language-based systems—namely [36, 70]—identify memory
retention and memory exhaustion as a source of denial-of-service (DOS) attacks. Memory
retention and exhaustion can also be used as covert channels. In addressing those covert
channels, LIOPAR also addresses the DOS attacks outlined by these efforts. Indeed,
our work generalizes Yang and Mazières’ [70] region-based allocation framework with
region-based garbage collection and hierarchical scheduling.

20 Sequential LIO addresses label creep through primitive —toLabeled—, which executes a
computation (that may raise the current label) in a separate context and restores the current label
upon its termination. LIOPAR does not feature —toLabeled—, because the primitive opens the
termination covert-channel and thus is not timing-sensitive [? ].



Our LIOPAR design also borrows ideas from the secure operating system community.
Our explicit hierarchical memory management is conceptually similar to HiStar’s con-
tainer abstraction [73]. In HiStar, containers—subject to quotas, i.e., space limits—are
used to hierarchically allocate and deallocate objects. LIOPAR adopts this idea at the
language-level and automates the allocation and reclamation. Moreover, we hierarchi-
cally partition CPU-time; Zeldovich et al. [73], however, did observe that their container
abstraction can be repurposed to enforce CPU quotas.

Deterland [68] splits time into ticks to address internal timing channels and mitigate
external timing ones. Deterland builds on Determinator [4], an OS that executes parallel
applications deterministically and efficiently. LIOPAR adopts many ideas from these
systems—both the deterministic parallelism and ticks (semantic steps)—to the language-
level. Deterministic parallelism at the language-level has also been explored previous
to this work [28, 29, 39], but, different from these efforts, LIOPAR also hierarchically
manages resources to eliminate classes of external timing channels.

Fabric [34, 35] and DStar [74] are distributed IFC systems. Though we believe that
our techniques would scale beyond multi-core systems (e.g., to data centers), LIOPAR

will likely not easily scale to large distributed systems like Fabric and DStar. Different
from Fabric and DStar, however, LIOPAR addresses both internal and external timing
channels that result from running code in parallel.

Our hierarchical resource management approach is not unique—other countermea-
sures to external timing channels have been studied. Hu [23], for example, mitigates
both timing channels in the VAX/VMM system [33] using “fuzzy time”—an idea re-
cently adopted to browsers [27]. Askarov et al.’s [2] mitigate external timing channels
using predicative black-box mitigation, which delays events and thus bound information
leakage. Rather than using noise as in the fuzzy time technique, however, they predict
the schedule of future events. Some of these approaches have also been adopted at the
language-level [47, 55, 75]. We find these techniques largely orthogonal: they can be
used alongside our techniques to mitigate timing channels we do not eliminate.

Real-time systems—when developed with garbage collected languages [3, 5, 6, 16]—
face similar challenges as this work. Blelloch and Cheng [6] describe a real-time garbage
collector (RTGC) for multi-core programs with provable resource bounds—LIOPAR

enforces resource bounds instead. A more recent RTGC created by Auerbach et al. [3]
describes a technique to “tax” threads into contributing to garbage collection as they
utilize more resources. Henricksson [16] describes a RTGC capable of enforcing hard
and soft deadlines, once given upper bounds on space and time resources used by threads.
Most similarly to LIOPAR, Pizlo et al. [49] implement a hierarchical RTGC algorithm
that independently collects partitioned heaps.

8 Conclusion
Language-based IFC systems built atop off-the-shelf runtime systems are vulnerable to
resource-based external-timing attacks. When these systems are extended with thread
parallelism the attacks become yet more vicious—they can be carried out internally.
We presented LIOPAR, the design of the first dynamic IFC hierarchical runtime system
that support deterministic parallelism and eliminates both resource-based internal- and
external-timing covert channels. To our knowledge, LIOPAR is the first parallel system
to satisfy progress- and time-sensitive non-interference.
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A Full Calculus

Context Rules. In Fig. 6, for completeness, we report the remaining context rules of
sequential LIOPAR—they rules simply evaluate their arguments by pushing (popping)
the appropriate continuation on the stack.

IF1

(∆, pc, N | if t1 then t2 else t3,S) µ (∆, pc, N | t1, then t2 else t3 : S)

IF2

(∆, pc, N | True, then t2 else t3 : S) µ (∆, pc, N | t2,S)

IF3

(∆, pc, N | False, then t2 else t3 : S) µ (∆, pc, N | t3,S)

FORK1

(∆, pc, N | fork t1 t2 t3 t4 t5,S) µ (∆, pc, N | t1, fork t2 t3 t4 t5 : S)

FORK2

(∆, pc, N | `, fork t2 t3 t4 t5 : S) µ (∆, pc, N | t2, fork ` t3 t4 t5 : S)

FORK3

(∆, pc, N | `2, fork `1 t3 t4 t5 : S) µ (∆, pc, N | t3, fork `1 `2 t4 t5 : S)

FORK4

(∆, pc, N | h, fork `1 `2 t4 t5 : S) µ (∆, pc, N | t4, fork `1 `2 h t5 : S)

SPAWN1

(∆, pc, N | spawn t1 t2 t3 t4 t5,S) µ (∆, pc, N | t1, spawn t2 t3 t4 t5 : S)

SPAWN2

(∆, pc, N | `, spawn t2 t3 t4 t5 : S) µ (∆, pc, N | t2, spawn ` t3 t4 t5 : S)

SPAWN3

(∆, pc, N | `2, spawn `1 t3 t4 t5 : S) µ (∆, pc, N | t3, spawn `1 `2 t4 t5 : S)

SPAWN4

(∆, pc, N | K , spawn `1 `2 t4 t5 : S) µ (∆, pc, N | t4, spawn `1 `2 K t5 : S)

WAIT1

(∆, pc, N | wait t ,S) µ (∆, pc, N | t ,wait : S)

KILL1

(∆, pc, N | kill t ,S) µ (∆, pc, N | t , kill : S)

Fig. 6: Context rules of sequential LIOPAR.



Stuck Conditions. Fig. 7 formally defines the conditions used in rule [STUCK], which
identify a thread as stuck. When adding garbage collection, i.e., rule [APP-GC], we also
remove the condition MaxHeapStuck(s) from rule [STUCK]—such condition triggers
an automatic garbage collection cycle that reduces via rule [GC].

FORKSTUCK
T (n) = ( , pc, | `2, fork `1 t : S)

`1 6v `2 ∨ pc 6v `1 ∨H (n) = h1 + h2 |∆| > h1 ∨ |∆′| > h2

ForkStuck(n,H , T )

UNLABELSTUCK
T (n) = ( , pc, N | Labeled ` t , unlabel : S)

pc t ` 6v n.cl ∨ ∃ n ∈ N . pc t ` 6v n.pc

UnlabelStuck(n, T )

WAITSTUCK
T (n) = ( , pc, | n ′,wait : S)

n.cl 6v pc ∨ eval(T )(n′) = n ′ 67→ ( , , | v , [ ])
WaitStuck(n, T )

VALUESTUCK
s = ( , , | v , [ ])

ValueStuck(s)

MAXHEAPSIZE
s = (∆, , | t1 t2, )

|∆| = h

MaxHeapSize(s, h)

SPAWNSTUCK
s = (∆, pc, N | k , spawnK1

`1 `2 t : S)
pc 6v `1 ∨ `1 6v `2 ∨ k ∪K1 6⊆ K

SpawnStuck(s,K )

KILLSTUCK
s = (∆, pc, N | n, kill : S) n 6∈ N

KillStuck(s)

RECEIVESTUCK
s = (∆, pc, N, [ ] | receive,S)

ReceiveStuck(s)

Fig. 7: Stuck conditions.



Reachable Variables and Term Closure. Fig. 8 presents two operations that compute
and substitute free variables. Fig. 8a formally defines the set of transitively reachable free
variables for all syntactic categories, i.e., stacks, continuations and message queues. The
function simply computes the free variables by induction on the structure of terms, stacks,
continuation and message queues recursively. Notice that labeled values are closed and
thus the function returns the empty set for them, i.e., fv∗(Labeled ` t°, ∆) = ∅. Fig. 8b
defines a closure function, i.e., ∆∗B(t), which, given an open term t with bound variables
B and a heap ∆, computes the corresponding closed term t° by recursively substituting
free variables to close the term. When the function traverses a lambda expression,
i.e., λx .t , it recurs in the body and adds variable x to the set of bound variables, i.e.,
∆∗B∪{x }(t). When the function finds a free variable x , it looks it up in the heap and
repeats the process by closing the corresponding thunk, i.e., ∆∗(∆(x )). When omitted,
the set of bound variables is empty, i.e., ∆∗(t) = ∆∗∅(t). Notice that the recursion is
well-funded because our heap does not contain cyclic definitions (the syntax of the
calculus does not feature recursive let bindings and therefore every term can be closed).

fv∗(x ,∆) = {x } ∪ fv∗(∆(x ),∆)
fv∗(λx .t ,∆) = fv∗(t ,∆) \ {x }
fv∗(t1 t2,∆) = fv∗(t1,∆) ∪ fv∗(t2,∆)
fv∗(Labeled ` t°,∆) = ∅

fv∗([ ],∆) = ∅
fv∗(C : S ,∆) = fv∗(C ,∆) ∪ fv∗(S ,∆)

fv∗(x ,∆) = {x } ∪ fv∗(∆(x ),∆)
fv∗(>>=t ,∆) = fv∗(t ,∆)
fv∗(label t ,∆) = fv∗(t ,∆)

fv∗([ ],∆) = ∅
fv∗(t / ts,∆) = fv∗(t ,∆) ∪ fv∗(ts,∆)

(a) Transitively-reachable free variables (excerpt).

∆∗B(x ) =

{
x if x ∈ B

∆∗(∆(x )) if x 6∈ B

∆∗B(t1 t2) = ∆∗B(t1) ∆
∗
B(t2)

∆∗B(λx .t) = ∆∗B∪{x }(t)

(b) Term closure (excerpt).

Fig. 8: Free variables manipulation.



A.1 Thread Synchronization and Communication
LIOPAR features primitive wait n ′, which allows a thread to wait on the result of some
thread n ′, see Rule [WAIT] in Fig. 9. If the thread has terminated, i.e., its term is a value
and the stack of continuations is empty, its value is returned to the waiting thread. The
condition n ′.cl v pc ensures that the waited-upon thread has an appropriate clearance
(indicating that its label must be low enough to observe its result) for security reasons.
In all other cases, the [STUCK] rule applies via the [WAITSTUCK] condition.

Furthermore, LIOPAR features also thread communication primitives, which enable
a programming model akin to the actor model [18]. In particular, primitive send n t
enables asynchronous best-effort delivery of message t to thread n—there are no guar-
antees that the message will be delivered. Note that rule [SEND2] simply generates an
event that instructs the top-level parallel scheduler to deliver a message, which then
might get dropped for security reasons or otherwise. Conversely, rule [RECEIVE] ex-
ecutes synchronous primitive receive, which inspects the thread’s messages queue ts
and extracts the next message—if the queue is empty, the thread gets stuck. 21 The rule
generates event send(n2, t), so that the parallel scheduler delivers message t to thread
n2, by means of function next(·). The scheduler drops the message if the receiver is
dead, i.e., n2 6∈ Dom(T ), or if the sender is dead, i.e., n2 6∈ Dom(T ). If the receiver
has sufficient memory budget, i.e., |∆′2| < H (n2) and is at least as sensitive as the
sender, i.e., pc1 v pc2, then the scheduler delivers and enqueues the message in the
message queue, i.e., ts2 . t , or drops it otherwise.22

21 The receiver thread will also get stuck if the type of the message does not match the expected
type. We are not concerned with the type-safety of primitive receive , which could be recovered
with dynamic typing.

22 This feature makes threads vulnerable to Denial of Service (DOS) attacks, in which the attacker
floods a thread with messages until it runs out of memory. We could restore security by adding
message integrity or by pre-allocating a memory budget for queue messages.



Message Queue ts ::= [ ] | t / ts
State s ::= (∆, pc, N, ts | t ,S)

WAIT
T (n) = (∆, pc, N, ts | n ′,wait : S)

n ′.cl v pc T (n ′) = ( , , , | return v , [ ]) s = (∆, pc, N, ts | v ,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

SEND1

(∆, pc, N, ts | send t1 t2,S) (∆, pc, N, ts, | t1, send t2 : S)

SEND2

n 7→ (∆, pc, N, ts | n ′, send t : S) ∈ Σ.T s = (∆, pc, N, ts | return (),S)

Q [〈n1+b〉] (n,s,send(n′,t))−−−−−−−−−−→Σ Q [〈nb〉]

RECEIVE
n 7→ (∆, pc, N, t / ts | receive,S) ∈ Σ.T s = (∆, pc, N, ts | return t ,S)

Q [〈n1+b〉] (n,s,ε)−−−−→Σ Q [〈nb〉]

next(n1, send(n2, t), 〈T,B,H , θ, Φ〉)
| n1 6∈ Dom(T ) ∨ n2 6∈ Dom(T ) = 〈T,B,H , θ, Φ〉
| |∆′2| < H (n2) ∧ pc1 v pc2 =
〈T [n2 7→ (∆′2, pc2, N2, ts2 . t | t2,S2)], B,H , θ, Φ〉
| otherwise = 〈T,B,H , θ, Φ〉
where (∆1, pc1, , | , ) = T (n1)

(∆2, pc2, N2, ts2 | t2,S2) = T (n2)
∆′2 = ∆2 ∪ {x 7→ ∆1(x ) | x ∈ fv∗(t ,∆1)}

Fig. 9: Thread synchronization and communication primitives.



Q \∅ = Q
Q \ ({n } ∪N) = delete(Q ,n) \N

(a) Q \N removes nodes N from the tree Q .

delete(〈nb〉,n) = 〈◦0〉

delete(〈〈nb〉| Q〉,n ′) =

{
add(Q , b) if n ≡ n ′

〈〈nb〉| delete(Q ,n ′)〉 otherwise

delete(〈Q |〈nb〉〉,n ′) =

{
add(Q , b) if n ≡ n ′

〈delete(Q ,n ′) |〈nb〉〉 otherwise

delete(〈Q1 | Q2〉,n) =

{
〈delete(Q1,n) | Q2〉 if n ∈ Q1

〈Q1,delete(Q2,n)〉 if n ∈ Q2

(b) delete(Q ,n) removes node n ∈ Q .

add(〈nb1〉, b2) = 〈nb1+b2〉 add(〈Q1 | Q2〉, b) = 〈add(Q1, b) | Q2〉

(c) add(Q , b) adds b to the budget of the leftmost thread.

Fig. 10: Functions that trim and readjust the budget in a queue tree.

A.2 Queue Pruning
When threads get killed, the parallel scheduler removes them from the core queue where
they are scheduled. We write Q \N , for the queue obtained by removing threads N from
queue Q , by repeated calls to function delete(·), see Fig. 10. Function delete(Q ,n)
locates thread n in the queue and trims its leaf—if the thread is alone in the queue, it is
replaced with the dummy busy-waiting thread id, i.e., ◦, and the core becomes free. Note
that the current budget of a killed thread is not discarded, but it is reassigned to its closest
relative (either to the parent, the immediate child or the spinning thread), by means
of function add(·), for security reasons. Otherwise, a high thread could influence the
schedule on its own core by forking a thread and giving up, say, half of its budget, and
then killing it immediately afterwards. If the parent does not regain the child’s current
time budget, then nothing would run for the time the child was originally given, which
could lead to information leakage, when executed in parallel with other cores.



Term t ::= · · · | • | labelL t1 t2 | unlabelL t
| forkL t1 t2 t3 t4 t5 | spawnL t1 t2 t3 t4 t5

Cont. C ::= · · · | labelL t | unlabelL
| forkL t1 t2 t3 t4 | spawnL t1 t2 t3 t4

Stack S ::= · · · | •
Queue ts ::= · · · | •
Event e ::= · · · | forkL(n, b, h) | spawnL(∆,n,K )

Fig. 11: Calculus with erased terms.

B Security Proofs
B.1 Two-Steps Erasure
During execution, a public thread might create secret data, often by elevating low data.
For example, primitive label ` t labels a piece of data t with label ` in rule [LABEL2]
from Figure 2. Depending on the sensitivity of the label, the erasure function needs
to rewrite t to either •, if ` ≡ H or εL(t) if ` ≡ L, in order to respect the simulation
property for rule [LABEL2]. Unfortunately, the label is a runtime value, thus it might not
be known when we apply the erasure function, e.g., in rule [LABEL1]. Two-steps erasure
is a technique that extends term erasure and simplify reasoning about such operations,
especially when the decision of erasing data depends on the context or on runtime
values [64]. In particular, this technique ensures that those operations commute under
the erasure function by rewriting problematic primitives with new ad-hoc constructs, that
erase terms at runtime, when sufficient information is available. Figure 11 extends the
calculus with erasure-aware primitives. Fig. 12 and 16 define the erasure function for all
the syntactic categories of LIOPAR, which rewrites the problematic terms with the those
extra primitives, which are reduced according to the rules in Fig. 13 and 15. Equipped
with those extra primitives, we use term erasure with two-steps erasure to prove security
of LIOPAR in the next section.
Example. The erasure function rewrites label to new construct labelL, which firstly
evaluates the label via rule [LABELL1] and then erase the second argument as needed,
when the value of the label is known in rules [LABELL2] and [LABELL3].



εL(()) = () εL(`) = ` εL(λx .e) = λx .εL(e)

εL(return e) = return εL(e) εL(n) = n εL(k) = k

εL(Labeled ` t°) =

{
Labeled ` • if ` 6v L

Labeled ` εL(t)° otherwise

(a) Values.

εL(∆) = {x 7→ εL(∆(x )) | x ∈ Dom(∆)} εL(x ) = x

εL(t1 t2) = εL(t1) εL(t2) εL(t1 >>= t2) = εL(t1)>>= εL(t2)

εL(label t1 t2) = labelL εL(t1) εL(t2)

εL(unlabel t) = unlabelL εL(t)

εL(fork t1 t2 t3 t4 t5) = forkL εL(t1) εL(t2) εL(t3) εL(t4) εL(t5)

εL(spawn t1 t2 t3 t4 t5) =

spawnL εL(t1) εL(t2) εL(t3) εL(t4) εL(t5)

εL(wait t) = wait εL(t)

(b) Heaps and terms.

εL([ ]) = [ ] εL(C : S) = εL(C ) : εL(S) εL(x ) = x

εL(>>=t) = >>=εL(t) εL(label t) = labelL εL(t)

εL(unlabel) = unlabelL

εL(fork t1 t2 t3 t4) = forkL εL(t1) εL(t2) εL(t3) εL(t4)

εL(spawn t1 t2 t3 t4) = spawnL εL(t1) εL(t2) εL(t3) εL(t4)

εL(wait) = wait

(c) Stacks and continuations.

Fig. 12: Erasure for sequential LIOPAR.



LABELL1

(∆, pc, N, ts | labelL t1 t2,S) µ (∆, pc, N, ts | t1, labelL t2 : S)

LABELL2

pc v H v µ.cl

(∆, pc, N, ts | H , labelL t : S) µ (∆, pc, N, ts | return (Labeled H •),S)

LABELL3

pc v L v µ.cl t° = ∆∗(t)

(∆, pc, N, ts | L, labelL t : S) µ (∆, pc, N, ts | return (Labeled L t°),S)

(UNLABELL1)
(∆, pc, N, ts | unlabelL t ,S) µ (∆, pc, N, ts | t , unlabelL : S)

UNLABELL2

pc t L v µ.cl ∀ n ∈ N . pc t L v n.pc

(∆, pc, N, ts | Labeled L t , unlabelL : S) µ (∆, pc t `,N, ts | return t ,S)

UNLABELL3

pc t H v µ.cl ∀ n ∈ N . pc t L v n.pc

(∆, pc, N, ts | Labeled H t , unlabelL : S) µ (•, •, •, • | •, •)

FORKL1

(∆, pc, N, ts | forkL t1 t2 t3 t4 t5,S) µ (∆, pc, N, ts | t1, forkL t2 t3 t4 t5 : S)

FORKL2

(∆, pc, N, ts | `, forkL t2 t3 t4 t5 : S) µ (∆, pc, N, ts | t2, forkL ` t3 t4 t5 : S)

FORKL3

(∆, pc, N, ts | `2, forkL `1 t3 t4 t5 : S) µ (∆, pc, N, ts | t3, forkL `1 `2 t4 t5 : S)

FORKL4

(∆, pc, N, ts | h, forkL `1 `2 t4 t5 : S) µ (∆, pc, N, ts | t4, forkL `1 `2 h t5 : S)

SPAWNL1

(∆, pc, N, ts | spawnL t1 t2 t3 t4 t5,S) µ (∆, pc, N, ts | t1, spawnL t2 t3 t4 t5 : S)

SPAWNL2

(∆, pc, N, ts | `, spawnL t2 t3 t4 t5 : S) µ (∆, pc, N, ts | t2, spawnL ` t3 t4 t5 : S)

SPAWNL3

(∆, pc, N, ts | `2, spawnL `1 t3 t4 t5 : S) µ (∆, pc, N, ts | t3, spawnL `1 `2 t4 t5 : S)

SPAWNL4

(∆, pc, N, ts | K , spawnL `1 `2 t4 t5 : S) µ (∆, pc, N, ts | t4, spawnL `1 `2 K t5 : S)

HOLE

(•, •, •, • | •, •) µ (•, •, •, • | •, •)

Fig. 13: Sequential reduction rules for erased terms.



εL(nL, s, e) = (nL, εL(s), εL(e)) εL(nH , s, e) = (nH , εL(s), ε) εL(ε) = ε

εL(kill(n)) = kill(n) εL(send(n, t)) = send(n, εL(t))

εL(spawn(∆,n, t ,K )) =

{
spawn(εL(∆),n, εL(t),K ) if n.pc v L

spawnL(εL(∆),n,K ) otherwise

εL(fork(∆,n, t , b, h)) =

{
fork(εL(∆),n, εL(t), b, h) if n.pc v L

forkL(b, h) otherwise

εL(∆, pc, N, ts | t ,S) =

{
(•, •, •, • | •, •) if pc 6v L

(εL(∆), pc, N, εL(ts) | εL(t), εL(S)) otherwise

Fig. 14: Erasure for concurrent LIOPAR.



FORKL5

Σ.T (n) = (∆, pc, N, ts | b2, forkL L `H h2 t : S)

pc v L n ′ ← freshTId(L, `H,n.k)
s = (∆, pc, {n ′} ∪N, ts | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,fork(∆′,n′,t,b2,h2))−−−−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

FORKL6

Σ.T (n) = (∆, pc, N, ts | b2 forkL H `H h2 t : S)

pc v H n ′ ← freshTId(H , `H,n.k)
s = (∆, pc, {n ′} ∪N, | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Σ .H (n) = h1 + h2 |∆| 6 h1 |∆′| 6 h2

Q [〈n1+b1+b2〉] (n,s,forkL(n
′,b2,h2))−−−−−−−−−−−−−→Σ Q [〈〈nb1〉|〈n ′b2〉〉]

SPAWNL4

Σ.T (n) = (∆, pc, N, ts | k , spawnL L `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v L n ′ ← freshTId(L, `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawn(∆′,n′,t,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

SPAWNL5

Σ.T (n) = (∆, pc, N, ts | k spawnL H `H K1 t : S)

Σ.θ(n) = {k } ∪K1 ∪K2 pc v H n ′ ← freshTId(H , `H, k)
s = (∆, pc, {n ′} ∪N | return n ′,S) ∆′ = {x 7→ ∆(x ) | x ∈ fv∗(t ,∆)}

Q [〈n1+b〉] (n,s,spawnL(∆
′,n′,K1))−−−−−−−−−−−−−−−−→Σ Q [〈nb〉]

Fig. 15: Concurrent reduction rules for erased terms.



DomL(T ) = {nL | n ∈ Dom(T ) ∧ T (n).pc ≡ L}

P =
⋃

n ∈ DomL(T )

{n } ∪ T (n).N

εL(T ) = {n 7→ εL(T (n)) | n ∈ P } εL(Φ) = λk .εL(Φ(k))

εL(〈T,B,H , θ, Φ, ω〉) = 〈εL(T ), εL(B), εL(H ), εL(θ), εL(Φ), ω〉

(a) Thread maps, core maps and parallel configuration.

PL = {nL | n ∈ P } PH = {nH | n ∈ P }

εL(B) = BL ∪BH

where BL = {nL 7→ B(nL) | nL ∈ PL}
BH = {nH 7→ B(nH) +

∑
i ∈ J{nH }KT B(i) | nH ∈ PH }

εL(H ) = HL ∪HH

where HL = {nL 7→ H (nL) | nL ∈ PL}
HH = {nH 7→

∑
i ∈ J{nH }KT ,nH .k=i.k

H (i) | nH ∈ PH }

εL(θ) = θL ∪ θH
where θL = {nL 7→ θ(nL) | nL ∈ PL}

θH = {nH 7→ θ(nH) ∪K1 ∪K2 | nH ∈ PH }
K1 =

⋃
i ∈ J{nH }KT

θ(i)

K2 = {i.k | i ∈ J{nH }KT , i.k 6= nH .k }

(b) Time, memory and core budget maps.

next(n1L, spawnL(∆,n2H ,K ), 〈T,B,H , θ, ω, Φ〉) = 〈T ′,B ′,H ′, θ′, ω, Φ′〉
where T ′ = T [n2H 7→ (•, •, •, • | •, •)]

B ′ = B[n2H 7→ B0]
H ′ = H [n2H 7→ H0]
θ′ = θ[n1L 7→ θ(n1L) \ {n2H .k } ∪K ][n2H 7→ K ]

Φ′ = Φ[n2H .k 7→ 〈nB0
2H〉]

next(n1L, forkL(n2H , b, h), 〈T,B,H , θ, ω, Φ〉) = 〈T ′,B ′,H ′, θ′, ω, Φ〉
where T ′ = T [n2H 7→ (•, •, •, • | •, •)]

B ′ = B[n1L 7→ B(n1L)− b][n2H 7→ b]
H ′ = H [n1L 7→ H (n1L)− h][n2H 7→ h]
θ′ = θ[n2H 7→ ∅]

(c) Processing of erased events.

Fig. 16: Erasure for parallel LIOPAR.



NEXT1

〈nb〉[〈nb〉]

NEXT2

Q1[〈nb
1 〉] b > 0

〈Q1 | Q2〉[〈nb
1 〉]

NEXT3

Q1[〈n0
1 〉] Q2[〈nb

2 〉]
〈Q1 | Q2〉[〈nb

2 〉]

(a) Hierarchical Scheduling.

εL(Q) =

{
〈◦0〉 if Q ∩ P = ∅
Q ↓L otherwise

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L) g (Q2 ↓L)

〈nb1
1H〉 g 〈n

b2
2H〉 = 〈n

b1+b2
1H 〉

Q1 gQ2 = 〈Q1,Q2〉

(b) Core erasure.

Fig. 17: Core queues.

B.2 Lemmas
We now prove a number of lemmas auxiliary to our security proofs. Fig. 17a formalizes
the hierarchical scheduling policy and Fig. 17b repeats the erasure function for core
queues, where Q ∩P = ∅ abbreviates the predicate ∀ i ∈ {1 . . |Q |}.Q [〈nbi

i 〉]∧ni 6∈
P , i.e., the queue contains only secret threads, whose resources are not observable.

Lemma 1. If Q [〈n0〉], then one of the following holds:

1. If n ∈ P , then εL(Q)[〈n0〉]
2. If n 6∈ P , then there exists n ′ ∈ P such that εL(Q)[〈n ′0〉]

Proof. First, Q [〈n0〉] implies that all threads in queue Q have budget 0. Then, since
εL(Q) simply redistribute the residual budgets of the secret threads on the queue, any
thread scheduled by εL(Q) will have budget 0 intuitively. Formally, we have two cases
depending on whether n ∈ P or not.

1. By induction on the scheduling policy. Case [NEXT1] is trivial, case [NEXT2] is
impossible and case [NEXT3] follows by induction. If n ≡ ◦ the lemma is trivial,
i.e., εL(〈◦0〉) = 〈◦0〉↓L= 〈◦0〉.

2. If Q ∩ P = ∅, then εL(Q) = 〈◦0〉. If Q ∩ P 6= ∅, we perform induction.
Case [NEXT1] and [NEXT2] are absurd, in case [NEXT3], we inspect the result of
(Q1 ↓L)g (Q2 ↓L). If that is a leaf, e.g., 〈n0

H 〉, then nH ∈ PH (erasure reassigns
the budgets of the threads in Q1 and Q2 to the closest ancestor in Q ∩ P ) and
the lemma follows by rule [NEXT1]. Otherwise, we inductively apply Lemma 1 to
Q1[〈n0

1 〉] and Lemma 1.2 to Q2[〈n0〉].

Lemma 2. If Q [〈nb
L〉], then εL(Q)[〈nb

L〉].



Proof. The core scheduler runs public thread nL, thus nL ∈ P and εL(Q) = Q ↓L.
Then the proof follows by induction on the scheduling policy Q [〈nb

L〉], observing in
case [NEXT2] and [NEXT3] that 〈Q1,Q2〉↓L= 〈Q1 ↓L,Q2 ↓L〉, because either Q1 or Q2

contains public thread nL and using Lemma 1 in case [NEXT3].

Lemma 3. Proof. If Q [〈n1+b
H 〉] and nH ∈ P , then, there exists b′, such that b 6 b′,

εL(Q)[〈n1+b′

H 〉].

Since nH ∈ P , then Q ∩ P 6= ∅ and εL(Q) = Q ↓L and we proceed by induction.
Case [NEXT1] is trivial. In case [NEXT2], we perform case analysis on the result of
(Q1 ↓L)g (Q2 ↓L), if that is a branch, i.e., 〈Q1 ↓L,Q2 ↓L〉, then the lemma follows by
induction on Q1[〈n1+b

H 〉], otherwise, Q1 ↓L= 〈n1+b
H 〉 and Q2 ↓L= 〈n ′b

′

H 〉, for some other
secret thread n ′, with leftover budget b′, which then gets collapsed into the budget of its
ancestor n , i.e., 〈n1+b

H 〉g 〈n ′b
′

H 〉 = 〈n1+b+b′

H 〉. The lemma then follows by applying rule
[NEXT2] to rule [NEXT1], i.e., scheduling 〈n1+b+b′

H 〉. The same line of reasoning applies
to case [NEXT3], where the public ancestor, say n ′L ∈ P , of secret thread nH ∈ P is
in the left branch, i.e., Q1[〈n ′0L]〉, thus (Q1 ↓L)g(Q2 ↓L) equals to 〈Q1 ↓L,Q2 ↓L〉. Then,
the lemma follows by applying Lemma 1 to Q1[〈n ′0L]〉 and induction on (Q ↓L)[〈n1+n

H ].

Lemma 4. If Q [〈n1+b
H 〉], nH 6∈ P and Q ∩ P 6= ∅, then there exists n ′H ∈ Q ∩ P

and b′ > b, such that εL(Q)[〈n ′1+b′

H 〉].

Proof. Intuitively, we need to find in core Q , the closest ancestor n ′H ∈ Q∩P of secret
thread nH — there exists one threads form a hierarchy and Q ∩ P 6= ∅—and show that
the ancestor gets scheduled in the erased queue and that erasure function redistributes the
residual budget to it. We do that by induction on Q [〈n1+b

H 〉]. Case [NEXT1] contradicts
the hypothesis Q ∩ P 6= ∅, hence the lemma is vacuously true. Case [NEXT2] follows
by induction in the left sub-queue, i.e., Q1[〈n1+b

H 〉]. Intuitively, the ancestor of nH can
only be in the left subtree, thus Q1 ∩ P 6= ∅ and 〈Q1,Q2〉 ↓L= 〈Q1 ↓L,Q2 ↓L〉. 23 In
case [NEXT3], we inspect the result of (Q1 ↓L)g (Q2 ↓L). If that is a leaf, by Lemma
1 there exists a secret thread n1H with zero residual budget, such that Q1 ↓L= 〈n0

1H〉
and Q2 ↓L= 〈n1+b2

2H 〉 for some other thread n2H 6∈ Q ∩ P with left-over budget
b2 > b (since core erasure does not discard left-over budgets). 24 Then, the erased
queue is 〈n1+b1+b2

1H 〉, and the lemma follows by rule [NEXT1]. If (Q1 ↓L) g (Q2 ↓L)
is a branch, then either we apply Lemma 1 and induction, if Q2 ∩ P 6= ∅, or derive a
contradiction, otherwise. Intuitively, if Q2 ∩ P = ∅, then Q1 ∩ P 6= ∅ and either (i) all
the threads in the left branch are secret, i.e., Q1 ⊆ PH , which contradicts the fact that
(Q1 ↓L) g (Q2 ↓L) is a branch, or (ii) there exists a public thread n ′L ∈ Q1, and we
can show that nH ∈ PH , contradicting the second hypothesis of the lemma.

Lemma 5. Properties of the erasure function:

1. |εL(∆)| ≡ |∆|
23 The public parent thread cannot be in the right branch, i.e., Q2, because parents are moved to

the left branch when forking.
24 Either n2H ≡ nH , or it is the oldest ancestor of nH on the core.



2. fv∗(εL(∆), εL(t)) ≡ fv∗(∆, t)
3. εL(t1 [x / t2 ]) = εL(t1)

Proof. By straightforward induction on the arguments. The second lemma relies on secret
labeled values being closed, that is fv∗(∆,Labeled H t°)) = ∅ because t is closed, and
fv∗(εL(∆), εL(Labeled H t°)) = fv∗(εL(∆),Labeled H •) = ∅. If we allow open
labeled terms, then the lemma does not hold, e.g., fv∗(∆,Labeled H x ) = {x } 6≡ ∅ =
fv∗(εL(∆),Labeled H •).

Lemma 6. For all time budget maps B, memory budget maps H , core capabilities maps
θ, core queues Q , thread pool T and public threads n ∈ P , let N = {n }, then the
following hold:

I
∑
i ∈ JNKT ,i.k=n.k B(i) =

∑
j ∈ JNKεL(T ),j .k=n.k εL(B)(j )

I
∑
i ∈ JNKT ,i.k=n.k H (i) =

∑
j ∈ JNKεL(T ),j .k=n.k εL(H )(j )

I
⋃
i ∈ JNKT θ(i) =

⋃
i ∈ JNKεL(T ) εL(θ)(i)

I {i.k | i ∈ JNKT , i.k 6= n.k } = {i.k | i ∈ JNKεL(T ), i.k 6= n.k }.

I εL(Q \ JNKT ) = εL(Q) \ JNKεL(T ).

Proof. This lemma relates the observable parts of the budget maps and the erasure func-
tion, and ensures that budget erasure returns all the secret resources, i.e., the resources
allocated by the secret descendants of thread n ∈ P , regardless of their number.
Intuitively, the left-hand side of the equation involves an arbitrary number of those
secret threads and the right-hand none, because the erasure function removes them from
the thread pool map. More precisely, we partition the descendants of thread n ∈ P
in two groups, based on whether the attacker can observe their resources, formally:
JNKT = X ∪ Y , such that X ⊆ P and and Y 6⊆ P . We observe that the erased
thread map only contains only the threads with visible resources, i.e., JNKεL(T ) = X ,
since Dom(εL(T )) = P , that is erasure removes the secret threads contained in
Y . Then, we further partition set X in two sets depending on the security level of
the threads, i.e., X = XL ∪ XH , where XL ⊆ PL and XH ⊆ PH . First, we ob-
serve that the erasure function leaves the budgets of public threads unchanged, i.e.,∑

(iL ∈ XL)
B(iL) =

∑
(iL ∈ XL)

BL(iL), where εL(B) = BL ∪ BH from Figure 16b.
Then, we only need to show that

∑
(iH ∈ XH∪Y )B(iH ) =

∑
(iH ∈ XH )BH (iH ). The

equality follows by two observations. Firstly, both sides sum the budget of the se-
cret threads in XH , i.e., B(iH ) for iH ∈ XH . Secondly, the remaining secret threads
iH ∈ Y 6⊆ P are descendants of some secret thread nH ∈ XH ⊆ P (X∪Y = JNKT ),
and therefore their budget is accounted for on the right-hand side in the summation∑
i ∈ J{nH }KT B(i). The same line of reasoning applies for memory, core capabilities

budgets and core queues.
The next lemma ensures that processing any event e generated by a secret thread

changes only the secret parts of the global state. L-equivalence of configurations (and
all the other syntactic categories) is defined as the kernel of the erasure function, i.e.,
c ≈L c′ iff εL(c) ≡ εL(c′), see Definition 1.



Lemma 7. If next(nH , e, c) = c′ then c ≈L c′.

Proof. By case analysis on event e. Case ε is trivial. Rule [SPAWN] ensures that the
child thread is at least as sensitive as the parent nH , hence if e = spawn(∆,n2, t ,K ),
then n2 is secret and furthermore n2 6∈ P , hence c ≈L c′, because the global state
c′ changes only in parts that are not observable by the attacker, i.e., T ≈L T [n2 7→
(∆,n2.pc,∅, [ ] | t , [ ])]), T ≈L T [n2 7→ s], B ≈L B[n2 7→ B0] and H ≈L H [n2 7→
H0], because erasure filters out the new secret binding n2 6∈ P . Furthermore, if the
parent thread has observable resources, i.e., nH ∈ P , then erasure reassigns the core
capabilities of the child to the parent, i.e., θ[nH 7→ θ(nH )\{n2.k }∪K ][n2 7→ K ] ≈L θ
(Figure 16b). Lastly, the core maps are L-equivalent, i.e., Φ ≈L Φ[n2.k 7→ 〈nB0

2 〉],
because Φ(n2.k) ≈L 〈nB0

2 〉 and εL(〈nB0
2 〉) = 〈◦0〉 = εL(Φ)(n2.k), since n2 6∈ P

and n2.k is free in Φ (thread n1 could have not spawned on that core otherwise). Case
fork(∆,n2, t , b, h) is similar. Case kill(n ′) is trivial, if n ′ 6∈ Dom(T ). Otherwise,
we observe that n ′ 6∈ P and so are its descendants, i.e., i 6∈ P where i ∈ N and
N = J{n ′}KT , and the changes to the budget maps involve only secret threads. If the
parent thread has observable resources, i.e., nH ∈ P , then the new budget maps are
also indistinguishable to the attacker, e.g., B[n 7→ B(n) +

∑
i ∈ N,i.k=n.k B(i)] ≈L B.

The final core map is L-equivalent to the initial map, i.e., Φ(k) ≈L Φ(k) \ N for
k ∈ {1 . . κ}, because N contains only secret threads and their left-over budget is
reassigned to their closest ancestor in P . Lastly, we prove case send(n2, t) by case
analysis on the guards of function next(·). The lemma follows trivially in the first and
in the third case—the global state does not change because the message is dropped.
In the second case, the message gets delivered in the message queue of thread n2,
under the condition that pc1 v pc2, i.e., pc2 ≡ H . If n2 6∈ P , erasure drops its
configuration from the thread pool and we obtain L-equivalence. If n2 ∈ PH , then
εL(T )(n2) = (•, •, •, • | •, •) and the update does not change the thread pool, because
• . t ≡ • and • ∪∆ ≡ •.

Lemma 8. If next(nL, e, c) = c′, then next(nL, εL(e), εL(c)) = εL(c
′).

Proof. Intuitively, the lemma ensures that processing any event e generated by public
thread nH ∈ P commutes with the erasure function. We prove that by case analysis on
e. Case ε is trivial. We distinguish two cases for event spawn(∆,n2, t ,K ) depending
on the security level of the child thread. If public, i.e., T (n2).pc ≡ L, then erasure
rewrites the event to spawn(εL(∆),n2, εL(t),K ) and the updates to the budget and
core maps commute with erasure, e.g., εL(T [n2 7→ (∆,L,∅, [ ] | t , [ ])]) = εL(T )[n2 7→
(εL(∆),L,∅, [ ] | εL(t), [ ])]. If the child thread is secret, i.e., T (n2).pc ≡ H , we ap-
ply 2-steps erasure to simulate the sensitive write operation [64]. In particular, era-
sure rewrites the event to special event spawnL(εL(∆),n2,K ), and function next(·)
handles it so that it gives global state εL(c′) (Fig. 16c). Notice that the child thread
has a secret current label and its parent is public, thus n2 ∈ PH and εL(T [n2 7→
(∆,L,∅, [ ] | t , [ ])]) = εL(T )[n2 7→ (•, •, •, • | •, •)]. Case fork(∆,n2, t , b, h) is
similar. In case kill(n2), we apply Lemma 6 to show that the resources assigned to the
parent thread nL remain the same under erasure. In case send(n2, t), we distinguish two
cases depending on the sensitivity of n2. If public, i.e., T (n2).pc ≡ L, then the lemma is
trivial. In function next(·) the same guard holds true under erasure, i.e., nL ∈ Dom(T )



iff nL ∈ Dom(εL(T )), εL(T )(nL) = εL(T (nL)) and |∆| = |εL(∆)| (Lemma 5.1),
and the public updates to the thread pool commutes under erasure. If the recipient is
secret, i.e., T (n2).pc ≡ H , then we further distinguish between n2 ∈ PH , which
follows as before, and n2 6∈ PH , which implies that n2 6∈ Dom(εL(T )), the message
is dropped and the thread map remains unchanged, i.e., εL(T ) ≡ εL(T [n2 7→ s]).

By means of this lemma, we show that erasure commutes with processing parallel
events commute.

Lemma 9. εL(〈〈sort es〉〉c) ≡ 〈〈sort (map εL(·) es)〉〉εL(c)

Proof. Intuitively, the proof relies on the fact that public events, i.e., events generated
by public threads, are erased homomorphically, i.e., εL(nL, e) = (nL, εL(e)) and secret
events are rewritten to ε, i.e., εL(nH , e) = ( , ε) otherwise.25 The proof follows by
induction on the event list es . The base case is trivial. In the inductive case, we need
to consider how event erasure affects sorting. Intuitively, the erasure function does not
affect the relative order of public events, i.e., (nL, e), because εL(e) has the same priority
as e . Instead, secret events end up at the end of the list because their event is erased to ε,
which has the least priority. If the next event is secret, we use Lemma 7 and we apply
induction, after removing the corresponding event in the erased list—the erased event is
trivial (ε) and it does not change the state, i.e., 〈〈sort ((nH , ε) : map εL(·) es)〉〉εL(c) ≡
〈〈sort (map εL(·) es)〉〉εL(c). If the next event is public, then the scheduler processes
the corresponding erased event in the erased configuration. The proof then follows by
Lemma 8 and straightforward induction.

We conclude this section by showing that hierarchical scheduling (Figure 17a) is
deterministic.

Lemma 10. If Q [〈nb1
1 〉] and Q [〈nb2

2 〉] then n1 ≡ n2 and b1 ≡ b2.

Proof. Induction on the scheduling relation.

B.3 Progress-Insensitive Non-Interference
Using the auxiliary lemmas listed above, we prove progress-inensitive non-interference,
which guarantees that L-equivalence is preserved under assumptions that both configura-
tions make progress. As explained in Section 5.2, the property relies ondeterminism of
the stepping relation and simulation.

Proposition 5 (Determinism). For all states s1, s2, s3, core queues Q1, Q2, Q3, thread
ids n1, n2, events e1, e2, global states Σ, configurations c1, c2, c3, the following hold:

1. If s1  µ s2 and s1  µ s3 then s2 ≡ s3

2. If Q1
(n1,s1,e1)−−−−−−→Σ Q2 and Q1

(n2,s2,e2)−−−−−−→Σ Q3 then n1 ≡ n2, s1 ≡ s2, e1 ≡ e2
and Q2 ≡ Q3.

3. If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3

25 The thread that generates ε could be different from nH , see Proposition 7.2 and 7.3. Since the
event ε has no effects on the state, the thread identifier is irrelevant for the rest of the proof.



Proof.

1. Case analysis on the sequential step relation.
2. By Lemma 10, we derive n1 ≡ n2, thus the same thread is scheduled on both cores.

Then, we do case analysis and, since Σ is the same in both reductions, the threads
step likewise, i.e., s1 ≡ s2 (using Lemma 5.1 in case [STEP]), and generate the same
event, e1 ≡ e2. The resulting cores are equal, i.e., Q1 ≡ Q2, since both threads have
the same residual budget (Lemma 10).

3. The lemma follows immediately by applying determinism, i.e., Lemma 5.2, on all

the core reductions Φ(i)
(ni,si,ei)−−−−−−→Σ Qi, for i ∈ {1 . . κ}.

Proposition 6 (Sequential Simulation). If s s ′ then εL(s) εL(s
′).

Proof. If the current label is H , then simulation follows by rule [HOLE], which simply
ticks, i.e., (•, •, •, • | •, •) (•, •, •, • | •, •). If the current label is L, then simulation
follows by applying the same step rule under reduction. For those, we discuss only the
interesting cases, where we apply 2-steps erasure [64]—all the others cases are trivial
and follow by applying Lemma 5 when needed, e.g., 5.1 for rule [APP2] and 5.3 for
rule [GC]. The erasure function rewrites term label to special term labelL, then rule
[LABELL1] simulates [LABEL1] and rule [LABELL2] ([LABELL3]) simulates [LABEL2]
when the assigned label is public, i.e., L, (resp. secret, i.e., H ). Similarly, erasure rewrites
term unlabel to special term unlabelL, then rule [UNLABELL1] simulates [UNLABEL1]
and rule [UNLABELL2] ([UNLABELL3]) simulates [UNLABEL2], when the labeled value
is public, i.e., Labeled L εL(t)° for some term t (resp. secret, i.e., Labeled H •).

We now lift simulation to core reductions. For brevity, we write thread’s state •
for erased state (•, •, •, • | •, •), state s◦ for the spinning thread’s state, i.e., s◦ =
([ ],⊥,∅, [ ] | return (), [ ]).

Proposition 7 (Core Simulation). Given a core reduction step Q
(n,s,e)−−−−→Σ Q ′, then

one of the following holds:

1. If n ∈ P , then εL(Q)
εL(n,s,e)−−−−−−→εL(Σ) εL(Q

′)

2. If n 6∈ P and Q ∩ P = ∅, then εL(Q)
(◦,s◦,ε)−−−−−→εL(Σ) εL(Q

′)

3. If n 6∈ P and Q ∩ P 6= ∅, then ∃ n ′ ∈ PH , such that εL(Q)
(n′,•,ε)−−−−−→εL(Σ)

εL(Q
′)

Proof.

1. The first case simulates the execution of a thread with visible resources, i.e., n ∈ P ,
which executes similarly under erasure. We distinguish two cases depending on the
thread’s current label.
I If nL ∈ PL, we show that the same thread is scheduled using Lemma 2 and

we proceed by case analysis on the core step. Since the thread’s current label
is public, erasure preserves the thread’s structure and its resources. As a result
the erased thread steps likewise, i.e., it performs exactly the same reduction
step. In particular, we apply Proposition 6 in case [STEP] and Lemma 1 in case
[CONTEXTSWITCH].



I If nH ∈ PH , we apply Lemma 3, i.e., the core scheduler executes the same
secret thread, which then ticks, i.e., it reduces with rule [STEP] applied to rule
[HOLE], since its configuration gets completely erased, i.e., εL(T (nH )) =
(•, •, •, • | •, •).

2. The second case simulates the execution of a core allocated to threads with no visible
resources, i.e., n 6∈ P and Q ∩P = ∅. This case occurs if some secret thread with
public resources spawns another secret thread on a core that it owns. Under erasure,
the core is still free, i.e., εL(Q) = 〈◦0〉 and the spinning thread ◦ takes over in the
erased core queue via rule [CONTEXTSWITCH].

3. The third case simulates the execution of a secret thread with no visible resources,
i.e., n 6∈ P , which shares the core with threads gets scheduled on the queue Q ,
which contains some other thread with visible resources, i.e., Q ∩ P 6= ∅. For
example, this happens when a secret thread with visible resources forks another
secret thread on the same core. Then, we apply Lemma 4 and conclude that the
core scheduler executes its closest ancestor n ′H ∈ PH , which remains in the
erased core. 26 Thread n ′H simulates the execution of thread nH by rule [STEP]
and [HOLE] (see above). We remark that core erasure cancels out the effects of fork
from queue Q ′ (rule [FORK]), as it collapses both thread nH and its new child to
the ancestor thread n ′H , which regains their resources.

Proposition 2 (Parallel Simulation). Given a parallel reduction step c ↪→ c′, then
εL(c) ↪→ εL(c

′).

Proof. The proof requires to show that running the parallel scheduler on the erased
initial state, i.e., εL(c), by means of rule [PARALLEL] from Fig. 5, gives a final state that
corresponds to the erased state obtained in original step i.e., εL(c′). The fact that the core
scheduler could schedule different threads on erased cores makes the proof interesting.
Intuitively, public cores, i.e., cores that execute public threads, proceed in lock-step with
the original configuration (Proposition 7.1) and the parallel scheduler processes their
public events in the same relative order, so that erasure and changes to the state commute.
Instead, secret cores execute either the public spinning thread (Proposition 7.2) or a
another public thread n ′H ∈ PH (Proposition 7.3). In either case, they generate the
trivial event, i.e., ε, which leaves the global state unchanged, hence the different order
with which they get processed is irrelevant under erasure.

Firstly, we apply core simulation, i.e., Proposition 7, to the core scheduler step
on each core i ∈ {1 . . κ}. Then, the parallel scheduler changes the global state
accordingly: it updates the erased thread pool εL(T ), the core map εL(Φ) and then
processes the events generated by the core scheduler. Those operations either commute
under erasure, whenever they affect public parts of the state, or have no effect, otherwise.
We show that, by case analysis on the security level of the threads scheduled in the erased
configuration. In particular, for each thread ni that runs in the original configuration, one
of the clauses of Proposition 7 applies.

26 The current label of the ancestor cannot be public, i.e., n ′L ∈ PL), otherwise nH ∈ PH and
case 1 applies instead.



Commutativity holds in the first case (Proposition 7.1), since εL(T [n 7→ s]) ≡
εL(T )[n 7→ εL(s)], when n ∈ P . In the second case (Proposition 7.2), we show
εL(T [n 7→ s]) ≡ εL(T )[◦ 7→ εL(s◦)] by rewriting both sides of the equation to εL(T ).
On the left-hand side, erasure filters out the secret thread from T , since n 6∈ P ,
while the update does not change the thread pool on the right-hand side, because
εL(T )(◦) ≡ εL(s◦) ≡ ([ ],⊥,∅, [ ] | return (), [ ]) In the third case (Proposition
7.3), the ancestor n ′ ∈ P takes over n in the erased core and the update to the thread
map has no effect, i.e., εL(T ) = εL(T [n

′ 7→ •]), since εL(T )(n ′H ) = (•, •, •, • | •, •).
In all cases, core map erasure is homomorphic, i.e., εL(Φ) = λk .εL(Φ(k)), then core
map updates always commute with erasure, i.e., εL(Φ[k 7→ Qi]) ≡ εL(Φ)[k 7→ εL(Qi)].
To conclude the proof, we apply Lemma 9 and show that erasing and processing events
commute, i.e., εL(〈〈sort es〉〉c) ≡ 〈〈sort (map εL(·) es)〉〉εL(c).

We conclude with the proof of progress-insensitive non-interference.

Proposition 3 (Progress-Insensitive Non-Interference). If c1 ↪→ c′1, c2 ↪→ c′2 and
c1 ≈L c2, then c′1 ≈L c′2.

Proof. We apply parallel simulation, i.e., Proposition 2 and derive the erased
reductions εL(c1) ↪→ εL(c

′
1) and εL(c2) ↪→ εL(c

′
2). From c1 ≈L c2, we obtain

εL(c1) ≡ εL(c2) (Definition 1), and Proposition 5.3 (parallel determinism) gives
εL(c

′
1) ≡ εL(c′2), i.e., c′1 ≈L c′2.

B.4 Timing-Sensitive Non-Interference
We now lift the security guarantees of LIOPAR to be timing-sensitive. Intuitively, timing-
insensitive non-interference ensures that the timing of any parallel program does not
depend on secret information, when executed with LIOPAR runtime system. More pre-
cisely, the theorem ensures that if a parallel program steps with some secret information,
then it also steps with different secret information. The key property to proving this
stronger form of non-interference is time-sensitive progress, i.e., Proposition 4, which
reconstructs the single step taken by program in the other execution. This property relies
on some side conditions that guarantee that the program satisfies some basic correctness
properties, that we formally specify in the definition of valid configuration.

Definition 2 (Valid Configuration). A configuration 〈T,B,H , θ, Φ, ω〉 is valid if and
only if it satisfies the following properties:

I If T (n) = s, then state s is well-formed, i.e., it is the state of a well-typed thread
and x ∈ Dom(s.∆) for all variables x ∈ fv(s);

I For all cores k ∈ {1 . . κ}, ◦k 7→ s◦ ∈ T , ◦k 7→ 0 ∈ B, ◦k 7→ H0 ∈ H ,
◦k 7→ ∅ ∈ θ;

I Dom(T ) = Dom(B) = Dom(H ) = Dom(θ);
I If n ∈ Q , then n ∈ Dom(T );
I If Q [〈nb〉], then b 6 B(n), |T (n).∆| 6 H (n) and n.k 6∈ θ(n);
I For all threads n1 n2 ∈ Dom(T ), such that n1 6= n2, θ(n1) ∩ θ(n2) = ∅;

It is easy to see that the initial parallel configuration (Corollary 1) is valid. The next
lemma shows that valid configurations that execute with the operational semantics of
LIOPAR remain valid.



Lemma 11 (Valid Invariant). If configuration c is valid and c ↪→ c′, then c′ is valid.

Proof. By case analysis on all the reduction relations.
Proposition 4 (Time-Sensitive Progress). For all valid configurations c1, c′1 and c2
and parallel reduction steps c1 ↪→ c′1, if c1 ≈L c2, then there exists a configuration c′2,
such that c2 ↪→ c′2.

Proof. The parallel scheduler has only one reduction rule, i.e., [PARALLEL], thus the
proof mainly relies on core progress, i.e., showing that for each core that steps in the
first configuration, then the corresponding core in the second configuration also steps.
Formally, for all valid cores Q1 ≈L Q2 and global states Σ1 ≈L Σ2, if Q1

m1−−→Σ1 Q ′1
and Q1 ≈L Q2, then there exists Q ′2 and m2, such that Q2

m2−−→Σ2
Q ′2. Since c1 ≈L c2,

the core maps in the configurations are L-equivalent, i.e., Φ1 ≈L Φ2, hence Φ1(i) ≈L

Φ2(i), for all i ∈ {1 . . κ}. In particular, we apply core simulation, i.e., Proposition 7,
which gives us εL(Q1)

m3−−→εL(Σ1) εL(Q
′
1), for some message m3, and use that together

with εL(Q1) ≡ εL(Q2) and the assumption that Q1 and Q2 are valid to reconstruct Q ′2,
m2 and the other step Q2

m2−−→εL(Σ2) Q ′2.
The task of reconstructing a core step is facilitated by the fact that the core semantics

always steps, regardless of the number of threads on the core, their resources and state.
Specifically, either threads execute sequentially ([STEP]), or they perform a concurrent
operation ([FORK,SPAWN,WAIT]), or they are stuck [STUCK] otherwise. Note that, even
if no thread has sufficient time budget to step, then rule [CONTEXTSWITCH] takes over
and that even free cores step thanks to the core’s spinning thread, i.e., ◦.
Theorem 1 (Timing-Sensitive Non-Interference). For all valid configurations c1 and
c2, if c1 ↪→ c′1 and c1 ≈L c2, then there exists a configuration c′2, such that c2 ↪→ c′2
and c′1 ≈L c′2

Proof. We apply time-sensitive progress, i.e., Proposition 4 to valid configurations
c1 ≈L c2 and obtain the second reduction c2 ↪→ c′2 for some configuration c′2. We then
derive L-equivalence of the final configurations, i.e., c′1 ≈L c′2, from progress-insensitive
non-interference, i.e., Proposition 3, applied to c1 ↪→ c′1, c2 ↪→ c′2 and c1 ≈L c2.

Corollary 1 generalizes timing-sensitive non-interference to many steps by applying
Theorem 1 and Proposition 11 as many times.



C Attack Code
Below we list the code for the parallel scheduler-based attacks. The code depends on the
following external packages:

I lio-0.11.6.0
I hashable-1.2.7.0
I text-1.2.3.1
I array-0.5.1.1
I bytestring-0.10.8.1

Haskell package manager Cabal can be used to configure and install these depen-
dencies with the command cabal install packages. Both attack modules rely
on some helper functions found in Appendix C.3. Additionally, both attacks rely on
thresholds that must be determined empirically as they are machine dependent.

The attacks can be compiled and executed using GHC version 8.0.2 with the fol-
lowing commands, where CODE is the file containing the attack code and SECRET
represents the secret value to leak (0 or 1),

$ ghc -threaded -rtsopts CODE lib.hs -o attack
$ ./attack SECRET +RTS -N2 -RTS

Section C.1 and C.2 list the code of the reclamation and allocation attacks
(reclamation.hs and allocation.hs), sketched in Section 2.3. In the attacks,
a secret thread affects the CPU-time available to other public threads by terminating
early (the scheduler reclaims its quota of CPU-time), or forking another secret thread
(the scheduler allocates a new CPU-time quota). The attacks are written using the LIO
library and disjunction category (DC) labels to specify the security lattice [56].



C.1 Reclamation Attack

-- reclamation.hs

module Main where

import System.Environment
import Data.List

import LIO
import LIO.LIORef
import LIO.DCLabel
import LIO.Concurrent
import LIO.Run

import Lib

-- Thresholds.
-- These parameters are machine specific and estimated empirically.
len = 100000
threshold = 3000

-- The code run by the secret thread.
-- If secret == 1, the thread loops,
-- otherwise it terminates right away.
highThread :: DC (DCLabeled Int) -> DC Int
highThread secret = do
s <- unlabel secret
case s of
1 -> do
t1 <- busyWait 100000
return 0

_ -> return 0

-- Simple heuristic to determine the value of the secret
analyze :: (String, Int) -> Int
analyze (_,a) = if a > threshold then 1 else 0

-- Count the number of messages from each thread
-- in the public channel and infer the secret.
count :: LIORef DCLabel [String] -> DC Int
count channel= do
msgs <- readLIORef channel
let acc = map (\x -> (head x, length x)) (group msgs)
return $ analyze $ head acc

-- Fork the two public threads that write to
-- the same public channel
runLowThreads :: LIORef DCLabel [String] -> DC Int
runLowThreads channel = do



t1 <- lFork low (writeA len channel)
t2 <- lFork low (writeB len channel)
() <- lWait t1
() <- lWait t2
-- analyze the public channel to infer the secret
count channel

-- Start the the secret thread and the two public threads,
-- which return the secret.
leak :: DC (DCLabeled Int) -> DC Int
leak secret = do
channel <- newLIORef low []
secretThread <- lFork secretL (highThread secret)
secretValue <- runLowThreads channel
return secretValue

main :: IO ()
main = do
l <- getArgs
let secret = getArg l
secret <- evalLIO (leak (label secretL secret)) init
print $ "The secret is " ++ (show secret)
return ()



C.2 Allocation Attack

-- allocation.hs

module Main where

import System.Environment
import Data.List

import LIO
import LIO.LIORef
import LIO.DCLabel
import LIO.Concurrent
import LIO.Run

import Lib

-- Thresholds.
-- These parameters are machine specific and estimated empirically.
len = 100000
lowThreshold = 4000
highThreshold = 15000

-- The code run by the secret thread.
-- If secret == 1, then the thread forks a child,
-- otherwise it loops.
highThread :: DC (DCLabeled Int) -> DC Int
highThread secret = do
s <- unlabel secret
case s of
1 -> do
s1 <- lFork high (busyWait len)
t1 <- busyWait len
res <- lWait s1
return 0

_ -> do
t1 <- busyWait len
return 0

-- Simple heuristic to determine the value of the secret.
analyze :: (String, Int) -> Int
analyze (_,a) =
if (a < lowThreshold) || (a > highThreshold)

then 1
else 0

-- Count the number of messages from each thread
-- in the public channel and infer the secret.
count :: LIORef DCLabel [String] -> DC Int
count channel= do



msgs <- readLIORef channel
let acc = map (\x -> (head x, length x)) (group msgs)
return $ analyze $ head acc

-- Fork the two public threads that write
-- to the same public channel
runLowThreads :: LIORef DCLabel [String] -> DC Int
runLowThreads channel = do
t1 <- lFork low (writeA len channel)
t2 <- lFork low (writeB len channel)
() <- lWait t1
() <- lWait t2
-- analyze the public channel to infer the secret
count channel

leak :: DC (DCLabeled Int) -> DC Int
leak secret = do
channel <- newLIORef low []
secretThread <- lFork high (highThread secret)
secretValue <- runLowThreads channel
return secretValue

main :: IO ()
main = do
l <- getArgs
let secret = getArg l
secret <- evalLIO (leak (label high secret)) init
print $ "The secret is " ++ (show secret)
return ()



C.3 Helper Functions

-- lib.hs

module Lib where

import LIO
import LIO.LIORef
import LIO.DCLabel

import Control.Monad

-- Command line parsing
getArg [] = -1
getArg (a:r) = read a

-- Labels
low = "Public" %% "Public"
secretL = "Secret" %% "Secret"
high = low `lub` secretL

-- Initial LIO state (current label and clearance)
init = LIOState { lioLabel = low

, lioClearance = high }

-- Write a message to the channel for a given number of times.
write :: String -> Int -> LIORef DCLabel [String] -> DC ()
write msg n ref = replicateM_ n trace
where trace = do

() <- modifyLIORef ref (\l -> msg:l)
return ()

-- Write "A" to the channel
writeA :: Int -> LIORef DCLabel [String] -> DC ()
writeA len ref = write "A" len ref

-- Write ``B" to the channel
writeB :: Int -> LIORef DCLabel [String] -> DC ()
writeB len ref = write "B" len ref

-- Busy waiting.
busyWait :: Int -> DC Int
busyWait 0 = return 1
busyWait n = do

acc <- busyWait (n - 1)
return $ acc + n
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