
Short Paper: Modular Black-box Runtime Verification
of Security Protocols

Kevin Morio
CISPA Helmholtz Center for Information Security
Saarbrücken Graduate School of Computer Science

Dennis Jackson
Department of Computer Science

ETH Zürich

Marco Vassena
CISPA Helmholtz Center for Information Security

Robert Künnemann
CISPA Helmholtz Center for Information Security

ABSTRACT
Verification techniques have been applied to the design of secure pro-
tocols for decades. However, relatively few efforts have been made
to ensure that verified designs are also implemented securely. Static
code verification techniques offer one way to bridge the verification
gap between design and implementation, but require substantial
expertise and manual labor to realize in practice. In this short pa-
per, we propose black-box runtime verification as an alternative
approach to extend the security guarantees of protocol designs to
their implementations. Instead of instrumenting the complete pro-
tocol implementation, our approach only requires instrumenting
common cryptographic libraries and network interfaces with a run-
time monitor that is automatically synthesized from the protocol
specification. This lightweight technique allows the effort for in-
strumentation to be shared among different protocols and ensures
security with presumably minimal performance overhead.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Security proto-
cols; Software security engineering.

KEYWORDS
runtime monitoring, protocol verification

ACMReference Format:
Kevin Morio, Dennis Jackson, Marco Vassena, and Robert Künnemann. 2020.
Short Paper: Modular Black-box Runtime Verification of Security Proto-
cols. In 15thWorkshop on Programming Languages and Analysis for Security
(PLAS’20), November 13, 2020, Virtual Event, USA.ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3411506.3417596

1 INTRODUCTION
Security protocols such as TLS [23], Signal [26] andWireguard [12]
are the basis of secure communication over the Internet. Such proto-
cols aim to provide an abstract communication channel with specific
security properties, e.g., authentication, confidentiality, and privacy,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLAS’20, November 13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8092-8/20/11. . . $15.00
https://doi.org/10.1145/3411506.3417596

to higher-level applications. The design of these protocols is a chal-
lenging endeavor that culminates in one or more proofs that justify
their security properties. These proofs are often carried out manu-
ally, but due to their complexity, mistakes are regularly discovered
[5, 11, 20]. This hasmotivated the development of automatic provers
andproof assistants suchasTamarin [19], ProVerif [8] andEasyCrypt
[10]. Such tools accept a formal descriptionof the protocol and the ex-
pected security property and establishwhether the protocol satisfies
the property, or assist humans in creating a machine-checked proof.

However, both manual and tool-assisted proof techniques only
establish a correspondence between the design of a protocol and
its security properties, they do not cover the implementation of the
design. This leaves a gap, where protocols may be securely designed,
but insecurely implemented. Severalworks have attempted to bridge
this gap by using static verification techniques to formally verify
that a particular implementation adheres to its high-level design.
These efforts employ various white-box techniques, including sep-
aration logics [21], program refinement [25], and verification and
compilation toolchains [22]. Whilst these techniques have delivered
promising results and are the subject of ongoing research, they do
require considerable expertise and a significantmanual effort to real-
ize. In this short paper, we propose an alternative approach based on
runtime verification. Intuitively, we verify that protocol implementa-
tions follow their specification at runtime in a black-box fashion, by
instrumenting the underlying cryptographic libraries and network
interfaces. In contrast with the manual and ad-hoc effort required
by static verification techniques, this is a once and for all effort that
is not specific to any protocol and can be shared by different proto-
cols. Further, whilst we anticipate aminor performance impact since
the monitor executes together with the protocol itself, we believe
this approach can effectively extend the security properties of the
protocol specification to its implementation. Our runtime monitor
promises strong guarantees that protocol implementations match
their verified specifications and supports complex protocols with
looping and branching control flows. Since the monitor requires
only instrumenting a small part of an implementation, we expect
minimal performance overhead.

2 SOLUTIONOVERVIEW
Ourapproach isbasedononlineruntimemonitoring,awell-established
lightweight verification technique to establish system correctness
and reliability [17]. At a high level, this approach consists of execut-
ing the protocol implementation together with a runtime monitor
that ensures that the execution adheres to the protocol specifications
at runtime. However, our monitor does not rely on the protocol code

https://doi.org/10.1145/3411506.3417596
https://doi.org/10.1145/3411506.3417596

to detect violations. Instead, our approach is black-box and only
intercepts calls to cryptographic libraries and network interfaces to
catch security bugs in the protocol implementation. Concretely, the
monitor detects when the code execution is about to diverge from
its specification and acts accordingly to prevent security breaches.
We elucidate possible reaction strategies in Section 3.

Protocol Specifications Formal protocol specifications are usu-
ally specified using process calculi [1, 8] or multiset rewriting [19].
The transition rules in these systems are labeled with actions that
model the protocol receiving and sending (encrypted)messages over
the network. These messages carry symbolic terms, which represent
inter alia plaintexts and ciphertexts andprescribehowcryptographic
primitives must be composed by the protocol in order to provide
secure communication. In these formalisms, the actions and themes-
sages generated by the rules form a symbolic trace that captures the
protocol execution. Then, the security guarantees of the protocol,
e.g., weak secrecy [7] and authentication [18, 27], are defined as a
trace property. The security of the protocol is then established by
showing that the transition system always generates good traces.

RuntimeMonitor We ensure that protocol implementations fol-
low their specification by automatically synthesizing runtime moni-
tors from labeled transition systems describing the protocol in ques-
tion. The fact that the security of a protocol execution depends
only on the messages exchanged and their content offers a way to
enforce security in a lightweight black-box fashion. Intuitively, to
establish whether the protocol implementation complies with the
specification, themonitor only needs to track specific operations, i.e.,
calls to cryptographic libraries and network interfaces. The monitor
intercepts these operations while the protocol implementation is
running and builds a trace of actions containing concrete values, e.g.,
ciphertext bitstrings. Then, the concrete trace is matched by the
monitor against the expected symbolic trace generated by the labeled
transition system in order to detect inconsistencies. Importantly, the
monitor fulfills this last stepmymaintaining amappingbetween con-
crete values and their corresponding symbolic terms, which allows
interpreting bitstrings as symbolic terms and vice versa. Notice that
the runtime monitor is run per protocol party (agent), which may
be engaged in concurrent sessions and acting in more than one role.
As a result, the traces observed by the monitor may be spread over
multiple sessions or multiple roles, thus complicating the synthesis
of the monitor.

QEA Our runtime monitor is based on the notion of quantified
event automata (QEA), a recently proposed formalism for describ-
ing expressive and efficient runtime monitors [4]. Event automata
are non-deterministic finite-state machines that specify paramet-
ric trace properties. Intuitively, the transitions of the automata are
annotated with events that contain variables, which get instanti-
ated with concrete values as the automata consumes the input trace.
QEAs boost the expressiveness of event automata by additionally
allowing these variables to be quantified. Quantified variables spawn
multiple instances of the event automata, each binding quantified
variables to concrete values. As a result, a QEA accepts a trace as
long as subsequences of these trace can be individually accepted by
the instantiated event automata. This formalism captures precisely

the interleaving semantics of protocol sessions running in parallel,
which can then be efficiently monitored by the automata.

Mapping Our monitor bridges the gap between symbolic and con-
crete values by maintaining two variable binding maps, one to sym-
bolic terms and one to bitstrings. These maps help the monitor to
refine the knowledge of concrete values during the program execu-
tion and interpret them correctly as symbolic terms. For example,
suppose that a protocol is expected to receive an encrypted message,
specified by a symbolic term enc(𝑘,𝑚). When the protocol receives
this message from the network interface, the QEAmonitor sees the
bitstring corresponding to the ciphertext, but does not know that
it is a ciphertext yet. The term map thus points to a variable, e.g.,
𝑡 . However, once the message is successfully decrypted through a
call to the appropriate cryptographic API, the termmapping can be
refined, updating 𝑡 to enc(𝑘,𝑚′) where 𝑘 is the term representation
of the key parameter, and𝑚′ the term representation of the function
output. Moreover, if the bitstring returned by the function corre-
sponds to the bitstring representation of𝑚 and𝑚 is an atomic data
type (e.g., payload),𝑚 and𝑚′ will be unified to the same term.

TranslationOverview We illustrate how to automatically synthe-
size a runtime monitor from a protocol specification by outlining
a translation procedure from process calculi into QEA. We give an
overview about the translation approach for the five most essen-
tial features of process calculi: parallel execution, replication, input,
output and choice of fresh names.We translate parallel process com-
position by translating each process into a QEA and providing silent
𝜖-transitions into each of them, as exemplified in Fig. 2. Typically,
these processes are under replication, i.e., they can be repeated ar-
bitrarily often. To this end, we add a transition from each final node
of the translated QEA back to the initial node and quantify over the
variables in the process. This quantification requires that variables
are uniquely named, such that each variable occurs in exactly one
input construct of the process. Fig. 2 depicts a simple process with
input, output and fresh name generation. Both inputs and outputs
are translated into labeled transitions; input transitions are charac-
terized by the variable they bind, while output events by the terms
they contain. To treat fresh names, we need to extend QEAs with
uniqueness quantification (∃!), e.g., if the process in Fig. 2 was under
replication, it would be quantified∀𝑥 . ∃!𝑟 , meaning that there exists
a unique name 𝑟 for each binding of 𝑥 .

Formal Guarantees and Evaluation The key property that we
intend to prove for our runtime monitor is soundness. Intuitively,
soundness guarantees that the concrete traces accepted by themoni-
tor correspond to a possible symbolic trace generated by the protocol
specification, i.e., the implementation cannot silently deviate from
its specification. Furthermore, soundness allows to automatically
extend the security properties of the specification to the monitored
implementation. In particular, if a protocol specification is shown to
satisfies a given trace property (e.g., by using Tamarin or ProVerif),
then it is also satisfied by the monitored implementation. Although
runtime monitoring would not in general preserve hyperproperties
(i.e., properties of sets of traces),1 several properties of interests for
protocols are simple trace properties (e.g.,weak secrecy and injective

1This could change in the future [24], but recent advances in runtime monitoring could
enable efficient monitoring of hyperproperties [14–16].

(monitored)
protocol

implementation
monitor for QEA ⟦P⟧

(translation of P)

crypto APi (e.g.,
EverCrypt, libsodium)

network I/O

crypto API
wrapper

network I/O
wrapper

network
 attacker

Trusted Monitor

Figure 1: Architecture of themonitor. 𝑃 is the protocol specification and ⟦𝑃⟧ is the QEAmonitor synthesized from 𝑃 .

𝑠0

𝑎1 𝑏1

··· ···

𝑎𝑛 𝑏𝑛

(process A) (process B)

𝜖 𝜖

𝜖 𝜖

∀vars (𝐴)∪vars (𝐵)

𝑠0

𝑠1

𝑠2

in 𝑥

out enc (𝑘,𝑥,𝑟)

∃!𝑟

Figure 2: Left: Two replicated processes in parallel. Right:
Input, output and generation of fresh name 𝑟 .

authentication). Moreover, some interesting hyperproperties, for
instance those based on simulation, are closed under trace inclusion
and would hence be preserved.

In this work, we focus on honest-but-buggy protocol implemen-
tations. We do not consider malicious implementations which have
been deliberately subverted to evade detection of the monitor, e.g.,
through covert- and side-channels. We also assume that the imple-
mentation of the underlying cryptographic primitives is correct and
secure, for example through existing verification techniques [3, 6, 9].

3 CHALLENGES AND LIMITATIONS
Recovery Our initial focus is on soundness, i.e., we anticipate that
the monitor will have to be conservative and sometimes flag secure
executions as potentially insecure.We plan to evaluate the strictness
of the monitor on real world protocols and investigate which trade-
offs are necessary to reduce the rate of false positives in practice.
Furthermore, evenwith a low false-positive rate, theremay be better
ways to avoid a (potential) security violation than aborting the pro-
tocol. We intend to investigate alternative reaction strategies for our
monitors [13]. Besides simply logging violations (e.g., while the pro-
tocol implementation is under development), the monitor could also
eliminate certain violations by actively modifying the protocol ex-
ecution. These active reactions include: (1) suppressing unexpected
output messages, at the price of potentially desynchronizing the
implementation, and (2) correcting invalid output messages (e.g., a
message encrypted with the wrong cryptographic key).

Conversion between values and symbolic terms The monitor
must maintain a mapping between observed values and their sym-
bolic representation in order to detect violations. This will likely
require integration with network parsing and serialization libraries
in order to interpret the structure of network messages. Further, by
observing calls to cryptographic APIs, the monitor could deduce
the correct symbolic representation for a particular value contained
in a message. Intuitively, many of these values, e.g., cryptographic
keys, hashes and ciphertexts, are guaranteed not to collide (with
overwhelming probability), which would enable an efficient imple-
mentation in practice.

Session Resumption Many real-world protocol implementations
permit interrupting and resuming protocol sessions over time by
saving relevant session data in a persistent storage. Crucially, the
code responsible for saving and restoring sessions is inherently com-
plicated and therefore prone to bugs, which could weaken, or even
break the security of the protocol. For example, a recently discovered
session resumption bug in GnuTLS allowed network attackers to
compromise the confidentiality of TLS sessions [2]. Hence, handling
session resumptions is a key goal for our black-box monitoring tech-
nique. This means that the runtime monitor may need to persist
state to inform future monitor instances about past actions taken by
the protocol. However, extending the monitor to handle interrupted
and resumed sessions without inspecting the protocol code is chal-
lenging.We believe that handling session resumptions will probably
require the instrumentation of other interfaces besides the network
API, e.g., the database management system and the file system API,
used by the implementation to store session data.

Enriching Abstract Symbolic Models In protocol specification
languages, the symbolic abstraction of counters and timestamps
is typically left to the discretion of the modeler. However, proto-
col implementation must use concrete representations and ensure
that desired properties such as uniqueness and monotonicity hold.
Although itmay be necessary to enrich some symbolicmodels to pro-
vide enforceable security properties, we hope that we can automate
this process for many protocols. For example, we can treat times-
tamps inmuch the sameway as cryptographic values bymonitoring
calls to time and date APIs.

AtomicityofOperations In the symbolicmodel, the actions taken
by a protocol in response to inputs are typically atomic, that is, they
either all occur or none of them occur. However, in practice, the
protocol may perform such actions non-atomically, in a different
order, and evenomit someactions altogether. Some re-orderingsmay

be innocuous, e.g., constructing two independent ciphertexts, but
others may be catastrophic, for example, transmitting a message but
not updating the state of the protocol. Clearly, the runtime monitor
must strike a balance between over zealously enforcing the protocol
specifications and missing security relevant violations. It may be
possible for the monitor to automatically enforce that events appear
to happen atomically from the perspective of a network observer
and this could offer the correct balance.

REFERENCES
[1] Martín Abadi and Cédric Fournet. 2001. Mobile Values, New Names, and Secure

Communication. In 28th ACM Symp. on Principles of Programming Languages
(POPL’01). ACM, 104–115.

[2] GnuTLS Airtower. 2020. CVE-2020-13777: TLS 1.3 session resumption works without
master key, allowing MITM. https://gitlab.com/gnutls/gnutls/-/issues/1011
(Accessed June 26th, 2020).

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In Proceedings
of the 25th USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16).
USENIX Association, USA, 53–70.

[4] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David
Rydeheard. 2012. Quantified Event Automata: Towards Expressive and Efficient
Runtime Monitors. In FM 2012: Formal Methods, Dimitra Giannakopoulou and
Dominique Méry (Eds.). Lecture Notes in Computer Science, Vol. 7436. Springer
Berlin Heidelberg, 68–84. https://doi.org/10.1007/978-3-642-32759-9_9

[5] Daniel J. Bernstein. 2015. Multi-user Schnorr security, revisited. IACR Cryptology
ePrint Archive 2015 (2015), 996.

[6] Karthikeyan Bhargavan, Benjamin Beurdouche, Jean-Karim Zinzindohoué,
and Jonathan Protzenko. 2017. HACL*: A Verified Modern Cryptographic
Library. ACM CCS (September 2017). https://www.microsoft.com/en-
us/research/publication/hacl-a-verified-modern-cryptographic-library/

[7] Bruno Blanchet. 2001. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In 14th Computer Security Foundations Workshop (CSFW’01). IEEE
Comp. Soc., 82–96.

[8] Bruno Blanchet. 2013. Automatic verification of security protocols in the symbolic
model: The verifier proverif. In Foundations of Security Analysis and Design VII.
Springer, 54–87.

[9] Barry Bond, Chris Hawblitzel, Manos Kapritsos, Rustan Leino, Jay
Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thomp-
son. 2017. Vale: Verifying High-Performance Cryptographic Assem-
bly Code. In Proceedings of the USENIX Security Symposium. USENIX.
https://www.microsoft.com/en-us/research/publication/vale-verifying-
high-performance-cryptographic-assembly-code/ Distinguished Paper Award.

[10] RanCanetti, Alley Stoughton, andMayankVaria. 2019. Easyuc: Using easycrypt to
mechanize proofs of universally composable security. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE, 167–16716.

[11] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. 2005. Errors
in Computational Complexity Proofs for Protocols. In Advances in Cryptology
- ASIACRYPT 2005, 11th International Conference on the Theory and Application

of Cryptology and Information Security, Chennai, India, December 4-8, 2005,
Proceedings (Lecture Notes in Computer Science), Bimal K. Roy (Ed.), Vol. 3788.
Springer, 624–643. https://doi.org/10.1007/11593447_34

[12] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network
Tunnel. In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The
Internet Society. https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/wireguard-next-generation-kernel-network-tunnel/

[13] Yliès Falcone, Srđan Krstić, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy
for Classifying Runtime Verification Tools. In Runtime Verification, Christian
Colombo andMartin Leucker (Eds.). Vol. 11237. Springer International Publishing,
Cham, 241–262. https://doi.org/10.1007/978-3-030-03769-7_14

[14] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. 2020. Efficient monitoring of hyperproperties using prefix trees.
International Journal on Software Tools for Technology Transfer (02 2020).
https://doi.org/10.1007/s10009-020-00552-5

[15] Christopher Hahn. 2019. Algorithms for Monitoring Hyperproperties. In Runtime
Verification, Bernd Finkbeiner and LeonardoMariani (Eds.). Springer International
Publishing, Cham, 70–90.

[16] Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019. Constraint-Based
Monitoring of Hyperproperties. In Tools and Algorithms for the Construction and
Analysis of Systems, Tomáš Vojnar and Lijun Zhang (Eds.). Springer International
Publishing, Cham, 115–131.

[17] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. The Journal of Logic andAlgebraic Programming 78, 5 (2009), 293–303.

[18] G. Lowe. 1997. A hierarchy of authentication specifications. In Proceedings 10th
Computer Security Foundations Workshop. 31–43.

[19] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In International
Conference on Computer Aided Verification. Springer, 696–701.

[20] Alfred Menezes. 2007. Another look at HMQV. J. Mathematical Cryptology 1,
1 (2007), 47–64. https://doi.org/10.1515/JMC.2007.004

[21] P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification
Infrastructure for Permission-Based Reasoning. In Verification, Model Checking,
and Abstract Interpretation (VMCAI) (LNCS), B. Jobstmann and K. R. M. Leino
(Eds.), Vol. 9583. Springer-Verlag, 41–62.

[22] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan
Bhargavan. 2019. Formally verified cryptographic web applications inWebAssem-
bly. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1256–1274.

[23] E. Rescorla. 2018. RFC 8446: The Transport Layer Security (TLS) Protocol Version
1.3. https://tools.ietf.org/html/rfc8446 (Accessed May 29th, 2020).

[24] Shubham Sahai, Pramod Subramanyan, and Rohit Sinha. 2020. Verification
of Quantitative Hyperproperties Using Trace Enumeration Relations. In
Computer Aided Verification, Shuvendu K. Lahiri and ChaoWang (Eds.). Springer
International Publishing, Cham, 201–224.

[25] Christoph Sprenger and David Basin. 2018. Refining Security Protocols. Journal
of Computer Security 26, 1 (2018), 71–120. https://doi.org/10.3233/JCS-16814

[26] M. Marlinspike T. Perrin. 2016. The Signal Protocol. https://signal.org/ (Accessed
May 29th, 2020).

[27] T. Y. C. Woo and S. S. Lam. 1993. A semantic model for authentication protocols.
In Proceedings 1993 IEEE Computer Society Symposium on Research in Security and
Privacy. 178–194.

https://gitlab.com/gnutls/gnutls/-/issues/1011
https://doi.org/10.1007/978-3-642-32759-9_9
https://www.microsoft.com/en-us/research/publication/hacl-a-verified-modern-cryptographic-library/
https://www.microsoft.com/en-us/research/publication/hacl-a-verified-modern-cryptographic-library/
https://www.microsoft.com/en-us/research/publication/vale-verifying-high-performance-cryptographic-assembly-code/
https://www.microsoft.com/en-us/research/publication/vale-verifying-high-performance-cryptographic-assembly-code/
https://doi.org/10.1007/11593447_34
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/s10009-020-00552-5
https://doi.org/10.1515/JMC.2007.004
https://tools.ietf.org/html/rfc8446
https://doi.org/10.3233/JCS-16814
https://signal.org/

	Abstract
	1 Introduction
	2 Solution Overview
	3 Challenges and Limitations
	References

