Formal investigation of the Extended UTxO model

Laying the foundations for the formal verification of smart contracts

ORESTIS MELKONIAN, Utrecht University, The Netherlands

This report serves as the proposal of my MSc thesis, supervised by Wouter Swierstra from Utrecht University
and Manuel Chakravarty from IOHK.

1 INTRODUCTION

Blockchain technology has opened a whole array of interesting new applications (e.g. secure multi-
party computation[Andrychowicz et al. 2014], fair protocol design fair[Bentov and Kumaresan
2014], zero-knowledge proof systems[Goldreich et al. 1991]). Nonetheless, reasoning about the
behaviour of such systems is an exceptionally hard task, mainly due to their distributed nature.
Moreover, the fiscal nature of the majority of these applications requires a much higher degree of
rigorousness compared to conventional IT applications, hence the need for a more formal account
of their behaviour.

The advent of smart contracts (programs that run on the blockchain itself) gave rise to another
source of vulnerabilities. One primary example of such a vulnerability caused by the use of smart
contracts is the DAO attack', where a security flaw on the model of Ethereum’s scripting language
led to the exploitation of a venture capital fund worth 150 million dollars at the time. The solution
was to create a hard fork of the Ethereum blockchain, clearly going against the decentralized spirit
of cryptocurrencies. Since these (possibly Turing-complete) programs often deal with transactions
of significant funds, it is of utmost importance that one can reason and ideally provide formal
proofs about their behaviour in a concurrent/distributed setting,.

Research Question. The aim of this thesis is to provide a mechanized formal model of an abstract
distributed ledger equipped with smart contracts, in which one can begin to formally investigate
the expressiveness of the extended UTxO model. Moreover, we hope to lay a foundation for a for-
mal comparison with account-based models used in Ethereum. Put concisely, the research question
posed is:

How much expressiveness do we gain by extending the UTxO model?
Is it as expressive as the account-based model used in Ethereum?

Overview. Section 2 reviews some basic definitions related to blockchain technology and intro-
duces important literature, which will be the main subject of study throughout the development
of our reasoning framework. Section 3 describes the technology we will use to formally reason
about the problem at hand and some key design decisions we set upfront. Section 4 presents the
progress made thus far in terms of (mechanized) formal verification, as well as problems we have
encountered and also expect along the way. Section 5 discusses next steps for the remainder of the
thesis, as well as a rough estimate on when these milestones will be completed.

Thttps://en.wikipedia.org/wiki/The_DAO_(organization)

Author’s address: Orestis Melkonian, Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands,
melkon.or@gmail.com.

https://en.wikipedia.org/wiki/The_DAO_(organization)

Orestis Melkonian

2 BACKGROUND
2.1 Distributed Ledger Technology: Blockchain

Cryptocurrencies rely on distributed ledgers, where there is no central authority managing the
accounts and keeping track of the history of transactions.

One particular instance of distributed ledgers are blockchain systems, where transactions are
bundled together in blocks, which are linearly connected with hashes and distributed to all peers.
The blockchain system, along with a consensus protocol deciding on which competing fork of the
chain is to be included, maintains an immutable distributed ledger (i.e. the history of transactions).

Validity of the transactions is tightly coupled with a consensus protocol, which makes sure peers
in the network only validate well-behaved and truthful transactions and are, moreover, properly
incentivized to do so.

The absence of a single central authority that has control over all assets of the participants allows
for shared control of the evolution of data (in this case transactions) and generally leads to more
robust and fair management of assets.

While cryptocurrencies are the major application of blockchain systems, one could easily use
them for any kind of valuable asset, or even as general distributed databases.

2.2 Smart Contracts

Most blockchain systems come equipped with a scripting language, where one can write smart
contracts that dictate how a transaction operates. A smart contract could, for instance, pose re-
strictions on who can redeem the output funds of a transaction.

One could view smart contracts as a replacement of legal frameworks, providing the means to
conduct contractual relationships completely algorithmically.

While previous work on writing financial contracts [Peyton Jones et al. 2000] suggests it is
fairly straightforward to write such programs embedded in a general-purpose language (in this
case Haskell) and to reason about them with equational reasoning, it is restricted in the centralized
setting and, therefore, does not suffice for our needs.

Things become much more complicated when we move to the distributed setting of a
blockchain [Bhargavan et al. 2016; Sergey et al. 2018; Setzer 2018]. Hence, there is a growing need
for methods and tools that will enable tractable and precise reasoning about such systems.

Numerous scripting languages have appeared recently [Seijas et al. 2016], spanning a wide spec-
trum of expressiveness and complexity. While language design can impose restrictions on what a
language can express, most of these restrictions are inherited from the accounting model to which
the underlying system adheres.

In the next section, we will discuss the two main forms of accounting models:

(1) UTxO-based: stateless models based on unspent transaction outputs
(2) Account-based: stateful models that explicitly model interaction between user accounts

2.3 UTxO-based: Bitcoin

The primary example of a UTxO-based blockchain is Bitcoin [Nakamoto 2008]. Its blockchain is
a linear sequence of blocks of transactions, starting from the initial genesis block. Essentially, the
blockchain acts as a public log of all transactions that have taken place, where each transaction
refers to outputs of previous transactions, except for the initial coinbase transaction of each block.
Coinbase transactions have no inputs, create new currency and reward the miner of that block
with a fixed amount. Bitcoin also provides a cryptographic protocol to make sure no adversary can
tamper with the transactional history, e.g. by making the creation of new blocks computationally
hard and invalidating the “truthful” chain statistically impossible.

Formal investigation of the Extended UTxO model

A crucial aspect of Bitcoin’s design is that there are no explicit addresses included in the trans-
actions. Rather, transaction outputs are actually program scripts, which allow someone to claim
the funds by giving the proper inputs. Thus, although there are no explicit user accounts in trans-
actions, the effective available funds of a user are all the unspent transaction outputs (UTxO) that
he can claim (e.g. by providing a digital signature).

2.3.1 Script. In order to write such scripts in the outputs of a transaction, Bitcoin provides a
low-level, Forth-like, stack-based scripting language, called ScRIpT. ScRIPT is intentionally not
Turing-complete (e.g. it does not provide looping structures), in order to have more predictable
behaviour. Moreover, only a very restricted set of “template” programs are considered standard,
i.e. allowed to be relayed from node to node.

ScripT Notation. Programs in script are a linear sequence of either data values (e.g. numbers,
hashes) or built-in operations (distinguished by their OP__ prefix).

The stack is initially considered empty and we start reading inputs from left to right. When we
encounter a data item, we simply push it to the top of the stack. On encountering an operation, we
pop the necessary number of arguments from the stack, apply the operation and push the result
back. The evaluation function [_] executes the given program and returns the final result at the
top of the stack. For instance, adding two numbers looks like this:

[12OP_ADD] =3

P2PKH. The most frequent example of a ’standard’ program in ScripT is the pay-to-pubkey-hash
(P2PKH) type of scripts. Given a hash of a public key <pub#>, a P2PKH output carries the fol-
lowing script:

OP DUP OP_HASH <pub#> OP_EQ OP_CHECKSIG

where OP__DUP duplicates the top element of the stack, OP__HASH replaces the top element
with its hash, OP__EQ checks that the top two elements are equal, OP__ CHECKSIG verifies that
the top two elements are a valid pair of a digital signature of the transaction data and a public key
hash.

The full script will be run when the output is claimed (i.e. used as input in a future transaction)
and consists of the P2PKH script, preceded by the digital signature of the transaction by its owner
and a hash of his public key. Given a digital signature <sig> and a public key hash <pub>, a
transaction is valid when the execution of the script below evaluates to True.

<sig> <pub> OP_DUP OP_HASH <pub#> OP_EQ OP CHECKSIG

To clarify, assume a scenario where Alice want to pay Bob B 10. Bob provides Alice with the
cryptographic hash of his public key (<pub#>) and Alice can submit a transaction of B 10 with
the following output script:

OP_DUP OP_HASH <pub#> OP_EQ OP_CHECKSIG

After that, Bob can submit another transaction that uses this output by providing the digital signa-
ture of the transaction <sig> (signed with his private key) and his public key <pub>. It is easy
to see that the resulting script evaluates to True.

P2SH. A more complicated script type is pay-to-script-hash (P2SH), where output scripts simply
authenticate against a hash of a redeemer script <red#>:

OP_HASH <red#> OP_EQ

Orestis Melkonian

A redeemer script <red>> resides in an input which uses the corresponding output. The follow-
ing two conditions must hold for the transaction to go through:

(1) [<red>] = True
(2) [<red> OP_HASH <red#> OP_EQ] = True

Therefore, in this case the script residing in the output is simpler, but inputs can also contain
arbitrary redeemer scripts (as long as they are of a standard “template”).

In this thesis, we will model scripts in a much more general, mathematical sense, so we will
eschew from any further investigation of properties particular to SCRIPT.

2.3.2 The BitML Calculus. Although Bitcoin is the most widely used blockchain to date, many
aspects of it are poorly documented. In general, there is a scarcity of formal models, most of which
are either introductory or exploratory.

One of the most involved and mature previous work on formalizing the operation of Bitcoin is
the Bitcoin Modelling Language (BitML) [Bartoletti and Zunino 2018]. First, an idealistic process
calculus that models Bitcoin contracts is introduced, along with a detailed small-step reduction
semantics that models how contracts interact and its non-determinism accounts for the various
outcomes.

The semantics consist of transitions between configurations, abstracting away all the crypto-
graphic machinery and implementation details of Bitcoin. Consequently, such operational seman-
tics allow one to reason about the concurrent behaviour of the contracts in a symbolic setting.

The authors then provide a compiler from BitML contracts to ’standard’ Bitcoin transactions,
proven correct via a correspondence between the symbolic model and the computational model
operating on the Bitcoin blockchain. We will return for a more formal treatment of BitML in Sec-
tion 4.2.

2.3.3 Extended UTxO. In this work, we will consider the version of the UTxO model used by
IOHK’s Cardano blockchain®. In contrast to Bitcoin’s proof-of-work consensus protocol [Nakamoto
2008], Cardano’s Ouroboros protocol [Kiayias et al. 2017] is proof-of-stake. This, however, does not
concern our study of the abstract accounting model, thus we refrain from formally modelling and
comparing different consensus techniques.

The actual extension we care about is the inclusion of data scripts in transaction outputs, which
essentially provide the validation script in the corresponding input with additional information of
an arbitrary type.

This extension of the UTxO model has already been implemented?®, but only informally docu-
mented”. The reason to extend the UTxO model with data scripts is to bring more expressive power
to UTxO-based blockchains, hopefully bringing it on par with Ethereum’s account-based scripting
model (see Section 2.4).

However, there is no formal argument to support this claim, and it is the goal of this thesis to
provide the first formal investigation of the expressiveness introduced by this extension.

2.4 Account-based: Ethereum

On the other side of the spectrum, lies the second biggest cryptocurrency today, Ethereum [Buterin
et al. 2014]. In contrast to UTxO-based systems, Ethereum has a built-in notion of user addresses
and operates on a stateful accounting model. It goes even further to distinguish human accounts
(controlled by a public-private key pair) from contract accounts (controlled by some EVM code).

Zwww.cardano.org
Shttps://github.com/input-output-hk/plutus/tree/master/wallet-api/src/Ledger
4https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md

www.cardano.org
https://github.com/input-output-hk/plutus/tree/master/wallet-api/src/Ledger
https://github.com/input-output-hk/plutus/blob/master/docs/extended-utxo/README.md

Formal investigation of the Extended UTxO model

This added expressiveness is also reflected in the quasi-Turing-complete low-level stack-based
bytecode language in which contract code is written, namely the Ethereum Virtual Machine (EVM).
EVM is mostly designed as a target, to which other high-level user-friendly languages will compile
to.

Solidity. The most widely adopted language that targets the EVM is Solidity, whose high-level
object-oriented design makes writing common contract use-cases (e.g. crowdfunding campaigns,
auctions) rather straightforward.

One of Solidity’s most distinguishing features is the concept of a contract’s gas; a limit to the
amount of computational steps a contract can perform. At the time of the creation of a transaction,
its owner specifies a certain amount of gas the contract can consume and pays a transaction fee
proportional to it. In case of complete depletion (i.e. all gas has been consumed before the con-
tract finishes its execution), all global state changes are reverted as if the contract had never been
run. This is a necessary ingredient for smart contract languages that provide arbitrary looping
behaviour, since non-termination of the validation phase is certainly undesirable.

If time permits, we will initially provide a formal justification of Solidity and proceed to formally
compare the extended UTxO model against it. Since Solidity is a fully-fledged programming lan-
guage with lots of features (e.g. static typing, inheritance, libraries, user-defined types), it makes
sense to restrict our formal study to a compact subset of Solidity that is easy to reason about. This
is the approach also taken in Featherweight Java [Igarashi et al. 2001]; a subset of Java that omits
complex features such as reflection, in favour of easier behavioural reasoning and a more formal
investigation of its semantics. In the same vein, we will try to introduce a lightweight version of
Solidity, which we will refer to as Featherweight Solidity.

3 METHODOLOGY
3.1 Scope

At this point, we have to stress the fact that we are not aiming for a formalization of a fully-fledged
blockchain system with all its bells and whistles, but rather focus on the underlying accounting
model. Therefore, we will omit details concerning cryptographic operations and aspects of the
actual implementation of such a system. Instead, we will work on an abstract layer that postulates
the well-behavedness of these subcomponents, which will hopefully lend itself to more tractable
reasoning and give us a clear overview of the essence of the problem.

Restricting the scope of our attempt is also motivated from the fact that individual components
such as cryptographic protocols are orthogonal to the functionality we study here. This lack of
tight cohesion between the components of the system allows one to safely factor each one out and
formalize it independently.

It is important to note that this is not always the case for every domain. A prominent example of
this are operating systems, which consist of intricately linked subcomponents (e.g. drivers, mem-
ory modules), thus making it impossible to trivially divide the overall proof into small independent
ones. In order to overcome this complexity burden, one has to invent novel ways of modular proof
mechanization, as exemplified by CertiKOS [Chen et al. 2016], a formally verified concurrent OS.

3.2 Proof Mechanization

Fortunately, the sub-components of the system we are examining are not no interdependent, thus
lending themselves to separate treatment. Nonetheless, the complexity of the sub-system we care
about is still high and requires rigorous investigation. Therefore, we choose to conduct our formal

Orestis Melkonian

study in a mechanized manner, i.e. using a proof assistant along the way and formalizing all re-
sults in Type Theory. Proof mechanization will allow us to discover edge cases and increase the
confidence of the model under investigation.

3.3 Agda

As our proof development vehicle, we choose Agda [Norell 2008], a dependently-typed total func-
tional language similar to Haskell [Hudak et al. 1992].

Agda embraces the Curry-Howard correspondence, which states that types are isomorphic to
statements in (intuitionistic) logic and their programs correspond to the proofs of these state-
ments [Martin-L6f and Sambin 1984]. Through its unicode-based mixfix notational system, one can
easily translate a mathematical theorem into a valid Agda type. Moreover, programs and proofs
share the same structure, e.g. induction in the proof manifests itself as recursion in the program.

While Agda is not ideal for large software development, its flexible notation and elegant design is
suitable for rapid prototyping of new ideas and exploratory purposes. We do not expect to hit such
problems, since we will stay on a fairly abstract level which postulates cryptographic operations
and other implementation details.

Limitation. The main limitation of Agda lies in its lack of a proper proof automation system.
While there has been work on providing Agda with such capabilities [Kokke and Swierstra 2015],
it requires moving to a meta-programming mindset which would be an additional programming
hindrance.

A reasonable alternative would be to use Coq [Barras et al. 1997], which provides a pragmatic
scripting language for programming tactics, i.e. programs that work on proof contexts and can
generate new sub-goals. This approach to proof mechanization has, however, been criticized for
widening the gap between informal proofs and programs written in a proof assistant. This clearly
goes against the aforementioned principle of proofs-as-programs.

3.4 The IOHK approach

At this point, we would like to mention the specific approach taken by IOHK®. In contrast to nu-
merous other companies currently creating cryptocurrencies, its main focus is on provably correct
protocols with a strong focus on peer-reviewing and robust implementations, rather than fast deliv-
ery of results. This is evidenced by the choice of programming languages (Agda/Cog/Haskell/Scala)
- all functional programming languages with rich type systems — and the use of property-based
testing [Claessen and Hughes 2011] for the production code.

IOHK’s distinct feature is that it advocates a more rigorous development pipeline; ideas are ini-
tially worked on paper by pure academics, which create fertile ground for starting formal verifica-
tion in Agda/Coq for more confident results, which result in a prototype/reference implementation
in Haskell, which informs the production code-base (also written in Haskell) on the properties that
should be tested.

Since this thesis is done in close collaboration with IOHK, it is situated on the second step of
aforementioned pipeline; while there has been work on writing papers about the extended UTxO
model along with the actual implementation in Haskell, there is still no complete and mechanized
account of its properties.

3.5 Functional Programming Principles

One last important manifestation of the functional programming principles behind IOHK is the
choice of a UTxO-based cryptocurrency itself.

5https://iohk.io/

https://iohk.io/

Formal investigation of the Extended UTxO model

On the one hand, one can view a UTxO ledger as a dataflow diagram, whose nodes are the
submitted transactions and edges represent links between transaction inputs and outputs. On the
other hand, account-based ledgers rely on a global state and transaction have a much more com-
plicated specification.

The key point here is that UTxO-based transaction are just pure mathematical functions, which
are much more straightforward to model and reason about. Coming back to the principles of func-
tional programming, one could contrast this with the difference between functional and imperative
programs. One can use equational reasoning for functional programs, due to their referential trans-
parency, while this is not possible for imperative programs that contain side-effectful commands.
Therefore, we hope that these principles will be reflected in the proof process itself; one would
reason about purely functional UTxO-based ledgers in a compositional manner.

4 PRELIMINARY RESULTS

This section gives an overview of the progress made so far in the on-going Agda formalization
of the two main subjects of study, namely the Extended UTxO model and the BitML calculus.
For the sake of brevity, we refrain from showing the full Agda code along with the complete
proofs, but rather provide the most important datatypes and formalized results and explain crucial
design choices we made along the way. Furthermore, we will omit notational burden imposed by
technicalities particular to Agda, such as universe polymorphism and proof irrelevance.

4.1 Formal Model I: Extended UTxO

We now set out to model the accounting model of a UTxO-based ledger. We will provide a
inherently-typed model of transactions and ledgers; this gives rise to a notion of weakening of
available addresses, which we formalize. Moreover, we showcase the reasoning abilities of our
model by giving an example of a correct-by-construction ledger. All code is publicly available on
Github®.

We start with the basic types, keeping them abstract since we do not care about details arising
from the encoding in an actual implementation:

postulate
Address : Set
Value : Set
B:N - Value
We assume there are types representing addresses and bitcoin values, but also require the ability
to construct a value out of a natural number. In the examples that follow, we assume the simplest
representation, where both types are the natural numbers.
There is also the notion of the state of a ledger, which will be provided to transaction scripts
and allow them to have stateful behaviour for more complicated schemes (e.g. imposing time con-
straints).

record State : Set where
field height: N

The state components have not been finalized yet, but can easily be extended later when we

®https://github.com/omelkonian/formal-utxo

https://github.com/omelkonian/formal-utxo

Orestis Melkonian

actually investigate examples with expressive scripts that make use of state information, such as
the current length of the ledger (height).

As mentioned previously, we will not dive into the verification of the cryptological components
of the model, hence we postulate an irreversible hashing function which, given any value of any
type, gives back an address (i.e. a natural number) and is furthermore injective (i.e. it is highly
unlikely for two different values to have the same hash).

postulate
_#:V{A:Set} > A — Address
#-injective :V{x y: A} D x#=y# 5 x=y

4.1.1 Transactions. In order to model transactions that are part of a distributed ledger, we need
to first define transaction inputs and outputs.

record TxOutputRef : Set where
constructor _@ _
field id : Address
index: N
record TxInput {R D : Set} : Set where
field outputRef: TxOutputRef
redeemer : State — R
validator : State — Value — R — D — Bool

Output references consist of the address that a transaction hashes to, as well as the index in this
transaction’s list of outputs. Transaction inputs refer to some previous output in the ledger, but
also contain two types of scripts. The redeemer provides evidence of authorization to spend the
output. The validator then checks whether this is so, having access to the current state of the
ledger, the bitcoin output and data provided by the redeemer and the data script (residing in
outputs). It is also noteworthy that we immediately model scripts by their denotational semantics,
omitting unnecessary details relating to concrete syntax, lexing and parsing.

Transaction outputs send a bitcoin amount to a particular address, which either corresponds
to a public key hash of a blockchain participant (P2PKH) or a hash of a next transaction’s script
(P2SH). Here, we opt to embrace the inherently-typed philosophy of Agda and model available
addresses as module parameters. That is, we package the following definitions in a module with
such a parameter, as shown below:

module UTxO (addresses : List Address) where
record TxOutput {D : Set} : Set where
field value : Value
address : Index addresses
dataScript : State — D
record Tx : Set where
field inputs : Set({ TxInput)
outputs : List TxOutput

Formal investigation of the Extended UTxO model

forge :Value
fee : Value

Ledger : Set
Ledger = List Tx

Transaction outputs consist of a bitcoin amount and the address (out of the available ones) this
amount is sent to, as well as the data script, which provides extra information to the aforemen-
tioned validator and allows for more expressive schemes. Investigating exactly the extent of this
expressiveness is one of the main goals of this thesis.

For a transaction to be submitted, one has to check that each input can actually spend the output
it refers to. At this point of interaction, one must combine all scripts, as shown below:

runValidation : (i: TxInput) — (o: TxOutput) — D i = D o — State — Bool
runValidation i o ref1 st = validator i st (value o) (redeemer i st) (dataScript o st)

Note that the intermediate types carried by the respective input and output must align, evidenced
by the equality proof that is required as an argument.

4.1.2 Unspent Transaction Outputs. With the basic modelling of a ledger and its transaction in
place, it is fairly straightforward to inductively define the calculation of a ledger’s unspent trans-
action outputs:

unspentOutputs : Ledger — Set(TxOutputRef)

unspentOutputs | | =g
unspentOutputs (tx :: txs) = (unspentOutputs txs \ spentOutputsTx tx) U unspentOutputsTx tx
where
spentOutputsTx , unspentOutputsTx: Tx — Set(TxOutputRef)
spentOutputsTx = (outputRef <$> _)-inputs

unspentOutputsTx tx = ((tx #) @_) <$> (indices (outputs tx))

4.1.3 Validity of Transactions. In order to submit a transaction, one has to make sure it is valid
with respect to the current ledger. We model validity as a record indexed by the transaction to be
submitted and the current ledger:

record IsValidTx (tx: Tx) (l: Ledger) : Set where
field
validTxRefs :
Vi — I € inputs tx —
Any (At — t# = id (outputRef i)) |

validOutputIndices :
Vi— (i€ :i € inputs tx) —
index (outputRef i) <
length (outputs (lookupTx I (outputRef i) (validTxRefsii€)))

Orestis Melkonian

validOutputRefs :
Vi — i€ inputs tx —
outputRef i € unspentOutputs |

validDataScriptTypes :
Vi— (i€ :i € inputs tx) —
D i = D (lookupOutput | (outputRef i) (validTxRefs iic) (validOutputIndices i i€))

preservesValues :
forge tx + sum (mapWith € (inputs tx) A {i} ie—
lookupValue 1 i (validTxRefs i i€) (validOutputindices i i<))

fee tx + sum (value <$> outputs tx)

noDoubleSpending :
noDuplicates (outpuiRef <$> inputs tx)

alllnputsValidate :
Vi— (i€ :i€ inputs tx) —
let out: TxOutput
out = lookupOutput | (outputRef i) (validTxRefs i i€) (validOutputindices i i <)
in V(st:State) —
T (runValidation i out (validDataScriptTypes i i €) st)

validateValidHashes :
Vi — (i€ :i€ inputs tx) —
let out: TxOutput
out = lookupOutput 1 (outputRef i) (validTxRefs i i<) (validOutputlndices i i €)
in toN (address out) = (validator i) #

The first four conditions make sure the transaction references and types are well-formed, namely
that inputs refer to actual transactions (validTxRefs, validOutputIndices) which are unspent so far
(validOutputRefs), but also that intermediate types used in interacting inputs and outputs align
(validDataScriptTypes).

The last four validation conditions are more interesting, as they ascertain the validity of the sub-
mitted transaction, namely that the bitcoin values sum up properly (preservesValues), no output is
spent twice (noDoubleSpending), validation succeeds for each input-output pair (alllnputsValidate)
and outputs hash to the hash of their corresponding validator script (validateValidHashes).

The definitions of lookup functions are omitted, as they are uninteresting. The only important
design choice is that, instead of modelling lookups as partial functions (i.e. returning Maybe), they
require a membership proof as an argument moving the responsibility to the caller (as evidenced
by their usage in the validity conditions).

Formal investigation of the Extended UTxO model

4.1.4 Weakening Lemma. We have defined everything with respect to a fixed set of available ad-
dresses, but it would make sense to be able to include additional addresses without losing the
validity of the ledger constructed thus far.

In order to do, we need to first expose the basic datatypes from inside the module, introducing
their primed version which takes the corresponding module parameter as an index:

Ledger’ : List Address — Set
Ledger’ as = Ledger
where open import UTxO as

We can now precisely define what it means to weaken an address space; one just adds more
available addresses without removing any of the pre-existing addresses:

weakenTxOutput : Prefix as bs — TxOutput’ as — TxOutput’ bs
weakenTxOutput pr txOut = txOut { address = inject < addr (prefix-length pr)}
where open import UTxO bs

For simplicity’s sake, we allow extension at the end of the address space instead of anywhere in
between’. Notice also that the only place where weakening takes place are transaction outputs,
since all other components do not depend on the available address space.

With the weakening properly defined, we can finally prove the weakening lemma for the avail-
able address space:

weakening : V{as bs: List Address} {tx: Tx" as} {l: Ledger’ as}
— (pr: Prefix as bs)
— IsValidTx' as tx |

— IsValidTx" bs (weakenTx pr tx) (weakenLedger pr)

weakening = . ..

The weakening lemma states that the validity of a transaction with respect to a ledger is preserved
if we choose to weaken the available address space, which we estimate to be useful when we later
prove more intricate properties of the extended UTxO model.

4.1.5 Example. To showcase how we can use our model to construct correct-by-construction
ledgers, let us revisit the example ledger presented in the Chimeric Ledgers paper [Zahnentferner
and HK 2018].

Any blockchain can be visually represented as a directed acyclic graph (DAG), with transactions
as nodes and input-output pairs as edges, as shown in Figure 1.

First, we need to set things up by declaring the list of available addresses and opening our
module with this parameter.

"Technically, we require Prefix as bs instead of the more flexible as C bs.

Orestis Melkonian

5t to t5 B 500 te
forge: 15 1000 | B 1000 forge: 5 0 1 800 forge: 80| @2 |forge:Bo|B999

@2 fee: B7|B500
@3

@3

t3 ty

forge: B 0 B 199 forge: B 10 B 207
fee: B1| @3 |[fee: B2 @2

Fig. 1. Example ledger with six transactions (unspent outputs are coloured in red)

addresses : List Address
addresses = 1 :: 2 :: 3 11 []

open import UTxO addresses

dummyValidator : State — Value — N — N — Bool
dummyValidator = A _ _ _ _ — true

withScripts : TxOutputRe f — TxInput
withScripts tin = record { outputRef = tin
;redeemer = A _ — 0
: validator = dummyValidator

)

B _@_:Value — Index addresses — TxOutput
B v @ addr = record { value =
;address = addr
:dataScript =1 _ — 0
}

postulate
validator # : V{i: Index addresses} — toN i = dummyValidator #

Note that, since we will not utilize the expressive power of scripts in this example, we also provide
convenient short cuts for defining inputs and outputs with dummy default scripts. Furthermore,
we postulate that the addresses are actually the hashes of validators scripts, corresponding to the
P2SH scheme in Bitcoin.

We can then proceed to define the individual transactions® depicted in Figure 1:

8 The first sub-index of each variable refers to the order the transaction are submitted, while the second sub-index refers
to which output of the given transaction we select.

Formal investigation of the Extended UTxO model

Loty b, b, bs, te: Tx

ty = record {inputs =[]

s outputs = [1000 @ 0]
i forge =B 1000

: fee =B0

}

t, = record {inputs = [withScripts t,)
soutputs = B800 @ 1 :: B200 @ 0 :: []
iforge =BO
: fee =B0
}

t; = record {inputs = [withScripts t,,]
;outputs = [3 199 @ 2|
iforge =B0
; fee =B1
}

ty = record {inputs = [withScripts ts)
;outputs = [B 207 @ 1]

i forge =B 10
: fee =B2
}

ts = record {inputs = withScripts to :: withScripts ty :: ||
;outputs = B 500 @ 1 :: B 500 @ 2 :: []
iforge =BO
: fee =RB7
}

te = record {inputs = withScripts ts, :: withScripts ts; :: []
;outputs = [999 @ 2|
iforge =BO
; fee =81
}

Finally, we can construct a correct-by-construction ledger, by iteratively submitting each trans-
action along with the proof that it is valid with respect to the ledger constructed thus far’:

9 Here, we use a specialized notation of the form e¢1 + p1 @ t2 F po @ - - - ® 1, + p,, where each insertion of transaction
requires a proof of validity p, as well. Technically, the @ operator has type (I: Ledger) — (t: Tx) — IsValidTx t | —
Ledger.

Orestis Melkonian

ex-ledger: Ledger

ex-ledger = o t, + record { validTxRefs =Ai()
; validOutputindices = A i ()
; validOutputRefs =21i()
; validDataScriptTypes = A i ()
; preservesValues =refl
: noDoubleSpending = tt
; alllnputsValidate =21i()

; validateValidHashes = A i ()

}
@t +record {...}
@ t; + record {...}
@t +record {...}
@ t; + record {...}
@t + record {...}

The proof validating the submission of the first transaction t; is trivially discharged. While the
rest of the proofs are quite involved, it is worthy to note that their size/complexity stays constant
independently of the ledger length. This is mainly due to the re-usability of proof components,
arising from the main functions being inductively defined.

It is now trivial to verify that the only unspent transaction output of our ledger is the output of
the last transaction tg, as demonstrated below:

utxo : list (unspentOutputs ex-ledger) = 1)
utxo = refl

4.2 Formal Model II: BitML Calculus

Now let us shift our focus to our second subject of study, the BitML calculus for modelling smart
contracts. In this subsection we sketch the formalized part of BitML we have covered so far, namely
the syntax and small-step semantics of BitML contracts, as well as an example execution of a
contract under these semantics. All code is publicly available on Github'’.

First, we begin with some basic definitions that will be used throughout this section:

module Types (Participant : Set) (Honest : List* Participant) where

Time : Set
Time = N

Value : Set
Value = N

Ohttps://github.com/omelkonian/formal-bitml

https://github.com/omelkonian/formal-bitml

Formal investigation of the Extended UTxO model

record Deposit : Set where
constructor has_
field participant : Participant
value : Value

Secret : Set
Secret = String

data Arith : List Secret — Set where ...
N[_]:v{s} - Arith s > N
N[]=...

data Predicate : List Secret — Set where ...
B[_]:v{s} — Predicate s — Bool

B[]=...

Instead of giving a fixed datatype of participants, we parametrise our module with a given universe
of participants and a non-empty list of honest participants. Representation of time and monetary
values is again done using natural numbers, while we model participant secrets as simple strings'’.
A deposits consists of the participant that owns it and the number of bitcoins it carries. We,
furthermore, introduce a simplistic language of logical predicates and arithmetic expressions with
the usual constructs (e.g. numerical addition, logical conjunction) and give the usual semantics
(predicates on booleans and arithmetic on naturals). A more unusual feature of these expressions
is the ability to calculate length of secrets (within arithmetic expressions) and, in order to ensure
more type safety later on, all expressions are indexed by the secrets they internally use.

4.2.1 Contracts in BitML. A contract advertisement consists of a set of preconditions, which require
some resources from the involved participants prior to the contract’s execution, and a contract,
which specifies the rules according to which bitcoins are transferred between participants.

Preconditions either require participants to have a deposit of a certain value on their name
(volatile or not) or commit to a certain secret. Notice the index of the datatype below, which cap-
tures the values of all required deposits:

data Precondition : List Value — Set where
?: Participant — (v: Value) — Precondition |v|
!: Participant — (v: Value) — Precondition [v]
_# : Participant — Secret — Precondition ||

_ A _: Precondition vs; — Precondition vs, — Precondition (vs; H vs,)

11 Of course, one could provide more realistic types (e.g. words of specific length) to be closer to the implementation, as
shown for the UTxO model in Section 4.1.

Orestis Melkonian

Moving on to actual contracts, we define them by means of a collection of five types of com-
mands; put injects participant deposits and revealed secrets in the remaining contract, withdraw
transfers the current funds to a participant, split distributes the current funds across different indi-
vidual contracts, _:_requires the authorization from a participant to proceed and after _:_ allows
further execution of the contract only after some time has passed.

data Contract : Value --the monetary value it carries
— Values -- the deposits it presumes
— Set where
-- collect deposits and secrets
put _reveal _if = _+ _
(vs: List Value) — (s: Secrets) — Predicate s — Contract (v+ sum vs) vs© — s C's
— Contract v (vs' +- vs)
-- transfer the remaining balance to a participant
withdraw : V{v} — Participant — Contract v ||
-- split the balance across different branches
split: (cs: List (3[v] 3[vs| Contract v vs))
— Contract (sum (proj, <$> cs)) (concat (proj, <$> cs))
-- wait for participant’s authorization
: tParticipant — Contract v vs — Contract v vs
-- wait until some time passes
after _:_:Time — Contract v vs — Contract v vs

There is a lot of type-level manipulation across all constructors, since we need to make sure that
indices are calculated properly. For instance, the total value in a contract constructed by the
split command is the sum of the values carried by each branch. The put command'” additionally
requires an explicit proof that the predicate of the i f part only uses secrets revealed by the same
command.

We also introduce an intuitive syntax for declaring the different branches of a split command,
emphasizing the linear nature of the contract’s total monetary value:

—o:Y{vs:Values} — (v:Value) — Contract v vs — 3[v| 3[vs|] Contract v vs

_—o {ws}vec=wv,vs,c

Having defined both preconditions and contracts, we arrive at the definition of a contract ad-
vertisement:
record Advertisement (v: Value) (vs® vs® : List Value) : Set where
constructor ()+ _
field G : Precondition vs
C : Contracts v vs
valid : length vs¢ < length vs®
X participants® G -+ participants® C C (participant <$> persistentDeposits® G)

Notice that in order to construct an advertisement, one has to also provide proof of the contract’s

12 put comprises of several components and we will omit those that do not contain any helpful information, e.g. write
put _ = _ when there are no revealed secrets and the predicate trivially holds.

Formal investigation of the Extended UTxO model

validity with respect to the given preconditions, namely that all deposit references in the contract
are declared in the precondition and each involved participant is required to have a persistent
deposit.

To clarify things so far, let us see a simple example of a contract advertisement:

open BitML (A | B) [A]"
ex-ad : Advertisement 5 [200] (200 :: 100 :: [])
ex-ad = (B!200 A A!100)
split (2 —o withdraw B
® 2 —o after 100 : withdraw A
@® 1 —o put [200] = B: withdraw {201} A+ ...
)

We first need to open our module with a fixed set of participants (in this case A and B). We then
define an advertisement, whose type already says a lot about what is going on; it carries B 5,
presumes the existence of at least one deposit of B 200, and requires two deposits of B 200 and
B 100.

Looking at the precondition itself, we see that the required deposits will be provided by B and
A, respectively. The contract first splits the bitcoins across three branches: the first one gives B 2
to B, the second one gives B 2 to A after some time period, while the third one retrieves B’s deposit
of B 200 and allows B to authorise the withdrawal of the remaining funds (currently B 201) from
A.

We have omitted the proofs that ascertain the well-formedness of the put command and the
advertisement, as they are straightforward and do not provide any more intuition'®.

4.2.2 Small-step Semantics. BitML is a process calculus, which is geared specifically towards smart
contracts. Contrary to most process calculi that provide primitive operators for inter-process com-
munication via message-passing [Hoare 1978], the BitML calculus does not provide such built-in
features.

It, instead, provides domain-specific synchronization mechanisms through its small-step reduc-
tion semantics. These essentially define a labelled transition system between configurations, where
action labels are emitted on every transition and represent the required actions of the participants.
This symbolic model consists of two layers; the bottom one transitioning between untimed config-
urations and the top one that works on timed configurations.

We start with the datatype of actions, which showcases the principal actions required to satisfy
an advertisement’s preconditions and an action to pick one branch of a collection of contracts
(introduced by the choice operator ®). We have omitted uninteresting actions concerning the ma-
nipulation of deposits, such as dividing, joining, donating and destroying them. Since we will often
need versions of the types of advertisements/contracts with their indices existentially quantified,
we first provide aliases for them.

13 In fact, we have defined decidable procedures for all such proofs using the proof-by-reflection pattern [Van Der Walt and
Swierstra 2012]. These automatically discharge all proof obligations, when there are no variables involved.

Orestis Melkonian

AdvertisedContracts : Set
AdvertisedContracts = List (3[v] 3[vs©] 3[vs¢| Advertisement v vs© vs¢)

ActiveContracts : Set
ActiveContracts = List (3[v] 3[vs| List (Contract v vs))

data Action (p: Participant)
AdvertisedContracts
— ActiveContracts
— Values
— List Deposit
— Set where

40> _ : (ad:Advertisement v vs© vs®)
— Action p [v,vs®, vs®,ad] []][] []

_ > : (ad: Advertisement v vs© vs®)

— (i: Index vs®)

— Action p [v, vs, vst, ad] [] [vst !li] []
_ =" (c: List (Contract v vs))

— (i:Index c)
— Action p[] [v,vs,c] [][]

The action datatype is parametrised'* over the participant who performs it and includes several
indices representing the prerequisites the current configuration has to satisfy, in order for the
action to be considered valid (e.g. one cannot spend a deposit to stipulate an advertisement that
does not exist).

The first index refers to advertisements that appear in the current configuration, the second
to contracts that have already been stipulated, the third to deposits owned by the participant cur-
rently performing the action and the fourth declares new deposits that will be created by the action
(e.g. dividing a deposit would require a single deposit as the third index and produce two other
deposits in its fourth index).

Although our indexing scheme might seem a bit heavyweight now, it makes many little details
and assumptions explicit, which would bite us later on when we will need to reason about them.

Continuing from our previous example advertisement, let’s see an example action where A
spends the required B 100 to stipulate the example contract'®:

4 In Agda, datatype parameters are similar to indices, but are not allowed to vary across constructors.
15 Notice that we have to make all indices of the advertisement explicit in the second index in the action’s type signature.

Formal investigation of the Extended UTxO model

ex-spend : Action A [5,[200],200 :: 100 :: [], ex-ad| [] [100] []
ex-spend = ex-ad >° 1

Configurations are now built from advertisements, active contracts, deposits, action authoriza-
tions and committed/revealed secrets:

data Configuration’ : -- current X required
AdvertisedContracts x AdvertisedContracts
— ActiveContracts X ActiveContracts
— List Deposit X List Deposit

— Set where

-- empty
@ Configuration” ([]. []) (L] [1) ([]. [])

-- contract advertisement
¢

_ : (ad: Advertisement v vs© vs®)
— Configuration’ ([v, vs, vs*., ad|, []) ([].[]) (I].[])
-- active contract
(_,_) : (c:List (Contract v vs)) — Value
— Configuration’ ([],[]) ([v.vs,c|.[]) ([].[])
-- deposit redeemable by a participant
(_,) : (p: Participant) — (v: Value)
— Configuration’ ([],[]) ([[1) ([p has] .])
-- authorization to perform an action
_[.] :(p:Participant) — Action p ads cs vs ds
— Configuration’ ([], ads) ([],cs) (ds, ((p has _) <$> vs))
-- committed secret
(_:_#_) : Participant — Secret — N & L
— Configuration’ (|1.[1) (1] 1)) (1] 1]
-- revealed secret
: Participant — Secret — N

— Configuration’ ([].[]) ([].[]) ([1])

-- parallel composition

_| _ : Configuration’ (ads', rads") (cs', res') (ds', rds')
— Configuration’ (ads", rads") (c¢s", res”) (ds*, rds")
— Configuration’ (ads' H ads®, rads' + (rads" \ ads'))
(cs' Hes" L res' H (rest \cs'))
((ds'\ rds") +ds* ,rds'" + (rds" \ ds'))

The indices are quite involved, since we need to record both the current advertisements, stipulated
contracts and deposits and the required ones for the configuration to become valid. The most
interesting case is the parallel composition operator, where the resources provided by the left
operand might satisfy some requirements of the right operand. Moreover, consumed deposits

Orestis Melkonian

have to be eliminated as there can be no double spending, while the number of advertisements
and contracts always grows.

By composing configurations together, we will eventually end up in a closed configuration,
where all required indices are empty (i.e. the configuration is self-contained):

Configuration : AdvertisedContracts — ActiveContracts — List Deposit — Set

Configuration ads cs ds = Configuration’ (ads,[]) (cs,[]) (ds.[])

We are now ready to declare the inference rules of the bottom layer of our small-step semantics,
by defining an inductive datatype modelling the binary step relation between untimed configura-
tions:

data _ — _: Configuration ads cs ds — Configuration ads cs’ ds' — Set where
DEP-Authjoin :
(A V) (AV)T — (A V) (A V) A[0L] | T

DEP-Join :
(A, v) (A V)Y A0 [T — (A, v+ v)| T

C-Advertise : V{I" ad}
— 3[p € participants® (G ad)| p € Hon

-1 —‘ad|T

C-AuthCommit : V{A ad 1"}
— secrets (G ad) = ay ... ay
— (A€ Hon—-v[ie0 ... n]a#l)

—‘ad| T — ‘ad|T|...(A:a;4N;)... |A[4> ad]

C-Control :V{I' CiD}
- Clli=A:A,:...:A:D

—(C.v)Y¥|...A[Cti] ... |l —(D,v)y |l

There is a total of 18 rules we need to define, but we choose to depict only a representative
subset of them. The first pair of rules initially appends the authorisation to merge two deposits
to the current configuration (rule [DEP-Authjoin]) and then performs the actual join (rule
[DEP-Join]). This is a common pattern across all rules, where we first collect authorisations for
an action by all involved participants, and then we fire a subsequent rule to perform this action.
[C-Advertise]| advertises a new contract, mandating that at least one of the participants involved
in the pre-condition is honest and requiring that all deposits needed for stipulation are available
in the surrounding context. [C-AuthCommit | allows participants to commit to the secrets required
by the contract’s pre-condition, but only dishonest ones can commit to the invalid length L.

Formal investigation of the Extended UTxO model

Lastly, [C-Control] allows participants to give their authorization required by a particular branch
out of the current choices present in the contract, discarding any time constraints along the way.

It is noteworthy to mention that during the transcriptions of the complete set of rules from the
paper [Bartoletti and Zunino 2018] to our dependently-typed setting, we discovered a discrepancy
in the [C-AuthRev] rule, namely that there was no context I'. Moreover, in order to later facilitate
equational reasoning, we re-factored the [C-Control| to not contain the inner step as a hypothesis,
but instead immediately inject it in the result operand of the step relation.

The inference rules above have elided any treatment of timely constraints; this is handled by
the top layer, whose states are now timed configurations. The only interesting inference rule is the
one that handles time decorations of the form after _: _, since all other cases are dispatched to the
bottom layer (which just ignores timely aspects).

record Configuration' (ads: AdvertisedContracts) (cs: ActiveContracts) (ds: Deposits) : Set where
constructor _ @

field cfg : Configltration ads cs ds

time: Time

data _ —, _:Configuration' ads cs ds — Configuration' ads cs' ds' — Set where

Action : v{I' 1" t}

o e

sT@t— I"@t
Delay : v{I" t §}

T@t— I @ (t+9)

Timeout : v{I' 1" t i contract}
— All (_ < t) (timeDecorations (contract!! i)) -- all time constraints are satisfied
— ([contract!l'i] ,v)* | ' — I” -- resulting state if we pick this branch

— ((contract,v)* |I') @t— 1" @t

Having defined the step relation in this way allows for equational reasoning, a powerful tool
for writing complex proofs:

data _ — _:Configuration ads cs ds — Configuration ads cs' ds' — Set where
_0: (M : Configuration ads cs ds) —» M — M

—{()_:Y{M N} (L: Configuration ads cs ds)
—-L—M-—>M-—+N

—L—+N
begin :Y{M N} —->M - N —>M— N

Orestis Melkonian

4.2.3 Example. We are finally ready to see a more intuitive example of the timed-commitment
protocol, where a participant commits to revealing a valid secret a (e.g. qwerty”) to another par-
ticipant, but loses her deposit of BB 1 if she does not meet a certain deadline ¢:

tc: Advertisement 1 [] (1::0 :: [])

tce=(A!'1ANA#aAB!0) reveal [a] = withdraw A+ ... & after t: withdraw B

Below is one possible reduction in the bottom layer of our small-step semantics, demonstrating
the case where the participant actually meets the deadline:
te-semantics: (A, 1) — (A, 1) | A:a+6
tc-semantics =
begin
(A, 1)
— (C-Advertise)
‘te| (A, 1)
— (C-AuthCommit)
‘te| (A1) | (Aa#6) | A4 tc
— (C-AuthlInit)
‘te| (A, 1) | (Ara#6) | Al | | Alte>® 0]
— (C-Init)
(te, 1) |(A:a#inj 6)
— (C-AuthRev)
(te,1) | A:a#6
—(C-Control)
([reveal [a] = withdraw A+ ...], 1) | A:a46
— (C-PutRev)
([withdraw A], 1)" | A:a 46
—>(C-Withdraw)
(A, 1) | A:a46
]

At first, A holds a deposit of B 1, as required by the contract’s precondition. Then, the contract is
advertised and the participants slowly provide the corresponding prerequisites (i.e. A commits to
a secret via [C-AuthCommit| and spends the required deposit via [C-Authlnit|, while B does not
do anything). After all pre-conditions have been satisfied, the contract is stipulated (rule [C-Init])
and the secret is successfully revealed (rule [C-AuthRev|). Finally, the first branch is picked (rule
[C-Control|) and A retrieves her deposit back (rules [C-PutRev]| and [C-Withdraw]).

4.3 Reasoning Modulo Permutation

In the definitions above, we have assumed that (_|_, &) forms a commutative monoid, which
allowed us to always present the required sub-configuration individually on the far left of a com-
posite configuration. While such definitions enjoy a striking similarity to the ones appearing in
the original paper [Bartoletti and Zunino 2018] (and should always be preferred in an informal
textual setting), this approach does not suffice for a mechanized account of the model. After all,
this explicit treatment of all intuitive assumptions/details is what makes our approach robust and
will lead to a deeper understanding of how these systems behave. To overcome this intricacy, we

Formal investigation of the Extended UTxO model

introduce an equivalence relation on configurations, which holds when they are just permutations

of one another:
_ =~ _:Configuration ads cs ds — Configuration ads cs ds — Set
c~ ¢ = cfgToList ¢ «~ cfgToList ¢
where

open import Data.List.Permutation using (_ «~)

cfgToList : Configuration’ p; p, ps — List (3[pi] 3[p,| 3[ps] Configuration’ p, p, ps)
cfgToList & =]

cfgToList (1] r) = cfgToList | # cfgToList r

cfgToList {pi} {pa} {ps} c= [pr.p2. s, C]

Given this reordering mechanism, we now need to generalise all our inference rules to implicitly
reorder the current and next configuration of the step relation. We achieve this by introducing a
new variable for each of the operands of the resulting step relations, replacing the operands with
these variables and requiring that they are re-orderings of the previous configurations, as shown

in the following generalisation of the [DEP-AuthJoin| rule'’:

DEP-Authjoin :
I = (A, v [(A, v)T € Configuration ads cs (A hasv:: A has v :: ds)
ST~ (A, v) (A, v Y| A[0=1] | T € Configuration ads cs (A has (v+ v) :: ds)

1" — 1

Unfortunately, we now have more proof obligations of the re-ordering relation lying around,
which makes reasoning about our semantics rather tedious. We are currently investigating differ-
ent techniques to model such reasoning up to equivalence:

e Quotient types [Altenkirch et al. 2011] allow equipping a type with an equivalence relation.
If we assume the axiom that two elements of the underlying type are propositionally equal
when they are equivalent, we could discharge our current proof burden trivially by reflexiv-
ity. Unfortunately, while one can easily define setoids in Agda, there is not enough support
from the underlying type system to make reasoning about such an equivalence as easy as
with built-in equality.

e Going a step further into more advanced notions of equality, we arrive at homotopy type the-
ory [hom 2013], which tries to bridge the gap between reasoning about isomorphic objects
in informal pen-paper proofs and the way we achieve this in mechanized formal methods.
Again, realizing practical systems with such an enriched theory is a topic of current re-
search [Cohen et al. 2016] and no mature implementation exists yet, so we cannot integrate
it with our current development in any pragmatic way.

e The crucial problems we have encountered so far are attributed to the non-deterministic
nature of BitML, which is actually inherent in any process calculus. Building upon this idea,
we plan to take a step back and investigate different reasoning techniques for a minimal
process calculus. Once we have an approach that is more suitable, we will incorporate it in
our full-blown BitML calculus.

16 In fact, it is not necessary to reorder both ends for the step relation; at least one would be adequate.

Orestis Melkonian

5 PLANNING

In this section, I describe possible next steps I plan to investigate during the remainder of my thesis.
It is impossible to accurately predict what will be achieved in the following five months and there
will definitely be some surprises along the way, but I hope it will give realistic expectations of the
final results of my thesis.

5.1 Extended UTxO: Multi-currency

Many major blockchain systems today support the creation of secondary cryptocurrencies, which
are independent of the main currency. In Bitcoin, for instance, colored coins allow transactions to
assign additional meaning to their outputs (e.g. each coin could correspond to a real-world asset,
such as company shares) [Rosenfeld 2012].

This approach, however, has the disadvantage of larger transactions and less efficient process-
ing. One could instead bake the multi-currency feature into the base system, mitigating the need
for larger transactions and slow processing. Building on the abstract UTxO model, there are cur-
rent research efforts on a general framework that provides mechanisms to establish and enforce
monetary policies for multiple currencies [Zahnentferner 2019].

Fortunately, the extensions proposed by the multi-currency are orthogonal to the functionality
I have currently formalized. In order to achieve this, one has to generalize the Value datatype to
account for multiple currencies. Hence, I plan to integrate this with my current formal develop-
ment of the extended UTxO model and, by doing so, provide the first formalization of a UTxO
ledger that supports multiple cryptocurrencies.

5.2 BitML: Towards Completeness

Continuing my work on the formalization of the BitML paper [Bartoletti and Zunino 2018], there
is still a lot of theoretical results to be covered:

e While I currently have the symbolic model in place, there is still no formalization of symbolic
strategies, where one can reason about different adversary strategies and prove that certain
scenarios are impossible.

e Another import task is to define the computational model; a counterpart of the symbolic
model augmented with pragmatic computational properties to more closely resemble the
low-level details of Bitcoin.
When both symbolic and computational strategies have been formalized, I will be able to
finally prove the correctness of the BitML compiler, which translates high-level BitML con-
tracts to low-level standard Bitcoin transactions. The symbolic model concerns the input of
the compiler, while the computational one concerns the output. This endeavour will involve
implementing the actual translation and proving coherence between the symbolic and the
computational model. Proving coherence essentially requires providing a (weak) simulation
between the two models; each step in the symbolic part is matched by (multiple) steps in the
computational one.

5.3 UTxO-BitML Integration

So far I have worked separately on the two models under study, but it would be interesting to see
whether these can be intertwined in some way. This would possibly involve a translation from
BitML contracts to contracts modelled in our extended UTxO models, along with corresponding
meta-theoretical properties (e.g. validity of UTxO transactions correspond to another notion of
validity of BitML contracts).

Formal investigation of the Extended UTxO model

Moreover, and it would be beneficial to review the different modelling techniques used across
both models, identifying their key strengths and witnesses. With this in mind, I could refactor
crucial parts of each model for the sake of elegance, clarity and ease of reasoning.

5.4 Plutus Integration

In my current formalization of the extended UTxO model, scripts are immediately modelled by
their denotations (i.e. pure mathematical functions). This is not accurate, however, since scripts
are actually pieces of program text. However, there is current development by James Chapman of
IOHK to formalize the meta-theory of Plutus, Cardano’s scripting language'”.

Since we mostly care about Plutus as a scripting language, it would be possible to replace the
denotations with actual Plutus Core source code and utilize the formalized meta-theory to acquire
the denotational semantics when needed.

5.5 Featherweight Solidity

One of the posed research questions concerns the expressiveness of the extended UTxO model
with respect to Ethereum-like account-based ledgers.

In order to investigate this in a formal manner, one has to initially model a reasonable subset
of Solidity, so a next step would be to model Featherweight Solidity, taking inspiration from the
approach taken in the formalization of Java using Featherweight Java [Igarashi et al. 2001]. For-
tunately, I will not have to start from scratch, since there have been recent endeavours in F* to
analyse and verify Ethereum smart contracts, which already describe a simplified model of Solid-
ity [Bhargavan et al. 2016].

As a next step, one could try out different example contracts in Solidity and check whether they
can be transcribed to contracts appropriate for an extended UTxO ledger.

5.6 Proof Automation

Last but not least, our current dependently-typed approach to formalizing our models has led to
a significant proof burden, as evidenced by the complicated type signatures presented throughout
this proposal. This certainly makes the reasoning process quite tedious and time consuming, so
a reasonable task would be to implement automatic proof-search procedures using Agda meta-
programming [Kokke and Swierstra 2015].

5.7 Timetable

I have assembled a detailed timetable in Figure 2, positioning the aforementioned tasks across the
whole timespan of my thesis.

I expect to complete the tasks that are more tightly coupled with my current development, i.e.
incorporating multi-currency features and the formalized Plutus meta-theory into the extended
UTxO model, completing the formalization of the BitML paper and implementing proof-search
automation to facilitate easier reasoning. The merging of these two subjects of study (i.e. UTxO
and BitML) is somewhat unclear at this stage, but I hope to at least provide a proof-of-concept
translation, even if this comes without significant meta-theoretic results like coherence.

Other tasks, such as a mature model of Featherweight Solidity and formal results comparing
it to UTxO, are sadly outside the scope of this thesis due to time constraints. Nonetheless, I will
strive for a prototype model with lots of examples and hope my work will lay the foundations to
further investigate these topics in future research.

Thttps://github.com/input-output-hk/plutus-metatheory

https://github.com/input-output-hk/plutus-metatheory

Orestis Melkonian

2018 2019
Dec Jan Feb Mar Apr May Jun Jul

UTxO

Basic abstract model
Weakening lemma

Extend with data scripts
Multi-currency

BitML

Small-step Semantics
Symbolic Model
Computational Model
Coherence

UTxO-BitML Integration
Compiling BitML to UTxO
Plutus Integration

Model scripts with Plutus-Core
Evaluation

Featherweight Model
Example contracts
Writeup

Write final thesis

||'.||'|"‘

Fig. 2. My workplan.

REFERENCES

2013. Homotopy Type Theory: Univalent Foundations of Mathematics. CoRR abs/1308.0729 (2013). arXiv:1308.0729 http:
//arxiv.org/abs/1308.0729

Thorsten Altenkirch, Thomas Anberrée, and Nuo Li. 2011. Definable quotients in type theory. Draft paper (2011), 48—49.

Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. 2014. Secure multiparty computa-
tions on bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 443-458.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe Filliatre, Eduardo Gimenez, Hugo Herbe-
lin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. 1997. The Coq proof assistant reference manual: Version 6.1. Ph.D.
Dissertation. Inria.

Massimo Bartoletti and Roberto Zunino. 2018. BitML: a calculus for Bitcoin smart contracts. Technical Report. Cryptology
ePrint Archive, Report 2018/122.

Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design fair protocols. In International Cryptology Conference.
Springer, 421-439.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet, A Gollamudi, G Gonthier, N Kobeissi, A Rastogi, T Sibut-
Pinote, N Swamy, and S Zanella-Béguelin. 2016. Short paper: Formal verification of smart contracts. In Proceedings of the
11th ACM Workshop on Programming Languages and Analysis for Security (PLAS), in conjunction with ACM CCS. 91-96.

Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper (2014).

Hao Chen, Xiongnan Newman Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2016. Toward compositional verifi-
cation of interruptible OS kernels and device drivers. In ACM SIGPLAN Notices, Vol. 51. ACM, 431-447.

Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight tool for random testing of Haskell programs. Acm
sigplan notices 46, 4 (2011), 53-64.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg. 2016. Cubical Type Theory: a constructive interpreta-
tion of the univalence axiom. CoRR abs/1611.02108 (2016). arXiv:1611.02108 http://arxiv.org/abs/1611.02108

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that yield nothing but their validity or all languages in NP
have zero-knowledge proof systems. Journal of the ACM (JACM) 38, 3 (1991), 690-728.

Charles Antony Richard Hoare. 1978. Communicating sequential processes. In The origin of concurrent programming.
Springer, 413-443.

http://arxiv.org/abs/1308.0729
http://arxiv.org/abs/1308.0729
http://arxiv.org/abs/1308.0729
http://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108

Formal investigation of the Extended UTxO model

Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria M Guzman, Kevin Ham-
mond, John Hughes, Thomas Johnsson, et al. 1992. Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. ACM SigPlan notices 27, 5 (1992), 1-164.

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 3 (2001), 396-450.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure proof-of-
stake blockchain protocol. In Annual International Cryptology Conference. Springer, 357-388.

Wen Kokke and Wouter Swierstra. 2015. Auto in agda. In International Conference on Mathematics of Program Construction.
Springer, 276-301.

Per Martin-L6f and Giovanni Sambin. 1984. Intuitionistic type theory. Vol. 9. Bibliopolis Naples.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

UIf Norell. 2008. Dependently typed programming in Agda. In International School on Advanced Functional Programming.
Springer, 230-266.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing contracts: an adventure in financial engineering.
ACM SIG-PLAN Notices 35, 9 (2000), 280-292.

Meni Rosenfeld. 2012. Overview of colored coins. White paper, bitcoil. co. il 41 (2012).

Pablo Lamela Seijas, Simon] Thompson, and Darryl McAdams. 2016. Scripting smart contracts for distributed ledger
technology. IACR Cryptology ePrint Archive 2016 (2016), 1156.

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a smart contract intermediate-level language. arXiv preprint
arXiv:1801.00687 (2018).

Anton Setzer. 2018. Modelling Bitcoin in Agda. arXiv preprint arXiv:1804.06398 (2018).

Paul Van Der Walt and Wouter Swierstra. 2012. Engineering proof by reflection in Agda. In Symposium on Implementation
and Application of Functional Languages. Springer, 157-173.

Joachim Zahnentferner. 2019. Multi-Currency Ledgers. (2019), To Appear.

Joachim Zahnentferner and Input Output HK. 2018. Chimeric ledgers: Translating and unifying utxo-based and account-based
cryptocurrencies. Technical Report. Cryptology ePrint Archive, Report 2018/262, 2018. https://epri nt. iacr. org

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Ledger Technology: Blockchain
	2.2 Smart Contracts
	2.3 UTxO-based: Bitcoin
	2.4 Account-based: Ethereum

	3 Methodology
	3.1 Scope
	3.2 Proof Mechanization
	3.3 Agda
	3.4 The IOHK approach
	3.5 Functional Programming Principles

	4 Preliminary Results
	4.1 Formal Model I: Extended UTxO
	4.2 Formal Model II: BitML Calculus
	4.3 Reasoning Modulo Permutation

	5 Planning
	5.1 Extended UTxO: Multi-currency
	5.2 BitML: Towards Completeness
	5.3 UTxO-BitML Integration
	5.4 Plutus Integration
	5.5 Featherweight Solidity
	5.6 Proof Automation
	5.7 Timetable

	References

