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Abstract

The increasing penetration of EVs can become problematic for electricity
distribution networks. In this document a research project is proposed to
investigate the minimal necessary coordination to prevent a distribution
network from overloading due to EV charging. This is done by simulat-
ing a distribution network without any coordination between parties and
adding coordination measures to investigate their impact. The goal of
this thesis is to investigate which combination of measures is needed for
and sufficient working distribution system.
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1 Introduction & Background

How many times did you hear or read the word sustainable last week? Sus-
tainability is a hot topic. A movement is going on to make the world more
sustainable. A large part of this transition is taking place in the energy system:
the energy transition. The energy transition is the change of an energy system
based on fossil fuels to a system based on renewable energy sources. This shift
has consequences for the supply side as well as the demand side of the energy
system and, inevitably, the network connecting these two. This document fo-
cuses on the electrical power system as part of the energy system. In this section
we will first discuss the current electrical power system, then the consequences
of the transition for the production side and lastly the consequences for the
demand side of this system. We end with a short description of the problem
investigated in this thesis.

1.1 Current Electrical power system

The most relevant parts of the current electrical power system are the net-
work itself, the producers and the consumers. The electrical network is the
infrastructure of the system. Typically the network consists of two levels. A
transportation network and multiple distribution networks. Both systems are
managed by its own operator: the TSO for the transportation network and a
DNO for a distribution network. Both the TSO and the DNO are responsible
for the performance, safety and quality of the powerflow in their part of the
network. When the DNO also delivers system services, the DNO is called a
DSO which will be assumed for the rest of the thesis.

The transportation network transports high power over large distances.
The voltage in the transportation network is high to minimize the losses in the
network. Large power generators are connected to the transportation network
where the generated power is transported to distribution networks.

The distribution network distributes the power from the point where it is
connected with the transportation network to consumers. It is often a radial
network. Such a network has branches from a central point, in this case a
substation, without any connections between the branches. These networks are
typically designed for unidirectional flows. As the distribution networks have
lower voltages than the transportation networks, a transformer is included with
the substation to transform the voltage from a high to low level. The capacity
of this distribution transformer can become overloaded when the power demand
in the distribution network is too high.

Through almost all lines in the network flows an alternating current. Both
the voltage and the current have a frequency of alternating. In practice the
frequency is regulated to be as constant as possible at a designated value. This
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is due to the fact that when the supply and demand within a network are in
balance, the frequency remains constant. In other words, the frequency is a
measure of the balance between the power supply and demand. There is almost
no use of storage to balance the supply and demand. Therefore the supply of
power must be matched real-time with the demand to keep the network stable.
The focus on the supply side is also visible in the difference between the whole-
sale price of energy and the energy price at the demand side of the market.
Wholesale prices are highly fluctuating over the year and even within a day.
Peak periods are characterized by higher generation costs, because expensive
peaking plants are ramped up to cover demand. During off-peak periods, de-
mand is typically covered by cheaper base load plants. At the demand side
however, retail prices are kept constant for months, reflecting average genera-
tion costs of that period [1].

1.2 Consequences of the energy transition to the supply
side

Due to the energy transition there is a switch to other energy resources. Nowa-
days new ways of energy production are emerging which are based on renewable
energy sources (RES), such as a solar. Between these two there are some sig-
nificant differences. A first difference is the way they are distributed within the
energy network. In the traditional network a relative high part of the produced
energy comes from a relative low number of generators. Therefore the most
part of the electricity network consists of consumers. The traditional network is
therefore for the most part designed as a radialized network where the produced
energy is transported in one direction. With the penetration of renewable en-
ergy sources however, the picture changes. Renewable energy sources are often
distributed energy sources. Meaning that these sources are installed all over the
energy system. Further more, these renewable energy sources can be installed at
the connection of a consumer. When the RES is producing more than the local
consumption, the consumer becomes a producer. With the consequence that
the powerflow in the network becomes bidirectional instead of unidirectional.
Another difference between a traditional energy source and a RES is the con-
trollability of the amount of generated power. A traditional energy source often
produces a steady amount of power and can be controlled to match the power
demand at a certain moment. On the contrary the maximum amount of pro-
duction of a RES often depends on (for example) weather circumstances. These
circumstances vary over time and are not easy to control. Because of this is
more difficult to match the power supply with the power demand when the pen-
etration of RES increases. When the supply from RES is larger then the total
demand, the supply of the RES can be curtailed. However, as the marginal
costs of generating power from an RES is close to zero, curtailing the energy
production of RES is just a waste of energy.
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1.3 Consequences of the energy transition to the demand
side

The energy transition implies two consequences for the demand side of the
electricity network. The first consequence is due to the fact that with RES
the supply of power cannot be controlled in the same degree. This means that
when the penetration of RES is higher, the demand must become more aligned
with the supply to match the supply and demand. The second consequence
of the energy transition is an increase of the use of electrical devices. More
electrical devices will be used instead of devices powered by fossil fuels. A good
example can be found in the transport sector. Instead of driving a car powered
by petroleum, more electrical vehicles are used. This results in a significant
increase in the power demand. The extra demand will often occur on times
where there is already a peak demand in the power consumption, increasing the
peak demand even further. These increases in demand may not be matched
with the supply or lead to congestion in the network. When this happens, the
voltage level drops or parts of the network become overloaded.
Summarizing the consequences of the energy transition: First, the demand must
become more aligned with the supply when the penetration of RES grows to be
able to use all the power which is produced by RES. Second, the demand must
be spread more evenly to avoid network congestion.
To tackle these problems the power network must become a smart network
where measure and control systems are added to the network to coordinate the
power demand. Numerous technical possibilities in coordinating the demand are
known. Although, there is no clear policy on how it should be done and who is
responsible for what. Meanwhile, the energy transition goes on and one of the
main consequences is the increasing penetration of Electrical Vehicles (EVs).

1.4 Problem description

In the previous part of this chapter an overview is given on the impact of
the energy transition on the electricity system. The energy transition leads
to many challenges for which new solutions must be found and new policies
formulated. One of these challenges is for the current DNO which will have to
provide system services and become a DSO to regulate the demand response.
At this moment there is no clear consensus yet on how the demand response of
consumers must be managed in a distribution network. The goal of this thesis is
to get a clearer picture on what degree of coordination is needed between actors
in an distribution network in the near future. Due to the time available, the
scope of this research is limited to the coordination of EV charging. The problem
within the distribution network is as follows. The distribution transformers is
threatened to be overloaded at the peak times of energy usage due to a high
penetration of EVs. To avert overloading the DSO must coordinate the charge
behaviour of the EVs. The DSO wants to do this with a simple framework as
possible and assuring autonomy of the EV owners.
The focus of the thesis will be the interaction between the actors of the local
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network, such as the DSO and the different EV owners, who each have their own
strategies and objectives and the impact of coordination on this interaction. As
an addition , scenarios are investigated where uncertainties are present or actors
within the system do no act optimally or as expected.

2 Literature study

The problem of preventing a distribution network from overloading due to EV
charging is studied extensively. At first a central question within this topic was
whether a high EV penetration would be a problem for distribution networks
which was already studied in 1982 [2]. After that, many other network studies
on this subject were committed such as [3–6]. For example,Shokrzadeh et al.
[7] simulated the impact of the penetration rate of EVs on the overloading
of the distribution transformer in Ontario. Concluding that the distribution
transformer becomes most likely overloaded in winter months and high income
neighbourhoods. Furthermore, Papadopoulos et Al. [3] simulated a typical UK
urban distribution network with a high (70%) as well as a low (12.4%) level of EV
penetration. They predict with their model that the distribution transformer
becomes overloaded for at least once a day per week for both scenarios. Based
on these and other papers the consensus arose that a high EV penetration will
become a problem for distribution networks.
Meanwhile coordination and planning strategies where proposed to manage
these congestion problems in the distribution network. Many of which are cen-
tralized. Which means that the relevant information of each car -such as the
current battery level and the time when the car needs to be fully charged- are
gathered by a central coordinator. With the retrieved information the coor-
dinator plans the charging schemes for all EVs within the technical limits of
the network. These central strategies lead to the optimal result for its given
objective function [8–10]. The drawbacks of such strategies are however that
they often require an extensive communication infrastructure, personal data or
charging preferences must be shared and that their is not always an incentive
to participate. At this point our research question comes in.
As our goal is to find a minimal coordination framework it would be interesting
to know which parts are essential for an effective framework. However, to the
best of our knowledge no papers exist investigating this question. In the rest of
this section a literature overview will be given on how the DSO and EV owners
might behave. This information will be used to build our own model.
The rest of this section will be structured as follows. In section 2.1) papers are
discussed when EVs only charge and the DSO uses virtual prices to regulate the
charging behaviour. The section is divided in a) pricing strategies of the DSO
and b) on the charge behaviour of EVs given these prices. In subsection 2.2
papers are discussed for which EVs can provide ancillary services. This section
is divided in the same way as the previous. An overview on how EV drive and
charge behaviour should be modeled in discussed in A for the case some data is
not present to model this behaviour.
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2.1 Papers considering no provision of ancillary services
by EVs

In market environments all parties try to optimize their own objective. In our
case this holds for the DSO as well as for the EV owners. In the first part of this
subsection price setting strategies for the DSO are discussed and in the second
charge strategies for EV owners.

a) DSO pricing strategies

There are multiple methods proposed for the DSO to perform congestion man-
agement by influencing the charge behaviour of EVs there are multiple scenarios
possible. Two different approaches are proposed for the case without provision
of ancillary services. In the first approach capacity in the distribution network
is sold to the highest bidder. When all the the electricity usage is within the
capacity of the network, nothing changes. However, the capacity is sold to the
highest bidders when the network becomes overloaded. Both [] and [] propose
a market environment for these biddings. In this approach the DSO has no
strategic choices to make. This approach might however lead to social unde-
sired scenarios and does not give an incentive for the DSO to invest in new
infrastructure when overloading of the network happens often. In the second
approach the DSO does not charge a constant price per type of connection as
compensation for operating the electricity network, but charges dynamic prices
based on the amount energy and time of usage. This is called a Dynamic Tariff
(DT). More recently an extension of DP is proposed: Dynamic Power Tariff
(DPT) in [11]. In DPT not only the time bus also the power is taken into
account. This means that when an EV charges with high power it pays more
per KWH. The reasoning behind DPT is that it discourages peaks in demand
and these peaks are the main reason for congestion in a distribution network.
It is up to the DSO in this case to set the price per timeslot. Based on which
information EV owners share with the DSO the the planning problem for the
DSO differs.
When no information is shared the price per timeslot is just calculated based on
forecasted charging of EVs. The pricing problem can be solved in another way
when EV owners share their planned charge schedule with the DSO. In this sce-
nario the problem can be solved with game theoretic methods. Karfopoulos and
Hatziargyriou [12] modelled the problem as a single-objective, non-cooperative,
dynamic game where the DSO is using virtual pricing to regulate the charging
behaviour of the EVs. Each agent has one goal to strive for(single objective),
decides on its own strategy (Non-cooperative) and EV users respond to the
pricing strategy of the DSO (dynamic). Such a game is played in rounds until
the system reaches an equilibrium.
They investigated two scenarios: the system where the EVs only posses their
own information and the upcoming virtual electricity prices given by the DSO
(uncoupled) and a scenario where the EVs are also aware of the accumulated
charging scheme of all EVs (coupled). In these scenarios the DSO is aware of
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the charging strategies of the EVs. The game is played some time before the
actual charging happens. The game starts where the DSO shares prices based
on forecasted usage. Each EV calculates its charge schedule and shares it with
the DSO. Based on the new responses, the DSO updates its pricing policy in
such a way that periods with higher prices reflect periods with high transformer
loading. Again, each EV responds to this new pricing policy with its new best
response until an equilibrium is found.

b) EV charging strategies

The optimal charging strategy of EV owners depends on their driving behaviour
(such as the initial battery level and the period the car is plugged in) and the
specifications of the infrastructure such as the maximum charging rate. The
discretized optimization problem for a single EV has the following form:

min F =

t0+T∑
t=t0

p(t)P (t) (1)

s.t.

t0+T∑
t=t0

P (t) = (SOCout − SOCin)× Cbat
Ceff

(2)

0 ≤ P (t) ≤ Pplug ∀t ∈ T (3)

where to is the starting time of charging, T is the charging period, p(t) is the
electrical price including the price strategy of the DSO at time t, P (t) is the
charging power at time t, SOCin is the initial battery SOC when the EV plugs
in, SOCout is the final battery SOC, Cbat is the energy capacity of the EV
battery, Ceff is the charging efficiency and Pplug is the maximum charging
power. This problem can easily be solved with a simple greedy algorithm where
the time slots are sorted based on their corresponding price level obtaining the
best response of an EV to the DSO pricing strategy. The model assumes variable
rate charging (VRC) where the charge rate of an EV can take each value within
0 and the maximum charge rate. However, the efficiency of a charger is lower
with VRC, also most current EVs are only equipped with a much cheaper on/off
control which can either charge at full power or not at all. With this discrete
rate charging (DRC) an interrupted or an interrupted [13] schedule can be used.
When using an uninterrupted schedule the number of the on/off switches should
not be too high as it deteriorates certain batteries [14]. However, when more
constraints are added the complexity of the problem quickly increases.
The model can be extended by taking into account the power losses during
charging. The power loss for a charging current I(t) at time interval t and a
internal resistance R is given by RI2(t). When the voltage level is assumed
constant the following term is added to the objective function of equation 1:

R

V 2

t0+T∑
t=t0

p2(t).
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Figure 1: Typical SOC charging curve [16]

Cao et al. [15] consider a more realistic scenario where the maximum charging
power depends on the state-of-charge (SOC) of the battery. This phenomenon
is based on the fact that a battery can charge at a lower rate the more energy
it has stored. The authors derive its dependence using Mass theory resulting in
a maximum current I = I0e

−αt where I0 is the maximum charging current at
the start time, α is the acceptance rate and t is the SOC-rate . An example of
such a SOC-curve is showed in figure 1.
There is some debate if this function should be linearized. Cao et al. use
the original function where Sundström et al. [17] investigated the decrease of
complexity of a linear approximation with respect to its loss in accuracy. They
concluded that a linear approximation is preferred. Besides that, more recent
Korolko et al. [16] developed a significant faster way of solving the optimization
problem with a general SOC-curve using a tailored cutting plane technique.
First the problem is solved without taking into account the constraint imposed
by the SOC-curve, finding the test point p∗. Then the algorithm checks if
the solution violates the SOC constraint and if so a hyper plane is defined
which separates p∗ from the feasible region. After this p∗ is projected on this
new boundary and the process is repeated until the optimal solution is found.
Because the cutting procedure is specifically designed for this problem, the
running time of the algorithm is greatly decreased with respect of an off-the-self
solver.
Until now we have looked at models where all information was available. How-
ever in reality there will be uncertainty about the electricity prices and departure
times of EVs. In the same paper Korolko et al. use robust programming where
possible ranges of the prices are defined and the algorithm finds the best solution
for the worst pricing circumstances.
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2.2 Papers considering provision of ancillary services by
EVs

Besides regulating the EV charge behaviour by virtual prices, as discussed in
section 2.1, another control strategy can be used. A DSO can offer money to
parties which deliver ancillary services in turn. Ancillary services are defined as
all those activities on the network that are necessary to support the transmission
of power while maintaining reliable operation and ensuring the required degree of
quality and safety[18]. Examples of ancillary services are the provision frequency
regulation by ramping a power generator up or down or providing reactive power
to control the power quality at a certain point in the network. In this scenario
the most relevant ancillary service is to provide vehicle to grid (V2G) support.
With V2G support, the battery of an EV is used to prevent overloading of
the network. V2G support can be given unidirectional or bidirectional. With
unidirectional V2G support the charging of the an EV is regulated up or down
to support the network, where with bidirectional V2G support the EV can also
discharge its battery to provide power to the grid.
In scenarios where a EVs can provide ancillary services, the role of aggregators
becomes more important. An aggregator is an party which is in between the
network operator or wholesale market and a group of consumers. In the current
situation utility companies are an example of aggregators. Where consumers do
not have direct access to the wholesale market but buy their energy from a utility
company. When the network operator asks for ancillary services it is assumed
that an aggregator is needed to coordinate vehicles. As one EV produces power
to the network will not have a large impact on the network. Other motivations
are that it might be too much of a hassle for most EV owners to make specific
decisions on their charge and discharge behaviour of their EV.

a) Pricing strategies

For the case of bidirectional V2G the interaction between an aggregator and
different EVs can be modeled as an Stackelberg game. In this game the ag-
gregator can be seen as a leader who sets the prices and the demand for V2G
and the EVs react to this offer. Chen and Leung [19] propose a game theory
model where every information is correctly forecasted and a real time model.
The aggregator is in this case an combination of an utility company and an
coordinator of ancillary services. Its objective is in this case to sell as much
energy as possible to EV owners and to let the EVs provide ancillary services.
The aggregator receives a share of the compensation EV owners receive for their
provision of ancillary services. In the models of Chen and Leung the grid op-
erator sends the aggregator a regulation request. At this point the aggregator
determines the price of the electricity for the charging of the EVs, which in
their turn determine their charge strategy. The utility function of the EVs has
a price term and a charging satisfaction term. The satisfaction term of an EV
n is defined as:

γn log (Sb,n + Sn(tn,out)) (4)
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where γ is the parameter which couples the economic benefit and the charging
satisfaction. Sb,n is the basic satisfaction of EV n and Sn(tn,out) is the final
satisfaction based on the charge level when the vehicle is leaving. In [20] a robust
Stackelberg game is proposed where uncertainty in demand is considered. The
model takes into account primary and secondary EVs where the primary EVs
have priority and the remaining energy is sold to the secondary EVs.

b) EV charging strategies

An optimal charging strategy of an EV when being able to provide bidirectional
V2G support is proposed by Dahmane et al. in [21]. The problem is in some
ways comparable to the problem described in section b). However a distinction
is made between charging Pc and discharging Pd and their corresponding prices
pc and pd. In this situation, the objective function becomes:

min

T∑
t=1

αPc(t) · pc(t)− (1− α)Pd(t) · pd(t)

where α is a parameter to tune the personal preference of the EV owner. The
complexity of the problem is comparable to the problem with virtual prices.
Except that a constraint has to be added to prevent charging and discharging
at the same time:

Pc(t) · Pd(t) = 0. (5)

This results in a non-linear problem. The problem can be written as an integer
linear programming (ILP) problem when two binary decision variables yc(t)
and yd(t) are introduced. These are 1 if the EV is (dis)charging at time t and
0 otherwise. Equation 5 can now be rewritten as

yc(t) + yd(t) ≤ 1. (6)

To ensure that the values of Pc(t) and Pd(t) actually correspond with the values
of yc(t) and yd(t) we also need the following forcing constraints:

Pc(t) ≤ Cmax yc(t) (7)

Pd(t) ≤ Dmax yd(t) (8)

Less study has been performed on the planning of optimal charging with uni-
directional V2G support. When planning the EV charging with a possibility
to perform ancillary services, the goal is to minimize the charging cost and at
the same time be flexible enough to ramp up or down when regulation can be
provided. The scheduled charging rate is called in this case a preferred opera-
tion point (POP). Ansari et al. [22] presented an optimal charging strategy for
an aggregator using fuzzy linear programming. The objective of the aggrega-
tor is to maximize its revenue which is generated by selling energy to EVs and
by earning a fraction of the compensation EVs receive for providing ancillary
services. The aggregator schedules all vehicles.

10



3 Research question

As described in section 1.4 the goal of this thesis is to answer the question
’What is minimal amount of coordination needed for a proper working future
distribution network?’. To answer this question the following research question
is formulated:

What is the performance of different scenarios in which multiple
actors with different stakes and optimization strategies interact in a
power system that becomes stressed by high EV penetration?

Let us go into more detail about some aspects of this research question, starting
with the different actors. The actors in the system are: 1) the DSO which
wants to avoid (the risk of) overloading of the distribution transformer and
the cables at a minimal cost. The performance measures of the DSO are: the
duration and the amount the parts of the network are overloaded, the total
price the DSO pays to execute its strategy and how predictable and robust
the effect of its strategy is. 2) The EV owners who want their EV sufficient
charged in an as cheap as possible manner. The way the insurance of a high
charging level relates to the desire to optimize the charging cost can differ per
EV owner. The performance measures for charging strategies is the height of
their objective function (price paid and/or satisfaction level) and the robustness
of their strategy against uncertainty in both the current situation and their
predictions of the future.
The performance of an whole scenario is measured by a combination of the
performance of the DSO, the EV owners and the amount of coordination within
the scenario. Coordination will be defined as the amount of information which
is shared and the degree of autonomy of each actor.
The scenarios which are believed to be the most interesting to be investigated
are the following: the first scenario will be the current situation with an in-
creased penetration of EVs. This will be the base case. After that the scenario
where dynamic prices are introduced, where EVs start optimizing their charge
behaviour and where the DSO regulations using virtual prices will be investi-
gated. In the third scenario V2G support is enabled and the DSO regulates
using pricing for ancillary services. The scenarios are discussed in more detail
in section 5.
The research question will be made more specific by dividing it into the following
sub questions:

1. What happens in the current situation when a high EV penetration rate
leads to overloading of the network? (base case)

2. What are the effects on each actor of the degree of coordination to prevent
overloading of the network?

3. What is the effect of the interaction of different strategies on the perfor-
mance for the different actors?

11



4 Relevance of research question

EVs are more and more adopted by the public as green alternative to gasoline
vehicles. Charging this increasing amount of EVs will become problematic for
the current distribution network, where feeders and transformers can become
overloaded when peaks in power demand occur. To support the choice for a
proper solution, in the form of coordination or perhaps regulation, understand-
ing the dynamics in an overloaded system is needed. This thesis focuses on
understanding these dynamics. The goal of this thesis is to improve the under-
standing of these dynamics.

5 Methodology

To find an answer to the research question, the power network of a neighbour-
hood will be simulated. The base model will be basic model to answer the first
sub question. Further features will be added gradually to the base model to
answer the other sub questions.

5.1 Framework

The model will be a Discrete Event Simulation. In this type of simulation
the moments on which an interesting event happens is calculated. An event
is interesting if the event changes the state of the simulation, for example the
arrival of an EV or a price change by the DSO. Instead of using predefined time
steps to calculate the new state, the state will be calculated for the next event.
The model will be programmed in Python. DNV-GL prefers that the model is
programmed in Python or Matlab to be able to use the model in the future. The
choice for python is made from a practical point of view, as it is more similar
to other programming languages. The PyPSA package will be used to perform
the powerflow calculations in the network.

5.2 Base model

At first the model consists of a low voltage distribution network, an indepen-
dent system operator, EVs and households which consume power. This model
will be a simplified version of a electricity network to produce a base case to
investigate what happens when a distribution network becomes overloaded by
EV charging. The supply of power is assumed to be matched with the demand.
The only bottlenecks are the power capacity of the transformer and the cables.
The network will be the network of the a neighbourhood in Amsterdam called
Republica, which is an experimental sustainable neighbourhood planned to be
build in 2022. Republica is part of European union funded project called ATE-
LIER. The electricity will be modelled as simple as possible. The network will
be modelled as alternating current with one phase. The system operator will
not take any action in the base model. The non-EV power usage of households

12



will be modelled based on the data obtained by NEDU. NEDU is an association
which represents all the different rolls in the energy sector in the Netherlands
The penetration rate of the EVs is chosen in such way that the distribution net
is likely to become overloaded. The driving and charging data will be preferably
used from Elaad, a dutch company which was responsible for setting up public
charging points, but is now a knowledge centre for smart charging. By analyzing
the data, stochastic arrival, departure and charging times will be determined.
When the data is not available distributions from other papers will be used
such as in appendix A. The maximum charging power will be modeled with a
so called SOC-curve.

Scenario 2.1 One of the ways a DSO can influence the charging behaviour of
EVs is by using virtual prices. To be able to introduce this, dynamic electricity
prices will be implemented first. In this scenario the prices will become dynamic
and EVs will try to optimize their charging costs based on the basic charge
algorithm described in section 2.1. The prices change every quarter and the
cars will determine their charge strategy on arrival.

Scenario 2.2 This second scenario will be extended with an active DSO.
The DSO will try to regulate the load on the transformer by regulating the
prices. The DSO will use virtual prices to influence the charge behaviour of EVs,
which is done by adding or subtracting money to/from the wholesale electricity
prices. The DSO will check every minute if the load of the transformer is
overloaded and increases the electricity price gradually until the targeted load
on the transformer is obtained. Depending on the computational effort, the cars
will adjust their strategy with every change of the electricity price.

Scenario 3 The other option the DSO has to influence the charging behaviour
of EVs is to offer money for ancillary services. In the third scenario the DSO will
offer money for bidirectional V2G support instead of using virtual prices. The
EVs will use the charging strategy for bidirectional V2G described in section
b).

5.3 Possible extensions to the model

The previous three scenarios are the core of the simulation. When these scenar-
ios are implemented different extensions can be made to the model. For scenario
2 a more complicated charge algorithm can be implemented such as proposed
by Koralko et al. including a soc curve. Also a satisfaction term as described in
equation 4 can be added where the γ parameter differs per EV so that each EV
reacts different to pricing changes. For the third scenario unidirectional V2G
support and a satisfaction term can be added. It is also possible to let the EVs
sell their stored energy to other EVs. Other extensions are:

• Letting charging algorithms take into account the uncertainty in prices
and departure time. This can be done with robust, stochastic or fuzzy
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programming

• Adding coordination between EVs (Aggregator)

• Adding non-ideal behaviour of EVs or the DSO

• Add solar panels/ distributed generation

• Add technical incentives instead of price incentives such as power curtail-
ing of households

• Implementing a communication blackout or EVs receiving outdated price
signals

• Implement DRC instead of VRC

6 Planning the second part of the thesis

The first part of the thesis consisted of writing this proposal. For the second
part of the thesis I will work with an agile work style with sprints of 3 weeks.
Every new sprint will start with a meeting with all supervisors. The first sprint
will start on the 6th of April. The most relevant extensions to the model will
be determined during sprint reviews. A planning of the first 4 sprints is shown
in table 1. The work which is described per sprint will also be written in the
report.

Planning
Sprint # Date Work
sprint 1 6 April -27 April Implementing the base model.
sprint 2 27 April - 15 may Implementing the base model.
sprint 3 18 May - 8 June Implementing scenario 2 & 3.
sprint 4 8 June - 29 June Adding extensions to the model.
sprint 5 29 June - 12 July Adding extensions to the model.

Table 1: Sprint planning

Event Date
Vacation 15 July - 8 Aug
Deadline 2 October

Table 2: Other data
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A Stochastic modelling of charging behaviour
EVs

When predicting the impact of EVs on the network or to show the effectiveness
of an control algorithm, the charging behaviour of Evs is often simulated. Very
different approaches to do this have been used. The charging behaviour of EVs
consists in general of three different variables: the departure time, the traveled
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distance and the arrival time. Therani et al. [23] performed an extensive data
study on the charging behaviour of EVs to investigate which distribution func-
tions and their parameters correspond the best with realistic charge behaviour.
Based on a dataset of more than 260,000 vehicle trips, the authors selected the
parameters which are shown in table 3.

Random Variable Fitted Distribution Parameters
Departure time Weibull a = 7.67 b = 21.83

Travelled distance Weibull a = 32.04 b = 1.23
Arrival time generalized extreme value k = −0.06 µ = 17.3 σ = 0.85

Table 3: Selected parameters obtained from [23]

Both [9, 10] also modelled EV charging behaviour. In both papers the departure
and travel time is modelled with a Markov chain model. Abbas et al. even
modelled the EV behaviour for five different time scales, ranging from behaviour
within an hour to a year. The distributions they used are shown in Table A.

Data Type Distribution Type Parameters

Daily travel frequency Gamma

a = 3.71
b = 0.64
mean = 2.39
variance = 1.24

Driven Mileage Birnbaum Saunders

β = 10.57
γ = 0.97
mean = 15.52
variance = 15.09

Travel duration Gamma

a = 1.87
b = 18.35
mean = 34.4
variance = 25.12

Departure time Location scale

µ = 8.36
σ = 1.08
v = 2.16
variance = 3.98

Absolute Arrival time Normal
µ = 18.2
σ = 2.84

Table 4: Selected parameters obtained from [10].
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