On the Complexity of Resource-Bounded Logics!

N. Alechinal, N. Bullingz, S. Demri® and B. Logan1
L University of Nottingham 2 TU Clausthal ° LSV, CNRS, ENS Paris-Saclay

Abstract

We revisit decidability results for resource-bounded logics and use decision problems on vector
addition systems with states (VASS) in order to establish complexity characterisations of (de-
cidable) model checking problems. We show that the model checking problem for the logic
RB=+ATL is 2EXPTIME-complete by using recent results on alternating VASS (and in EXPTIME
when the number of resources is bounded). Moreover, we establish that the model checking
problem for RBTL is EXPSPACE-complete. The problem is decidable and of the same complex-
ity for RBTL", proving a new decidability result as a by-product of the approach. When the
number of resources is bounded, the problem is in PSPACE. We also establish that the model
checking problem for RB+ATL", the extension of RB+ATL with arbitrary path formulae, is de-
cidable by a reduction into parity games for single-sided VASS (a variant of alternating VASS).
Furthermore, we are able to synthesise values for resource parameters. Hence, the paper estab-
lishes formal correspondences between model checking problems for resource-bounded logics
advocated in the Al literature and decision problems on alternating VASS, paving the way for
more applications and cross-fertilizations.

1 Introduction

Resource-bounded logics. Alternating-time temporal logics such as the logics ATL and ATL" 5]
extend the temporal logics CTL and CTL" respectively, by interpreting the formulae on concur-
rent game structures, a sophisticated extension of labelled transition systems, and by allowing
modalities to quantify over strategies for a given coalition of agents. ATL significantly extends
CTL but the computational properties of the model checking problem remain quite stable. For
instance, in [3]], the labeling algorithm for model checking CTL is extended to ATL establishing
the P-completeness result of the model checking problem for ATL [5, Theorem 5.2]. By con-
trast, the model checking problem for ATL* is 2EXPTIME-complete [5, Theorem 5.6] whereas
the problem for CTL" is only PSPACE-complete, see e.g. [22]. The logics ATL and ATL" are
well-established formalisms to reason about multi-agent transition systems, and many variants
have been proposed over the years, see e.g. [34} 4]]. We focus here on resource-bounded variants.

Resource-bounded logics 13} (12} 1381 13} |2, [14] extend alternating-time temporal logics such
as ATL [5] by adding transitions that produce and consume resources to the models. As shown
in [2], the introduction of implicit counters in the models (i.e., variables interpreted by natural
numbers) and the ability to quantify over strategies for a given set of agents can lead to undecid-
ability, or decidability with a very high worst-case upper bound on the complexity of the model
checking problem. The nature of the strategy modalities means that reasoning about resources
has similarities to the analysis of runs of vector addition systems with states (a.k.a. VASS) [33],
Preprint submitted to Theoretical Computer Science March 14, 2017

and more specifically to games on VASS, see e.g. [L1]. VASS, and more generally counter ma-
chines, are well-known infinite-state systems with many applications in formal verification, see
e.g. [10].

Model checking and games on VASS. In our work, we show how existing results on VASS can
be used to analyse the model checking problem for resource-bounded logics. As we recall below,
model checking problems on VASS based on temporal logics and games are not always decid-
able; when they are decidable, they are quite difficult to solve, and complexity characterisations
often exist. We briefly recapitulate some of these results below.

Temporal logics on VASS often lead to undecidable model checking problems, see e.g., [23,
241, and this is even more true with branching-time temporal logics such as CTL [24], or when
the atomic formulae can state properties about the counter values [28]]. However there are excep-
tions. For instance, CTL model checking on one-counter VASS is PSPACE-complete [43]25] (see
also [46]). The control state repeated reachability problem for VASS is shown to be decidable
in [29]; this result is generalised to full LTL (for which the atomic formulae are exactly control
states), and the model checking problem for LTL on VASS is shown to be EXPSPACE-complete
in [27]]. In [29], a strict fragment of LTL restricted to the “infinitely often” temporal operator GF
and atomic formulae stating properties on counter values is also shown decidable by reduction
to the reachability problem for VASS.

As far as games for VASS are concerned, the situation is even less encouraging. Indeed,
two-player games on VASS in which each player can freely update the counter values are un-
decidable [11]], even with simple winning conditions such as the reachability of a given control
state. However, asymmetric VASS games in which at most one player can freely update the
counter values and the winning conditions are simple are decidable [40]]. For instance, the game
on asymmetric VASS (a slight variant of single-sided VASS in [7,[1] or alternating VASS in [[16])
with reachability of a control state is shown to be 2EXPTIME-complete in [[16] and decidable with
parity conditions in |1} 30ﬂ The non-termination problem for games on asymmetric VASS is
also 2EXPTIME-complete (the upper bound is from [32]] and the lower bound is from [16]).

Our motivation. Our main goal in this paper is to establish formal relationships between model
checking problems for resource-bounded logics and decision problems for VASS, so that new
decidability results can be established for logical problems or new complexity characterisations
can be inherited from problems on counter machines. Of course, this is not surprising; resource
values and counter values are similar objects, and logics based on concurrent game structures
inherently have games in their semantics. Moreover, earlier work has already explored the con-
nections with counter machines, either to obtain undecidability results or to get complexity lower
bounds, see e.g. [2]. In this paper, we extend these results to give optimal complexity upper
bounds and new decidability results, even for resource-bounded logics with enriched path for-
mulae such as those in CTL* [22] (see also [[19]).

Our contributions. As explained above, our approach is to use results on decision problems for
alternating VASS (or for its variants with single-sided VASS) in order to decide optimally model
checking problems on resource-bounded logics. So far, the reductions were rather in the other
direction to establish undecidability (for instance, by reducing the halting problem for Minsky
machines).

2Very recently, a 2EXPTIME upper bound was shown in [33].

2

e The model checking problem for RB+ATL is shown to be 2EXPTIME-complete (see The-
orem [2] and Theorem [3). The restriction to a bounded number of resources is also shown
to be in EXPTIME. The 2EXPTIME lower bound is obtained by a reduction from the state
reachability problem for alternating VASS (AVASS) [16]], where the upper bound is shown
by a reduction to the state reachability and the non-termination problems for AVASS. We
need to consider both target problems in order to reduce our logical problem to questions
on AVASS. So far, the best known result was decidability established in [3] by taking
advantage of the well-quasi-ordering (IN", <).

e The results for RB+ATL are obtained by using formal relationships between strategies in
resource-bounded concurrent game structures and proofs in alternating VASS (the fact that
only asymmetric VASS are needed here is the key observation). These relationships are
also used to show that the model checking problem for RB+ATL" (a new logic extend-
ing RB+ATL as ATL* extends ATL [5]), is decidable, by a reduction to the parity game
problem on single-sided VASS [[1]. Note that the complexity characterisation of the parity
game problem on single-sided VASS was left open in [1} [16} 32]. More importantly, we
show that resource parameters can be effectively computed in the parameterised version
of RB+ATL" thanks to the fact that the Pareto frontier for any parity game on single-sided
VASS is computable [1, Theorem 4]. To the best of our knowledge, this is the first time
that resource values have been synthesised in resource-bounded logics (see also [31])), and
this is done for the rich new logic, RB+ATL".

e The model checking problem for RBTL [12] is shown to be EXPSPACE-complete. The
restriction to a bounded number of resources is also shown to be in PSPACE. The model
checking problem for RBTL" is shown to be decidable (a new result), and also EXPSPACE-
complete (see Theorem 5).

In addition, we also provide complexity characterisations for various logical fragments which,
e.g., bound the number the resources or the number of agents. For example, the model checking
problem for RB+ATL restricted to a single agent is shown to be EXPSPACE-complete (Theo-

rem [d)).

2 Logical Preliminaries

We write IN [resp. Z] for the set of natural numbers [resp. integers] and [m, m’] with m, m’ €
Z. 10 denote the set {j € Z : m < j < m’}. Given a dimension r > 1 and a € Z, we write 4 € Z'
to denote the vector with all values equal to a. For each ¥ € Z”, we write (1), ..., X(r) for the
entries of ¥. Forall ¥,ij € Z', ¥ < i§ & for every i € [1,7], we have X(i) < i/(i). We also write
> - > - > -
X <ywhenX < yandx # y.

2.1 The logic RB+ATL and its variants

We consider the logics RB+ATL and RB+ATL". The logic RB£ATL was introduced in [3}
4], and extends ATL [5] with resources. RB+=ATL" extends RB+ATL to allow path formulae to
be any LTL-like formula (see Section E] for a complete formal definition).

Let PROP be a countably infinite set of atomic propositions. The models for the logics
RB+ATL and RB+ATL" are the structures introduced in Definition [[lbelow. These are concur-
rent game structures for the logics ATL or ATL" (see e.g. [5]) but enriched with a cost function

3

that specifies how resources are produced or consumed. Intuitively, the concurrent game structure
is equipped with r counters and the transitions update their values with increments or decrements.

Definition 1. A resource-bounded concurrent game structure Mt is a tuple
M = (Agt, S, Act,r,act, cost, 6, L)
such that:
o Agt is a non-empty finite set of agents (by default Agt = [1,k] for some k > 1);
e S is a non-empty set of states;

e Act is a non-empty set of actions with a distinguished action idle;

r > 1 is the number of resources;

e act : S X Agt — P(Act) \ {0} is the action manager function, such that for all s and a,
act(s, a) is non-empty and furthermore we have idle € act(a, s);

e cost : S X Agt X Act — Z is the (partial) cost function; that is, cost(s,a, a) is defined
-
when a € act(a,s), and moreover, we stipulate cost(s,a,idle) = 0;

o 0:SX(Agt — Act) — S is the (partial) transition function such that 6 is defined for a
state s and joint action f whenever for all agents a € Agt, we have f(a) € act(a,s);

e L : PROP — P(S) is a labelling (the definition can be adapted when finite subsets of
PROP are involved).

The map 6 is also viewed as a deterministic transition relation with transitions of the form

@12 s’ where 6(s,f) = s’ and for all i € [1,k] = Agt, we have (i) = a;. We say that
I is finite whenever S and Act are finite sets and L is restricted to a finite subset of PROP.
Figure [I] presents a finite concurrent game structure (costs are omitted).

The idle action was introduced in [3| 4], where motivations for requiring a distinguished 0-
cost action can be found (in Section[5.5|below, we explain why the idle action is not essential for
decidability). Given a coalition A C Agt and a state s, a joint action by Aisamap f: A — Act
such that for all agents a € A, we have f(a) € act(s,a). The set of joint actions by A is denoted
Dy(s). Given a state s, the set of joint actions by Agt is simply denoted D(s) (instead of D 4¢¢(s))
and the map 0 is defined only for such joint actions. We write f C g whenever g is a conservative
extension of f.

Given a joint action f € D 4(s), we write out(s,) to denote the set below:

out(s,f) = {s’ € S | thereis g € D(s) such that f C g and s’ = 8(s, 9)}.

For instance, out(s, f) is a singleton set when | € D(s), i.e. if an action is specified for each
agent, since 0 is a map and not a relation. Given a joint action f € D 4(s) and a state s, the cost of
a transition from s by f (restricted to A by definition) is defined as follows:

costa(s,f) = Z cost(s,a, f(a)).

acA

3Unlike in [3]], we adopt the convention that positive costs correspond to resource production, and negative costs to
resource consumption.

4

q
(a,a),(a,idle)

(idle,a) C 32) 29:3 (idle, idle)
(a,idle), (a, a) (idle,idle) (idle,idle)
(idle, idle)
i Y
(idle, a) C:y :9
p

Figure 1: A concurrent game structure (costs are omitted)

Note that the value cost,(s, f) does not depend on the costs of the actions by the agents in the
opponent coalition (Agt \ A) (or equivalently, the cost of actions by agents in (Agt \ A) is zero).
More generally, given g € D(s), we have

costa(s,) = Z cost(s,a, g(a)).
aceA

. . . i f
A computation A is a finite sequence or an w-sequence of the form sy — $; — 7 . .. such that

forall 0 <i < |A| -1, we have s;+1 € 0(s;, fl-)E] Here, |A| denotes the length of A, each s; is a state

and each f; belongs to D(s;). For instance, |sg T, S1--+ = S| = n+1and|sg To, S1--+ = | =w

for any infinite computation. A strategy Fa for the coalition A is a map from the set of finite
computations to the set of joint actions of A such that

Fa(so-5 51+ 5 5,) € Dasn).

A computation A = sy T, S1 o sy - -+ respects the strategy Fn iff for all i < |A|, we have,

fie . . .
Sit1 € out(s;, Fa(so To, S1... = 5;)). A computation A that respects F4 is maximal whenever

it cannot be extended further while respecting the strategy. Note that maximal computations
respecting F,4 are infinite. The set of all maximal computations that respect the strategy F4 that
start at the state s is denoted by Comp(s, F4). So far, no resource value has been involved in
computations. Below, we shall quantify over maximal computations that respect a strategy, and
therefore for defining a strategy we can restrict ourselves to finite computations that respect it so
far. .

Given a bound b € (N U {w})" and a computation A = s AN 51 AN Sy ... in Comp(s, F4), let
the resource availability at step i < |A| be defined as follows: Ty & § and for all i < Al =1,

4Each transition between two successive states is labelled by a joint action: this is not strictly necessary for the
development below, but it provides a more general notion that might be used in other contexts (for example, if the
winning condition of strategies depends on the actions of all the agents and not only on those for the agents in A or on
the visited states).

5

Tip1 = costa(s;, f;) + U (assuming that n + @ = w for any n € Z). Then, A is b-consistent
iff for all i < |A|, 7; € (N U {w})". If l_;(i) = w, we have an infinite supply of the ith resource
and effectively disregard what happens on the ith resource. Since the resource availability of
the sequence depends only on the agents in A, we call this the proponent restriction condition.
This condition is very similar to that found in runs of VASS with the sequence of update vectors
costa(so, fo), costa(si, 1), - . .- Note also that the above condition is slightly different from the
one in [4] but equivalent. We have decided to use our notation in order to more easily show the
relationships with VASS decision problems.

The set of all the b-consistent (infinite) computations is denoted by Comp(s, F A,l;). A b-
strategy F 4 with respect to s is a strategy such that Comp(s, F4) = Comp(s, F4, l;). This definition
also differs slightly from that given in [4]; the notion of I;-strategy in [4] is not relative to a state
and therefore the equality should hold for all states.

With the main definitions of resource-bounded concurrent game structures and strategies in
hand, we can now present the logic RB+ATL. Given a set of agents Agt = {1,...,k} and r > 1,
we write RB+ATL(Agt, r) to denote the resource-bounded logic with k agents and r resources
whose models are resource-bounded concurrent game structures with the same parameters. For-
mulae of RB+ATL(Agt, r) are defined according to the grammar below:

bdu=p | = | dAD | (AN Xp | (ADY G | ((AP)) pUe,

where p € PROP, A C Agt and be (IN U {w})". The size of a formula is computed from a DAG
representation and the integers are encoded in binary. Note that forthcoming hardness results do
not use the conciseness of the DAG representation (with respect to the tree representation). The
satisfaction relation = is defined inductively as follows assuming that 9)t is an RB+ATL(Agt, r)
model (we omit the obvious cases for the Boolean connectives):

def

MskEp & selp)

M, s E ((AE))X(p & thereisa l;-strategy F4 w.r.t. s such that

for all s T, s1... € Comp(s, F4), we have M, s; E ¢

def

M, s £ (A'))Go

N
there is a b-strategy F4 w.r.t. s such that

for all A = s LN S1... € Comp(s, Fu), foralli < |A,
we have M, s; = ¢
def

M, s E <<Al7 NP1Up, & thereisa I;—strategy F4 w.r.t. s such that for all

A =5p T, 51... € Comp(s, Fu), there is some i < |A|
such that M, s; = ¢, and
forall j € [0,i — 1], we have M, s; = 1.

Standard semantics for temporal operators. 1t is worth noting that since all the maximal com-

putations are infinite, the index i involved for clauses related to ((A?))G or ((A’))U can take
any value in IN. The temporal operators X, G and U have their standard meaning from linear-
time temporal logic LTL. CTL formulae can be expressed by RB+ATL formulae (as it is also
classically the case with ATL) if resources are omitted from resource-bounded concurrent game
structures thanks to correspondences of the form ((A gt“7))Gp ~ EGp, (((0“7))p1 Upz = A(p1Upo)
and (((Z)“@)Gp ~ AGp, etc.

Ability to safely extend any finite computation. The presence of the idle action allows a (partially
defined) strategy to be extended to an infinite strategy as soon as a formula is satisfied along the

computations. For instance, I, s = ((Ab»qu is equivalent to the existence of f € D4(s) such
that for all g 3 f, we have M, s’ = ¢ with 6(s, g) = s” and b+ costa(s,f) = 0.

Upward closure. Observe also that a strategy modality ((AE» reduces the impact of the function

7,
cost in two ways. If the ith component of b is equal to w, then there are no constraints on the
ith resource along the computation. Moreover, the restriction of cost to proponent agents in A
means that the actions of the opponents cost nothing and are always available. In addition, it is

worth noting that ((Ag nouy = <<Ag/))¢U¢ is valid whenever b < 1% , and therefore whenever

M, s E ((Ag WU there is a finite set of minimal elements 7 € (IN U {w})" (with respect to <)
such that M, s = ((A’ﬁ))qutj) (by Dickson’s Lemma [21]] every upward closed set of (IN U {w})"
admits a finite basis of minimal elements; see also the notion of Pareto frontier in Section EI)

Alternative semantics. In the definition of the satisfaction relation |= for RB+ATL, in the clauses
for a strategy modality followed by a temporal formula, there is an existential quantification over
a I;-strategy F,4 followed by a universal quantification over all the computations in Comp(s, F4).
By definition, Comp(s, F4) = Comp(s, Fg4, l_;), and therefore all the computations involved in the
universal quantification are maximal and infinite, and, of course, all the underlying resource
availabilities along the computations are non-negative. Alternative definitions have been con-
sidered in the literature that separate maximality from infinity, leading sometimes to different
decidability results. For instance, with the infinite semantics, the existential quantification is
over a strategy (that is not necessarily a E—strategy), and the universal quantification is made only
over infinite computations that respect the strategy (typically nothing is required on maximal
and finite computations). Under certain assumptions, this may lead to undecidability, see e.g.[4}
Section 6]. Similarly, with the finite semantics, the existential quantification is over a strategy
(that is not necessarily a 5—strategy), and the universal quantification is made only over maximal
(either finite or infinite) computations that respect the strategy. In this paper, we shall not inves-
tigate logics with these alternative semantics, as from our technical developments of alternating
VASS, we can easily derive new decision problems on alternating VASS that correspond to such
logical variants. Another way to define alternative semantics is to change the notion of resource-
bounded concurrent game structures; for example, by assuming that there is no distinguished idle
action, or requiring that the action manager function is of the form act : S X Agt — P(Act),
i.e. an agent may be unable to choose an action from a given state (because the action manager
returns an empty set of actions in that state). In what follows, we shall investigate these variants
by simply adapting the techniques for RB+ATL with the standard semantics defined above.
The model checking problem for RB+ATL is defined as follows:

Input: k,7 > 1 (in unary), a formula ¢ in RB+ATL([1, k], 7), a finite RB+ATL([1, k], ¥) model
M and a state s,

Question: I, s = ¢p?

The encoding of the values in k and r in unary is not essential here, since, if transitions are
represented explicitly, the size of M is greater than k + 7.

Proposition 1. /13| Theorem 1] The model checking problem for RB+ATL is decidable.
7

A key contribution of this paper is characterising the computational complexity of the model
checking problem for RB+ATL. Obviously, RB+ATL is a quantitative extension of ATL, and
whereas the satisfaction of ATL formulae can be restricted to positional strategies (i.e., actions
are chosen based on the current state rather than histories), the satisfaction of RB+ATL formulae
may require non-positional strategies in order to keep the amount of each resource above zero.

3 Problems on Vector Addition Systems with States (VASS)

In this section, we recall known complexity/decidability results for model checking and
games on VASS, and state necessary complexity characterisations that will be used in the se-
quel. We then show that using optimal decision procedures for problems such as black boxes
leads to optimal decision procedures for model checking problems of resource-bounded logics.

3.1 Alternating VASS

A binary tree ¥, which may contain nodes with (only) one child, is a non-empty subset of
{1,2}* such that, for all n € {1,2}* and i € {1,2}, n-i € T implies n € T and, n-2 € T implies
n-1 € . The nodes of T are its elements. The root of T is ¢, the empty word. All notions such
as parent, first child, second child, subtree and leaf, have their standard meanings. The height of
T is the length, i.e. the number of nodes, of the longest simple path from the root to a leaf. An
alternating VASS (AVASS) [16] is a tuple A = (Q, r, Ry, Ry) such that:

e (Jis a non-empty finite set of locations (a.k.a. control states) and r > 0 is the number of
resource values;

e R; is a finite subset of Q X Z" X Q (unary rules);
e R, is a (finite) subset of Q® (fork rules).
A derivation skeleton of A is a labelling D : T — (Ry U Ry U {L1}) such that:
e T is a binary tree;
e if 11 has one child in T, then D(n) € Ry;
e if 11 has two children in T, then D(n) € Ry;
e if nis aleafin T, then D(n) =L;
o if D(n) = (q,1,q") and D(n - 1) € Ry U Ry, then the first location of D(n - 1) is ¢’;

o if D() = (9,q1,92) and D(n - i) € Ry U R, for some i € {1, 2}, then the first location of
D(n-i)is gi.

A derivation of A based on D is a labelling D : T — Q x Z’ such that:
e if 1t has one child 1 in T, D(n) = (g, if,q’) and D(n) = (q,3), then D) = (¢’, il + 3);

e if 1 has two children n” and n”" in T, D(n) = (4,41, 92) and D) = (g,7), then D) =
(91,9) and D(n") = (q2,).

Note that fork rules do not update the resources, and therefore there is an asymmetry between
unary rules and fork rules. This will be a very useful feature later, when dealing with the propo-
nent restriction condition in RB+ATL. Unlike branching VASS (see e.g., [45,20])), the fork rules
have no effect on the counter values.

A derivation D based on D is admissible whenever D : T — Q x IN’, i.e., only natural
numbers occur in it. An admissible derivation is also called a proof. Above, we introduced the
primitive notion of computations and their restriction to b-consistent computations. Similarly,

e el ¢ . 99
the primitive notion of derivations can be restricted to proofs (a kind of “0O-consistency’).

As an illustration, we present a proof from an alternating VASS having at least the unary

-1,43 3,43
rules 11 = qq (——+—2 go and 13 = g (i—+—)> g3, and the fork rule v, = go — 41, 2.

G &8) (q0,(0,8)

@ﬂ&ﬂ@<%@mg%
(40, (1,5)) 2
oD

(q1,(2,2)

Before presenting the decision problems on AVASS, we state a simple property that will be used
in the sequel.

Lemma 1. Given a derivation skeleton D : T — (Ry U Ry U{L}) such that D(¢) is a rule whose
Sfirst location is q and (q,b) € Q X Z', there is a unique derivation D of A based on D such that
D) = (9,b).

Indeed, once the rules are provided by D, the root value (g, l;) determines all the values of the
derivation since the way () is defined remains essentially deterministic. The state reachability
problem for AVASS is defined as follows:

Input: An alternating VASS A and control states go and 4.

Question: Is there a finite proof of AVASS whose root is equal to (qo, 6) and each leaf belongs
to {Qf} x IN"™?

When A has no fork rules, A is essentially a VASS [33]] and the above problem is an instance
of the coverability problem known to be EXPSPACE-complete [37, 39] (see also [8, [18]). The
non-termination problem for AVASS is defined as follows:

Input: An alternating VASS ‘A and a control state go.

Question: Is there a proof whose root is equal to (qo, 6) and all the maximal branches are infi-
nite?

Proposition 2. /16| 32|] The state reachability and non-termination problems for AVASS are
2EXPTIME-complete.

The decidability of these problems was first established in [40] by using monotonicity of the
games. The 2EXPTIME upper bound is preserved if we assume that the root is labelled by (g, b)

with b € N’ encoded with a binary representation (see Lemmabelow).
9

In the sequel, we shall also admit fork rules of any arity & > 1 and therefore in such slightly
extended AVASS, the set of fork rules R is a finite subset of | 22 QF. The notions of derivation
skeleton, derivation and proof are also changed to refer to general trees T C (IN \ {0})*. The set
of finite words T C (IN \ {0})* is a (not necessarily binary) tree iff for all n € (IN \ {0})* and
i€ (IN\{0}),n-ie Timpliesn € T,andn-i € Tandi > 1 imply n-(i—1) € T. In the remainder
of the paper, by AVASS we mean such an extended AVASS with fork rules of arbitrary arity.

3.2 Model checking problems

A VASS can be defined as an alternating VASS without any fork rules, and therefore we write
itV = (Q,,R) where R is a finite set of unary rules. Given a VASS V, its transition system

def

TS(V) = (W, —, L) is such that:
o WE Qx NN,
e L is a labelling with elements of Q also understood as propositional variables and L(q) =
{g} x IN";

e — is a binary relation on W such that (g, 9) = (¢’,7") iff there is a unary rule (g, 1,4’) in
R such that @ = i + 7 where ‘+’ is the component-wise addition on IN".

As usual, we also write — to denote the reflexive and transitive closure of —. Since TS(V) is a
Kripke-style structure, it can be used to interpret modal or temporal formulae where the atomic
formulae refer to locations, e.g., formulae of the temporal logics LTL or CTL (see also [[L7]).
Since alternating-time temporal logics such as ATL or ATL" strictly extend CTL or CTL" respec-
tively, complexity hardness results for temporal logics can be lifted to alternating-time logics.
We adopt this approach.

We first recall some results that will be useful in the sequel.

Proposition 3. The model checking problem for LTL on VASS is EXPSPACE-complete (the
atomic formulae are control states) and it is PSPACE-complete for a fixed number of resources [27]].

EXPSPACE-hardness of model checking on VASS already follows from EXPSPACE-hardness
of the state reachability problem for VASS [37]], as state reachability is a subproblem of the
model checking problem for VASS (consider the LTL formula Fgy).

3.3 The logic RBTL" and its variants

The models of the logic RBTL" are structures of the form (Q, 7, R,L) where (Q,r,R) is a
VASS and L is a labelling built on elements of Q understood as propositional variables, so that
L(g) = {g} (see e.g., [12} Section 3]). For consistency with standard terminology, an infinite proof
in (Q,7,R) is called a path or run, and is represented by A = (qo, %0) = (q1,71). ... We write
A(i) to denote the ith configuration (g;, U;), and A[+i, +0) to denote the suffix of A starting from
(‘71'/ 77l)

The state formulae ¢ and the path formulae ® of RBTL" are defined mutually recursively by
the following grammar (relative to a set of locations Q and number of resources r, which is not a
significant restriction since we are only interested in model checking)

¢
D

g1 =¢ 1 @Ag) | B)@
G| -@ | (@AD) | XD | (QUD) | GO,
10

where g € Q. Syntactically, every state formula is also a path formula according to this grammar,
reflecting the fact that a path uniquely identifies a location in which a formula is interpreted (its
starting location).

In presenting the semantics of RBTL", we make an explicit distinction between state formulae
and path formulae. The two satisfaction relations |, and =, are defined as follows (standard
clauses for the Boolean connectives are omitted):

EIR, q '25 q’_} ‘ q' = q R
M, g s (b)Y & there is an infinite run A starting at (q, b)
such that M, A |, O

def
=4

def

NM,A =, P M, A(0) - ¢ for state formulae ¢
M, A Eyp XD E M AL, +00) £, @
MAE, UV & thereisi > 0 such that M, A[i, +o0) =, W and

for every j € [0,i — 1], we have I, A[], +00) =, ©.

As usual, we write [l;](j) to denote the formula —|(l;>—|qb, and therefore I, g k= [l;]fb iff for all the

infinite runs A starting at (g, g), we have M, A =, D.
The model checking problem for RBTL" is defined as follows:

Input: a model M = (Q,r, R, L), a control state g and a state formula ¢.
Question: N, q = ¢?

As CTL is a syntactic fragment of CTL*, RBTL is defined as the syntactic fragment of RBTL"
in which any subformula with an outermost connective in {U, X, G} is preceded by a modality
of the form either (l;) or [5] Observe that the model checking problem for RBTL is already
EXPSPACE-hard, since the state reachability problem for VASS can be reduced to a question of

the form M, qo (6} gr. We consider the computational complexity of the model checking
problems for RBTL" and RBTL in Section 4.4}

4 On the Complexity of RB:ATL

In this section, we show how to solve the model checking problem for RB+ATL by solving
instances of decision problems for alternating VASS using a labelling algorithm. The size of
the AVASS problem instance is linear in the input resource-bounded concurrent game structure,
and the number of calls is also linear in the size of the input formulae. As far as worst-case
complexity bounds are concerned, this is probably the best we can hope for. At a high level,
our results relate model checking problems for resource-bounded logics in Al and verification
games. At a technical level, this reduces to three key correspondences. First, the proponent
restriction condition in RB+ATL corresponds to the fact that, in AVASS, only unary rules can
update the counter values. This is crucial to our results, but alone is not sufficient. Second, each

l;-strategy F4 generates a set of computations that can be represented as a finitely branching tree
with infinite branches, which corresponds precisely to the proofs in AVASS (see e.g., Theorem|T]
below). Third, roughly speaking, temporal formulae in the scope of a strategy modality corre-
spond to acceptance conditions on branches of the proofs (admissible computations) extracted
from the AVASS. In the remainder of this section, we develop these correspondences in detail
and these can be summarised in the table below.

11

RB+ATL \ Alternating VASS ‘

Logic in Al Verification games
proponent restriction condition | updates in Ry / no update in R;
computation tree for Fy proof
formulae in the scope of ((A”)) monotone objectives

4.1 Structural analysis of strategies and proofs

We first establish the necessary formal relationships between strategies in resource-bounded
concurrent game structures, and proofs in alternating VASS. The technical developments are not
conceptually difficult, but they allow us to derive results that are helpful in solving the model
checking problem for RB+ATL using decision procedures on AVASS. Our approach also allows
us to pose and solve new model checking problems (see e.g. Section[5]and Section [5.6).

Let M be a finite resource-bounded concurrent game structure, A € Agt be a coalition,
F4 be a strategy and s be a state. We construct an alternating VASS FAw 4 s such that the set
of computations starting in s and respecting F4 corresponds precisely to a derivation skeleton
whose root is labelled by a unary rule with first state s. Moreover, if F4 is a 5—strategy w.rL.t.
s, then the derivation skeleton can be turned into a proof whose root is labelled by (s, 5). This
implies that fork rules can have any arity greater than one, and components can have the value
w, where w is a value that remains constant (i.e., we assume that n + w = n for all n € Z).

Given M = (Agt, S, Act,7,act, cost,,L), the AVASS Ay as = (Q,7, Ry, Ry) is built as
follows:

def

Q={stu{(s’,f) | s" €8, FeDa(s")Ul(g,s) | s',s" €S, geD(s"), 6(s”,08) =5}
e The set of unary rules R; contains the following elements:

— Forall f € Da(s), (s, costa(s,), (s,).
— Forall (g,5") € Q, forall f € Da(s"), ((g,5), costa(s’, 1), (s, 1))

e The set of fork rules R, contains the following elements.

— For all (s',) € Q, let {(g1,51),.--,(8a,52)} = {(9,5”) € S | s” € 6(s,9), g €
D(s’), T E g}. This set is non-empty because an action manager always returns a
non-empty set of actions. We add the a-ary fork rule

(", 1), (81,51), - -, (8as 5a))-

In order to define the rule unambiguously, we assume an arbitrary linear ordering on
the set Q.

It is worth noting that:

e s has a special status in Q simply because any proof whose root configuration contains s
has no predecessor configuration.

e By construction, any derivation skeleton from A 4 s has to alternate the rules in Ry and
the rules in R;. This property will be used to slightly simplify developments below.

12

Unary rules Fork rules (ddLe, idle) I
(s,idle ((idle, by), S)
0 .)
9 (s,idle ((idle,by), S)

‘s) +1 G, alD / ((a, idle), si,
D e
(a1, b2), S)

Figure 2: Transitions and its associated unary and fork rules.

e For every (s’,f) in Q, there is a unique fork rule starting from (s’, f).

e The construction also applies in degenerate cases, i.e., when A = Agt or when A =
(assuming that cost(s’,f) = 0 for the unique f € Dy(s”)).

In Figure 2} we illustrate how transitions from the state s are turned into unary rules and fork
rules (in the example, Agt = {1,2}, A = {1}, act(s,1) = {idle, a;}, act(s,2) = {idle, by, by},
and cost(s,1,a1) = +1).

Given an infinite computation A = s EIN $1 & Sy ... starting in s = sg and respecting F4, we
can associate it with an infinite sequence (which we call an extended computation)

ext(A, Fa) = 5= (50, o) = (81,51) = (51,F1) = (82,52) = (52, F2) = (83, 83) -+

where s) = s, and for all n > 0, F4(sg LN S1... LN sn) = T, and costa(sy,, ,) = #,. That is, every

step s; pka si+1 in the computation A is decomposed into two parts: s; 5 (si, 1) = (Gix1, Siv1)-
The computations in Comp(s, F4) can be organised as an infinite tree that corresponds to
a derivation skeleton for Ay as. Below we define an infinite tree Tr,, a labelling function
L:Tp, — Sandapartial map R : Tp, X T, = (Uges D(S)).
o Ip,(e) E 5.
e For all finite words w = ky - - -kg in T, such that £(w) is already defined, we add to Tf,
the values k1 ---kg - 1, ..., kg - - - kg - a such that

R(e, k1 R (k1 kiko R(ky-kp-1,k1-kg)
— Fa(2(e) ™2 2(ky) T (k) - ——0 g(w)) =
- {(91/51)/"'/(galsa)} = {(g/SH) €S | s” € 6(5’/g)/ g € D(SI)/ f C g} with
s’ = &(w).

def

— Forall j € [1,a], we have L(ky - - - kg - f) gsj and R(w, w - j) = g;.

13

The tree T, is defined by saturation of the above rules, and the maps £ and R are defined accord-
ingly. The structure (Tf,, R, L) is a labelled transition system with a tree-like structure encoding
all the infinite computations respecting the strategy F4. A maximal branch w of (Tf,, R, &) is
understood as an element of (IN \ {0})“, such that any (strict) finite prefix of w belongs to Tr,.
The label of w, written lab(w), is defined as follows:

ot R(ek R(ky ko k R(ky-+kp-1,kr kg
Lab(w) £ £(e) "3 2(k) " gk - T gy k)
where w = kykpks - - . By construction, 1ab(w) is a maximal computation.

Lemma 2.

(@) For every maximal computation A starting at s and respecting F 4, there is a maximal branch
w in (Tr,, R, L) such that A = 1ab(w).

(II) For every maximal branch w in (Tp,, R, L), there is a maximal computation A starting at s
and respecting F 4 such that 1lab(w) = A.

The proof reflects that (Tr,, R, £) contains all the computations from s that respect the strat-
egy Fa.

We build a derivation skeleton D : T, — (R; U Ry) as follows, where all the maximal
branches of T, are infinite (we therefore do not need to include L in the range of D) .

e D(e) = (so, costa(so, Fa(so)), (5o, Fa(s0)))-

o D(1) = ((s0, Fa(s0)),(81,51),---,(9a,52)) where 1,...,a € T, (buta + 1 ¢ Tg,), for all
j € [1,al, Tr,(j) = sj and R(e, j) = gj. By construction of A a,, D(1) is the unique
fork rule starting from (sg, F4(s0)).

o Letn =1k1---1kgl with ky,...,kg > 1 and such that
D(1ki1---kg) = ((8,5"), costa(s’, 1), (s', 1)) € Ry.

Then, D(n) = ((s', 1), (91,51), - - -, (8a,Sa)) Where ky - - - kgl,... k1 - -kga € T, (butky - - - kg(a+
1) ¢ Tr,), forall j € [1,a],

- Tr,(ky---kg - j) = sj and,
- Rk1 - kg, k- kgf) = gj.
By construction of Ay 4 ¢, D(1n) is the unique fork rule starting from (s’, f).

e Letn = 1k11---1kg. By construction we can assume that we already have that D(1k;1---kg_11) =
((s",1),(81,51), - - -, (8as Sa))- Let ¢ be equal to R(ky - - - kg, k1 - - - kg - 1) and be the restric-
tion of ¢’ to A (so f C ¢’). Then,

D) = ((Sk,, Sks), cOSTA(SK,, 1), (Sks, T))-
Note that 9(n) is indeed a valid unary rule.

Given an infinite branch w of D, say w = 1ky1ky1ks--- € IN“, we define the extended
computation ext(w, F4) as follows. Suppose that the label of such a branch is characterised by
the values below:

14

D(S) = (SO, 1’_[0/ (SOI TO))’ D(l) = ((SOI TO)/ (g%,s%), sy (gtlyllszlxl))‘

D1 -+k) = (o, 5}), T 51, T9)-

D(kal---kil) = (s, F:), (@7, 87), oo (i s)

o D(1ki1--kg1) = ((Qi S, 1) ifg- 1,(5 f/s 1))-

o D(Uhkil--kg11) = (s, Tp-), ()50, (o 56,

Then,

def U il i,
ext(w, Fa) = so = (s0,fo) = (a5, 55,) = (53, F1) = (9 ,50.) = (55, F2) = (83,,57,) -+
Lemma 3.

(I) For every maximal computation A starting at s and respecting F 4, there is maximal branch
w in D such that ext(A, F4) = ext(w, Fyp).

(IX) For every maximal branch w in D, there is a maximal computation A starting at s and
respecting F 4 such that ext(w, F4) = ext(A, Fy).

The reduction can be easily verified. Note, however, that the proponent restriction is essential
for its correctness.

Theorem 1. Thereisa l;)-strategy w.rt. s in M iff there is a proof in Ay a,s whose root is labelled

by (s, l;) and every maximal branch is infinite.

Proof. First suppose that there is a b- strategy F4 w.r.t. s in M. Let us consider the structures
(Tr,, R, L) and D : T — (Ry U Ry) as defined above. By Lemmall] there is a unique derivation

D of A as based on D such that D(e) = (s b) It remains to show that 9 is indeed a proof.
Let w = 1k;1kp1 - - - be a maximal branch of 9. We have:

o D(e) = (s0,b).

D(1) = ((s0, o), o + b) with D(e) = (s, iy, (50, T0)).

D(k1-+ ki) = ((af ,51), LI il + b) with

D(lkll T ki*ll) = ((S;{l__ll, fi*l)/ (ga/ S?l)/ ceey (gfxi/ s;,))'

ZA)(]-kl]- e kl]-) = ((S;{l/ Ti)/ Zj’:l 1/7] + I;) with D(lkll e kl) = ((g;'cils;;-i)/ Zzi/ (S;C," TZ))
15

By Lemmal[3] there is a maximal computation A starting at s and respecting F4 such that ext(w, F4) =
ext(A,Fa). Since Fu is a I;—strategy, A is b-consistent and therefore for all i > 0, we have
0< Z'j;ll Jj + 5, which implies that Disa proof.
For the proof of the other direction, assuming that there is a proof) whose root is labelled
by (s, l;) and every maximal branch is infinite, we can extract from the underlying derivation O
a strategy F4 (see the similar construction in the proof of Theorem [3|below). Lemma [3]and the
fact that 9 is admissible entail that F 4 is a l_;—strategy w.r.t. s (details are omitted). O
Transitions in M can be defined as triples (s’, g,s”’) such that 6(s’,g) = s”. A transition is

also denoted by the expression s’ 25 §”. The set of transitions of 9 is denoted by Zgy. Itis

interpreted as a finite alphabet when 9 is finite. An infinite computation A = s BB, ..

can be equivalently represented by the w-word in X{), (with contiguous transitions)
(50> 51) - (51 82) - (525> 83) - -

An w-word w € X is said fo be with contiguous transitions whenever at any position, the
second state of the transition is equal to the first state of the next position.
Given an infinite branch of the proof corresponding to the extended computation

1 il i
S = (S/ TO) - (glll’slll) - (S};/ fl) - (giz’siz) - (552172) - (9231523) te

its Xgn-projection is defined as the sequence
1

% 1 .qu 2 2 % 3
(s = 5p,) (5, = i)~ (S, = 8p)

3

Lemmad. Let L C X}, and be (N U {w})". The statements below are equivalent.
1. There is a l;-strategy Fa wrt. s in M such that the set of computations Comp(s,F4) is
included in L.

2. There is a proof in Ay a s whose root is labelled by (s, I;), every maximal branch is infinite
and its Ygn-projection belongs to L.

Lemma[4]is a consequence of Theorem [I|and Lemma 3]is key to establishing formal corre-
spondences between Mt and Agy 4 s. The main challenge is to determine classes of languages for
which decidability can be obtained by using only the decidability (and complexity characterisa-
tion) of the state reachability and non-termination problems for AVASS.

Given S’ C S withs € §’, let Lg be the set of all w-words such that the transitions use only

states in S’ (see the formal definition below). Let us define ﬂgﬁ 4sasa restriction of Agy 45 in

which the opponent has no way to go out of S’. Alternatively, ﬂ?)t 4.5 can be understood as the
restriction of Ayy 4 s to rules that only involve states in S’ (assuming that s is already in S”). We

define ﬂ%}As = (Q,7,R1, Ry) as follows:

def

Q=1{stuf(s’,f) | s €8, FeDa(s")}U{(g,s") | s',s" €S, ge D(s”), 6(s”,a) =5"}.
16

e The set of unary rules R; contains the following elements.

— For all f € D(s), (s, costa(s, T), (s, T)).
— Forall (g,5") € Q, forall f € D4(s"), ((g,5"), costa(s’, 1), (s, T)).

e The set of fork rules R; contains the following elements.

- FOr all (S’/f) e Q’ let {(gllsl)/ .. -/(gou Sa)} = {(g/ S/I) | SH e 6(5,/ g)/ g E D(S,)/ f ;
al.
If {s1,...,s4} € S, then we add the a-ary fork rule

((s", 1), (81,51), - -, (80, 5a))-
(Otherwise, nothing is added.)
So, there is at most one fork rule starting from (s’, f) (possibly zero).
Lemma 5. Assuming that s € S, the statements below are equivalent.

S
1. There is a b-strategy Fao w.rt. s in M such that the set of computations Comp(s, F4) only
visit states in S’.

2. There is a proof in ﬂ%t A s Whose root is labelled by (s, 5) and every maximal branch is

infinite (a positive instance of the non-termination problem for AVASS).

S
Note that the way b-strategies are defined, in (1), F4 generates maximal and infinite compu-
tations in which only states in S’ are visited. Similarly, the proof in (2) contains only maximal
-
and infinite branches and its root is precisely (s, b).
Proof. Let Amas = (Q,7,Rq,Ry) and ﬂ‘iﬁ, As = (Q',r,R|,R)). By construction, we have

Q" € Q, R € Ryand Ry C Ry. We write I, to denote the alphabet {s L5 isy,8 €
S"and 6(s1, g) = s2} and L to denote the w-regular language in (X§,)* made of infinite sequences
of contiguous transitions such that only states in S’ can occur.

(1) = (2). Suppose there is a E—strategy F4 wort. s in 90t such that the set of computations
Comp(s, F4) only visit states in S’, which amounts to having the set of computations included in
L. By Lemmathere is a proof in Agy 4 s whose root is labelled by (s, l_;), every maximal branch
is infinite and it belongs to L. Since s € §’, all the rules in R} U R}, only involve states in S’

and the above proof only visits such states, we have that there is a proof in ﬂi’t 4 s Whose root is

S
labelled by (s, b) and every maximal branch is infinite.
o
MA,s
is defined as a restriction of Ay as with Q" C Q,

(2) = (1). Suppose that there is a proof in A whose root is labelled by (s, E) and every

maximal branch is infinite. Since ?L]Sﬁ As

R} € R; and R, C Ry, there is also a proof in A 4s whose root is labelled by (s, l;), every
maximal branch is infinite and only states in S’ are visited. Equivalently, there is a proof in

A a,s whose root is labelled by (s, E)) every maximal branch is infinite and it belongs to L. By

5
Lemma {4} there is a b-strategy w.r.t. s in 9t such that the set of computations Comp(s, F4) is
included in L, hence only states in S” are visited. O

Lemma [5 is useful to handle formulae of the form ((Ag »G¢. Let us consider a similar

treatment that will be useful to handle formulae of the form <<Ay>)¢1 Ug,. Given 51,5, C S with
17

s € 51USy, let L, s, be the set of all w-words with contiguous transitions such that the projection
under S belongs to S] - S, - §¢. Typically, the projection of (s LN s1) - (s1 5 $2) - (S2 5 S3) -+
under S is precisely sp515253 - - .

Lemma 6. The statements below are equivalent:

1. Thereisa I;-strategy w.r.t. s in M such that Comp(s, F4) C Lg, s,.

. . . S,US . 5 .

2. There is a finite proof in ‘ﬂwlt, A; whose root is labelled by (s, b) and each leaf contains a
control state in {(g,s') € Q | s € S}U{s’ € Q | s" =5, s € Sy} (a positive instance of
the state reachability problem for AVASS).

The set {s’ € Q | s’ =5, s € S} may appear somewhat unintuitive: basically it corresponds
to {s} if s € S, and 0 otherwise. The proof of Lemma@below relies on the fact that, in resource-
bounded concurrent game structures, idle € act(s,a) for all agents a and states s.

Proof. The proof is similar to the proof of Lemma[5]except that we need to relate finite proofs to
infinite ones, and in doing so we take advantage of the presence of the idle action in concurrent
game structures.

Let Amas = (Q,7,R1,Rp) and .?lgftjssz =(Q’, 1, R}, R}). By construction, we have Q" C Q,
Rll c R1 and Rlz c Rz.

S

(1) = (2). Suppose there is a b-strategy F4 w.r.t. s in M such that the computations in
Comp(s, F4) visit a state in S; until a state in Sy is visited, which amounts to having the set
of computations included in Lg, 5,. By Lemma 4, there is a proof O in Ay as Whose root is

labelled by (s, l;), every maximal branch is infinite and it belongs to Lg, 5,. Let 9 be the finite
proof obtained from 9 by pruning any subtree as soon as a node is labelled by a control state in
S,. Existence of such a finite proof is guaranteed by Konig’s Lemma. It is easy to check that 2

is a finite proof in ﬂ%ﬁss whose root is labelled by (s, I;) and each leaf contains a control state in
{(3,)€Q | s"€5}U{s"€Q | s =5, 5€5)

(2) = (1). Suppose that there is a finite proof Din \7{;1215: whose root is labelled by (s, l;) and
each leaf contains a control state in {(g,s’) € Q | s € S,JU{s’ € Q | s’ =5, s € Sy}. One can
extend D in order to obtain an infinite proof 9 such that every maximal branch is infinite and it

belongs to Lg, s,. Any leaf labelled by the control state (g,s’) is further extended by application

of the unary rule (g,) 5 (s’,T) where { is the idle joint action (with the control state s, a similar
method applies). Similarly, any leaf labelled by the control state (s’,f) is further extended by
application of the unique fork rule starting by (s’,f). It is easy to check that this not only leads
to a derivation but also to a proof, because the extension only deals with the update vector 0.

By Lemma@ there is a 5—strategy w.r.t. s in 9 such that the set of computations Comp(s, F4) is
included in Lg, s, |

4.2 2EXPTIME upper bound

The upper bound is established by giving a labelling algorithm as done in [4] or for standard
temporal logics such as CTL and CTL*. The main difference with [4] rests on the treatment of the
cases with strategy modalities is not performed in an ad-hoc fashion using the fact that (IN", <
) is a well-quasi-ordering by Dickson’s Lemma [21] but rather we explicitly call subroutines
that solve decision problems on AVASS. The existence of such subroutines is due to [40] for

18

monotonic games, and their complexity upper bounds are due to [32, Theorem 3.4] and [16|
Theorem 3.1]. Once more, the proof of the 2EXPTIME upper bound is divided into three main

steps:

L.

3.

we introduce a slight extension of AVASS such that the decision problems remain in 2EX-
PTIME;

we show that the cases for the strategy modalities can be faithfully reduced to subroutines
for problems on such extended AVASS (a consequence of developments from Section[4.Tj);

finally, we design a labelling algorithm and establish the complexity upper bound from it.

First, let us introduce a slight extension of decision problems for AVASS.

Lemma 7. In the following extension of AVASS the state reachability and non-termination prob-
lems remain in 2EXPTIME:

Fork rules can be a-ary for any a > 1 (but there is only a finite number of them).

Reachability is related to a subset Sy C S (instead of a singleton set).
The initial configuration is (qo, 5) with b € N’ instead of the fixed tuple 0.

S
The value w in b is allowed and absorbes any other value in Z. (a means to ignore compo-
nents. i.e. to reduce the dimension).

The proof is fairly standard, and consists in using Proposition 2] by simulating a non-binary

fork by a linear-size gadget made of unary and binary forking rules, and by adding binary forking
rules from states in S¢ to a new single final state.
Proof. The lemma states four ways to extend the decision problems on AVASS, either by slightly
extending the notion of AVASS, or by considering more general inputs for the problems. For each
extension, we show how this can be encoded into the state reachability and the non-termination
problems on AVASS using only polynomial-time reductions. The proof of the lemma is then
obtained by composition of the reductions (polynomial-time reductions are also known to be
closed under compositions) and by invoking Proposition[2]to get the 2EXPTIME upper bound.

Let A = (Q,1,Ry, Ry) be an alternating VASS, qo, 95 € Q, and v = (q1,...,qa+1) be an
(extended) a-ary rule. If @ = 1, the rule can be treated as a unary rule with the update

S
vector 0, whereas if &« = 2, it can be treated as a standard binary fork rule. So assume
a > 3. Let R), be the following set of binary fork rules derived from v where g7, ..., 49/ _,
are new control states:

R’Q = {(lh/ q2/ ‘71)} U {(q;/ Qj+1/ q;‘+1) |] € [1la - 2]} U {(q;_ll qa/ l7a+1)}-
It is easy to show that the statements below are equivalent:
— there is a finite proof in (Q, 7, R1, R, W {r}) whose root is equal to (go, 6) and each leaf
belongs to {g} X IN";
— there is a finite proof in (Q W {q;. | j€[l,a—1]},7,Ry, Ry W R)) whose root is equal

to (4o, 6) and each leaf belongs to {g7} X IN".
19

If there is more than one extended fork rule, we apply the above reduction as many times as
necessary, leading eventually to a reduction to an instance of the state reachability problem
for AVASS. The same reduction also works for the non-termination problem.

Let A = (Q,T,Rl,Rz), qo € Q and Sf = {ql,...,Qﬁ}. Let A’ = (Q] {q?ew},T,Rll,Rz) be

defined from A such that R} SR W {qi 5 q}‘ew | i€[1,p]}. Itis easy to show that the

statements below are equivalent:

-

— there is a finite proof in A whose root is equal to (go, 0) and each leaf belongs to
Sf x IN";

— there is a finite proof in A’ whose root is equal to (q0,6) and each leaf belongs to
{qrf‘ew} x IN".

Let A = (Q,7,R1,Ra), 4o, 4 € Qand b € N and A’ = (QW ()}, 7, R W [, = o}, Ro).
It is easy to show that the statements below are equivalent:

— there is a finite proof in A whose root is equal to (qo, 5) and each leaf belongs to
{qs} x IN";

— there is a finite proof in A’ whose root is equal to (qé,@) and each leaf belongs to
{gst X IN".

Similarly, the statements below are equivalent:

— there is a proof in A whose root is equal to (go, l;) and all the maximal branches are
infinite;

— there is a proof in A" whose root is equal to (g;, 6) and all the maximal branches are
infinite.

Let A = (Q,7,Ry1,R2), g0, 95 € Q and be (N U {w})". We are looking for proofs whose
root is labelled by (go, l;) and any occurrence of w in b remains for all the descendant nodes,
which amounts to ignoring some components.

Suppose that @ occurs at least once in b and let {i1,...,ig} € [1,7] be the set of positions
where w occurs in b. Let ¥/ = r—pBandlet j; <--- < j. betheindicesin [1,7]\{i1,...,ig}.
Letf:[1,#] = {j1, -, j~} be the bijection such that f(n) = jn- We define the alternating
VASS A" = (Q,7", R}, Ry) obtained from A by removing the components in positions
in {i1,...,ig}. The map f is extended to | : (Z U {w})” — Z" such that for all i € Z',
n € [1, 7] we have f(if)(n) = i(jn)- The set of unary rules R} is defined from R; as follows:

Ridéf{qf(—ﬁ))q’ | qiq'eRl}.

It is easy to show that the statements below are equivalent:

— there is a finite proof in A whose root is equal to (qo, E) and each leaf belongs to
{grt X IN;
20

— there is a finite proof in A" whose root is equal to (qo,f(g)) and each leaf belongs to
{I]f} X Nr’ .

The same reduction also works for the non-termination problem.

O
Lemmarelates the satisfaction of a formula with the outermost connective ((A?))U and the
state reachability problem for AVASS.

Lemma 8. The statements below are equivalent:

@M M, s = (ALYD;Udbs.

-

(ID) there is a finite proof in ﬂ;ﬁsz whose root is equal to (S, b) and each leaf has a control state

in{(g,s)eQ | s €S}U{s’€Q | s =5 seStwithS;={s | M,skE ¢}, ie({l,2}

This is a direct consequence of Lemmal6]

Lemma@relates to the satisfaction of a formula with outermost connective ((A?))G and the
non-termination problem for AVASS.

Lemma 9. Assuming that M, s = ¢1, the statements below are equivalent:

@ M,s | (AL)Ga.

(II) there is a proof in ﬂ%’ms with S = {s" | M,s" | P1} whose root is equal to (s, 5) and

every maximal branch is infinite.
This is a direct consequence of Lemma [5]
Theorem 2. The model checking problem for RB+ATL is in 2EXPTIME.

Proof. Algorithm[I]is a global model checking algorithm that takes as input a resource-bounded
concurrent game structure 9t and a formula ¢ (both built on the same set of agents and with the
same number of resources) and returns the set of states that satisfies the formula. By structural
induction, one can show that GMC(M,) = {s | M, s = ¢} by using Lemma and Lemma@}
We use the fact that the state reachability and the non-termination problems for extended AVASS
are decidable by [40] and by Lemma [/| (for the extension). Let us show how the proof by
induction works.

Case { = ((Ab>>G1/}’

The statements below are equivalent:
o M,s .

e there is a E)—strategy F4 w.r.t. s such that the computations in Comp(s, F4) only visit states
in S ={s" | M,s" | ¢’} (by definition of).
51

S
a4 Whose root is equal to (s, b) and every maximal branch

e s € §] and there is a proof in A
is infinite (by Lemma 9).

21

Algorithm 1 — RB+ATL model checking —
1: procedure GMC(M,)
2: case ¢ of
p: return{s€ S | s € L(p)}
—1p: return S\ GMC(I, ¢)
Y1 Ay return GMCON, 1) N GMC(‘JJE)
(Ab NXY: return{s | A€ Da(s), 0< costa(s,f) + 5, for all f C g € D(s), 6(s,9) €
GMC, ¢)}
7: {(AP)WGy: S1 := GMC(I, v);
return {s € 51 | A

> kW

.
(s, b) is non-terminating}

MA,s
8: <<Ab>>1p1 Uys: return {s | ﬂ%ﬁf;, (s, E), S’ is a positive instance of state reachability}
with S; = GMC(I, 1), S, = GMC(,), S, = {(3,8) €Q | ' € S5} U{s" €Q | 8" =
s, s € Sy}
9: end case

10: end procedure

e s € 51 and there is a proof in ﬂw . Whose root is equal to (s, b) and every maximal branch
is infinite with S; = GMC(, ¢’) (by induction hypothesis).

e sES z:lndf}LmAS
(by definition).

(s, b) is a positive instance of the non-terminating problem for AVASS

Case | = ((Ag MP1Uips. The statements below are equivalent:
e MskE .

e there is a l;-strategy F4 w.rt. s such that for all A = s T, S1... € Comp(s, Fy), there is
some i < |A[such that M, s; |= ¢, and for all j € [0,7 — 1], we have M, s; | Y.

5
e there is a finite proof in ﬂgﬁjsg whose root is equal to (s,b) and each leaf has a control

state in {(6,5) € Q | & €Ul €Q | &' =s, 5€So) with S = {s | M,s | i,
i €{1,2} (by Lemmal[g).

S
e there is a finite proof in ﬂm ASZ whose root is equal to (s, b) and each leaf has a control

statein {(g,s") € Q | s’ € S}U{s" € Q | 8" =, 5 € Sy} with S; = GMCN, ;)i € {1, 2}
(by the induction hypothesis).

ﬂ%‘zjsj (s, I;), S/, is a positive instance of the state reachability problem for AVASS with

Si = GMCEM, ;)i € (1,2} and §) = {(a,5') €Q | s €S} Uls' €Q | ' =5, s € Sy).

Case 1 = ((APY)Xy

The statements below are equivalent:
e M,skE .

e there is a I;-strategy F4 w.rt. s such that for all sy ELN S1... € Comp(s,F4), we have
I, 51 | ¢’ (by definition of).
22

e there is a E—Strategy F4 w.rt. s such that for all s ELN S1... € Comp(s,F4), we have

IN, 51 | ¢, and for any finite computation extending sy EIN s1, F4 returns the constant map
idle (thanks to the properties of the action idle).

o thereis f € D4(s) such that for all s; € out(s, f), we have I, s; = ¢’ and 0< costu(s, f)+
b.

o there is f € D4(s) such that for all g 3 f, we have 9, 6(s, g) = ¢’ and 0< costu(s,f) + b.

o there is f € D4(s) such that for all g 3 f, we have 0(s,g) € GMC(I,¢’) and 0 <
costy(s,f) + b (by induction hypothesis).

As far as complexity is concerned, GMC(I, 1) can be solved by using a recursion depth

that is linear in the size of ¢, and the state reachability and the non-termination problems for

AVASS can be solved in 2EXPTIME by [32| Theorem 3.4] and [16, Theorem 3.1]. Note also the

instances of such problems can be built in polynomial time in the respective sizes of I and ¢.
Consequently, the model checking problem for RB+ATL is in 2EXPTIME. O

4.3 2EXPTIME-hardness

In this section, we show a 2EXPTIME-hardness result by reduction from the state reachability
problem for AVASS. This improves the EXPSPACE-hardness result in [4]].

Theorem 3. The model checking problem for RB£ATL is 2EXPTIME-hard.

Proof. The proof is by reduction from the state reachability problem for AVASS (see Proposi-
tion [2] or [16L Theorem 4.1]). It is divided into three main parts.

1. We consider a restriction of the state reachability problem for AVASS that remains 2EX-
PTIME-hard but that simplifies the definitions in the second part of the proof. Roughly
speaking, the set of control states is divided in two disjoint sets, one from which unary
rules start, and the other one from which fork rules start.

2. We then define the reduction from the restriction, taking care of the details of the resource-
bounded concurrent game structures; essentially, we follow ideas similar to those in the
proof of [4, Lemma 6].

3. Finally, we establish the correctness of the reduction.

(1) Given an instance A = (Q,7,R1,Rz), o, g5 of the state reachability problem, we further
assume that there is a partition Q = Q7 W Q such that

® qo,q5 € Q1,
e RICOIXZ'xQyand Ry € Qy x Q1 X Q1

o there is no rule starting from gy and there is at least one unary rule starting from gp.

23

The strict alternation between the control states in Q7 and those in (J, can be obtained by dupli-
cating the control states (in case a control state can start both a unary rule and a fork rule), and
by adding new intermediate rules to enforce the alternation. In order to have no rule from gy, it
is sufficient to duplicate it and to reach g only for the last visit. The details follow.

Let A = (Q,r, Ry, Ry) be an alternating VASS. Without loss of generality, we can assume
that no rule starts from g. Otherwise, we can introduce a new control state 43" that behaves

almost as g: copy all the rules where g7 occurs in second or in third position by replacing g7 by
q?ew but no rule starting from g is copied (details are omitted). We can guarantee that (x) there
is a finite proof whose root is equal to (qo, 6) and each leaf belongs to {g¢} X IN" iff with the new
AVASS there is a finite proof whose root is equal to (go, 6) and each leaf belongs to {q?ew} X IN".
Similarly, without loss of generality, we can assume that there is a rule in R; that starts from go.

Otherwise, we add the dummy unary rule (go, 6, 40)-
Let us build the alternating VASS A’ = (Q’, 1, R}, R}) verifying the above conditions with

Q" = Q] W Qj such that (x) iff there is a finite proof whose root is equal to ((4o, 1), 6) and each
leaf belongs to {(q5,1)} X IN". The set Q’ is a subset of Q X {1,2} defined by the clauses below
plus auxiliary states introduced with the definition for rules:

e (7,1)€Q & thereisarule in Ry that starts from g or g = qgr. So (90, 1), (97, 1) € Q".

e (7,2) €Y & there is a rule in R that starts from q.

e Q1 2{(g)eQ | i=1 and Q) 2 {(g,1) € Q" | i=2}. Obviously, (q0,1),(q,1) € Q.

We now define the sets of rules Ri and R}.

e Forallg i g’ € Ry such that (g’,2) € Q’, we add the rule (g, 1) 4 (9',2) o R].
e For all (91,492,493) € Ry such that (2, 1), (g3, 1) € Q’, we add the fork rule

((ﬂl/ 2)/ (421 1)/ (LI3/ 1))

’
to R2.

e Forallt = = ¢’ € Ry such that (¢/,1) € ', we add the rules below: (g,1) = g € R}
(g"" is new and depends on r) and (4", (¢’, 1), (9", 1)) € R}. Moreover, 4" € Q). This
amounts to adding an intermediate fork rule leading twice to (4’,1) in order to guarantee
that R} € Q] X Z" X Q5.

e Forallr = (41,42, 93) € Ry such that either (g2,2) € Q" or (g3,2) € Q'. If (32,2),(g3,2) €
Q’, then we add the rules below:

- ((g1,2), g%, g2¢") € R, where g2 and g€V are new and depend on the fork rule r.
q 4 /93 2 1> 13 p
Moreover, these two new control states belong to Q.

- qyv 5 (q2,2) and g3 5 (43, 2) belong to R].

Again, we add intermediate unary rules in order to guarantee that R, C Q7 X Q] X Q7. If
(92,2), (g3, 1) belong to Q’ or if (g2, 1), (g3,2) belong to Q’, the above construction can be
easily adapted.

24

((v1,12),1d1e’)

((r1,12),id1le) C 4

(idle,idle) C bad)
Figure 3: Partial description of It

One can show that A" = (Q’, , R, R}) satisfies the above assumption and () iff there is a finite

proof whose root is equal to ((go, 1), 6) and each leaf belongs to {(q7, 1)} X N".
(2) Given an instance A = (Q,7,R1, Rz), qo and g7 with the restriction above, we build the

game structure M = (Agt, S, Act, r,act, cost, , L) with Q; € S such that M, g0 = (({1}6))TUqf

iff there is a finite proof of AVASS whose root is equal to (g9, 0) and each leaf belongs to {q}xXIN".
Here, g is also understood as a propositional variable.
Before providing a formal definition of I, we illustrate the construction using a simple

example. Assume that A contains the unary rule vy = g iﬁ)) qo and the binary rule v, =
go = q1,q2- M contains two agents, and an inference with 11 followed by an inference with 1,
is simulated using the transitions shown in Figurebelow, where the cost of the action (11, 17) is
precisely equal to (—1, +3) and both idle and its twin action idle’ have no cost. Note also the
presence of a bad state that forbids the choice of the idle action by the first agent, assuming that
the objective is to reach the state .

The complete definition of Mt is as follows.

o Agt={1,2}.

e A pair of rules (11, 12) € Ry X Ry is connected iff the last control state of 17 is equal to the
first control state of 1o. The set of actions Act is equal to the set of connected pairs of rules
plus the action idle and its twin action idle’.

o S=0Q; W ibad}.

e For each control state g in 1, act(q, 1) is the set of connected pairs of rules whose unary
rule starts from g plus the idle action. So agent 1 can choose a unary rule immediately
followed by a fork rule. act(qy, 1) is restricted to {idle}, because no rule starts from g
in A.

e As far as agent 2 is concerned, for all g € Q1, act(g,2) = {idle,idle’}. So agent 2
can perform two actions that have no effect on resources, which amounts to simulating the
effects of fork rules.

def def

e Only the idle action can be performed from the bad state bad: act(bad, 1) = act(bad,2) =
{idle}.

25

e The cost of the action (v1, 1) is simply the update vector of the unary rule r1. Formally, for
all g € Q1, we have cost(q, 1, (11,12)) = il when 1, = (g, if, ¢’) for some g’. Furthermore,
cost(g,a,idle) = cost(bad,a,idle) = 0 foralla € {1,2}, and cost(g,2,idle’) 0.

e When 0 can be defined, we have

def def

- 0(q7,T) = q5; 6(bad, f) = bad (J is the constant map idle).
— Whenever q € (Q1\{gy}), f(1) = (r1,12) withty starting from g and 2 = (Ginter, 9', 9"’

o [g iff(2) =idle
o(q, 1) = { q” otherwise, i.e. f(2) =idle’.

- 0(q,7) = bad whenever (1) = idle forall g € Q1 \ {gr}.

e There is a unique propositional variable g5 and L(q) = {qr}.

(3) We now establish the correctness of the construction.
Without loss of generality, we can assume qo # 4.

First, suppose that M, g9 = (({1}6))TUqf. So, there exists a 6—strategy Fj1y such that, for all

A =59 ELN $1... € Comp(qo, Fi1)), there is i > 0 such that g; = gy (so by construction of I, for
all j > i, we have g; = gy and bad does not occur in A). Since {1} is a singleton set, we assume
below that Fyy) returns an action for agent 1 (instead of returning a joint action with respect to the
unique agent 1) and Dyy)(q) is viewed as an action.

From I, g and Fy, let (Tf,,, R, L) be the labelled transition system defined in Section
We have T, C {1,2}), € : T, — Qi (because bad does not occur in computation from
Comp(qo, Fi1))), and R is partial map T, X Tp,, — U €0 D(q). Note the specific structure of
(Tr,,, R, LQ):

s

e Forall w € Tp, such that (w) = g7, w- 1 is the unique successor of w, L(w-1) = g5 and
R(w, w - 1) is the constant joint action equal to idle.

e Forallw e me such that w has exactly two successors w-1 and w - 2, there are ginter € Q
and i € Z’ such that

1 12

R(w, w 1) = (L(w), @, Finter), (Finter, L(w - 1), L(w - 2))), idle)
R(w, w-2) = (L(w), @, Finter), (Finter, (W - 1), L(w - 2))), id1e’)

and (v1, 1) is connected.

Now, let us build a finite derivation skeleton D : T — (R; U Ry U {L1}) such that its unique
derivation with root labelled by (g0, 6) is a finite proof with leaves labelled by q¢. The finite
tree T can be uniquely defined from Tp,, by using the map ¢ : {1,2}" — {1,2}, where c¢(w) is
obtained from w by simultaneously replacing every occurrence of 1 by 11 and every occurrence
of 2 by 12. So, for instance, ¢(¢) = ¢ and ¢(12) = 1112. We stipulate that ¥ is the set of words of
the form ¢(w) or ¢(w) - 1 where w € {1,2}" and there is v € T, such that w is a (non necessarily
strict) prefix of v, £(v) = g7 and no strict prefix of v is labelled by g¢. The derivation skeleton D
is defined as follows. For all w € T,
26

def

o If €(w) # g7 and R(w, w- 1) = (11, v2), idle), then D(c(w)) £ 11 and D(c(w) - 1) £ 1.
o If ¢(w) = g5 and ¢(w) € T, then D(c(w)) =_L.
Similarly to Lemma[3] we can show the following properties:

(I) For every computation A starting at o, ending at gy, visiting g only once and respecting
Fy1y, there is maximal branch w in D such that ext(A, Fyy)) = ext(w, Fypy).

(II) For every maximal branch w in D, there is a computation A starting at go, ending at gy,
visiting g5 only once and respecting Fyy) such that ext(w, Fi1)) = ext(A, Fyy).

Consequently, the unique derivation based on 9 with root labelled by (g0, 6) is a finite proof with
leaves labelled by qf. Indeed, by construction for all g4 € Q1, we have cost(q, 1, (r1,12)) = s
when 11 = (g, i, q") for some ¢’.

For the converse direction, let us assume the existence of a finite proof D based on the
derivation skeleton O : T — (R; U Ry U {L}) such that D(e) = (90, 6) and each leaf is labelled
by a pair in {g} X IN". Let us define a strategy Fy1). First, we require the following properties:

def

e Fi1y(q0) = (D(e), D(1)). Since qo # q5, we know that 1 € T.

e For all the finite computations A ending at the state q¢ (we have Q1 C S and g5 € Q1),

Fupy(A) € idle.
Let A =qo -t 0 it Ga-++ L= gn be a finite computation respecting (so far) Fi3y and g, # gy
(since this case is already treated above). Below we define F;j(A).
First, we assume that bad does not occur in A. Each joint action g; can be written ((r’ll, ré), b(k’))
with k/ € {1,2} and b : {1,2} — {idle,idle’} with b(1) = idle and b(2) = idle’. The deriva-
tion skeleton D verifies the properties below:

o D(e) = 1§ with 1§ = (o, o, 4y,

o D(1) =1 with 1] = (4., 4}, 95) and g}, = q1.

DKL) = v} with v} = (4%, 1, }e,)-

D(1k°1) = 1) with 1) = (4}, 41, 95) and G}, = G2

i +1 . j+1 - i+1
DKL -+ k) =) with v = (g, i, G0 e,)-
o DK k1) =) with v} = (g0, gl gl and g7 = gz

o D(1K1---k"21) = vy~ with vy~ = (gl g7, g57") and g7} = g

27

Since ¢, is different from gy, 1k1---k"~21k""! and 1k%1---k""21k""'1 exist. We stipulate

def

Fay(A) = (DAL -+ - k21K 1Y), D11 - - - k""21Kk"~11)). Consequently, any extension go X
g1 LN go--- p Gn Dy Jn+1 Tespecting (again so far) F(;) verifies the above correspondence with
D and the state bad cannot be visited. So, the strategy F1y can be defined by using the approach
above (more formally, an induction hypothesis should be stated and we should prove that after
each step, the property is preserved). One can also check that Fy is O-consistent w.r.t o, and,
forall A =50 B s,... € Comp(qo, Fy1), there is i > 0 such that g; = g¢. The O-consistency is due
to the fact that 9 is a proof and the reachability condition is a consequence of the fact that every
leaf of D is labelled by g because of the correspondences between computations respecting Fiy
and nodes in T. O

The hardness proof above would also work if the proponent restriction is not satisfied, or if
no distinguished idle action is assumed in the game structures, or if act may return an empty set
of actions. It is also worth observing that one propositional variable and two agents are sufficient
to get 2EXPTIME-hardness.

Corollary 1. For any fixed v > 1, the model checking problem for RB+ATL restricted to at most
1 resources is in EXPTIME. For r > 4, the problem is EXPTIME-hard.

Again, we use [32, Theorem 3.4] and [[16, Theorem 3.1], which show that for a bounded
number of resources, the state reachability and the non-termination problems for AVASS can
be solved in EXPTIME. Moreover, if r is fixed but greater than two, then the model checking
problem for RB+ATL restricted to at most r resources is PSPACE-hard, since the state reachability
problem for VASS of dimension two is PSPACE-complete [9]. When r = 1, the model checking
problem for RB+ATL is NP-hard since the state reachability for VASS of dimension one is NP-
complete [26]. (Note that the NP-completeness result does not apply because the model checking
problem for RB+ATL involves not just the reachability problem but also the non-termination
problem.)

We have seen that the model checking problem for RB+ATL restricted to two agents is 2EX-
PTIME-hard; below we show that the restriction to a single agent is only EXPSPACE-complete.

Theorem 4. The model checking problem for RBATL restricted to a single agent is EXPSPACE-
complete.

Proof. In order to show the EXPSPACE upper bound, we sketch how to solve the model checking
problem for RB+ATL restricted to a single agent, by solving instances of the model checking
problem for LTL on VASS or instances of the model checking problem for CTL, known to be
EXPSPACE-complete (see e.g. [27]) and P-complete (see e.g. [42]]) respectively. The labelling
algorithm has exactly the same form as the algorithm for full RB+ATL. The size of the instances
of the problems is linear in the size of the input resource-bounded concurrent game structures,
and the number of calls is also linear in the size of the input formulae. This leads to the EXPSPACE
upper bound.

The following two properties are essential for the proof. Given a path formula @ of the

form Xp, Gp or p1Up,, one can show that i, s = (((D’; WO iff M, s E AD in CTL, where M’ is
obtained from 9t by removing the costs and actions from the transitions. Note that the empty

coalition @ allows us to quantify over all computations, and therefore the value of the bound bis
irrelevant. Similarly, one can show that M, s = (({1}?))® iff there is an infinite run from the initial
28

configuration (s, 5) in the VASS V that satisfies the LTL formula @, where V is obtained from
It by removing the actions while keeping the costs in Z" on the transitions. If b has components
with the value w, then we reduce the dimension in b and in V so that only the components with
finite values in b remain.

In order to get the EXPSPACE lower bound, we reduce the state reachability problem for
VASS to the model checking problem for RB+ATL restricted to a single agent, and use the
EXPSPACE-hardness established in [37]. Let V = (Q, 7, R) be a VASS and qo, g5 be locations.
One can show that there is a run from (go, 6) to some configuration of the form (g, %) for some

¥ e IN"iff M, g0 E <({1}6>>TUp, where Mt = (Agt, S, Act,r,act, cost, 6, L) is defined from V
as follows (for all g, 4" € Q):

o Agt={1},5S = Qw {bad} and Act = RW {idle}.
e L is defined so that p holds true exactly on g and cost(1,q LA q’) =il
o act(q,1) = {idle} W {35 ¢’ | 4> ¢ € R}, act(bad, 1) = {idle}.

o Finally, 5(7,9 > ¢') = ', 6(q, idle) = bad and 5(bad, idle) = bad.

4.4 Bounding other resources in resource-bounded alternating-temporal logics

In this section, we study the model checking problem for resource-bounded logics in which
the path formulae are arbitrary, i.e., they can be any LTL-like formulae rather than being restricted
to path formulae of the form Gip, Xy and 11 U ¢, as in RB+ATL. We have already seen that the
model checking problem for RBTL is EXPSPACE-hard (see Section and therefore the lower
bound also applies to RBTL*. Below, we show that the model checking problem for RBTL"
is not only decidable (a new result) but also in EXPSPACE. The arguments for establishing the
EXPSPACE upper bound for RBTL and RBTL" are identical, and the EXPSPACE lower bound for
the model checking problem for RBTL can be matched with the upper bound for RBTL".

Theorem 5. The model checking problem for RBTL® is in EXPSPACE.

In [12f], the problem for RBTL is shown to be decidable by reduction to the reachability

problem for VASS. However the best known upper bound for the reachability problem is F s [36].
Hence, the EXPSPACE upper bound is a substantial improvement. Moreover, the decidability of
the model checking problem for RBTL" was left open in [[12].
Proof. (sketch) The algorithm to obtain the EXPSPACE upper bound first computes the states
in which subformulae hold before dealing with larger formulae. The algorithm is a renaming
algorithm. However, there is a caveat: when dealing with subformulae of the form (l;)\l’ where
W is an LTL formula, we are entitled to use the model checking algorithm for LTL formulae
on VASS that is in EXPSPACE [27] (having w in one component amounts to ignoring that posi-
tion). However, in order to systematically consider such subformulae (5)‘1’ when the outermost
connective is a path quantifier, we need to perform renamings on-the-fly.

29

Let us provide a simple example with the formula

¢ = (bo) GF (b) qUq’

and an arbitrary model 9i. Let us consider some innermost state formula prefixed by a path

quantifier, say (l;l)(qu’) (actually here there is only one such a subformula). With the help of
a decision procedure for solving the LTL model checking problem on VASS, we determine for
which control states g”” we have M, g = (51)(qu’). Say, we obtain the set {1, ...,4,}. Now,
in ¢, we replace (l;l)(qu) by g1V -V g, say we get 1 = (l;O) GF (41 V-V 4a)- So, we have
performed a renaming step by replacing a subformula by a disjunction of propositional variables.
This process can be repeated until there are no more path quantifiers. To do this, we substitute
some innermost state formula prefixed by a path quantifier in ¢, say (EO)GF (g1 V- Vga),by
a new disjunction of locations (possibly empty) with the help of a decision procedure for solving
the LTL model checking problem on VASS. We obtain the manageable formula

b2 =4y Voo Ve

Since ¢, is a propositional formula, we are done with the renaming process and it is easy to show
that for every control state g, we have M, q” s ¢ iff M, 4" Eq;V---V q;. The above example
can be easily generalised to any state formula. Note that the number of renamings is bounded by
the size of the input formula, and at each step a subroutine is invoked at most card(Q) times and
requires EXPSPACE, whence we obtain the EXPSPACE upper bound. O

Corollary 2. For any fixed r > 1, the model checking problem for RBTL" restricted to at most r
resources is in PSPACE.

The PSPACE upper bound is a consequence of [27]. The model checking problem for LTL on
VASS is PSPACE-complete when the number of counters is bounded [27, Theorem 4.1], and the
renaming algorithm briefly described in the proof of Theorem [5| makes only a linear number of
calls to the model checking problem for LTL on VASS and the number of counters is preserved
when such calls are performed. If r is fixed but greater than two, then the model checking
problem for RBTL" restricted to at most r resources is PSPACE-hard, since the state reachability
problem for VASS of dimension two is PSPACE-complete [9]. When r = 1, the model checking
problem for RBTL" is NP-hard, since the state reachability problem for VASS of dimension one
is NP-complete [26].

5 The Logic RBXATL" and its Parameterised Variant

We have seen that the model checking problem for RB+ATL is 2EXPTIME-complete. Below,
we show that the model checking problem for RB+ATL" is also decidable. The arguments for es-
tablishing the respective decidability of RB+ATL and RB+ATL" both rest on the decidability of
decision problems for alternating VASS. However for the model checking problem for RB+ATL"
we need to invoke the decidability of parity games on alternating VASS, which is stronger than
the decidability of the state reachability and non-termination problems for AVASS. This more
complex reduction, which uses ingredients such as the standard equivalence of expressive power
of Biichi automata and deterministic parity automata on w-words, is nevertheless rewarding, as it

30

allows us to synthetise concrete values for resource parameters, something which has heretofore
not been possible for resource-bounded logics.

Below, we introduce RB+ATL", an extension of RB+ATL in which the path formulae are
unconstrained, i.e. they can be any LTL-like formula. Although RB+ATL" is a new logic, its
definition follows a standard schema for branching-time temporal logics.

5.1 Definition

Given a set of agents Agt = {a1,...,ar} and ¥ > 1 resources, we write RB+ATL*(Agt, r)
to denote the resource-bounded logic with k agents and 7 resources whose models are resource-
bounded concurrent game structures with the same parameters. Formulae of RB+ATL*(Agt, 1)
are defined according to the grammar below (as in CTL" or for RBTL", we distinguish between
state formulae ¢ and path formulae @)

¢
D

pl=bldpng | (Ao
G| =@ | (PAD) | XD | (PUD) | G,

where p € PROP, A C Agt and be (NU{w})". The set of state formulae ¢ for RB:ATL*(Agt, r)
extends the set of formulae for RB+ATL(Agt, T)E] In presenting the semantics for RB+ATL", we
make an explicit distinction between state formulae and path formulae. The two satisfaction
relations =5 and =, are defined as follows.

def

EUE/S |:5p < SEL(p)
M, s =, ((AP)) D & thereis a E—strategy F,4 such that

forall A = 55 s, ... € Comp(s, F), we have M, A |, @

M, A b=y O E M, A0) ks ¢ for state formulae ¢

M, A, D E MAE, @

MAE, PADY & MAE, Dand M, A |, O

M, A, XD E M AL, +00) [, @

M, A £, GO E M A[i, +00) £, @ forall i < |A|

M, A E, OUY & thereis i < |A| such that M, A[i, +o0) |, W and

for every j € [0,i — 1], we have I, A[], +00) |, ©.

Again, all the maximal computations are infinite, i.e., the index i in the clauses for G or U can
take any value in IN. The model checking problem for RB+ATL" is defined as follows:

Input: k,7 > 1 (in unary), a state formula ¢ in RB:+ATL*([1, k],), a finite model Mt and a state
S,

Question: N, s =, ¢?

Below, we show that the model checking problem for RB+ATL" is decidable by reduction to
the parity game problem for single-sided VASS [1} Corollary 2]. The latter problem will play a
role similar to LTL model checking in CTL* model checking, see e.g. [42l [19]]. In addition, [1}
Theorem 4] allows us to synthetise resource bounds. We begin by precisely defining the problem.

3G can be encoded using U and —, but we retain it to emphasize that we are dealing with an extension of
RB+ATL(Agt, r).
31

5.2 A parameterised variant

We first introduce a parameterised version of RB+ATL", denoted by ParRB+ATL*. The
formulae of ParRB+ATL" are the same as those of RB+ATL", except that the concrete values
be (N U {w})" are replaced by tuples of variables taken from the set VAR = {x1,X;,...}, for
example:

(&) TUgs A ((2)52%)) TUq),

Given a parameterised (state or path) formula ¢ with variables x1,...,%, and a map v :
{x1,...,x:} = (INU{w}), we write v(¢) to denote the formula in RB+ATL" obtained from ¢ by
replacing each occurrence of a variable x by v(x). The parameterised model checking problem
for ParRB+ATL" is defined as follows:

Input: k,7 > 1 (in unary), a parameterised state formula ¢ in ParRB+ATL*([1,k],r), a finite
RB=+ATL*([1, k], ¥) model 9t and a state s,

Question: Compute the set of maps v such that I, s = v(¢).

By ‘compute the set of maps’, we mean being able to characterise the set of maps v such
that M, s |=; v(¢), by using a symbolic representation with nice computational properties. More
precisely, we will show that we need only Boolean combinations of atomic formulae of the form
x > k where k € IN and x = w. Given such contraints, it is easy to check non-emptiness or
to check the satisfaction of i, s }=; v(¢) for a specific map v. To synthetise such parameters
we use a remarkable result from single-sided VASS: the Pareto frontier for any parity game on
single-sided VASS is computable [1, Theorem 4].

5.3 Parity acceptance condition

Below, we consider AVASS with a finite set of fork rules included in U,szz Qf, and where
the proofs are trees with nodes labelled by elements in Q X (N U {w})". Given an AVASS
A =(Q,1,Rq,Ry), acolouring col is defined as a map Q — [0, p — 1] for some p > 1 (number
of priorities). The parity game problem for AVASS is defined as follows:

Input: An alternating VASS A, a control state 4o, be (N U {w}) and col : Q — [0,p —1].

Question: Is there a proof whose root is equal to (go, l;) all the maximal branches are infinite and
the maximal colour that appears infinitely often is even (the colour of each configuration
is induced by col) ?

Proposition 4. /1| Corollary 2] The parity game problem for alternating VASS is decidable.

To be precise, [1, Corollary 2] states the result for single-sided VASS. A single-sided VASS
can be viewed as an alternating VASS where the set Q of control states can be partitioned into
Q = Q1 W Qy, unary rules start from states in 1, fork rules start from states in Q, and there
is at most one fork rule starting from the same control state (necessarily, it belongs to Q). The
construction of two disjoint sets Q1 and Q, with alternation of unary rules and fork rules can
be done as in part (1) in the proof of Theorem 3] However, the colour of the new control states
is equal to zero to avoid any new constraint. In order to guarantee the uniqueness of fork rules

starting from a given control state, it is sufficient to replace any unary rule g - g’ and fork rule

r = (q’, 91, 92) by the unary rule g LA (9°,) and the fork rule ((¢’,), 41, g2)- The colour of (¢’, 1) is
32

the colour of 4’. With such a transformation, decidability for single-sided VASS can be lifted to
alternating VASS (this also implies a reduction for the computation of the Pareto frontier below).

It is not difficult to show that the state reachability and non-termination problems for AVASS
are subproblems of the parity game problem, and therefore their decidability also follows from [[L].
This decidability result was strenghtened in [1]] in the following way. Given A, gp and col : Q —
[0, p — 1], the set of tuples be (N U {w})" for which there is a proof such that the root is equal
to (o, I;), all the maximal branches are infinite, and for each infinite branch the maximal colour
that appears infinitely often is even, is upward closed and computable. This means that it can
be represented effectively by a Boolean combination of atomic constraints of the form x; > k
where i € [1,7] and k € N, and x; = w. Since the set is upward closed, by Dickson’s Lemma, it
has a finite set of minimal elements (with respect to the well-quasi-ordering < slightly extended
to accommodate the addition of the value w), allowing the symbolic representation in terms of
atomic constraints of the form x > k to be easily defined. The Pareto frontier of A, g9 and
col : Q — [0, p — 1] is defined as the set of minimal elements in (IN U {w})" for which there is a
positive solution to the parity game problem.

Proposition 5. [lI| Theorem 4] The Pareto frontier for any parity game on single-sided VASS is
computable.

5.4 A synchronised product

Before defining the reduction from the model checking problem for RB+ATL® to the par-
ity game problem, we need to introduce a few more definitions, and in particular a notion of
synchronisation that will be useful in the sequel.

Let M = (Agt, S, Act,r,act, cost, d, L) be a resource-bounded concurrent game structure.
Given the propositional variables py, ..., p,, we write X, = PUp1,...,pn}) to denote the finite
alphabet and L, (s") & {pi | i€[l,n], s € L(p;)} forall s" € S. So, by definition L,(s") € L,,.

Let Amas = (Q,7,R1, Ry) be the AVASS defined from I, A and s (see Section , and
A=(Q,qp6:Q XL, > Q,col:Q — [0,p—1]) be a deterministic parity automaton over
the alphabet X,,. The principle of the synchronised product Ay as ® A defined below is the fol-
lowing. Any (infinite) branch of a proof of Ay 4 s contains control states of the form s, (s,) or
(g,5") where s is a distinguished state of 9t, s’ is any state, f € D4(s”) and g is joint action in D(s"")
with 6(s”, @) = s’. By construction, (s’,) is preceded by a state of the form either (g,s") or s’ (if

s’ = S)~ So an infinite branch of the form (SOr 1’_[0) ((50r fO)r TZ]) ((glr Sl)/ 1’_[1) ((Slr fl)r 1’?2) ((92/ 52)1 1’_[2) T

leads to the w-word L,(sg) L,(s1) L,(sz)--- that corresponds to a unique run in A (because A
is deterministic and complete)F_’-] The control states of Ay as ® A are pairs in Q X Q’ and the

second components are therefore control states in Q” for the run on L, (sg) L,,(s1) L, (s2) - -
def

Let us define the AVASS Ay as ® A = (Q”,7, R}, R}) such that:
o Q" = QxQ.
e For each unary rule s 5 (s,7) € Ry, in R} we have the unary rule (s, 4,) 5 ((s,7), q5)-

e For each unary rule (g,s’) — (s',f) € R; and each g € Q', in R} we have the unary rule

((9,5"),9) 5 (s, 1), q). So, firing a unary rule from Ay 4, does not change the second
component.

6We slightly abuse notation by identifying a branch with its label.
33

e For each fork rule ((s,),(81,51), - - -,(8a,84)) € Ry, and for each g € Q’, in R} we have
the fork rule

(((S,/ f)/ ‘7)/ ((91/ Sl)/ ‘7/)/ ey ((ga/ Sa), ‘7/))/

with g’ = 6(g, L,(s")). So, firing a fork rule from Agy 4 s does change the second compo-
nent in a unique way depending on g and on the letter L, (s”). Again, there is a unique fork
rule starting from the control state ((s’,), 7).

Let us define the colouring col’ : Q” — [0, p — 1] such that for all (g,9") € Q”, we have
def

col’((g,9")) = col(q’). This is the most natural way to inherit colours from A to Ay a5 ® A.

-

Lemma 10. Let (s,b) € Q X (N U {w})". The statements below are equivalent:

(I) Agpas has a proof whose root is equal to (s, E), all the maximal branches are infinite and the
L,,-projection of each infinite branch belongs to L(A).

(ID) Amas ® A has a proof whose root is equal to ((s,q(), 5) all the maximal branches are
infinite and for all infinite branches, the maximal colour that appears infinitely often is
even (based on the colouring function col’)

Given an infinite branch
iy 1 1y 1 2 2\H 2 3 .3
50 — (SO/ fO) - (gk1’sk1) - (Sklrfl) - (gkz’ Skz) ad (Skzl TZ) - (gk3/ Sk3) e
in a proof of A 4, its L,-projection is simply defined as the w-word in X below:

Ln(SO) Ln(s}il) Ln(siz) Ln(si) T

Proof. (I) > (I Let D : T — Q x IN" be a proof of A 4 such that D(e) = (s, b), all the
maximal branches are infinite and their L,-projections belong to L(A). This means that for any
label

50> (50, T0) = (o, 53,) = (sp,, 71) = (aF,,52.) = (57, T2) = -
of an infinite branch, we have L, (s¢) L,,(s]ll) Ln(siz) L,,(s}i) --- e L(A).

Let 9 : T — (Q x Q) x N’ be the map defined below. 9’ will turn out to be a proof of
A as ® A built over the same infinite tree T. Let 111213 - - - be an infinite branch with the label
above such that

La(50) Lu(s],) La(s2) La(s2) -+ € L(A).

Lu(s;.)
. . e . . . L(s k
Since A is deterministic, there is a unique (accepting) run ¢ o) q; —5 g5 - -+ hence the

maximal colour that appears infinitely often is even. For any finite prefix w C i17i3 - - - of length

N, we have
def

D'(w) 2 ((9,4],,). 9) where D(w) = (¢,9)

Since A is deterministic, the map 9 can be defined uniquely. Indeed, classically, if A were

nondeterministic, we cannot guarantee that two infinite words in L(A) sharing a common non-

empty prefix have the same subrun for that prefix. Since Amas ® A is also the synchronised

product between Ay 4 s and A, we can check that 9 is indeed a proof of Ay 4s ® A, such that
34

D'(e) = ((s, q0)s l;) and all the maximal branches are infinite. Consider below the label of any
infinite branch:

-

[Z5%

(s0,q9) = (50, 7o), 46) = (a4, 5,), 3) = ((sp,, T1), a7 = (@2, 52),45) = -+

Lu(s;)
. Ly k
Since g;, Lntso) 91 —5 g5 - -+ is an accepting run, the maximal colour that appears infinitely often

on the branch is even. .

() - M LetD: T — (Qx Q') xIN" be a proof of Amm,a,s ® A whose root is ((s, q;), b), all
the maximal branches are infinite and the maximal colour that appears infinitely often is even.
Let 9 : T — Q x IN’ be the map defined below. 9 will turn out to be a proof of A 4,5, and
can be viewed as 9 where the component in Q’ is omitted. For all w € T, 9’ (w) = (9,7) where

D(w) = ((9,9"), 7). We have D(e) = (s, I;) and all the maximal branches are infinite. Consider
below the label of an infinite branch ijii3 - - - :

il 1 1y 1 2 24\ 2
S0 _0> (SOI TO) - (gkl’skl) _1) (Skllfl) - (gkz’skz) —2) (SkerZ) —

Since 9’ is obtained from D by projection, the label of i1z - - - in D is of the form

(s0,70) = ((s0, o), 45) = (g}, 51.),47) = (s, T1), 47) = ((5F,,5¢,), 45) = -+

By assumption on 9, the maximal colour that appears infinitely often is even, and therefore

Ln (SU) L” (Sll(l)
gy, — q; — q5 -+ is an accepting run of A and

Lus0) Lu(s},) Lu(s3) Lu(s},) -+ € L(A).

5.5 Decidability
Theorem 6. The model checking problem for RBATL" is decidable.

Proof. The model checking problem for RB+ATL" is solved by using the algorithm for the
parity game problem for alternating VASS (with a simple renaming technique) as a subroutine.
The algorithm uses a dynamic programming approach that first computes in which states the
subformulae hold before dealing vyith larger formulae. However, there is a caveat: when dealing

with subformulae of the form ((A?)) ® where ® is a path formula without any strategy modality,
we are entitled to use the algorithm to solve the parity game problem for alternating VASS.

However, in order to systematically consider such subformulae ({A’)) ® when the outermost
connective is a strategy modality, we need to perform renamings on-the-fly.

Let ¢ be a formula built over the propositional variables {py, ..., p,} and ((A?)) @ be one of
its subformulae such that no strategy modality occurs in @. Without loss of generality, we can
assume that there is an injective map nom : S — [1,n], such that for every s € S, L(Pnon(s)) = {5}
As a result, each propositional variable pron(s) is true in a single state, namely in s. So, even
though we assume that ¢ is built over {p1,...,p,}, we do not require that all the propositional
variables in {p1, ..., pu} necessarily occur in ¢ (some of the propositional variables are only used
to name states). Given a finite concurrent game structure I, it is always possible to enrich it

35

so that each state can be named by a dedicated propositional variable (also called a nominal in
hybrid logics, see e.g. [6]]). This can be done in linear time.

Since @ is an LTL formula built over {py,...,p,}, there is a Biichi automaton A over the
alphabet X, such that L(A) is equal to the set of models of @ (over the set of propositional vari-
ables {p1,...,pu}), see e.g. [44]. Say that A has N states and N < 2%l Since Biichi automata
and deterministic parity automata both recognize the set of w-regular languages, there is deter-
ministic parity automaton IB with initial location g;, O(N 12) states and 2N priorities such that
L(A) = L(B) [41]. The automaton BB can be effectively computed from A[]

Let X C S be the set of states s such that Ay 4 ® B has a proof whose root is equal to

((s,95), 5), all the maximal branches are infinite and the maximal colour that appears infinitely

often is even. We update the formula ¢ by replacing every occurrence of ((AE » @by ¢y =
Vaex pnom(si The set X can be computed thanks to Proposition and this is a correct step thanks

to Lemma (10| and Lemma @ Indeed, for all s’ € S, we have IN,s” ((AE)) O iff M, s .
V ¢ex Pnom(s'), and, therefore, for all s € S, we have M, s’ =, ¢ iff M, s qb[l,b/((Ab)) D],

where [/ ((AbY) @] is obtained from ¢ by substituting every occurrence of ((AY) @ by Y.
We update ¢ until there are no more strategy modalities, and therefore eventually ¢ is a Boolean
combination of propositional variables, which is then easy to evaluate on a given state. It is worth
noting that the total number of calls to the parity game problem for AVASS is linear in the size
of the formula, each instance of the problem has a doubly-exponential number of locations, and
the colouring map has an exponential number of priorities in the size of the input formula. O

The proof of Theorem [6] uses a synchronised product between an alternating VASS and a
deterministic parity automaton recognizing w-words. This is reminiscent of the proof of a 2EX-
PTIME upper bound for ATL* model checking problem [5, Theorem 5.6]. However, the Rabin
tree automata in the proof of [S, Theorem 5.6] are replaced by deterministic parity automata for
encoding the LTL formulae, and by alternating VASS (with counters) as outcome of the synchro-
nisation.

Theorem 7. The model checking problem for RB+ATL" restricted to a single agent is EXPSPACE-
complete.

The proof is similar to the proof of Theorem[d] Again, the upper bound is obtained by solving
instances of the model checking problem for LTL on VASS (when the coalition is a singleton
set) or instances of the model checking problem for CTL* (when the coalition is the empty set),
which are known to be EXPSPACE-complete (see e.g. [27]) and PSPACE-complete (see e.g. [42])
respectively.

Note also that resource-bounded concurrent game structures can be seen as generalisations of
VASS and, the logic RB+ATL" is clearly a generalisation of CTL*, by using the correspondences
((Agt5>) ® ~ E @, and ((09)) & ~ A D. It may seem surprising that the model checking
problem for RB+ATL" is decidable, given that the model checking problem for CTL* on VASS
is known to be undecidable. However this can be explained by the different satisfaction relations
in the two problems. In the case of RB:=ATL", formulae are evaluated on states of a concurrent
game structure, not on configurations made of states and counter values, and this makes all the
difference.

7 A similar construction to that for IB was used recently in [I5]] for model checking pushdown multi-agent systems.

36

It is also remarkable that the proof of Theorem [6] does nor use the fact that the idle action is
always among the action(s) returned by the action manager. In contrast, the proofs in Section [
use the idle action in order to extend finite computations to infinite ones, by choosing the idle
action for all the agents after the finite part of the computation that, e.g., witnesses the satisfaction
of a next or an until formula (see, e.g., Lemma [§). As a consequence, we get the following
decidability result (and the results in Section [5.6] below also hold for RB+ATL" without idle
actions).

Corollary 3. The model checking problem for the variant of RB+ATL" in which no idle action
is assumed in the resource-bounded concurrent game structures (and the action manager always
returns a non-empty set of actions) is decidable.

The proof is the same as for Theorem [6] The restriction to a single agent can be also shown
EXPSPACE-complete, by using analogous arguments from the proof of Theorem [/| (EXPSPACE-
hardness proof is even simpler).

By combining our results from previous sections and those from [1], we have shown that the
model checking problem for RB+ATL" is decidable. However, by exploiting techniques for the
effective computation of the Pareto frontiers from [1]], we can go further, and actually synthesise
values for parameters. This is the subject of the next section.

5.6 Symbolic representations for sets of resource values

Let MM = (Agt, S, Act,r,act, cost, ,L) be a resource-bounded concurrent game structure
and ¢ be a ParRB£ATL" formula such that the resource variables are among xj, ..., X, and the
propositional variables are among p1, ..., Px.

We write @1 = (AT'NO1, ..., Pa = ((A3"))¢a to denote the subformulae of ¢ whose
outermost connective is a strategy modality. The subformulae are arranged in order of increasing
size. So, ¢1 does not contain a strategy modality, and it can be viewed as an LTL formula built
over {p1,...,pn}. Each expression t; is a tuple of r variables (say t; = (til, ..., t0)). A variable
can occur more than once in t;, and two distinct tuples t; and t; can share variables. This
provides great flexibility in the logical formalism. Below, for each state s € S and i € [1, a], we
build a constrained formula (ﬁf over X1, ..., X, following the grammar:

Ypu=x2k|x=w | P | YV | YAY,

where x € VAR and k € IN. Such formulae are interpreted over valuations v : VAR — IN U {w}
with semantics based on the satisfaction relation o |= 1), and have the following key property: for
all v, we have v (ﬁf iff M, s E n(((Al.t’))qbi). Note that ¢; may contain variables in Xy, ..., X;,.

Before explaining how to construct the formulae qﬁf’s, we first explain how to construct from
such formulae a constrained formula s such that for all v, we have v = ¢, iff M, s = v(¢). Let
Qirs - - > @i, be the maximal subformulae of ¢ such that their outermost connective is a strategy
modality. Given a propositional valuation b) : {¢;,, ..., @, } = {L, T}, we define M, s |= h(¢p) iff
b(¢) obtained from ¢ by replacing simultaneously each ¢;; by b(¢;)) is true in s (h(¢p) may also
contain propositional variables). The constrained formula v, is defined as follows:

C N\ onc N 6.

b s.t. MskEH(P) js.t. h((pij):T jst b((pi].)zJ_

37

The generalised disjunction considers all possible valuations) that make b(¢p) true in s, and the
subsequent conjunction ensures that if h(¢,) = T then (ﬁ; is satisfied, otherwise —wﬁ; has to be
satisfied.

We now explain now how to build (pAf Let @j,, ..., @j, be the maximal subformulae of ¢;
where the outermost connective is a strategy modality. By assumption, the formulae are arranged
in order of increasing size, so we have {j1, ..., jg} € [1,i—1], and, possibly, there may be no such
subformulae in the case where ¢; has no strategy modality (for instance this happens when i = 1).
Given Sy,...,55 C Sand I C [1,7], let 4)7/51,“_,5[; be the formula encoding the Pareto frontier of

Am,a,s ® A with initial state (s, 4;), the w-components are exactly in I, and associated colouring
such that A is the deterministic parity automaton of L defined below. This latter language is
actually an w-regular language over the alphabet P({p1, ..., p,}) defined by the LTL formula ¢’
that is obtained from ¢; by replacing every occurrence of ¢; by

(\/ Pnom(s)) A(/\ _‘pnom(s))-

S€S; seS\S;

The formula (ﬁf is then defined as the following disjunction:

Vo s ACA A GIACA o))

S1,--,SgCS,IC[1,7] ye[Lp] s'€S,, s’€S\S,

The proof of Lemma [TT] below provides the formal justification for such a construction. How-
ever, intutively, in the generalised disjunction each S, allows us to guess where ¢;, is true, and

therefore s” € S, should be equivalent to the satisfaction of (pA;' . Since {j1,..., jg} € [1,i = 1],
,

each formula (ij.’ is already defined, and therefore the formula (ﬁf can be safely built.

Lemma 11. For all i € [1,a), for all s € S, for all concretisations v, we have v | (ﬁf iff

M, s | (A)Pi).

Proof. The proof is by induction on i.
Base case: there is no strategy modality in ¢; (this includes the case when i = 1).
Recall that ¢; = ((A7))¢; where A C Agt and t; = (t},...,t]). Since there is no strategy
modality in ¢;, the formula ¢; is simply an LTL formula built over propositional variables in
{p1,...,pnl. Let A be a deterministic parity automaton such that the models of ¢; on X, are
precisely L(A). It is known that A can be effectively computed from ¢; such that the number
of states in A is doubly-exponential in the size of ¢;, and the number of priorities is (only)
exponential in the size of ¢;.

Given I C [1,], we can construct a constrained formula ¢§ characterising the Pareto frontier
of Am, 4,s® A with initial state (s, q;) and the values at the positions in [are equal to w at the root

(see [1, Theorem 4]). Consequently 1} is equivalent to ¢ A (/\ jeI t{ =w)A (A jel t{ # w). This
means that for all b € (NU{w})" such that (Cy) forall j € [1, 7], l;(]) = wiff j € I, we have b E)

(meaning v = ¢} with n(t{) = E(j) for all j € [1, r]) iff there is a proof of Agy 4,s ® A whose root
is ((s, q5), l;), all the maximal branches are infinite and the maximal colour that appears infinitely

often is even.

38

By Lemrna forall b € (N U {w})" such that (Cj), we have b E ¢ iff A a,s has a proof
whose root is (s, b), all the maximal branches are infinite and the L,-projection of each infinite
branch belongs to L(A). By Lemrna forall b € (N U {w})" such that (Cj), we have b F gy iff
there is a g—strategy F, w.rt. s in 9 such that the set of computations Comp(s, F4,) is included
in L(A). So, for all be (IN U {w})" such that (C;), we have b Fyiiff M, s E ((Al.ti))gbi. Conse-
quently, for all concretisations v such that for all j € [1,7] n(tl].) = wiff j € I, we have v = ¢
iff M, s E n(((Al.t’))qbi). The formula (ﬁf is defined as a generalised disjunction parameterised by

def

all the possible values for I, i.e. (ﬁf = Vicp ¥;» and it is easy to check that for all v, we have
vE (ﬁf is equivalent to M, s = n(((Al.t’))qbi).

Induction step. @; = ((Al.tf))qb,- with ¢j,, ..., @j,, the maximal subformulae of ¢; (8 > 1) such
that its outermost connective is a strategy modality and for all y € [1, 8], for all s € S, for all v,
we have v | (ij,; iff M, s k= n(<<A;{V>>¢,-},).

The proof for the induction step is quite similar to the proof for the base case, except that

we need to show that the renaming mechanism we use is correct. First, let us state a few basic
def

properties. Given a state formula ¢ in RB£ATL", we write M = ¢ & forall s’ € S, we have
M,s" s ¢, ie. ¢ isvalidin IN.

(P1) Let ¢, ¢, ¢’ be state formulae in RB+ATL" such that 1 occurs in ¢ and M E ¢ & ¢'.
Then M = ¢ & ¢[Y’/Y], where Py’ /1] is defined from ¢p by replacing every occurrence

of P by ¢.

(P2) Lety €[1,5] and S’ C S. For all v, the statements below are equivalent.

(P2.1) M E [(Vses Prons) A (/\5$5’ “Pnon(s))] © U((Pj},)~
(P2.2) Foralls’ € S,v (ij' iffs’ € S
3

The proof of (P1) is quite standard but it is worth noting that the formulae ¢, 1 and ¢’ need to
be state formulae. The proof of (P2) uses the induction hypothesis in a straightforward way.

Let S1,...,S5 € Sand I C [1,r]. We write ¢ to denote the formula obtained from ¢;
replacing every occurrence of the formula ¢; by

0% £\ Prone) A C N\ o)

s'€S,, s’€S\S,

So, even though this is not explicit in the notation, the formula ¢/ obviously depends on Sy,
..., Sp. Like the base case, the formula ¢; is an LTL formula built over {p1,...,pn), and one
can compute a deterministic parity automaton A such that the models of ¢ on ¥, are precisely
L(A). We can also construct a constrained formula l’b;,sl,...,sg characterising the Pareto frontier of

Am,a,s ® A, with initial state (s, q;) and the values at the positions in I are equal to w at the root,
see [1, Theorem 4].
Reasoning in the same way as in the base case (basically replace ¢; by ¢7), we can show that,

for all concretisations v such that for all j € [1,7] n(tg) =wiff j €I, wehave v = ¢j¢ 5 iff

M, s E n(((Af‘))(pl’.) (1). However, the formula that is important to us is ((A;‘))(pi (rather than

((A7))¢’), and this is the place where the induction hypothesis is again invoked.
39

First, let us introduce an auxiliary notion. A concretisation b is said to be compatible with
I,S1,...,8p iff the conditions below hold:

L I={ye[lr]]| ot))=w
2. Forally €[1,61.5, ={s' €5 | M,s" [v(p;,)).

Assuming that v is compatible with I, Sy, ..., Sg, we have that:
e By induction hypothesis, forall y € [1,8],S, ={s" €S | v | (ij}

e By (P2), forall y € [1, 81 M = [(V.ves, Prons)) A (Avgs, “Pron))] € 0(@),).

e By (P1) and the newly established property (1),
vl Y, s, Vs o (AP /@, @) 9T]
o Since 0@ /9%, i, I@1] = 0@, I Ui, o M, S (AT,

¢ By using the compatibility of v, we get that v |= ll}i,Sl,...,S;; AN enp(Ases, @A;:,)A(/\S’fsy —|(pA§’V))
iff M, s = 0((CA]))Po).

The formula (ﬁf is defined as a generalised disjunction parameterised by all the possible values
for I, Sq, ..., Slg, and it is easy to check that for all v, we have v | (ﬁf equivalent to M, s =

o(((A; N Pr). O
Theorem 8. The parameterised model checking problem for ParRB+ATL" can be solved.

Proof. Let ¢ be a state formula in ParRB+ATL*([1, k], r), 9 be a resource-bounded concurrent
game structure and s € S. We write 1 = ((A7')¢1, ..., ¢ = ((AF))¢- to denote the maximal
subformulae of ¢ such that the outermost connective is a strategy modality. By Lemma for
all j € [1,z], for all valuations v : VAR — IN U {w}, we have v |= (ﬁ? iff M, s E D(((A].j)>¢j),
where ¢ is a constrained formula that can be built from ¢, 9 and s. Let 1s be the formula
defined by:
= s
AN P G AN
bi{@1,.p2}={L, T} s.t. MsEH(P) j st blp))=T j st blp)=L

Each expression (ij and —|(ij is a constrained formula, and I, s = h(¢) can be decided for any

valuation f). Consequently, y; defined above is a constrained formula that can be effectively
computed.

Let v be a concretisation such that 9, s = v(¢). There exists b : {¢1,...,@.} = {L, T} such
that M, s = Ho(¢p) and for all j € [1,z], we have ho(p;) = T iff M, s = v(¢;). By Lemma for
all j € [1,z], we have ho(p;) = Tiff v |F qﬁj So,

s s
v (/\ §0]) A(/\ _'(P]')/
j st bolp)=T j st ho(pj)=L

which entails v & ;.
40

Conversely, assuming that v |= 1); for some concretisation v, there is a map) such that

v E (/\] st b(p)=T (ij) A (/\]- st bp;)=L ﬂ(ﬁj) and M,s E b(¢). Again by Lemma and by
Boolean reasoning we obtain i, s = v(¢»). Consequently, the formula s can be computed and
it is a symbolic representation for all the maps v such that 9, s = v(¢). O

6

Concluding Remarks

We have related model checking problems for resource-bounded logics and decision prob-

lems for alternating VASS, such as state reachability, non-termination, and, more generally, par-

ity

game problems. While the existence of such relationships is perhaps not surprising, we have

been able to obtain several new complexity and decidability results including:

1. The model checking problem for the logic RB+ATL introduced in [3} 4] is 2EXPTIME-
complete. No complexity upper bound was previously known.

2. We have introduced a new logic RB+ATL" that extends RB+ATL (as ATL" extends ATL),

and we have shown that its model checking problem is decidable. For the parameterised
version ParRB+ATL", given M, s and ¢ in ParRB+ATL", we have explained how we can
synthetise a formula 1 such that I, s = v(¢) iff v |= 1 for all interpretations v for the
resource parameters. Moreover, 1 is a Boolean combination of atomic constraints of the
formx > kand x = w.

3. The model checking problem for RBTL" introduced in [[12] is EXPSPACE-complete. The

decidability of the model checking problem for RBTL" and the complexity upper bound
for RBTL were not previously known.

We have been also able to provide complexity results for fragments and variants of these

resource-bounded logics, and we believe that the simple framework we have proposed may be
used to obtain further results for new resource-bounded logics. However this is future work.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(91

[10]

P.A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving Parity Games on Integer Vectors. In CONCUR’13,
volume 8052 of Lecture Notes in Computer Science, pages 106—120. Springer, 2013.

N. Alechina, N. Bulling, B. Logan, and H.N. Nguyen. On the boundary of (un)decidability: Decidable model-
checking for a fragment of resource agent logic. In IJCAI’15, pages 1494—1501. AAAI Press, 2015.

N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi. Decidable model-checking for a resource logic with
production of resources. In ECAI’14, pages 9-14, 2014.

N. Alechina, B. Logan, H.N. Nguyen, and F. Raimondi. Technical report: Model-checking for resource-bounded
ATL with production and consumption of resources. CoRR, abs/1504.06766, 2015.

R. Alur, Th. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM, 49(5):672-713,
2002.

C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization, interpolation and complexity. The Journal
of Symbolic Logic, 66(3):977-1010, 2001.

B. Bérard, S. Haddad, M. Sassolas, and N. Sznajder. Concurrent games on VASS with inhibition. In CONCUR’12,
volume 7454 of Lecture Notes in Computer Science, pages 39-52. Springer, 2012.

M. Blockelet and S. Schmitz. Model-checking coverability graphs of vector addition systems. In MFCS’11, volume
6907 of Lecture Notes in Computer Science, pages 108—119. Springer, 2011.

M. Blondin, A. Finkel, S. Goller, C. Haase, and P. McKenzie. Reachability in two-dimensional vector addition
systems with states is PSPACE-complete. In LICS’15, pages 32—43. ACM Press, 2015.

A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists are counter automata.
In CAV’06, volume 4144 of Lecture Notes in Computer Science, pages 517-531. Springer, 2006.

41

[11]
[12]
[13]

[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]

[28]
[29]
[30]

[31]

[32]

T. Brazdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition systems with states. In
ICALP’10, volume 6199 of Lecture Notes in Computer Science, pages 478—489. Springer, 2010.

N. Bulling and B. Farwer. Expressing properties of resource-bounded systems: The logics RBTL* and RBTL. In
CLIMA X, volume 6214 of Lecture Notes in Computer Science, pages 22-45. Springer, 2009.

N. Bulling and B. Farwer. On the (Un-)Decidability of Model-Checking Resource-Bounded Agents. In ECAI’10,
pages 567-572, 2010.

N. Bulling and H.N. Nguyen. Model checking resource bounded systems with shared resources via alternating
Biichi pushdown systems. In PRIMA’15, volume 9387 of Lecture Notes in Computer Science, pages 640-649,
2015.

T. Chen, F. Song, and Z. Wu. Global model checking on pushdown multi-agent systems. In AAAI’16, pages
2459-2465. AAAI Press, 2016.

J.B. Courtois and S. Schmitz. Alternating vector addition systems with states. In MFCS’ 14, volume 8634 of Lecture
Notes in Computer Science, pages 220-231. Springer, 2014.

Ph. Darondeau, S. Demri, R. Meyer, and Ch. Morvan. Petri net reachability graphs: Decidability status of FO
properties. Logical Methods in Computer Science, 8(4), 2012.

S. Demri. On selective unboundedness of VASS. Journal of Computer and System Sciences, 79(5):689-713, 2013.
S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge University Press, 2016.
S. Demri, M. Jurdzifiski, O. Lachish, and R. Lazi¢. The covering and boundedness problems for branching vector
addition systems. Journal of Computer and System Sciences, 79(1):23-38, 2013.

L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American
Journal of Mathematics, pages 413—422, 1913.

A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, pages 996—1072. Elsevier,
1990.

J. Esparza. On the decidability of model checking for several p-calculi and Petri nets. In /CALP’94, volume 787
of Lecture Notes in Computer Science, pages 115-129. Springer, 1994.

J. Esparza. Decidability and complexity of Petri net problems — an introduction. In Advances in Petri Nets 1998,
volume 1491 of Lecture Notes in Computer Science, pages 374—428. Springer, 1998.

S. Goller and M. Lohrey. Branching-time model checking of one-counter processes and timed automata. SIAM
Journal of Computing, 42(3):884-923, 2013.

C. Haase. On the Complexity of Model Checking Counter Automata. PhD thesis, University of Oxford, 2012.

P. Habermehl. On the complexity of the linear-time mu-calculus for Petri nets. volume 1248 of Lecture Notes in
Computer Science, pages 102—116. Springer, 1997.

R.R. Howell and L.E. Rosier. Problems concerning fairness and temporal logic for conflict-free Petri nets. Theo-
retical Computer Science, 64:305-329, 1989.

P. Jancar. Decidability of a temporal logic problem for Petri nets. Theoretical Computer Science, 74(1):71-93,
1990.

P. Jancar. On reachability-related games on vector addition systems with states. In RP’15, volume 9328 of Lecture
Notes in Computer Science, pages 50—-62. Springer, 2015.

L. Juhl, K.G. Larsen, and J.-F. Raskin. Optimal bounds for multiweighted and parametrised energy games. In
Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th
Birthday, volume 8051 of Lecture Notes in Computer Science, pages 244-255. Springer, 2013.

M. Jurdzinski, R. Lazi¢, and S. Schmitz. Fixed-dimensional energy games are in pseudo-polynomial time. In
ICALP’15, volume 9135 of Lecture Notes in Computer Science, pages 260-272. Springer, 2015.

R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer and System Sciences, 3(2):147-195,
1969.

F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of ATL. Logical Methods in
Computer Science, 4(2), 2008.

R. Lazi¢ and S. Schmitz. Private communication, November 2016.

J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In LICS’15, pages 56-67. IEEE,
2015.

R.J. Lipton. The reachability problem requires exponential space. Technical Report 62, Department of Computer
Science, Yale University, 1976.

D. Della Monica, M. Napoli, and M. Parente. On a logic for coalitional games with priced-resource agents. ENTCS,
278:215-228, 2011.

C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical Computer Science,
6(2):223-231, 1978.

J.F. Raskin, M. Samuelides, and L. Van Begin. Games for counting abstractions. ENTCS, 128(6):69-85, 2005.

S. Schewe. Tighter bounds for the determinisation of Biichi automata. In FOSSACS’09, volume 5504 of Lecture
Notes in Computer Science, pages 167-181. Springer, 2009.

42

[42] Ph. Schnoebelen. The complexity of temporal logic model checking. In AIML’02, pages 437-459. King’s College
Publication, 2003.

[43] O. Serre. Parity games played on transition graphs of one-counter processes. In FOSSACS’ 06, volume 3921 of
Lecture Notes in Computer Science, pages 337-351. Springer, 2006.

[44] M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115:1-37, 1994.

[45] K.N. Verma and J. Goubault-Larrecq. Karp-Miller Trees for a Branching Extension of VASS. Discrete Mathematics
and Theoretical Computer Science, 7:217-230, 2005.

[46] S. Vester. On the complexity of model-checking branching and alternating-time temporal logics in one-counter
systems. In ATVA’15, volume 9364 of Lecture Notes in Computer Science, pages 361-377. Springer, 2015.

43

	Introduction
	Logical Preliminaries
	The logic RBATL and its variants

	Problems on Vector Addition Systems with States (VASS)
	Alternating VASS
	Model checking problems
	The logic RBTL* and its variants

	On the Complexity of RBATL
	Structural analysis of strategies and proofs
	2exptime upper bound
	2exptime-hardness
	Bounding other resources in resource-bounded alternating-temporal logics

	The Logic RBATL* and its Parameterised Variant
	Definition
	A parameterised variant
	Parity acceptance condition
	A synchronised product
	Decidability
	Symbolic representations for sets of resource values

	Concluding Remarks

