
insertframenavigationsymbol 1/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in infinite structures

Sophie Pinchinat

IRISA, Univ Rennes

WAS ESSLLI, 30 July 2021

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 2/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Motivations

The usefulness of (automated) synthesis for time saving, correctness by
construction, etc.

Automated synthesis is a very broad area.

If we focus on agency:

What to start with? i.e. problem inputs.

Domain specification: which sort of models? transition systems,
qualitative/quantitative, extensional/intentional representation, etc.

Requirements specification: logical formula, set of
examples/counter-examples, etc.

What to return? i.e. problem output(s).

A “solution”;
Constrained solutions;
All solutions (what if they are finitely many?)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 2/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Motivations

The usefulness of (automated) synthesis for time saving, correctness by
construction, etc.

Automated synthesis is a very broad area.

If we focus on agency:

What to start with? i.e. problem inputs.

Domain specification: which sort of models? transition systems,
qualitative/quantitative, extensional/intentional representation, etc.

Requirements specification: logical formula, set of
examples/counter-examples, etc.

What to return? i.e. problem output(s).

A “solution”;
Constrained solutions;
All solutions (what if they are finitely many?)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 2/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Motivations

The usefulness of (automated) synthesis for time saving, correctness by
construction, etc.

Automated synthesis is a very broad area.

If we focus on agency:

What to start with? i.e. problem inputs.

Domain specification: which sort of models? transition systems,
qualitative/quantitative, extensional/intentional representation, etc.

Requirements specification: logical formula, set of
examples/counter-examples, etc.

What to return? i.e. problem output(s).

A “solution”;
Constrained solutions;
All solutions (what if they are finitely many?)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 2/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Motivations

The usefulness of (automated) synthesis for time saving, correctness by
construction, etc.

Automated synthesis is a very broad area.

If we focus on agency:

What to start with? i.e. problem inputs.

Domain specification: which sort of models? transition systems,
qualitative/quantitative, extensional/intentional representation, etc.

Requirements specification: logical formula, set of
examples/counter-examples, etc.

What to return? i.e. problem output(s).

A “solution”;
Constrained solutions;
All solutions (what if they are finitely many?)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 2/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Motivations

The usefulness of (automated) synthesis for time saving, correctness by
construction, etc.

Automated synthesis is a very broad area.

If we focus on agency:

What to start with? i.e. problem inputs.

Domain specification: which sort of models? transition systems,
qualitative/quantitative, extensional/intentional representation, etc.

Requirements specification: logical formula, set of
examples/counter-examples, etc.

What to return? i.e. problem output(s).

A “solution”;
Constrained solutions;
All solutions (what if they are finitely many?)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 3/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in this talk

Inputs:

Relational structures, possibly infinite to capture dynamics,
knowledge, etc.

A logical formula in (a fragment of) classical logic

FO and MSO

to capture a lot, e.g. temporal logics CTL∗ or mu-calculus,
knowledge and time CTL∗K or epistemic mu-calculus, etc.

Output(s): set of assignments of free variables

If closed formula, output is the model checking verdict;

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 3/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in this talk

Inputs:

Relational structures, possibly infinite to capture dynamics,
knowledge, etc.

A logical formula in (a fragment of) classical logic

FO and MSO

to capture a lot, e.g. temporal logics CTL∗ or mu-calculus,
knowledge and time CTL∗K or epistemic mu-calculus, etc.

Output(s): set of assignments of free variables

If closed formula, output is the model checking verdict;

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 3/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in this talk

Inputs:

Relational structures, possibly infinite to capture dynamics,
knowledge, etc.

A logical formula in (a fragment of) classical logic

FO and MSO

to capture a lot, e.g. temporal logics CTL∗ or mu-calculus,
knowledge and time CTL∗K or epistemic mu-calculus, etc.

Output(s): set of assignments of free variables

If closed formula, output is the model checking verdict;

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 3/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in this talk

Inputs:

Relational structures, possibly infinite to capture dynamics,
knowledge, etc.

A logical formula in (a fragment of) classical logic

FO and MSO

to capture a lot, e.g. temporal logics CTL∗ or mu-calculus,
knowledge and time CTL∗K or epistemic mu-calculus, etc.

Output(s): set of assignments of free variables

If closed formula, output is the model checking verdict;

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 3/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in this talk

Inputs:

Relational structures, possibly infinite to capture dynamics,
knowledge, etc.

A logical formula in (a fragment of) classical logic

FO and MSO

to capture a lot, e.g. temporal logics CTL∗ or mu-calculus,
knowledge and time CTL∗K or epistemic mu-calculus, etc.

Output(s): set of assignments of free variables

If closed formula, output is the model checking verdict;

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 4/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Outline of the talk

1 Motivations

2 Background
Relational Structures
FO and MSO

3 Synthesis Problem(s)

4 Synthesis in infinite Structures
Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 5/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Outline

1 Motivations

2 Background
Relational Structures
FO and MSO

3 Synthesis Problem(s)

4 Synthesis in infinite Structures

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 6/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

(Relational) structures

Example

Natural numbers S = 〈N,≤〉
Graphs G = 〈V ,E 〉
Transition systems TS = 〈S ,S0,→, {p}p∈Prop〉
Trees T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉

Definition (Relational structure)

S = 〈D,R1 . . .Rp〉 where

D 6= ∅ is the domain

Ri ⊆ Dri

Write Ri (d1, . . . , dri) for (d1, . . . , dri) ∈ Ri

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 7/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Zoom on bounded-degree Trees

Definition (Tree structures)

T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉

D ⊆ {1, . . . , n}∗ prefix-closed (node addresses)

r
def
= {ε} (being the root)

Succj
def
= {(u, u.j) | u.j ∈ D} (j-th child)

+ other relations R1, . . . ,Rp over D

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 8/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Full bounded-degree infinite trees

T2 = 〈{1, 2}∗,Succ1,Succ2〉
ε

1

11

111

...
...

112

...
...

12

121

...
...

122

...
...

2

21

211

...
...

212

...
...

22

221

...
...

222

...
...

Succi (u, u.i) for every u ∈ {1, 2}∗

T el
2 = 〈{1, 2}∗,Succ1,Succ2, el〉 with “equal level” (binary) relation.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 8/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Full bounded-degree infinite trees

T2 = 〈{1, 2}∗,Succ1,Succ2〉
ε

1

11

111

...
...

112

...
...

12

121

...
...

122

...
...

2

21

211

...
...

212

...
...

22

221

...
...

222

...
...

Succi (u, u.i) for every u ∈ {1, 2}∗

T el
2 = 〈{1, 2}∗,Succ1,Succ2, el〉

with “equal level” (binary) relation.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 8/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Full bounded-degree infinite trees

T2 = 〈{1, 2}∗,Succ1,Succ2〉
ε

1

11

111

...
...

112

...
...

12

121

...
...

122

...
...

2

21

211

...
...

212

...
...

22

221

...
...

222

...
...

Succi (u, u.i) for every u ∈ {1, 2}∗

T el
2 = 〈{1, 2}∗,Succ1,Succ2, el〉 with “equal level” (binary) relation.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 9/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Outline

1 Motivations

2 Background
Relational Structures
FO and MSO

3 Synthesis Problem(s)

4 Synthesis in infinite Structures

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 10/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Logics FO and MSO

V1 = {x , x1, x2, . . .} set of first-order variables.

FO 3 ϕ,ψ ::= Ri (x1 . . . xri) | ¬ϕ |ϕ ∧ ψ | ∃xϕ

V2 = {X ,X1, . . . ,Y , . . .} set of second-order variables:

MSO 3 Φ ::= Ri (x1 . . . xri) | ¬Φ |Φ ∧Ψ | ∃xΦ | x ∈ X | ∃XΦ

We also will consider

chainMSO: same syntax as MSO

but over tree structures and where interpretation of second order
variables X is restricted to chains (see later).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 10/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Logics FO and MSO

V1 = {x , x1, x2, . . .} set of first-order variables.

FO 3 ϕ,ψ ::= Ri (x1 . . . xri) | ¬ϕ |ϕ ∧ ψ | ∃xϕ

V2 = {X ,X1, . . . ,Y , . . .} set of second-order variables:

MSO 3 Φ ::= Ri (x1 . . . xri) | ¬Φ |Φ ∧Ψ | ∃xΦ | x ∈ X | ∃XΦ

MSO 3 Φ ::= Sing(X) |X ⊆ Y |Ri (X1 . . .Xri) | ¬Φ |Φ ∧Ψ | ∃XΦ

We also will consider

chainMSO: same syntax as MSO

but over tree structures and where interpretation of second order
variables X is restricted to chains (see later).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 10/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Relational Structures
FO and MSO

Logics FO and MSO

V1 = {x , x1, x2, . . .} set of first-order variables.

FO 3 ϕ,ψ ::= Ri (x1 . . . xri) | ¬ϕ |ϕ ∧ ψ | ∃xϕ

V2 = {X ,X1, . . . ,Y , . . .} set of second-order variables:

MSO 3 Φ ::= Ri (x1 . . . xri) | ¬Φ |Φ ∧Ψ | ∃xΦ | x ∈ X | ∃XΦ

MSO 3 Φ ::= Sing(X) |X ⊆ Y |Ri (X1 . . .Xri) | ¬Φ |Φ ∧Ψ | ∃XΦ

We also will consider

chainMSO: same syntax as MSO

but over tree structures and where interpretation of second order
variables X is restricted to chains (see later).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 11/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Here synthesis problems are seen as functions

Fix a class C of relational structures.

Definition (Synth(C,FO)){
In: A finite description of S ∈ C, ϕ(x1, . . . , xk) ∈ FO

Out: ϕS
def
= {(e1, . . . , ek) ∈ Dk | S, [~x := ~e] |= ϕ(x1, . . . , xk)}

Remark (Model checking subsumption)

If ϕ(x1, . . . , xk) has no free variables (i.e. k = 0), ouput set ⊆ D0:
output is either the full set or the empty set.

⇒ Synthesis becomes Model Cheking, i.e.

Out: S |= ϕ?

Definition (Synth(C,MSO)){
In: A finite description of S ∈ C, Φ(X1, . . . ,Xm) ∈MSO

Out: ΦS
def
= {(E1, . . . ,Em) ∈ (2D)m | S, [~X := ~E] |= Φ(X1, . . . ,Xm)}

We similarly define Synth(C,chainMSO).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 11/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Here synthesis problems are seen as functions

Fix a class C of relational structures.

Definition (Synth(C,FO)){
In: A finite description of S ∈ C, ϕ(x1, . . . , xk) ∈ FO

Out: ϕS
def
= {(e1, . . . , ek) ∈ Dk | S, [~x := ~e] |= ϕ(x1, . . . , xk)}

Definition (Synth(C,MSO)){
In: A finite description of S ∈ C, Φ(X1, . . . ,Xm) ∈MSO

Out: ΦS
def
= {(E1, . . . ,Em) ∈ (2D)m | S, [~X := ~E] |= Φ(X1, . . . ,Xm)}

We similarly define Synth(C,chainMSO).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 11/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Here synthesis problems are seen as functions

Fix a class C of relational structures.

Definition (Synth(C,FO)){
In: A finite description of S ∈ C, ϕ(x1, . . . , xk) ∈ FO

Out: ϕS
def
= {(e1, . . . , ek) ∈ Dk | S, [~x := ~e] |= ϕ(x1, . . . , xk)}

Definition (Synth(C,MSO)){
In: A finite description of S ∈ C, Φ(X1, . . . ,Xm) ∈MSO

Out: ΦS
def
= {(E1, . . . ,Em) ∈ (2D)m | S, [~X := ~E] |= Φ(X1, . . . ,Xm)}

We similarly define Synth(C,chainMSO).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 12/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

What do we mean by In: and Out: ?

Structures in C (In:) and output sets (Out:) should be representable in
a finite way, if not themselves already finite:

by a binary string, or

by an algorithm, or

by a collection of automata, or

by an axiomatisation in some logic, or

by an interpretation, or

etc.

We will focus on automata collections.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 13/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in F (finite structures)

Theorem (Stockmeyer 1974, Vardi 1982)

Model-checking over F against FO and MSO is Pspace-complete∗.

(*) If class C contains a structure with at least two elements.

Corollary

Synth(F,FO) and Synth(F,MSO) are computable.

What can we do with infinite structures?

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 14/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synthesis in class C with infinite structures

We consider special cases for C:

Post Correspondance Structures (P)

Automatic Structures (A)

Regular automatic trees (R)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 15/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synthesis in infinite structures

P (PCP structures)
A (Automatic structures), R (Regular automatic trees)

F MSO

P FO

A FO

A MSO R MSO

R chainMSODECIDABLE

UNDECIDABLE

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 16/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Outline

1 Motivations

2 Background

3 Synthesis Problem(s)

4 Synthesis in infinite Structures
Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 17/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

The class P

Definition (Post Correspondance Problem (PCP))
In:

A finite set of dominoes ∆ = {(uivi)}i=1,...,n where
ui , vi ∈ {a, b}∗

Out: Does there exists a solution, i.e. a sequence i1, . . . , ik of
dominoes s.t. ui1 . . . uik = vi1 . . . vik ?

Two predicate symbols: nonEmpty (monadic) and dominoes (binary).

Definition (Structures of P)

Structures of the form S∆ = 〈{a, b}∗, nonEmptyS∆ , dominoesS∆〉, where

∆ is a finite set of dominoes;

nonEmptyS∆ 3 u whenever u is a non-empty word;

dominoesS∆ = ∆∗ 3 (uv) whenever u and v are upper and the lower
part of some domino concatenation.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 18/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Automata-based finite presentation of structures in P

Each structure S∆ = 〈{a, b}∗, nonEmptyS∆ , dominoesS∆〉 can be finitely
presented with finite-state (multi-tape) automata:

One-tape automaton for the domain {a, b}∗;
One-tape automaton for nonEmptyS∆ = {a, b}∗ \ {ε};
A two-tape automaton for ∆∗

Ex:


Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 19/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(P,FO)

Theorem

Synth(P,FO) is not computable.

Reduction from PCP (undecidable (Post, 1946)):

∆ has a solution iff S∆ |= ∃x(nonEmpty(x) ∧ dominoes(x , x))

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 20/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synthesis in infinite structures

P (PCP structures)
A (Automatic structures), R (Regular automatic trees)

F MSO

P FO

A FO

A MSO R MSO

R chainMSODECIDABLE

UNDECIDABLE

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 21/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Outline

1 Motivations

2 Background

3 Synthesis Problem(s)

4 Synthesis in infinite Structures
Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 22/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Describe 〈N,≤〉 with automata

0 1 3 · · ·2

Encode each n ∈ N by enc(n) =

n︷ ︸︸ ︷
11 . . . 1

Encode pairs as a word over alphabet (Σ�)2:
12 ⊗ 13 := (1

1) (1
1) (�1) (the convolution of 12 and 13)

Automaton A≤:

(1
1) (1

1) (�1)

q0start q1

(1
1) , (�1)

(1
�)

12 ⊗ 13 ∈ L(A≤)
13 ⊗ 12 = (1

1) (1
1) (1

�) /∈ L(A≤)
1n ⊗ 1m is accepted by A≤ iff n ≤ m.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 23/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Binary infinite tree T2 with “equal level” using automata

Recall T el
2 = 〈{1, 2}∗,Succ1,Succ2, el〉

Node encoding is the address u ∈ {1, 2}∗
Succ1(u, v) iff v = u.1

q0start

q1

q2

ASucc1 :

(1
1) , (2

2)

(�1)

(1
�

) , (
2
�

) , (
�
2
)

Similary for ASucc2 ...

el(u, v) iff |u| = |v |

q0start q1Ael:

(1
1) , (1

2) , (2
1) , (2

2)

(1
�) , (�1) , (2

�) , (�2)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 24/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Structures with an automatic presentation: class A

Definition ((Khoussainov et al., 2007; Blumensath and Grädel, 2000))

A structure S = 〈D,R1 . . .Rp〉 is automatic if it has an automatic
presentation (AD ,A1, . . . ,Ap) where

(AD ,A1, . . . ,Ap) is a tuple of (finite-state) automata;

there is a (bijective) encoding function enc : D → L(AD);

relation Ri is encoded by L(Ai):

u1 ⊗ · · · ⊗ uri ∈ L(Ai)
iff

(u1, . . . , uri) ∈ enc(Ri)

where enc(Ri) = {(enc(e1), . . . , enc(eri)) | (e1, . . . , eri) ∈ Ri}

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 25/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(A,FO)

Definition (Synth(A,FO)) In:
An automatic presentation (AD ,A1, . . . ,Ap) of S ∈ A, and
ϕ(x1, . . . , xk) ∈ FO

Out: ϕS
def
= {(e1, . . . , ek) ∈ Dk | S, [~x := ~e] |= ϕ(x1, . . . , xk)}

Theorem

Synth(A,FO) is computable

Build automaton Aϕ with L(Aϕ) = ϕS (actually enc(ϕS))

Inductively over ϕ:

Formula Automaton

Ri (x1 . . . xri) the given Ai of S
¬ϕ the complement of Aϕ
ϕ ∧ ψ the product of Aϕ and Aψ
∃xϕ component abstract from Aϕ

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 26/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Bottom-up construction of Aϕ: intuitive example

ϕ(x) := ∃zR2(z , x) ∧ ¬p(x)

∧

∃z

R2(z , x)

¬

p(x)

1 A∃zR2(x,z): obtained by
abstracting the second
component of AR2(x,z)

(given by the automatic
presentation);

2 A¬p(x): obtained as
AD ∩ Ac

p(x);

3 A∃zR2(z,x)∧¬p(x)
def
=

A∃zR2(x,z) ∩ A¬p(x).

ϕS := {e ∈ D | S, [x 7→ e] |= ϕ(x)}

L(Aϕ(x)) = {enc(e) | e ∈ ϕS}.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 27/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synthesis in infinite structures

P (PCP structures)
A (Automatic structures), R (Regular automatic trees)

F MSO

P FO

A FO

A MSO R MSO

R chainMSODECIDABLE

UNDECIDABLE

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 28/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(A,MSO)

MSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |Ri (X1 . . .Xri) | ¬Φ | (Φ ∧Ψ) | ∃XΦ

Definition (Synth(A,MSO)) In:
An automatic presentation (AD ,A1, . . . ,Ap) of S ∈ A, and
Φ(X1, . . . ,Xm) ∈MSO

Out: ΦS
def
= {(E1, . . . ,Em) ∈ (2D)m | S, [~X := ~E] |= Φ(X1, . . . ,Xm)}

Theorem

Synth(A,MSO) is not computable.

A corollary of:

T el
2 = 〈{1, 2}∗,Succ1,Succ2, el〉 ∈ A, and

the MSO-theory of T el
2 is undecidable (Thomas, 1990).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 29/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Outline

1 Motivations

2 Background

3 Synthesis Problem(s)

4 Synthesis in infinite Structures
Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

5 Concluding remarks

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 30/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

The class R

Automatic trees with encoding of nodes by their very addresses.

Definition (Regular automatic trees)

Tree T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 is regular automatic if

Set of addresses D ⊆ {1, . . . , n}∗ is a regular language;

The identity encoding function provides an automatic presentation
〈AD ,Ar , (ASucci)1≤i≤n, (ARi)1≤i≤p〉 of T .

Intuition: substructure 〈D, r ,Succ1, . . . ,Succn〉 is the unfolding a finite
structure, and relations R1, . . . ,Rp are regular.

Example

Binary infinite tree T2 + equal level is in R.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 31/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

R is a strict subset of automatic trees

Consider tree

ε

1

11

111 112

1122

12

whose domain {1i2j | 0 ≤ j ≤ i} is not
regular, so that /∈ R.

And yet it has an automatic presentation,
so ∈ A:

enc(1i2j) := bin(i)⊗ bin(j)

where bin(n) is the binary string for n with least significant digit first:
enc(1) = bin(1)⊗ bin(0) = (1

0)
enc(112) = bin(2)⊗ bin(1) = (0

1) (1
�)

One can verify that enc(D), enc(Succ1),
enc(Succ2) and enc(el) are regular.

ε

(10)

(00) (1�)

(10) (1�) (01) (1�)

(00) (11)

(11)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 31/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

R is a strict subset of automatic trees

Consider tree

ε

1

11

111 112

1122

12

whose domain {1i2j | 0 ≤ j ≤ i} is not
regular, so that /∈ R.

And yet it has an automatic presentation,
so ∈ A:

enc(1i2j) := bin(i)⊗ bin(j)

where bin(n) is the binary string for n with least significant digit first:
enc(1) = bin(1)⊗ bin(0) = (1

0)
enc(112) = bin(2)⊗ bin(1) = (0

1) (1
�)

One can verify that enc(D), enc(Succ1),
enc(Succ2) and enc(el) are regular.

ε

(10)

(00) (1�)

(10) (1�) (01) (1�)

(00) (11)

(11)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 31/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

R is a strict subset of automatic trees

Consider tree

ε

1

11

111 112

1122

12

whose domain {1i2j | 0 ≤ j ≤ i} is not
regular, so that /∈ R.

And yet it has an automatic presentation,
so ∈ A:

enc(1i2j) := bin(i)⊗ bin(j)

where bin(n) is the binary string for n with least significant digit first:

enc(1) = bin(1)⊗ bin(0) = (1
0)

enc(112) = bin(2)⊗ bin(1) = (0
1) (1

�)

One can verify that enc(D), enc(Succ1),
enc(Succ2) and enc(el) are regular.

ε

(10)

(00) (1�)

(10) (1�) (01) (1�)

(00) (11)

(11)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 31/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

R is a strict subset of automatic trees

Consider tree

ε

1

11

111 112

1122

12

whose domain {1i2j | 0 ≤ j ≤ i} is not
regular, so that /∈ R.

And yet it has an automatic presentation,
so ∈ A:

enc(1i2j) := bin(i)⊗ bin(j)

where bin(n) is the binary string for n with least significant digit first:
enc(1) = bin(1)⊗ bin(0) = (1

0)
enc(112) = bin(2)⊗ bin(1) = (0

1) (1
�)

One can verify that enc(D), enc(Succ1),
enc(Succ2) and enc(el) are regular.

ε

(10)

(00) (1�)

(10) (1�) (01) (1�)

(00) (11)

(11)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 31/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

R is a strict subset of automatic trees

Consider tree

ε

1

11

111 112

1122

12

whose domain {1i2j | 0 ≤ j ≤ i} is not
regular, so that /∈ R.

And yet it has an automatic presentation,
so ∈ A:

enc(1i2j) := bin(i)⊗ bin(j)

where bin(n) is the binary string for n with least significant digit first:
enc(1) = bin(1)⊗ bin(0) = (1

0)
enc(112) = bin(2)⊗ bin(1) = (0

1) (1
�)

One can verify that enc(D), enc(Succ1),
enc(Succ2) and enc(el) are regular.

ε

(10)

(00) (1�)

(10) (1�) (01) (1�)

(00) (11)

(11)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 32/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,MSO)

For T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 ∈ R, define:

Generalized successor relation Succ
def
=

⋃n
i=1 Succi , and its reflexive

and transitive closure Succ∗.

Binary relations 4 for “deeper in the tree”, el for “at equal level”,
and equality =.

Lemma

T ∈ R implies (T + {Succ∗, el,=}) ∈ R.

:-) Allows for more a expressive FO logic, e.g. with some transitive
closure.

So, since T2 ∈ R, we have T el
2 ∈ R.

Corollary

Synth(R,MSO) is not computable.

However, we can get something by restricting MSO to chainMSO.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 32/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,MSO)

For T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 ∈ R, define:

Generalized successor relation Succ
def
=

⋃n
i=1 Succi , and its reflexive

and transitive closure Succ∗.

Binary relations 4 for “deeper in the tree”, el for “at equal level”,
and equality =.

Lemma

T ∈ R implies (T + {Succ∗, el,=}) ∈ R.

:-) Allows for more a expressive FO logic, e.g. with some transitive
closure. So, since T2 ∈ R, we have T el

2 ∈ R.

Corollary

Synth(R,MSO) is not computable.

However, we can get something by restricting MSO to chainMSO.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 32/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,MSO)

For T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 ∈ R, define:

Generalized successor relation Succ
def
=

⋃n
i=1 Succi , and its reflexive

and transitive closure Succ∗.

Binary relations 4 for “deeper in the tree”, el for “at equal level”,
and equality =.

Lemma

T ∈ R implies (T + {Succ∗, el,=}) ∈ R.

:-) Allows for more a expressive FO logic, e.g. with some transitive
closure. So, since T2 ∈ R, we have T el

2 ∈ R.

Corollary

Synth(R,MSO) is not computable.

However, we can get something by restricting MSO to chainMSO.
Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 33/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

A variant of MSO over trees: chainMSO

(a) MSO (b) pathMSO
quantification over arbitrary subsets quantification over paths only

(c) chainMSO quantification over chains only

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 34/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Chains in trees

T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉.

.

Definition (Chain)

Γ ⊆ D is a chain if it is totally ordered with respect to Succ∗:

for every u, v ∈ Γ, either Succ∗(u, v) or Succ∗(u, v).

As opposed to paths, there might be holes in a chain.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 35/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Logic chainMSO

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆
Y |Ri (X1 . . .Xri) | ¬Φ | (Φ ∧Ψ) | ∃XΦ

T , σ |= ∃XΦ iff there exists a chain Γ in T
s.t. T , σ[X 7→ Γ] |= Φ.

Example (Force chain X to be a maximal path starting at node x0)

x0 ∈ X ∧
∀x {x ∈ X → [(∃ySucc(x , y)→ ∃y(Succ(x , y) ∧ y ∈ X)) ∧ ¬Succ(x , x0)]}

Corollary

chainMSO subsumes pathMSO, CTL∗K (Branching-time LTL), BLlin
µ

(Branching-time linear-time epistemic mu-calculus), etc.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 36/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,chainMSO)

Definition (Synth(R,chainMSO)) In:
T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 ∈ R, and
Φ(X1, . . . ,Xm) ∈ chainMSO

Out: ΦS
def
= {(E1, . . . ,Em) ∈ (2D)m | S, [~X := ~E] |= Φ(X1, . . . ,Xm)}

Theorem

Synth(R,chainMSO) is computable.

The proof uses automata constructions, inspired from (Thomas, 1997).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 37/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,chainMSO) is computable: proof ingredients

1 Define enc(Γ) the encoding of chain Γ that “extends” the encoding
of nodes.

2 Design an automaton∗ Cm that recognizes (the encoding of) m-tuples
of chains, i.e. ⋃

Γ1,...,Γm∈Chains(T)

enc(Γ1)⊗ . . .⊗ enc(Γm).

3 Design an automaton∗ BΦ that recognizes (the encoding of) ΦT .

(*) Büchi automaton.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 37/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,chainMSO) is computable: proof ingredients

1 Define enc(Γ) the encoding of chain Γ that “extends” the encoding
of nodes.

2 Design an automaton∗ Cm that recognizes (the encoding of) m-tuples
of chains, i.e. ⋃

Γ1,...,Γm∈Chains(T)

enc(Γ1)⊗ . . .⊗ enc(Γm).

3 Design an automaton∗ BΦ that recognizes (the encoding of) ΦT .

(*) Büchi automaton.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 37/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Synth(R,chainMSO) is computable: proof ingredients

1 Define enc(Γ) the encoding of chain Γ that “extends” the encoding
of nodes.

2 Design an automaton∗ Cm that recognizes (the encoding of) m-tuples
of chains, i.e. ⋃

Γ1,...,Γm∈Chains(T)

enc(Γ1)⊗ . . .⊗ enc(Γm).

3 Design an automaton∗ BΦ that recognizes (the encoding of) ΦT .

(*) Büchi automaton.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 38/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Encoding of chains - enc(Γ)

A set of addresses is a chain if, and only if, it is contained in the set of all
prefixes of some infinite word.

Given a chain Γ ⊆ D, define Branches(Γ) :=
⋂
{uΣω | u ∈ Γ} the set

of infinite words whose set of prefixes contain Γ.

Branches(Γ) is a singleton {α} iff Γ is infinite.

Encoded as

(−0)

α︷ ︸︸ ︷
(2

1) (1
0) (1

1) (2
1) (1

0) (1
1) ...

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 39/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton for chain tuples - Cm

Lemma

One can effectively construct a Büchi automaton Cm that recognizes the
encoding of m-tuples of chains, i.e.⋃

Γ1,...,Γm∈Chains(T)

enc(Γ1)⊗ . . .⊗ enc(Γm)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 39/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton for chain tuples - Cm

Lemma

One can effectively construct a Büchi automaton Cm that recognizes the
encoding of m-tuples of chains, i.e.⋃

Γ1,...,Γm∈Chains(T)

enc(Γ1)⊗ . . .⊗ enc(Γm)

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 40/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

T = 〈D, r ,Succ1, . . . ,Succn,R1, . . . ,Rp〉 ∈ R and Φ ∈ chainMSO

Define BΦ s.t. L(BΦ) = enc(ΦT) where

enc(ΦT) :=
⋃

Γ1, . . . , Γm ∈ Chains(T)
T , [Xi → Γi]1≤i≤m |= Φ(X1, . . . ,Xm)

enc(Γ1)⊗. . .⊗enc(Γm)

We define BΦ by induction over Φ...

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 41/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

by induction over Φ

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |R(X1 . . .Xr) | ¬Φ | (Φ∧Ψ) | ∃XΦ

The case of Sing(X)

Automaton BSing(X) is the product of

automaton C1 that verifies that it is a chain encoding, and

an automaton that verifies that the second component of enc(Γ) has
a single occurrence of symbol 1.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 41/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

by induction over Φ

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |R(X1 . . .Xr) | ¬Φ | (Φ∧Ψ) | ∃XΦ

The case of X ⊆ Y

Automaton BX⊆Y is the product of

automaton C2 to check that input (Γ1, Γ2) is a pair of chains

an automaton that verifies that each time symbol 1 occurs in
enc(Γ1) so does it in enc(Γ2).

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 41/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

by induction over Φ

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |R(X1 . . .Xr) | ¬Φ | (Φ∧Ψ) | ∃XΦ

The case of R(X1 . . .Xr)

Automaton BR(X1...Xr) is the product of

r copies of automaton BSing(X)

a simulation of automaton AR

over (Σ× {0, 1})r , instead of Σr

replaces by symbol � each letter after the unique symbol 1

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 41/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

by induction over Φ

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |R(X1 . . .Xr) | ¬Φ | (Φ∧Ψ) | ∃XΦ

Propositional connectors

B¬Φ is the complement of BΦ (see for instance (Vardi, 2007))

+ product with some Cm (in case Φ has m free variables)

BΦ∧Ψ is the product of BΦ and BΨ.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 41/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Class of Post Correspondance Problem structures
Class of Automatic structures
Class of Regular automatic trees

Büchi automaton BΦ for enc(ΦT)

by induction over Φ

chainMSO 3 Φ,Ψ ::= Sing(X) |X ⊆ Y |R(X1 . . .Xr) | ¬Φ | (Φ∧Ψ) | ∃XΦ

The case of ∃XΦ

B∃X1Φ(X1,X2,...,Xm) is the projection of automaton BΦ(X1,X2,...,Xm).

(case m = 1) B∃XΦ(X) is input-free.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 42/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Synthesis in infinite structures

P (PCP structures)
A (Automatic structures), R (Regular automatic trees)

F MSO

P FO

A FO

A MSO R MSO

R chainMSODECIDABLE

UNDECIDABLE

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Concluding remarks

Synthesis complexity is high, e.g. T |= FO non-elementary in
altermation depth ϕ.

Other kinds of finite presentations for input structures?

Dynamic Epistemic Logic (DEL) (Van Ditmarsch et al., 2007)
presentations: a finite description (M, E) denotes the whole
relational structure with iterated update product.
Synthesis (of plans) cannot be computed in general, see (Bolander
et al., 2020) for a survey.

Computable in the class of propositional DEL structures
see (Douéneau-Tabot et al., 2018) for chainMSO goals
Computable in some fragment of first-order DEL
see Côme Neyrand’s talk at this workshop

Caucal hierarchy (Caucal, 2002) presentations: apply a finite
sequence of unfolding operation then some inverse rational mappings
to tree T2.
All have a decidable MSO theory, synthesis should work.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Concluding remarks

Synthesis complexity is high, e.g. T |= FO non-elementary in
altermation depth ϕ.

Other kinds of finite presentations for input structures?

Dynamic Epistemic Logic (DEL) (Van Ditmarsch et al., 2007)
presentations: a finite description (M, E) denotes the whole
relational structure with iterated update product.
Synthesis (of plans) cannot be computed in general, see (Bolander
et al., 2020) for a survey.

Computable in the class of propositional DEL structures
see (Douéneau-Tabot et al., 2018) for chainMSO goals
Computable in some fragment of first-order DEL
see Côme Neyrand’s talk at this workshop

Caucal hierarchy (Caucal, 2002) presentations: apply a finite
sequence of unfolding operation then some inverse rational mappings
to tree T2.
All have a decidable MSO theory, synthesis should work.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Concluding remarks

Synthesis complexity is high, e.g. T |= FO non-elementary in
altermation depth ϕ.

Other kinds of finite presentations for input structures?

Dynamic Epistemic Logic (DEL) (Van Ditmarsch et al., 2007)
presentations: a finite description (M, E) denotes the whole
relational structure with iterated update product.

Synthesis (of plans) cannot be computed in general, see (Bolander
et al., 2020) for a survey.

Computable in the class of propositional DEL structures
see (Douéneau-Tabot et al., 2018) for chainMSO goals
Computable in some fragment of first-order DEL
see Côme Neyrand’s talk at this workshop

Caucal hierarchy (Caucal, 2002) presentations: apply a finite
sequence of unfolding operation then some inverse rational mappings
to tree T2.
All have a decidable MSO theory, synthesis should work.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Concluding remarks

Synthesis complexity is high, e.g. T |= FO non-elementary in
altermation depth ϕ.

Other kinds of finite presentations for input structures?

Dynamic Epistemic Logic (DEL) (Van Ditmarsch et al., 2007)
presentations: a finite description (M, E) denotes the whole
relational structure with iterated update product.
Synthesis (of plans) cannot be computed in general, see (Bolander
et al., 2020) for a survey.

Computable in the class of propositional DEL structures
see (Douéneau-Tabot et al., 2018) for chainMSO goals
Computable in some fragment of first-order DEL
see Côme Neyrand’s talk at this workshop

Caucal hierarchy (Caucal, 2002) presentations: apply a finite
sequence of unfolding operation then some inverse rational mappings
to tree T2.
All have a decidable MSO theory, synthesis should work.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Concluding remarks

Synthesis complexity is high, e.g. T |= FO non-elementary in
altermation depth ϕ.

Other kinds of finite presentations for input structures?

Dynamic Epistemic Logic (DEL) (Van Ditmarsch et al., 2007)
presentations: a finite description (M, E) denotes the whole
relational structure with iterated update product.
Synthesis (of plans) cannot be computed in general, see (Bolander
et al., 2020) for a survey.

Computable in the class of propositional DEL structures
see (Douéneau-Tabot et al., 2018) for chainMSO goals
Computable in some fragment of first-order DEL
see Côme Neyrand’s talk at this workshop

Caucal hierarchy (Caucal, 2002) presentations: apply a finite
sequence of unfolding operation then some inverse rational mappings
to tree T2.
All have a decidable MSO theory, synthesis should work.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Blumensath, A. and Grädel, E. (2000).
Automatic structures.
In Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science, LICS ’00, page 51, USA. IEEE Computer Society.

Bolander, T., Charrier, T., Pinchinat, S., and Schwarzentruber, F.
(2020).
Del-based epistemic planning: Decidability and complexity.
Artificial Intelligence, 287:103304.

Caucal, D. (2002).
On infinite terms having a decidable monadic theory.
In International Symposium on Mathematical Foundations of
Computer Science, pages 165–176. Springer.

Douéneau-Tabot, G., Pinchinat, S., and Schwarzentruber, F. (2018).
Chain-monadic second order logic over regular automatic trees and
epistemic planning synthesis.
In AiML’18.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Khoussainov, B., Nies, A., Rubin, S., and Stephan, F. (2007).
Automatic structures: Richness and limitations.
Log. Methods Comput. Sci., 3(2).

Post, E. L. (1946).
A variant of a recursively unsolvable problem.
Bulletin of the American Mathematical Society, 52(4):264–268.

Thomas, W. (1990).
Automata on infinite objects.
Hand. of theoretical computer science, Volume B, pages 133–191.

Thomas, W. (1997).
Languages, automata, and logic.
In Handbook of formal languages, pages 389–455. Springer.

Van Ditmarsch, H., van Der Hoek, W., and Kooi, B. (2007).
Dynamic epistemic logic, volume 337.
Springer Science & Business Media.

Sophie Pinchinat Synthesis in infinite structures

insertframenavigationsymbol 43/43

Motivations
Background

Synthesis Problem(s)
Synthesis in infinite Structures

Concluding remarks
References

Vardi, M. Y. (2007).
The büchi complementation saga.
In Annual Symposium on Theoretical Aspects of Computer Science,
pages 12–22. Springer.

Sophie Pinchinat Synthesis in infinite structures

	Motivations
	Background
	Relational Structures
	and

	Synthesis Problem(s)
	Synthesis in infinite Structures
	Class of Post Correspondance Problem structures
	Class of Automatic structures
	Class of Regular automatic trees

	Concluding remarks
	References

