
Workflow Synthesis Based on Instance-Aware
Temporal Specification

Vedran Kasalica1, Natasha Alechina1, Anna-Lena Lamprecht1, and Brian
Logan1

Department of Information and Computing Sciences
Utrecht niversity, 3584 CC Utrecht, Netherlands

{v.kasalica, n.a.alechina, a.l.lamprecht, b.s.logan}@uu.nl

Abstract. A major limitation of many temporal logic-based approaches
to automatically synthesising a workflow to accomplish a particular com-
putational task from a set of tools, is their inability to distinguish data
instances with the same type signature. This leads to ambiguity in the
interpretation of the synthesised solutions, which may prevent the cre-
ation of an executable workflow. In this paper, we present a new ap-
proach to workflow synthesis that is able to keep track of data instances.
In addition, we provide a preliminary extension of the APE (the Auto-
mated Pipeline Explorer) framework to support it. We view synthesis as
the problem of orchestrating transducers representing tools to achieve a
temporal logic specification. We show that the complexity of bounded
workflow synthesis (where the number of tools used is known in advance)
in our approach is NP-complete. We define dynamic workflow synthesis
where the number of times a tool is used is not specified in advance, and
show that the dynamic workflow synthesis problem is in PSPACE.

Keywords: workflow synthesis · temporal logic · controller synthesis · compu-
tational pipelines · automated workflow composition

1 Introduction

Scientific workflows [8] have become important software artefacts in many scien-
tific disciplines [16]. A scientific workflow is finite directed graph, where the nodes
represent operations (performed by available computational tools) and the edges
represent data and/or control flow dependencies [17]. In this paper, we focus on
computational pipelines, where the graph is acyclic and models only data-flow
dependencies. The problem of workflow synthesis is, given a specification (what
needs to be computed), produce a graph that satisfies the specification.

Program synthesis techniques have been shown to be applicable to the (com-
putational) workflow synthesis problem (see, e.g., [18, 19, 14, 13]). In this ap-
proach, a synthesis algorithm is used to construct a computational pipeline using
the available tools that satisfies the workflow specification.

In this paper, we focus on temporal logic-based approaches to program syn-
thesis, and in particular on the synthesis approach based on SLTL (Semantic

2 V. Kasalica et al.

Linear Time Logic) originally proposed by Steffen et al. [18] and used for the
automated composition of scientific workflows in the PROPHETS [15]. The for-
malism is currently used by the APE [11] framework. SLTL is an extension of
Linear Time Logic (LTL) that introduces labeled edges and term taxonomies
to enrich the semantics. An SLTL model can be interpreted as a workflow that
satisfies a given SLTL formula (temporal goal). The model comprises states
representing sets of available data types, and edges representing the operations
performed over the data.

A major limitation of this method in practice is its inability to distinguish
data instances. Scientific workflows frequently reuse already generated data in
later stages, and might accumulate multiple different data instances with the
same type signature. These have to be distinguishable and separately identifi-
able to ensure correct data transfer between the components of the workflow.
However, in SLTL models, states are collections of available type propositions.
As a result, when there are multiple data instances of the same type, their sig-
natures are identical and the framework is not able to distinguish them. This
leads to ambiguity in the interpretation of the synthesised solutions, which may
prevent the creation of executable workflows.

To illustrate the problem, we use as an example a case study on synthesizing
geovisualisation workflows for the generation of maps depicting bird movement
patterns in the Netherlands from [10]. The synthesis problem is to generate
a workflow over an existing set of GIS tools, that can be used to plot bird
movement data and city coordinates on a map. The workflow specification takes
as input two csv tables with coordinates (of types “CSV”) of bird movements
and cities, requires that operations “Plot lines”, “Plot points”, “Plot coast” and
“Plot water” are used, and that an output of type “PostScript” is produced.

However, as the two inputs have the same data signature (csv tables), they
cannot be distinguished with this formalism. Thus, the specification cannot en-
sure that the cities are depicted as dots, and that the bird movement coordinates
are connected with lines. Furthermore it cannot even ensure that both input
files will be used. Figure 1 shows some possible interpretations of two different
SLTL models satisfying the specification. The rectangles represent operations
performed, ellipses represent data instances used, and the arrows depict data
flows. The arrows also indicate if the data is being used as an input for the oper-
ation (red, dotted) or an output of the operation (green, solid). Figures 1(a) and
(b) correspond to two different interpretations of the shortest model SLTL-based
approaches could provide, with respect to the number of operations performed.
However, although the model satisfies the SLTL specification, none of the in-
terpretations uses both of the inputs. Interpretation (a) does not use the birds
movement data, while (b) does not use the city coordinates. Figures 1(c) and
(d) are interpretations of a “longer” model, which performs two transformation
operations, instead of one. Interpretation (c) is indeed a valid solution to the
problem. The workflow creates a simple map of the Netherlands, depicting the
sea as blue, the coast as green and the bird movements as dots on the map. In
contrast, interpretation (d) does not use the bird movement data. Such ambigu-

Workflow Synthesis Based on Instance-Aware Temporal Specification 3

Fig. 1. Possible synthesis solution interpretations.

ities in the language are the main issue of the SLTL-based approach, currently
preventing full automation of the workflow composition process.

In this paper, we present a new approach to the synthesis of workflows
that preserves and utilises information about data instances in a workflow, and
present a preliminary extension of the APE [11] library to support it. Our ap-
proach combines and extends workflow synthesis using the temporal logic SLTL
and controller synthesis for transducers [7, 1] originally developed for the auto-
mated generation of controllers for manufacturing facilities. We show that the
complexity of bounded (where the number of times each tool is used is known in
advance) workflow synthesis in our approach is NP-complete. We also identify a
special case of unbounded synthesis, which we call dynamic workflow synthesis,
and show that the dynamic workflow synthesis problem is in PSPACE.

Transition systems with data and some form of quantification in the speci-
fication language had been considered, for example, in [4, 2, 5]. Decidability of
verification and synthesis in such settings is achieved usually by imposing some
kind of boundedness assumption on the domains of states in the transition sys-
tems. In this paper, we do not start with the bounded domain assumption, but

4 V. Kasalica et al.

boundedness is a consequence of the shape of transition systems corresponding
to workflows (that is, that they do not contain loops). Our complexity results
are also lower due to the differences in the setting, in particular, a different
specification language.

The remainder of the paper is structured as follows. In Section 2 we intro-
duce the formal background (semantically annotated multi-transducers, and an
extension of SLTL with first order features, SLTLx) before describing our new
approach to transducer orchestration with temporal goals in Section 3. Then
(Section 4) we present a preliminary evaluation of the new approach through
application to the aforementioned geovisualization case study. Finally, Section 5
concludes the paper.

2 Transducers and Extended SLTL

In this section we introduce the formal background for a new approach to syn-
thesising workflows using transducers and temporal goals.

2.1 Transducers

We model the tools used in workflow synthesis as semantically annotated multi-
transducers. [7]; however there are important differences. A transducer is a finite
deterministic automaton with outputs [9]. A multi-transducer [7] has multiple
input and output ports (so it can take a tuple of k inputs and produce a tuple
of l outputs, for non-negative integers k and l). Semantic annotations on the
transitions of a transducer constrain the types of symbols that can be used as
inputs, and also specify the types of outputs. We assume that the annotations
come from some set of unary predicates Ltypes and that each input and output
for each transition can be annotated with zero or finitely many predicates from
this set. Transitions of a transducer with k input and l output ports correspond
to k + l relations from the set of predicates Lops. To distinguish the input and
output arguments in a predicate, we label them with two superscripts, e.g., P k,l

corresponds to a predicate of arity k+ l where the first k arguments correspond
to inputs and the last l to outputs.

Definition 1 (Semantically annotated multi-transducer). A semantically
annotated multi-transducer T = (Σ,S, s0, f, g, k, l, Ltypes, Lops, Op, Use,Gen) is
a deterministic transition system with inputs and outputs, where: Σ is the alpha-
bet (of both inputs and outputs), S is a non-empty finite set of states, s0 ∈ S is
the initial state, f : S×Σk −→ S is the state transition function, g : S×Σk −→
Σl is the output function, k is the number of T ’s input ports and l is the number
of T ’s output ports, Ltypes is a finite set of unary predicates, Lops is a finite set
of k + l-ary predicates, for each transition t = (s,a, s′,b) such that f(s,a) = s′

and g(s,a) = b, Op(t) ∈ Lops, Use(t) ∈ 2Ltypes
k

and Gen(t) ∈ 2Ltypes
l
.

We assume that transducers also have a distinguished state serr that takes
care of incorrect inputs. We sometimes omit it in the examples below for read-
ability. In this paper, we only use examples of transducers with a single state,

Workflow Synthesis Based on Instance-Aware Temporal Specification 5

also for brevity. Some tools and resources used in workflows would be more nat-
urally modelled as a multi-state transducer, for example those that admit only
a fixed number of queries within a 24 hour period, such as Google Maps API.
transducers connected by a port binding introduced below.

We use transducers (representing tools) to generate state transition systems
corresponding to a particular instantiation of a workflow. In what follows we
essentially treat symbols from Σ as variables for data instances (such as specific
files etc.) that are manipulated by the tools represented by the transducers. Only
objects (data instances) that satisfy the properties assigned by Use can be used
for transitions to a state other than serr, where the corresponding outputs satisfy
the properties assigned by Gen. When objects of appropriate type are given as
inputs (substituted for the symbols) to a transducer transition, new objects are
produced with the properties specified for the output.

The operation can be modeled as T = ({tab, ps, plo, err}, {s0, serr}, s0, f, g,
2, 1, Ltypes, Lops, Op, Use, Gen), where f(s0, (tab,ps)) = s0 and g(s0, (tab,ps)) =
plo; all other transitions lead to serr and output err. The types language Ltypes =
{XY Z table, PostScript}. The annotations for the only meaningful transition
are: Op(s0, (tab, ps), s0, plo) = psxyz P 2,1(tab, ps, plo), Use(s0, (tab, ps), s0, plo)
= {(XY Z table, PostScript)}, Gen((s0, (tab, ps), s0, plo) = {Postscript}.

A workflow consists of a number of tools connected together. We model
this as a port binding of a set of transducers. For a multi-transducer T x =
(Σ,Sx, sx0 , f

x, gx, kx, lx), the input port 1 ≤ i < kx is denoted by inx,i, and the
output port 1 ≤ j < lx by outx,j . The values at the input port i and output
port j of transducer T x are denoted as val(inx,i) and val(outx,j), respectively.
Similarly, val(inx) and val(outx) denote the vectors of values at the input and
output ports of T x. As in [7], we use index x = 0 to denote the inputs and
outputs of the environment. That is, transducer T 0 specifies the inputs to the
workflow and the required outputs: the outputs of the environment are the initial
inputs to the set of transducers representing computational tools, T 1, . . . , Tm,
and the inputs to the environment are outputs of T 1, . . . , Tm.

Definition 2. Given a set of transducers T 0, . . . , Tm, a port binding c is a set of
pairs of the form (outy,j , inx,i) (where x, y ∈ {0, . . . ,m} and i, j are port numbers
in {1, . . . , kx} and {1, . . . , ly}, respectively) that represent connections between
the output port j of multi-transducer y and input port i of multi-transducer x.
A workflow port binding in addition satisfies the following constraints:

– each input port is connected to at most one output port,

– there are no loops, i.e., there is no path along the edges which are either port
bindings or links between input and output ports of the same transducer T x,
where x ∈ {1, . . . ,m}.

Given a set of transducers T 0, . . . , Tm, a port binding c and an input tuple
a, a sequence of transitions and states s0, o1, . . . , ok, sk is generated. The states
correspond to sets of ground formulas with unary predicates. The transitions
correspond to one step transitions of transducers, that generate new objects

6 V. Kasalica et al.

Fig. 2. A workflow modelled as a port binding between two transducers.

with new properties. We assume that type properties of objects do not change
(so if e.g., a file object is modified, it becomes a new file).

Figure 2 illustrates a port binding between two transducers, that can plot
points (psxyz P) and lines (psxyz L). If the environment is modelled as trans-
ducer 0, (psxyz P) as transducer 1 and (psxyz L) as transducer 2, the binding is
as follows: {(out0,1, in2,1), (out0,2, in1,1), (out0,3, in1,2),
(out1,1, in2,2), (out2,1, in0,1)}.

Given specific input files a, b and c, the binding generates the following state
transition system, with states s0, s1, s2, transition between s0 and s1 labelled by
operation o1 and transition between s1 and s2 labelled by o2:

s0 = {XY Z Table(a), XY Z Table(b), PostScript(c)}
o1 = psxyz P 2,1(b, c, d)

s1 = {XY Z Table(a), XY Z Table(b), PostScript(c), PostScript(d)}
o2 = psxyz L2,1(a, d, e)

s2 = {XY Z Table(a), XY Z Table(b), PostScript(c),

PostScript(d), PostScript(e)}

2.2 SLTLx

In this section, we extend the logic SLTL (Semantic Linear Time Temporal Logic)
[18] to be able to talk about objects (data instances). Note that this is not a full
first order version of SLTL, in particular, it only has existential quantification, to
enable efficient implementation of synthesis. We call the resulting logic SLTLx.

Similarly to SLTL, SLTLx presupposes an existence of semantic type hierar-
chies. The low level operation names and signatures, such as psxyz P 2,1(x, y, z),
are unlikely to be known to the users who specify a workflow. Users are more
likely to use a high-level specification of an operation, such as Plot Points1,1(u, v)
(where u is the input file with coordinates and v is the output map). This neces-
sitates including more operation names in the specification language than those
corresponding to the tools, and a representation of a relationship between con-
crete and abstract operations. In addition, a user may also specify properties of

Workflow Synthesis Based on Instance-Aware Temporal Specification 7

files which are not in the standard type hierarchy, such as Birds(a) to say that
file a contains data on movements of birds.

A new feature of SLTLx is the introduction of a distinguished binary predi-
cate R to track ‘ancestor relation’ between objects (an object a is an ancestor of
object b, R(a, b), if either a = b or b is an output of an operation that had as one
of the inputs an object dependent on a). The reason for needing this relation in
the syntax is because while the user may not know the order of operations and
the required types of their inputs, they may want to specify that an operation
should be performed either directly on the input file or on a file derived from
it. For example, a user may require that Plot Points1,1(u, v) should be applied
either to a file containing coordinates of cities (Cities(u)) or to a file that has
been obtained from u by performing some processing, Cities(w) ∧R(w, u).

The syntax of SLTLx is defined relative to the following alphabet:

– A countable set of variables V ar = {x, y, z, . . .},
– A countable set of constants Con = {a, b, c, . . .},
– A finite set Lt of unary predicate symbols that includes Ltypes,
– A finite set Lo of predicates symbols that includes Lops,
– A distinguished binary predicate R,
– Identity relation between objects, =,
– Propositional connectives true, ¬, ∧,
– Temporal operators G (always in the future) and U (until).

Terms are variables or constants. Atomic formulas are of the form P (t1, . . . , tn)
where P is an n-ary predicate and t1, . . . , tn are terms, or t1 = t2.

The set of ground (not containing variables) atomic formulas built using
‘concrete’ types Ltypes will be denoted by AtLtypes . The states will be subsets of
AtLtypes . The set of ground atoms constructed using ‘concrete’ operators Lops
will be denoted by AtLops . Transitions between states correspond to elements of
AtLops (we assume that there are no parallel operations by two or more trans-
ducers).

We define an ‘implements’ relation . between formulas of AtLops and for-
mulas built using Lo to say that a description of a concrete operation is an
implementation of an abstract one. This relation is derived from semantic hier-
archies for a particular domain. For example, psxyz P 2,1(x1, x2, x3) implements
Draw Points1,1(x1, x3),
symbolically, psxyz P 2,1(x1, x2, x3) . Draw Points1,1(x1, x3).

The syntax of SLTLx is given by the following BNF:

Φ ::= true | P (t)| R(t1, t2) | ¬Φ | Φ ∧ Φ | 〈P (t1, . . . , tn)〉Φ | GΦ | ΦUΦ | ∃xΦ

with the restriction that ∃x does not occur negatively in any formula (that is,
within the scope of an odd number of ¬ symbols).

Given a set of ground atoms A, we define the domain of A, Dom(A), to be
the set of all constants occurring in A. Formulas with variables are evaluated in
a state s relative to an assignment function θ : V ar −→ dom(s). For a term t,
[t]θ = t if t is a constant, and θ(t) if t is a variable.

8 V. Kasalica et al.

Sentences of SLTLx are formulas with no free (unbound by a quantifier)
variables. Workflows are specified by sentences of SLTLx.

An SLTLx model π = (s0, o1, s1, o2, s2, ..., sk−1, ok, sk) is a finite alternating
sequence of states (subsets of AtLtypes) and ground transition relations (elements
of AtLops). Next we give the truth conditions of SLTLx formulas on SLTLx

models. Note that given a state si in π, it is possible to compute the reflexive
and transitive relation R on dom(si) from o1, . . . , oi.

Definition 3. Let π = (s0, o1, s1, o2, s2, ..., sk−1, ok, sk) be an SLTLx model. The
relation ‘π satisfies formula Φ under assignment θ’ (π, θ |= Φ) is as follows:

π, θ |= true

π, θ |= P (t) iff P ([t]θ) ∈ s0)

π, θ |= t1 = t2 iff [t1]θ = [t2]θ)

π, θ |= R(t1, t2) iff R([t1]θ, [t2]θ)

π, θ |= ¬Φ iff π, θ 6|= Φ

π, θ |= Φ1 ∧ Φ2 iff π, θ |= Φ1 ∧ π, θ |= Φ2

π, θ |= ∃xΦ iff π, θ′ |= Φ where θ′ =x θ

π, θ |= 〈P (t1, . . . , tn)〉Φ iff (o1 . P ([t1]θ, . . . , [tn]θ) and π1, θ |= Φ and k > 0

π, θ |= GΦ iff ∀i ∈ {0, ..., k} : πi, θ |= Φ

π, θ |= Φ1UΦ2 iff ∃i ∈ {0, ..., k} : ∀j ∈ {0, ..., i− 1} :

πj , θ |= Φ1 and πi, θ |= Φ2

where θ′ =x θ means that θ′ differs from θ at most in its value for x, and πi is
defined as:

πi = (si, oi, si+1, ..., ok, sk) when i ∈ {0, ..., k − 1}
πi = (sk) when i = k

We use the standard definitions for ∨ and→. In addition to the globally (G)
and until (U) operators as defined above, we will use two additional operators
to simplify notation: XΦ, interpreted as 〈true〉Φ, denotes the next-time oper-
ator, and FΦ, interpreted as trueU Φ, denotes eventually operator. Note that
although we can refer to transitions, the logic is much closer to LTL on finite
traces (LTLf) than to Linear Dynamic Logic on finite traces LDLf in [6].

3 Transducer Synthesis with Temporal Goals

In this section we define two workflow synthesis problems, and analyse their
complexity.

Definition 4. The bounded workflow synthesis problem is: given a set of se-
mantically annotated multi-transducers, an SLTLx formula Φ (the goal formula)
and a tuple of inputs, is there a port binding for some subset of transducers such
that the resulting SLTLx model satisfies Φ.

Workflow Synthesis Based on Instance-Aware Temporal Specification 9

Theorem 1. The bounded workflow synthesis problem is NP-complete.

Proof. For membership in NP, observe that a port binding for a fixed set of
transducers and input objects is polynomial in the size of the problem input.
Hence it is possible to guess a port binding, generate the corresponding state
sequence (which is of finite length polynomial in the input since there are no
cycles in the binding), and check whether it satisfies the formula Φ in polynomial
time. This means that the problem can be solved by a non-deterministic Turing
machines in polynomial time.

For NP hardness, we use a reduction from propositional satisfiability. Let φ
be a propositional formula over variables p1, . . . , pn. The reduction is as follows.
The set of 2n transducers contains, for each pi, a transducer that makes pi true
and a transducer that makes pi false (e.g., pi can encode type information for
some object a). The formula is satisfiable if, and only if, there is a positive answer
to the bounded workflow synthesis problem for this set of transducers and a goal
formula Fφ. �

The bounded version of the problem assumes that the workflow can use at
most the explicitly given set of tools (some of which could be copies of the same
tool). This is not always the case; for example, it may not be known in advance
how many times e.g., a postscript generator will need to be used.

However, it is possible to automatically solve workflow synthesis problems
without having to specify the number of copies of each transducer in advance.
This can be done by replacing the requirement to produce a fixed port binding
by constructing a dynamic binding. Intuitively, now the orchestrator is going to
construct a new port binding after each transition by the transducers, collect
the outputs, and construct a binding again. A useful intuition may be to this of
the orchestrator as a planner and of the transducers as operator schemas. The
difference from classical planning is as follows: we do not know all the objects in
advance, since new objects can be created; properties of objects are not changed
once they are established; properties of objects in the goal formula are all unary.
We can even specify which operators should be used in the workflow, although
without specifying how their arguments relate to other terms in the formula.

Definition 5. The dynamic workflow synthesis problem is as follows: given a
finite set of semantically annotated transducers T 1, . . . , Tm, an initial input tuple
a, a goal formula F (φ1 ∧ . . . ∧ φv) where each φi is either of the form ∃xiψ(xi)
where ψi a boolean combination of atoms of the form P (xi) with P ∈ Ltypes
or of the form ∃y1 . . . yn〈P (y1, . . . , yn)〉true, is there a sequence of port bindings
such that the initial port binding allocates elements from a to some input ports
of T 1, . . . , Tm, and each subsequent binding allocates outputs from the previous
step to (possibly different) input ports of T 1, . . . , Tm, and the transition system
generated by the transducers under these bindings satisfies the goal formula.

Theorem 2. The dynamic workflow synthesis problem is PSPACE-complete.

Proof. We introduce some notation and terminology first. Let us denote by K =
Σj=1,...,mk

m the maximal number of input ports that can be used simultaneously
in parallel.

10 V. Kasalica et al.

Observe that the set of types Ltypes is finite; a complete description of an
object in terms of the types in Ltypes is a conjunction of atoms and negated
atoms for each type P ∈ Ltypes. There are 2|Ltypes| such complete descriptions,
which we will refer to as supertypes.

Let us consider first the case where the goal formula is of the form F∃xψ(x).
If an object satisfying ψ can be constructed at all, there is a sequence of states
leading to a state which contains an object satisfying ψ. This sequence does
not have repetitions. Each state can be uniquely described as an allocation of
one of 2|Ltypes| supertypes to each of possible K input ports (the outputs are
produced deterministically), so there are 2|Ltypes|×K different states. Clearly,
the sequence leading from initial state to a ψ(x) state can be exponentially long.
However, similarly to classical planning, a state can be represented in polynomial
space by listing at most |Ltypes| positive properties for each of K input ports.
A path-exists(s1, s2, N) algorithm that checks the existence of a path of length
N between states s1 and s2 (where s2 satisfies the goal test, that is outputs a
ψ(x) object) works in polynomial space; for N = 1 it checks whether s1 = s2
or there is a single step transition between them, for N > 1 it recursively calls
plan-exists(s1, s3, dN/2e) and plan-exists(s3, s2, bN/2c); note that N represented
in binary takes O(logN) space, so it polynomial in the input size [3].

In order to check whether the required operators have been used, we can
modify the path-exists(s1, s2, N) algorithm to return the set of operator names
encountered on the path from s1 to s2. Observe that this set of names (unlike
the complete list of all ground operator formulas on the path) is polynomial in
the input size.

The problem of generating several objects with specified types is no harder
than for a single object, because properties of objects persist.

PSPACE-hardness is by straightforward reduction from STRIPS planning.
�

4 Evaluation

The preliminary evaluation of the new approach in practice compares it to the
SLTL synthesis approach that is currently implemented in the APE [11] frame-
work (as the latest implementation of that formalism).

In order to be able to reuse the existing domain annotations, the new imple-
mentation extends the existing infrastructure of the APE framework. It addresses
the bounded workflow synthesis problem. Although the bounded synthesis has
its limitations, an iterative deepening approach demonstrated to be effective in
practice in the previous APE evaluations.

In the evaluation we focus on the main difference between the approaches,
namely the ability of the new approach to distinguish data instances with the
same signature. In our case those are the two input files, containing bird move-
ment and city coordinates. With the extended specification logic SLTLx we can
now describe the problem better by restricting the usage of the inputs, as follows:

Workflow Synthesis Based on Instance-Aware Temporal Specification 11

CSV (a) ∧ CSV (b) ∧ Cities(a) ∧Birds(b) ∧ ∃a1∃b1∃x1∃x2∃x3∃x4∃x5
(F (R(b, b1) ∧ 〈Plot Lines1,1(b1, x1)〉true) ∧ F (R(a, a1)∧
〈Plot Points1,1(a1, x2)〉true) ∧ F 〈Plot Coast0,1(x3)〉true∧
F 〈Plot Water0,1(x4)〉true ∧ F (PostScript(x5) ∧R(x1, x5) ∧R(x2, x5)

∧R(x3, x5) ∧R(x4, x5) ∧ ¬Xtrue))

This encoding ensures that the bird movements will be labeled “Birds” and
transformed (if needed) to be connected by lines. Similarly, the cities will be
labeled “Cities” and depicted as dots.

The new approach eliminates the ambiguity and allows more concrete prob-
lem specification. Workflows in Figures 1(a)-(d) will be distinguished and only
those satisfying the specification will be synthesised in the process.

The new implementation synthesis resulted in 16 workflows of length 7, where
the length corresponds to the number of operations needed to be performed. Each
of the suggested workflows represents a permutation of the desired workflow pre-
sented in Figure 1(c), it satisfies our specification, and can be used to automat-
ically generate the desired map. Furthermore, the undesired permutations can
be omitted by restricting the order of operations in the problem specification.

Although the current implementation does not yet support the full expres-
siveness of the new approach, we are currently working on extending APE to
support it. In order to simplify the encoding of the new logical structures, the
new implementation will not keep the CNF encoding of the specification. Instead
it will transform it into SMT-LIB 2.0 format and use an off-the-shelf SMT solver
to find solutions. The evaluation of such implementation should then focus on
more complex use cases, such as synthesis in proteomics domain [12].

5 Conclusion

The creation of scientific workflows can be challenging. Workflow developers need
to identify the relevant workflow components from potentially huge collections
of computational tools, and compose them correctly (order, type compatibility)
to solve a given computational problem. Automating workflow synthesis reduces
the time required and the likelihood of errors. Here we present a new approach
for the synthesis of computational workflows using transducers and temporal
goals. It keeps track of the data instances in the synthesised workflow and thus
overcomes a major limitation of the original temporal logic-based approach. We
defined a bounded and a dynamic variant of the workflow synthesis problem, and
proved that they are NP-complete and in PSPACE, respectively. To evaluate the
new approach, we extended the existing workflow synthesis framework APE with
a first implementation of it. Application to an existing case study confirmed
that the added instance-awareness improves the specificity of the synthesized
workflows, while not notably impacting synthesis execution time.

12 V. Kasalica et al.

References

1. Alechina, N., Brázdil, T., De Giacomo, G., Felli, P., Logan, B., Vardi, M.Y.: Un-
bounded orchestrations of transducers for manufacturing. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 2646–2653 (2019)

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intell. Res. 51, 333–376 (2014). https://doi.org/10.1613/jair.4424

3. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2), 165–204 (1994)

4. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis
in description logic based dynamic systems. In: Faber, W., Lembo, D. (eds.) Web
Reasoning and Rule Systems - 7th International Conference, RR 2013, Proceedings.
Lecture Notes in Computer Science, vol. 7994, pp. 50–64. Springer (2013)

5. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action
theories. Artif. Intell. 237, 172–203 (2016)

6. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Proceedings of IJCAI 2015. pp. 1558–1564. AAAI Press (2015)

7. De Giacomo, G., Vardi, M.Y., Felli, P., Alechina, N., Logan, B.: Synthesis of or-
chestrations of transducers for manufacturing. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

8. Garijo, D.: AI Buzzwords Explained: Scientific Workflows. AI Matters 3(1), 4–8
(May 2017). https://doi.org/10.1145/3054837.3054839

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edition. ACM SIGACT News 32(1), 60–65 (2001)

10. Kasalica, V., Lamprecht, A.L.: Workflow Discovery Through Semantic Constraints:
A Geovisualization Case Study. In: Computational Science and Its Applications –
ICCSA 2019. pp. 473–488. Springer International Publishing, Cham (2019)

11. Kasalica, V., Lamprecht, A.L.: APE: A Command-Line Tool and API for Auto-
mated Workflow Composition. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees,
M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) Computational
Science – ICCS 2020. pp. 464–476. Springer International Publishing, Cham (2020)

12. Kasalica, V., Schwämmle, V., Palmblad, M., Ison, J., Lamprecht, A.L.: Ape in
the wild: Automated exploration of proteomics workflows in the bio. tools registry.
Journal of proteome research 20(4), 2157–2165 (2021)

13. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proc. of the QUATIC 2010, Portugal. pp. 262–267. IEEE (2010)

14. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) Foundations of Software Science and Computational Structures. pp. 395–409.
Lecture Notes in Computer Science, Springer Berlin Heidelberg (2009)

15. Naujokat, S., Lamprecht, A.L., Steffen, B.: Loose Programming with PROPHETS.
In: Proc. of FASE 2012, Estonia. LNCS, vol. 7212, pp. 94–98 (2012)

16. Perkel, J.M.: That’s the way we flow. Computational pipelines turn raw data into
reproducible scientific knowledge. Nature 573(7772), 149–150 (Sep 2019)

17. Qin, J., Fahringer, T.: Scientific Workflows: Programming, Optimization, and Syn-
thesis with ASKALON and AWDL. Springer-Verlag, Berlin Heidelberg (2012)

18. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Tech. rep., Fakultät für Mathematik und Informatik, Universität
Passau (1993)

19. Van Der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Ser-
vice Flow Language. In: Web Services and Formal Methods. pp. 1–23. Lecture
Notes in Computer Science, Springer Berlin Heidelberg (2006)

