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Abstract. Dynamic Epistemic Logic (DEL) is a logic that models infor-
mation change in a multi-agents setting through the use of action models
with pre and post-conditions. In a recent work, an extension of DEL to
first-order epistemic logic (DFOEL) was introduced with a proof of the
decidability of Epistemic Planning in this setting for non-modal pre and
post-conditions under finite-domain hypothesis.
In this original contribution, we exhibit the role post-conditions have in
DFOEL by showing that Epistemic Planning in this setting with possi-
bly infinite first-order domain is undecidable as soon as even non-modal
post-conditions contain first-order quantifiers, while Epistemic Planning
becomes decidable when post-conditions are quantifier-free. The latter
result is non-trivial and makes an extensive use of automatic structures.

1 Introduction

First-order modal logic has been around since the first introduction of
modal logic. Modal logic (see [2]) was introduced as an extension of
propositional logic, its semantics applies to Kripke models i.e., different
valuations in modal relations to one another. These modal relations can
be of different sorts creating a wide range of logics that are direct appli-
cations of modal logic. For example, temporal logic and epistemic logic
are modal logics in which modal relations are defined as relations of time
and knowledge respectively. First-order modal logic is an extension of
modal logic in which valuations are replaced by first-order structures,
each modal logic can be extended to its first-order counterpart (see [2,
Chapter 9]).

A remarkable application of modal logic, Dynamic Epistemic Logic (DEL)
[16], provides a logic that describe changes on an epistemic model through
the use of action models and update. The links between DEL and Epis-
temic Temporal Logic (ETL) have been studied in [12]. Under some
hypothesis on DEL action models, the underlying ETL model is regu-
lar, allowing to decide central problems in artificial intelligence: a typical
problem is Epistemic Planning – an automated planning problem in the
DEL setting introduced by [4] – which has been thoroughly studied (see
[5] for a survey). Recently an extension of Epistemic Planning in the set-
ting of Dynamic First-Order Epistemic Logic (DFOEL) has been intro-
duced in [13] – following the pioneer approach of [11] – where first-order



logic is used as a means to compactly specify an essentially propositional
input.

In [14], the authors prove that so-called non-modal epistemic planning in
DFOEL remains decidable provided that the first-order domain is finite.
Even though one can foresee a full propositional encoding of the entire
problem hence the decidability, the authors of [14] provide an elegant
proof based on bisimulations. However this bisimulation approach does
not apply when we relax the finiteness assumption on first-order domains.

In this paper we investigate Epistemic Planning in the setting of DFOEL
with possibly infinite domain structures. Our aim is to enlarge the de-
cidability landscape for Epistemic Planning, we therefore discard the
hopeless case of events with modal operators by focusing on pure first-
order events. Surprisingly, our contribution shows that even though pre-
conditions are non-modal, decidability of Epistemic Planning is sensitive
to the nature of post-conditions.

More precisely, we consider Epistemic Planning where the input struc-
tures are finally representable. As a natural approach, we require the
input epistemic model to be automatic. Regarding the action models,
we allow arbitrary first-order interpretations thus strictly extending the
framework of [13]. On this basis, we show that Epistemic Planning with
arbitrary first-order post-conditions (EPP1) is undecidable while Epis-
temic Planning with quantifier-free postconditions (EPP0) is decidable.
Our decidability proof for EPP0 is non-trivial because the infinite do-
main structures generated along histories are in general infinitely many.

The paper is organized as follows. In Section 2, we define the full frame-
work of DFOEL. In Section 3 we introduce the Epistemic Planning prob-
lem in this framework and establish our results: undecidability of EPP1
in Section 3.4 and decidability of EPP0 in Section 3.5. We conclude on
these achievements in Section 4.

2 Dynamic First-Order Epistemic Logic

In this section we describe our proposal for DFOEL, inspired from [13]
but that offers a wider expressiveness in both the epistemic and the
actions models: first, we allow one to consider infinite (but still finitely
presentable) first-order structures, and second, we relax the action model
post-conditions, i.e., the predicate updates, as arbitrary first-order inter-
pretations (in the sense of model theory, see [8]) but where, for semantical
reasons, the domain remains unchanged.

We will see that this extra expressiveness yields an undecidable epistemic
planing problem. We will then better control the expressiveness to re-
trieve decidability, still in a setting that strictly extends the results from
[13] for allowing quantifier-free predicate updates, that in general may
involve an infinite set of tuples.

For the rest of this paper, we fix P a finite set of predicate symbols, X
a countably infinite set of variables and agt a finite set of agents.



2.1 Preliminaries on First-Order Epistemic Logic

We restrict our definition to pure relational first-order structures (i.e.,
no functions in the signature)3.

Definition 1. The language of First-Order Epistemic Logic (FOEL) L
is given by the following syntax:

L 3 ϕ,ψ ::= p(x1, . . . , xn) | ¬ϕ | ϕ ∧ ψ | ∀xϕ | Kaϕ

where x, x1, ..., xn ∈ X, a ∈ agt and p ∈ P . An atomic formula is a
formula of the form p(x1, . . . , xn). We denote by L1 the Ka-free sub-
language of L, and by L0 the Ka-free and quantifier-free sub-language of
L.

In epistemic logic, models are represented by Kripke models with pos-
sible worlds related through epistemic relations: intuitively, two worlds
are in epistemic relationship for an agent a if a cannot distinguish be-
tween the two. In the setting of DFOEL, an entire first-order structure
is attached to each possible word.

Definition 2. A first-order epistemic model (or simply epistemic model)
over domain D is a structure M = (W, (Ra)a∈agt, (Iw)w∈W ) where:

1. W is a non-empty set of possible worlds;
2. For each a ∈ agt, Ra ⊆W ×W is an accessibility relation;
3. For every w ∈W , Iw = (D, (pw)p∈P ) is a P -structure associated to

w.

Note that the structures Iw share the same domain D, but that the pred-
icates may have different interpretations in different worlds.

Definition 3. Let M be an epistemic model over domain D. A valua-
tion is a mapping v : X → D, and a x-variant vx of v is a valuation s.t.
vx(y) = v(y) for all y ∈ X\{x}.

Definition 4. Let M be a model and v be a valuation. The satisfaction
relation between an epistemic model M and a formula of L is given
inductively by :

– M, w |=v p(x1, . . . , xn) iff (v(x1), ..., v(xn)) ∈ pw for all p ∈ P .
– M, w |=v ¬ϕ iff not M, w |=v ϕ.
– M, w |=v ϕ ∧ ψ iff M, w |=v ϕ and M, w |=v ψ.
– M, w |=v ∀xϕ iff M, w |=vx ϕ for every x-variant vx of v.
– M, w |=v Kaϕ iff M, w′ |=v ϕ for all w′ ∈ Ra(w).

Note that if ϕ ∈ L1 i.e., ϕ is modal-free, then M, w |=v ϕ iff Iw |=v ϕ.
We write M, w |= ϕ whenever for any v, M, w |=v ϕ; in particular if ϕ
has no free variables.

It is clear that classical propositional epistemic logic is a fragment of
FOEL where predicate symbols have all arity 0.

3 This is no loss of expressiveness since functions and constants can be modeled by
predicates through their graph.



2.2 Dynamic First-Order Epistemic Logic

We now enrich the setting of FOEL with action models that provide the
dynamics, via the update product, similarly to the approach in DEL. An
action is a Kripke model whose elements are events with their precondi-
tion and their postconditions.

Definition 5. An action model is a tuple E = (E, (Qa)a∈agt, pre, post)
where:
1. E is a non-empty finite set of possible events.
2. For a ∈ agt, Qa ⊆ E × E is an accessibility relation.
3. pre : E → L assigns to each e ∈ E a precondition formula without

free-variables.
4. Let {z1, z2, ...} be a set of variables disjoint from X.

post : E → (P → L) assigns to each e ∈ E a postcondition for each
predicate s.t. post(e)(p) has its free-variables in {z1, ..., zkp}.

The update of an epistemic state with an action model filters the worlds
that verify the preconditions and updates their structure through the
postconditions: the domain is unchanged, but predicates might be up-
dated by an arbitrary first-order interpretation.

Definition 6. LetM = (W, (Ra)a∈agt, (Iw)w∈W ) and E = (E, (Qa)a∈agt, pre, post)
be given. The product update of M and E yields the model

M⊗E = (W ′, (R′a)a∈agt, (Iw)w∈W ′)

where :
1. W ′ = {(w, e) ∈ W × E : M, w |= pre(e)}. Denote by we the world

(w, e).
2. For a ∈ agt, weR′aw

′e′ iff wRaw
′ and eQae

′.
3. For we ∈W ′, Iwe = (D, (pwe)p∈P ) where for p ∈ P ,

pwe = {(d1, ..., dn) | M, w |=[z1 7→d1,...,zn 7→dn] post(e)(p)(z1, ..., zk)}

A post-condition can be for example post(e)(p)(z1, z2) = p(z1, z2) ∨
∃x(p(z1, x) ∧ p(x, z2)) which computes the transitive closure of p after
multiple updates.

2.3 The infinite epistemic model of histories

We aim at capturing the single infinite epistemic model comprised of all
the updates. In a way similar to the DEL structure introduced in [1, 5]
for proposition DEL, it consist in putting together the iterated updates.
Given M be an epistemic model and E be an action model, we define
the family of updates (MEn)n∈N defined by: ME0 =M and MEn+1 =
MEn ⊗ E . We denote by MEn = (Wn, (R

n
a )a∈agt, (Ih)h∈Wn) the n-th

update.
Notice that elements h ∈ Wn are of the form w′e1...en, where w′ ∈ W
and e1, . . . , en ∈ E. We call such an element a history starting in w′.

Definition 7 (The epistemic model of histories). The epistemic
model of histories isME∗ = (H, (Ra)a∈agt, (Ih)h∈H), where H :=

⋃
n∈NWn

is the set of histories and where Ra :=
⋃
n∈NR

n
a is the accessibility rela-

tion over all the histories for agent for a ∈ agt.
We write Hw for the set of histories starting in world w ∈W .



3 Epistemic Planning Problems in First-order
DEL

Now that the epistemic model ME∗ of histories is defined, one can ad-
dress decision problems, as long as this structure can be finitely rep-
resented as the input of an algorithm. As ME∗ is fully defined by M
and E , it amounts to defining both in a finite way. Since E is finite,
it remains to provide a way to describe the first-order epistemic model
M. A standard approach to finitely presenting structures is to resort
to finite-state automata, leading to the notion of automatic structure.
It is important to remark that the first-order theory of any automatic
structure is decidable, thanks to automata constructions that mimic the
logical operations. We refer the reader to [15] for a survey.

In the following section we provide the material to define the class of first-
order epistemic models with finitely many worlds but whose first-order
interpretations in worlds are automatic structures. Then we introduce the
epistemic planning problem in this setting and discuss its decidability.

3.1 Automatic presentations of epistemic models

Automatic structures are first-order structures with no function sym-
bols, such that its domain and predicates are regular, that is recognized
by finite-state automata. Automatically presentable structures are rela-
tional structures isomorphic to an automatic structure (see [15] for an
exhaustive survey).

Definition 8. An automatic presentation over the set of predicates P
is a finite tuple A = (AD , (Ap)p∈P ) of finite-state automata where

– AD is an automaton over alphabet Σ, and

– for p ∈ P of arity k, Ap is an automaton over alphabet (Σ ∪ {�})k.

An automatic presentation A = (AD , (Ap)p∈P ) denotes a first-order
structure over signature P defined by SA = 〈L(AD ), L(Ap)p∈P 〉.
A first-order structure S = (S, (pS)p∈P ) over signature P is automatic
if there exists a bijection isomorphism enc : S → L(AD ) for some auto-
matic presentation A = (AD , (Ap)p∈P ) that is an isomorphism between
S and SA .

Automatic structures have a smooth connection with first-order logic:

Theorem 1 ([3]). The first-order theory of an automatic structure is
decidable.

In our setting, we allow the domain of the (first-order) epistemic models
to be infinite as long as they are automatic, yielding the natural notion
of automatic epistemic models.

Definition 9 (Automatic epistemic models). An epistemic model
M = (W, (Ra)a∈agt, (Iw)w∈W ) is automatic if the set of worlds W is
finite and for each w ∈W , the structure Iw is automatic.



It is easy to see that the predicates updates post(e)(p) for a non-modal
action model are mere first-order interpretations which by [3, Proposition
5.2] preserve automaticity.

Proposition 1 Let E = (E, (Qa)a∈agt, pre, post) be a non-modal action
model. If M is an automatic epistemic model, then M⊗ E is also an
automatic epistemic model.

3.2 The Epistemic Planning Problem

As originally defined in [4], an instance of the epistemic planning problem
is composed of an automatic epistemic model, a distinguished world in
this model, an action model and a first-order epistemic formula called
the goal formula. The problem is to decide whether or not there exists
an executable sequence of events from the distinguished world so that
the goal formula holds. Restated in the setting we have developed so far,
the epistemic planning problem is defined as follows.

Definition 10 (The Epistemic Planning Problem (EPP)).
Input: an automatic epistemic model M, a distinguished world w
in M, an action model E and a first-order epistemic formula γ;
Output: is there a history h ∈ Hw such that ME∗, h |= γ?

Epistemic planning has been widely investigated in the literature [5, 4, 6,
7, 1, 13, 14]. The first family of contributions [5, 4, 6, 7, 1] consider propo-
sitional epistemic and actions models. It is clear that the propositional
variant of the epistemic problem is a sub-problem of EPP, since propo-
sitional logic can be embedded in first-order logic. In this propositional
setting, it is well-known that the problem is undecidable if one allows
the event pre-conditions to be modal formulas ([5]). As a corollary, we
can state the following:

Theorem 2. EPP is undecidable.

Because it is known that modal operators easily navigate between pre and
post-conditions, we consider a restricted variant of EPP, written EPP1,
where pre-conditions and post-conditions are non-modal i.e., each even
e, formulas pre(e) and post(e)(p) belong to L1.
We show that the problem EPP1 is undecidable (Theorem 3) which
shows that the decidability result of [13] fails when the first-order do-
mains can be infinite.Nevertheless there is a place for a decidable restric-
tion of EPP1, written EPP0, where post-conditions of the input action
models are non-modal and quantifier-free i.e., all formulas post(e)(p)
belong to L0 (Theorem 4). Remark that the decidability of Epistemic
Planning in the DEL setting (propositional action models) is corollary
of the decidability of EPP0.

As a preliminary step that will be useful for our result, we approach EPP
under the light of pure first-order logic in a structure derived from the
epistemic model of histories.



3.3 The first-order structure of the epistemic model of
histories

Given an epistemic model ME∗ = (H, (Ra)a∈agt, (Ih)h∈H), we consider
the universe, i.e., the domain, U comprised of every history h ∈ H,
but also of countably many disjoint copies of D, a copy Dh, for each
h ∈ H, that denotes the elements of the structure Ih. We equip U with
several relations in order to obtain a structure H (Definition 11), and
that yields a first-order language such that the problem EPP reduces
into the model-checking problem over H against formulas in this language
(Proposition 3).

Theorem 4 is then an immediate corollary of Proposition 3, Theorem 5
and Theorem 1. We now accurately formalize all this.

We reshape each predicate p ∈ P into predicate p∗ of arity ar(p)+1 and
introduce a finite number of extra predicates. We list all these predicates
below to form signature τ = ((Ra)a∈agt, (p

∗)p∈P , (fromw)w∈W , Dom), with
their interpretation in H.

– predicate p∗ of arity ar(p) + 1, for each p ∈ P , where p∗H is the set
of tuples {(h, d1, . . . , dk) | (d1, . . . , dk) ∈ ph]};

– predicate Ra of arity 2, for each agent a ∈ agt, where Ra
H – its

interpretation in H – is the pairs of histories related by Ra inME∗;
– predicate fromw of arity 1, for each w ∈ W , where fromw

H is the
subset Hw of histories that start from w;

– predicate Dom of arity 2, where DomH relates a history with every
element of domain Dh.

We can now describe the first-order structure we need to handle in our
proof.

Definition 11 (The structure H). LetME∗ be an epistemic model of
histories, with D the domain shared by all the histories. For each h ∈ H,
we let Dh be a disjoint copy of D and we write copyh : D → Dh for the
natural bijection, and we define the set U := H ∪

⊎
h∈H Dh. Then, the

first-order structure of ME∗ is the τ -structure defined by:

H = (U, (Ra)a∈agt, (
⋃
h∈H

({h} × ph))p∈P , (Hw)w∈W ,
⋃
h∈H

({h} ×Dh))

The structure ME∗ equipped with first-order logic over signature
τ = ((Ra)a∈agt, (p

∗)p∈P , (fromw)w∈W , Dom) is at least as expressive as the
epistemic model of histories, as stated by Proposition 2. We first recall
the standard translation of FOEL into first-order logic as done in [2].

Definition 12. The standard translation STy of L into the first-order
logic over signature τ is inductively defined by:

– STy(p(x1, . . . , xn)) := p∗(y, x1, . . . , xn) ∧
∧n
i=1 Dom(y, xi)

– STy(¬ϕ) := ¬STy(ϕ)

– STy(ϕ ∧ ψ) := STy(ϕ) ∧ STy(ψ)

– STy(∀xϕ(x)) := ∀x(Dom(y, x)→ STy(ϕ(x)))

– STy(Kaϕ) := ∀y′(Ra(y, y′)→ STy′(ϕ))



Proposition 2 For any valuation v : X → D and any history h ∈ H,
we let vh : X → Dh be defined by vh(x) = copyh(v(x)).

ME∗, h |=v ϕ iff H |=vh[y 7→h] STy(ϕ)

Proof. We proceed by induction over ϕ:
– ME∗, h |=v p(x1, . . . , xn) iff (v(x1), ..., v(xn)) ∈ ph

iff (by definition of p∗H) (h, vh(x1), ..., vh(xn)) ∈ p∗H

iff H |=vh[y 7→h] p
∗(y, x1, ..., xn)

iff H |=vh[y 7→h] p
∗(y, x1, ..., xn) ∧

∧n
i=1 Dom(y, xi), and this latter for-

mula is precisely STy(p(x1, . . . , xn));
– the cases for formulas of the form ¬ϕ and ϕ ∧ ψ is smooth;
– ME∗, h |=v ∀xϕ

iff M, h |=vx ϕ for every x-variant vx of v
iff (by induction) H |=(vx)h[y 7→h] STy(ϕ) for every x-variant (vx)h of
vh;

– ME∗, h |=v Kaϕ iff for all h′ ∈ Ra(h), M, h′ |=v ϕ
iff for all h′ ∈ Ra(h), H |=vh′ [y′ 7→h′] STy′(ϕ) (by induction)
iff H |=vh[y 7→h] ∀y′(Ra(y, y′)→ STy′(ϕ)) (since Dh = Dh′)
iff H |=vh[y 7→h] STy(Kaϕ) (by definition of STy).

An immediate corollary of Proposition 2 is a reduction of EPP into the
model-checking problem over H against a first-order logic:

Proposition 3 There exists h ∈ Hw s.t. ME∗, h |= γ if, and only if,
H |= ∃y(STy(γ) ∧ fromw(y)).

3.4 Undecidability of EPP1

We can demonstrate that with a post(e)(p) ∈ L1, we can capture the
transitive closure of a graph which allows us to reduce the emptiness
problem on Turing machines (TME) to EPP1. The problem TME is
known to be undecidable [9, Theorem 9.10] and is defined as follows.

Input: a Turing machine M ;
Output: do we have L(M) = ∅?

Theorem 3. The Epistemic Planning Problem EPP1 is undecidable.

The proof of Theorem 3 can be found in Appendix A. It relies on the
fact that the configuration graph of a Turing machine is automatically
presentable [10, Lemma 5.1] and that by updating the successor predicate
in this graph by transitivity one can approximate its transitive closure.

3.5 Decidability of EPP0

To establish the decidability of EPP0, we take inspiration from [5], where
the decidability of epistemic planning in DEL under non-modal assump-
tions (a sub-problem of EPP0) is developed. The proof relies on the fact



that the structure that we have named here the epistemic model of histo-
ries (structure ME∗) is automatic and the fact that epistemic planning
reduces to model-checking first-order formula over ME∗.
In a nutshell, we show in this section that the first-order structure H
of the epistemic model of histories ME∗ is automatic if one restricts to
inputs allowed in the problem EPP0. Since by Proposition 3, we have al-
ready established that EPP reduces to the model checking over H against
first-order logic and because first-order logic is decidable on automatic
structures (Theorem 1), we can conclude the following.

Theorem 4. EPP0 is decidable.

The rest of this section is dedicated to the proof of the following Theo-
rem 5.

Theorem 5. Let M be an automatic epistemic model and E be such
that all pre and post-conditions are non-modal, and post-conditions are
quantifier-free.
Then the first-order structure H of the epistemic model of historiesME∗
is automatic.

As preconditions and postconditions are non-modal, the update of the
predicate interpretations at some history h ∈ H by an event e only de-
pends on Ih and e. We can thus keep track of the interpretation along
we1...en after the trigger of each event ei by remembering the current
interpretation. Now, since postonditions are quantifer-free, only a finite
number of possible interpretations of predicates are generated by the suc-
cessive updates (Proposition 4). This allows us to define an automaton
that recognizes the set of histories sharing a common predicate interpre-
tation (Proposition 5). We then define an encoding function enc for the
entire domain of the structure H and show that it yields regular languages
for enc(U) (Lemma 1) but also for enc(RH

a ), enc(p∗H), enc(fromw) and
enc(Dom) (Lemma 2)
We introduce the relation ∼ that gathers the histories with the same
predicate interpretation.

Definition 13. Define the relation ∼ ⊆ H × H by: for all histories
h,h′ ∈ H,

h ∼ h′ iff ph = ph
′
, for every p ∈ P.

We will denote by [h] = {h′ | h ∼ h′} the ∼-equivalence class of history
h and by H/∼ the set of all the equivalence classes, with typical element
α.
By definition of ∼, Ih′ = Ih for every h′ ∈ [h], which allows us to
consistently define I[h] := Ih and p[h] := ph for each p ∈ P .

Proposition 4 H/∼ is finite.

Proof. We establish that there are only finitely many ph for each p ∈ P ,
which by definition of ∼ entails the finiteness of H/∼. We show by
induction over h that each set ph belongs to a finitely generated Boolean
algebra (see Appendix B for the details).



Finiteness of H/∼ is a milestone in showing the automaticity of H, as it
allows us to rely on finitely many different interpretations along all the
possible histories. Still, knowing that each interpretation Ih, or equiv-
alently Ih is automatic (Proposition 1) does not provide us with the
mechanism to know which interpretation to consider after history h. The
following proposition is an answer (see Appendix C for its full proof).

Proposition 5 For each h ∈ H, [h] is regular.

We have gathered all the material to show the automaticity of H. We first
start with the encoding of the elements of this first-order structure. Recall
that because event updates are particular cases of first-order interpreta-
tions, and according to Proposition 1, each Ih is automatic, thus each
I[h] is automatic. Therefore there exists an automatic presentation for
I[h] , over some alphabet Σ[h]. We denote by enc[h] the encoding function
of this automatic presentation which maps every element of DI[h] = D
onto a finite word of Σ∗[h].
Now, the overall encoding function enc of the domain U = H∪

⊎
h∈H Dh

is as follows.

Definition 14. The encoding function enc : U → (W∪E∪
⋃

[h]∈H/∼ Σ[h])
∗

is defined by:
– for h ∈ H, enc(h) := h
– for d ∈ Dh, enc(d) := h · enc[h](copyh

−1(d)).
We recall that copyh is the bijection between D and Dh.

We now prove that the encoding function enc of Definition 14 provides
an automatic presentation of the first-order structure H.
We recall that H = (U, (RH

a )a∈agt, (p
∗H)p∈P , (from

H
w )w∈W , Dom

H) where:
– U = H ∪

⊎
h∈H Dh

– For a ∈ agt, RH
a = Ra

– For p ∈ P , p∗H =
⋃
h∈H({h} × ph)

– For w ∈W , from H
w = Hw

– Dom H =
⋃
h∈H({h} ×Dh)

Lemma 1. enc(U) is regular.

Proof. We have that

enc(U) = enc(H ∪
⊎
h∈H

Dh) = enc(H) ∪
⊎
h∈H

enc(Dh)

= H ∪
⊎
h∈H

h · enc[h](copyh
−1(Dh)) (by definition of enc)

= H ∪
⊎
h∈H

h · enc[h](D)

=
⋃

α∈H/∼

α ∪
⊎

α∈H/∼

α · encα(D) (as H =
⋃

α∈H/∼

α)

In the expression above by Proposition 5, α is a regular language, and
so is encα(D) since Iα is automatic. Moreover, by Proposition 4, the
unions are finitely many, therefore enc(U) is a regular language.



Lemma 2. Relations enc(RH
a ), enc(p∗H), enc(fromw) and enc(Dom) are

regular.

Proof. – enc(R H
a ) = enc(Ra) = Ra = (H × H) ∩ R0

a · Q∗a, where we
recall that R0

a is the epistemic relation in M. Now, because W is
finite, R0

a ⊆ W ×W is regular. Moreover, since E is finite, Qa ⊆
E ×E is regular and so is Q∗a. Obviously H ×H is regular. Because
regular languages are closed under intersection enc(R H

a ) is a regular
language.

– enc(p∗H) = enc(
⋃
h∈H({h}×ph)) = enc(

⋃
α∈H/∼ α×p

α) =
⋃
α∈H/∼ enc(α)×

enc(pα) =
⋃
α∈H/∼ α× ((

∏ar(p)
i=1 α) ·encα(pα)). Because regular lan-

guages are closed under cartesian product and union, this last ex-
pression describes a regular language.

– enc(fromw) = enc(Hw) = Hw = H∩w ·E∗. which is clearly a regular
language.

– enc(Dom H) = enc(
⋃
h∈H({h} × Dh)) =

⋃
α∈H/∼ α × encα(D). As

a finite union of regular languages, this last expression describes a
regular language.

Lemmas 1 and 2 conclude the proof of Theorem 5.

4 Conclusion and Future work

Inheriting from DEL, the general Epistemic Planning Problem in the
DFOEL setting (EPP) with possibly modal pre-conditions is undecid-
able. Furthermore, we discovered that first-order quantifications in (non-
modal) post-conditions draws a line between decidability and undecid-
ability. Our proof for the decidable case (EPP0) involves a non-trivial
machinery based on automatic structures. Even though one might wish
a simpler proof, the chosen approach offers a wide range of decidable
problems in the EPP0 setting. Indeed, in the same line as [5], the proof
of automaticity allows one to finitely represent the set of all plan solu-
tions and to address all sorts of queries on it such as their infinity. On a
longer term perspective, we may consider, as done in [13], event schemes
in action models resulting in an infinity of events for infinite domains;
it is reasonable to conjecture that our results on decidability would still
hold true in this case. Another possible track would be to allow each
world to have a different domains.
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Appendix A Proof of Theorem 3

Let M = (Q,Γ, q0, δ, F ) be a Turing machine. We consider the first-order
structure over the signature with a binary predicate p and two unary
predicates i and f defined by: G := (C(M), pG , iG , fG) where C(M) is the
set of configurations ofM , pG is the relation→ composed of configuration
pairs such that M can move from the former to the latter, iG is the set
of initial configurations, and fG is the set of final configurations.
As any first-order structure, the structure G can be embarked into a
single-agent single-world epistemic model MG = ({w}, {(w,w)},G).

Lemma 3. The epistemic model MG is automatic.

Proof. We already know that the configuration graph of a Turing ma-
chine is automatically presentable [10, Lemma 5.1]. Moreover, with the
encoding of the structure (C(M),→) used to prove this fact, one can
easily verify that two unary relations iw and fw are also regular, which
concludes.

We next tune a single-event action model E = ({e}, {(e, e)}, pre, post)
whose effect is to enrich the current binary relation between configura-
tions with its self-composition.

– pre(e) = >
– post(e)(p)(z1, z2) = p(z1, z2) ∨ ∃x(p(z1, x) ∧ p(x, z2)), and
– post(e)(i)(z1) = i(z1) and post(e)(f)(z1) = f(z1), i.e., the initial and

final configurations remain unchanged.
Finally, we define the goal formula ∃x∃y(i(x)∧p(x, y)∧f(y)) which states
the existence of an initial and a final configuration related by p.
We claim that we indeed have defined a reduction from TME to EPP1.
Indeed, by definition of post(e)(p), a sequence ee . . . e of updates makes
predicate p incrementally get closer to the transitive closure of →. More
precisely, one can easily show by induction over ` that after ` triggers of
event e, two configurations are related by the interpretation of p if and
only if there exists a path of length at most ` between them. Therefore,
the goal formula ∃x∃y(i(x)∧p(x, y)∧f(y)) eventually holds after finitely
many triggers of event e if and only if some final configuration is reachable
from some initial configuration in the initial model G, otherwise said, if
and only if the language of the Turing machine is non-empty.

Appendix B Proof of Proposition 4

We will prove that every possible interpretation ph is obtained by boolean
combination of a finite set of atoms obtained from the interpretations
qw. We first describe how to obtain those atoms with Definition 15,
then we show that the interpretation of a predicate after an update is
a combination of atoms from the precedent interpretations (Lemma 4).
Finally, we use Lemma 5 for an induction on the histories in Lemma 6.
For n ∈ N, denote by [[n]] the set {1, ..., n}.

Definition 15. Let k, ` ∈ N and A ⊆ Dk, if σ : [[k]]→ [[`]]
define Aσ = {(d1, ..., d`) | (dσ(1), ..., dσ(k)) ∈ A}



For a set of generators G denote by BG the boolean algebra generated
by G.

Lemma 4. For he ∈ H, and p ∈ P , phe ∈ B{qhσ | q ∈ P, σ : [[ar(q)]]→
[[ar(p)]]}

Proof. If post(e)(p) = q(zσ(1), ..., zσ(ar(q))) we have that:

(d1, ..., dar(p)) ∈ phe iff Ih |=[z1 7→d1,...,zar(p) 7→dar(p)]
q(zσ(1), ..., zσ(ar(q)))

iff (dσ(1), ..., dσ(ar(q))) ∈ qh

iff (d1, ..., dar(p)) ∈ qhσ
Therefore phe = qhσ.
Thus if post(e)(p) ∈ L0, then phe ∈ B{qhσ | q ∈ P, σ : [[ar(q)]] →
[[ar(p)]]}.

Lemma 5. Let k, `, n ∈ N, if A ⊆ Dk, let σ : [[`]] → [[n]] and ν : [[k]] →
[[`]],
then (Aν)σ = A(σ ◦ ν)

Proof. We have that:
(d1, ..., dar(p)) ∈ (Aν)σ iff (dσ(1), ..., dσ(`)) ∈ Aν

iff (dσ(ν(1)), ..., dσ(ν(k))) ∈ A
iff (d1, ..., dar(p)) ∈ A(σ ◦ ν)

Lemma 6. For p ∈ P , and h ∈ H, ph ∈ B{qwσ | q ∈ P, σ : [[ar(q)]] →
[[ar(p)]]}

Proof. By induction on h, define the induction hypothesis: P(h) : ”∀p ∈
P , ph ∈ B{qwσ | q ∈ P, σ : [[ar(q)]]→ [[ar(p)]]}”.
For w ∈W , and p ∈ P , pw = pwid.
Let he ∈ H, if P(h), then by lemma 4, we have that phe ∈ B{qhσ | q ∈
P, σ : [[ar(q)]]→ [[ar(p)]]}.
If q ∈ P , and σ : [[ar(q)]]→ [[ar(p)]], we have by P(h), qh ∈ B{rwν | r ∈
P, ν : [[ar(r)]]→ [[ar(q)]]}
Thus qhσ ∈ B{(rwν)σ | r ∈ P, ν : [[ar(r)]]→ [[ar(q)]]}
Then by lemma 5, we have that qhσ ∈ B{rw(σ ◦ν) | r ∈ P, ν : [[ar(r)]]→
[[ar(q)]]}
i.e., qhσ ∈ B{rwν | r ∈ P, ν : [[ar(r)]]→ [[ar(p)]]}
Therefore phe ∈ B{qwσ | q ∈ P, σ : [[ar(r)]]→ [[ar(p)]]}

{qwσ | q ∈ P, σ : [[ar(r)]]→ [[ar(p)]]} is finite, so that B{qwσ | q ∈ P, σ :
[[ar(r)]] → [[ar(p)]]} is also finite. Therefore there is a finite number of
different ph.

Appendix C Proof of Proposition 5

Before proving Proposition 5, we introduce some material and prove
Lemma 7.



Definition 16. Let I be a P -interpretation with domain D, and e ∈ E,
if I |= pre(e), we define the P -interpretation:

I ⊗ e := (D, (pI⊗e)p∈P )

with pI⊗e := {(d1, ..., dkp) | I |=[z1 7→d1,...,zar(p) 7→dar(p)]
post(e)(p)(z1, ..., zar(p))},

for each p ∈ P .

Lemma 7. For he ∈ H, I[he] = I[h] ⊗ e

Proof. As post(e)(p) is non-modal, we have that

H,h |=[z1 7→d1,...,zar(p) 7→dar(p)]
post(e)(p)(z1, ..., zkp)

if, and only if,
Ih |=[z1 7→d1,...,zar(p) 7→dar(p)]

post(e)(p)(z1, ..., zkp).

We now turn to proving Proposition 5 about the regularity of [h] by
constructing a finite-state automaton for it: Let A[h] be the automaton
over alphabet W ∪ E with states ranging over {s0} ∪ H/∼, initial and
final states ranging over {s0} and {[h]} respectively, and whose transition
relation δ is defined by:

– For w ∈W , δ(s0, w) = [w];
– For α ∈ H/∼ and e ∈ E, if Iα |= pre(e), then δ(α, e) = α′ s.t.
Iα′ = Iα ⊗ e.

We argue that L(A[h]) = [h]:

we1...en ∈ [h] iff I[we1...en] = I[h]
iff I[we1...en] is final

iff I[w] ⊗ e1 ⊗ ...⊗ en is final

iff δ∗(s0, we1...en) is final

iff we1...en ∈ L(A[h])

.

This achieves the proof of Proposition 5.


