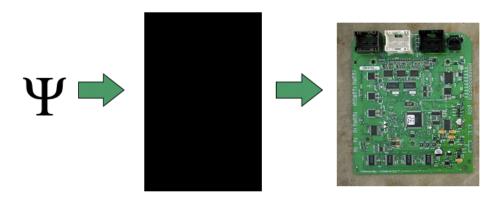
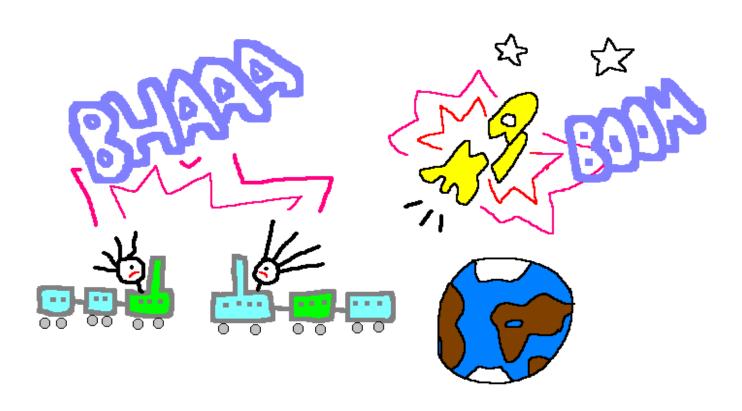
Rational Synthesis



Orna Kupferman Hebrew University

Joint work with Shaull Almagor, Dana Fisman, Yoad Lustig, Giuseppe Perelli, and Moshe Y. Vardi

Is the system correct?



Synthesis:

Input: a specification ψ .

Output: a system satisfying ψ .

Is the system correct?

Yes! it satisfies its specification.

An open system: Interacts with its environment.

A game:

- A set I of input signals.
- A set O of output signals.
- In each round of the game:
- •the system assigns values to the signals in O.
- ·the environment assigns values to the signals in I.
- Together, the system and the environment generate a computation: an infinite word over the alphabet $2^{I \cup O}$.

An open system: $f:(2^{I})^* \rightarrow 2^{O}$

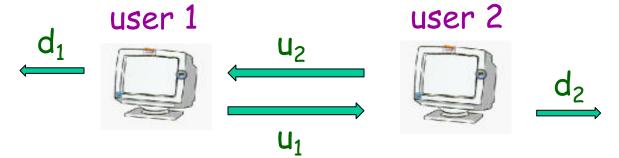
A correct system: a winning strategy.

An open system is correct if it satisfies its specification in all environments.

Too strong: Add assumptions on the environment (behavioral or structural).

Rational synthesis: the components that compose the environment have their own objectives and are rational. [Fisman, Lustig, Kupferman 2010]

An example:



User 1 can download only when User 2 uploads.

User 2 can download only when User 1 uploads.

Both users want to download infinitely often.

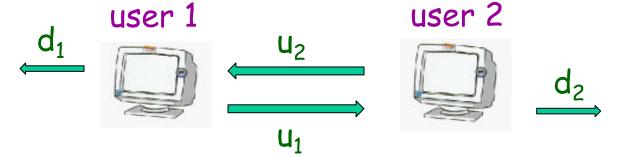
$$\varphi_1 = GF(d_1 \wedge u_2)$$

$$\varphi_2 = GF(d_2 \wedge u_1)$$

φ_1 is not realizable:

- fails when User 2 eventually never uploads.

An example:



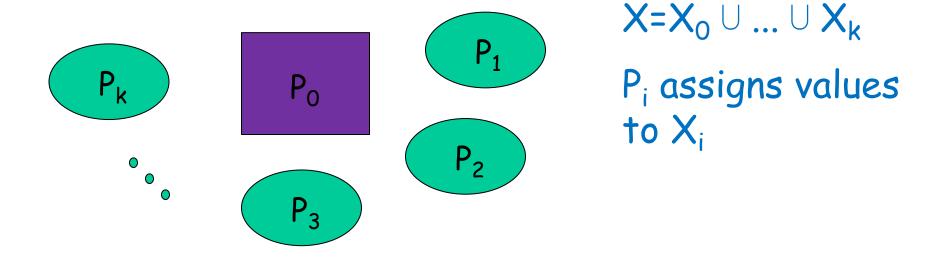
$$\varphi_1$$
= $GF(d_1 \wedge u_2)$

$$\varphi_2 = GF(d_2 \wedge u_1)$$

User 1 to User 2: I will upload, and will continue to upload as long as you upload.

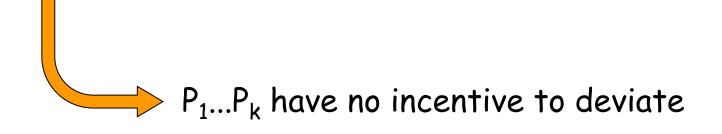
A rational User 2 will upload forever, enabling User 1 to satisfy φ_1 .

Rational Synthesis [FKL10]



Input: objectives ψ and $\varphi_1,...,\varphi_k$.

Output: a stable profile $\langle f_0,...,f_k \rangle$ that satisfies ψ .



Cooperative Rational Synthesis [FKL10]

Input: objectives ψ and $\varphi_1,...,\varphi_k$.

Output: a stable profile $\langle f_0,...,f_k \rangle$ that satisfies ψ .

We can suggest a strategy to the environment...

Cooperative Rational Synthesis [FKL10]

Input: objectives ψ and $\varphi_1,...,\varphi_k$.

Output: a stable profile $\langle f_0,...,f_k \rangle$ that satisfies ψ .

Non-Cooperative Rational Synthesis [KPV13]

Input: objectives ψ and $\varphi_1,...,\varphi_k$.

Output: a strategy f_0 such that every stable profile $\langle f_0,...,f_k \rangle$ satisfies ψ .

How different they are?

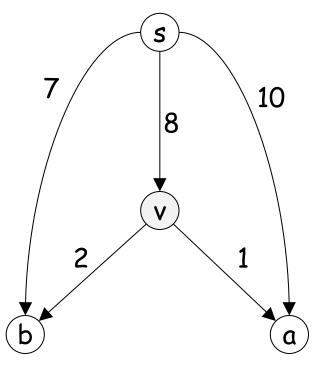
Algorithmic Game Theory

A network

b locations.

communication channels.

6 cost of creating the channel.

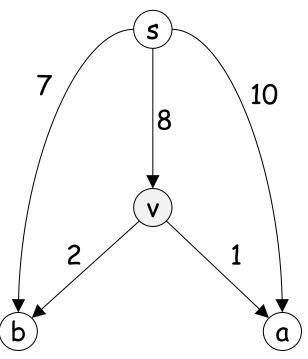


A network formation game

b locations.

communication channels.

6 cost of creating the channel. [Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden 2004]



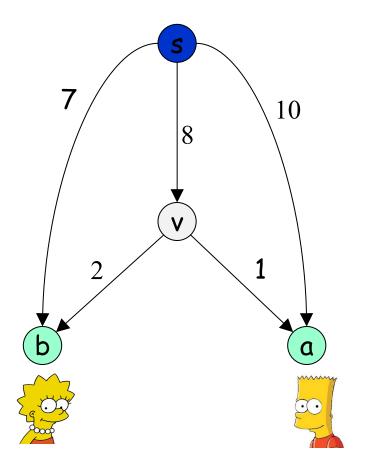
Players that need to transmit messages between locations in the network.

A network formation game: example

Two players need to transmit messages from s

Player 1 needs to reach a

Player 2 preeds to reach b



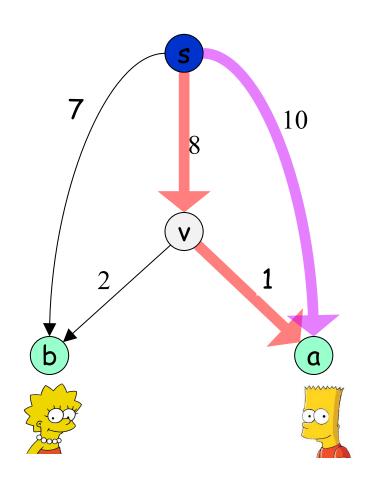
A network formation game: example

Two players need to transmit messages from ³

Player 1 needs to reach a

Player 2 preeds to reach b

The strategy space of $\{\langle s,v \rangle, \langle v,a \rangle\}$; $\{\langle s,a \rangle\}$



A network formation game: example

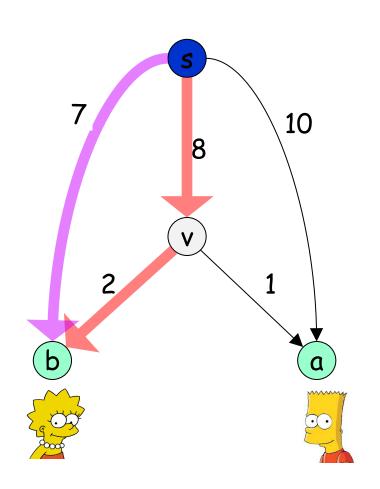
Two players need to transmit messages from s

Player 1 needs to reach a

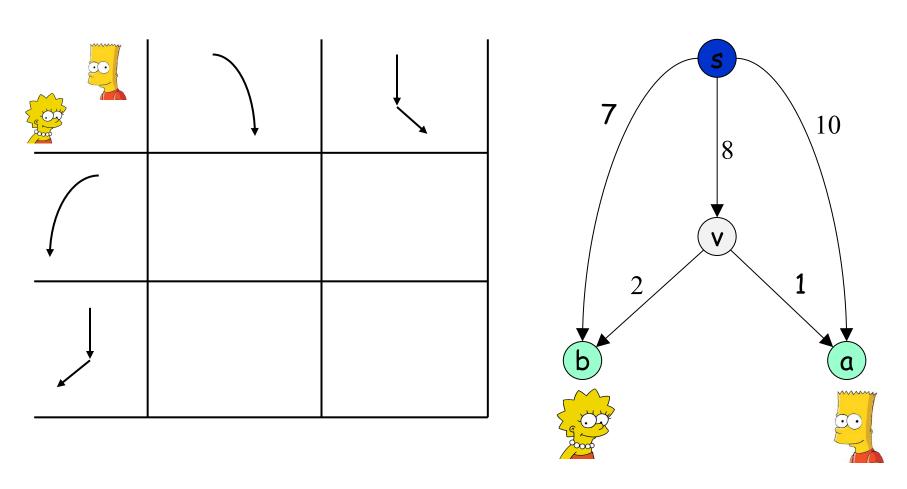
Player 2 preeds to reach b

The strategy space of $\{\langle s,v \rangle, \langle v,a \rangle\}$:

The strategy space of $\{\langle s,b \rangle\}$, $\{\langle s,v \rangle, \langle v,b \rangle\}$

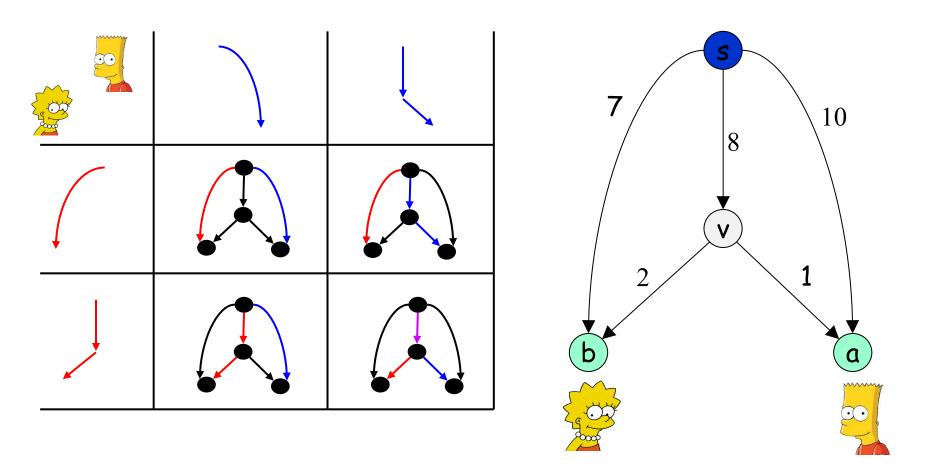


Four possible profiles in our example:



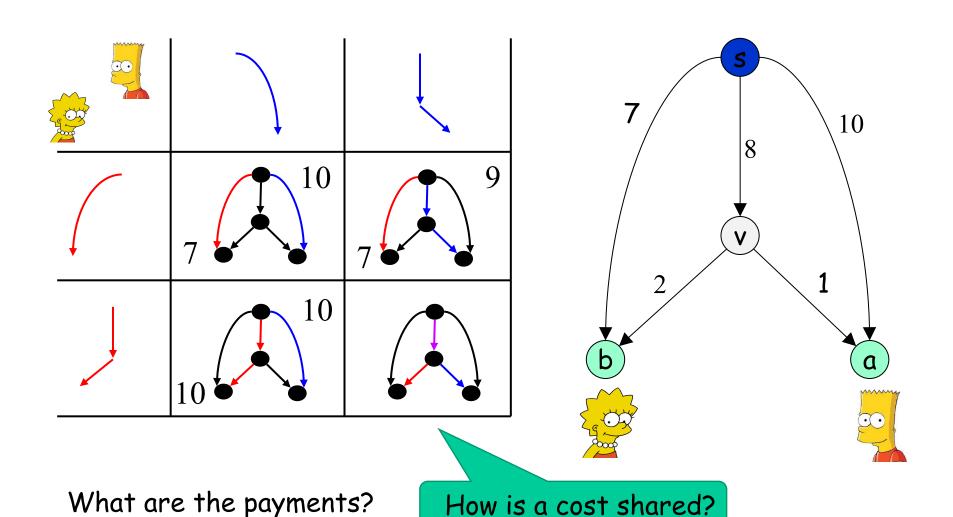
What are the payments?

Four possible profiles in our example:

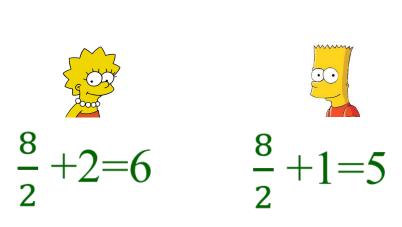


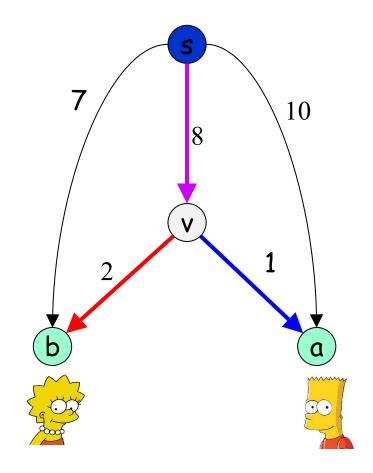
What are the payments?

Four possible profiles in our example:

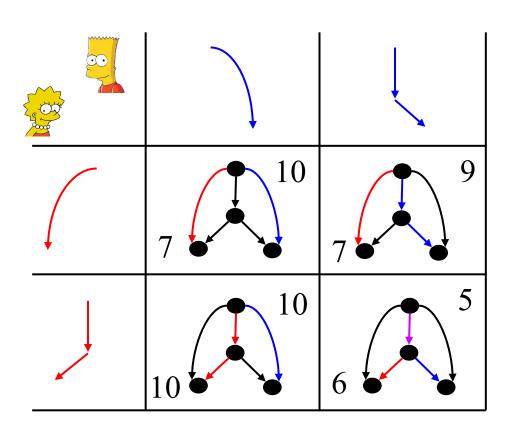


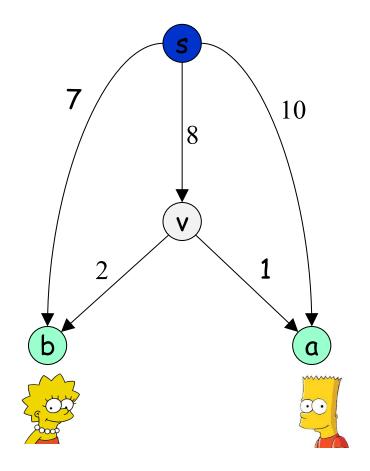
Players that use the same channel share its cost:





Four possible profiles in our example:





Best response dynamics (BRD):

- A local search method: in each step some player is chosen and plays his best-response strategy, given the strategies of the others.
- BRD converges when no player wants to change his strategy.

Best response dynamics.

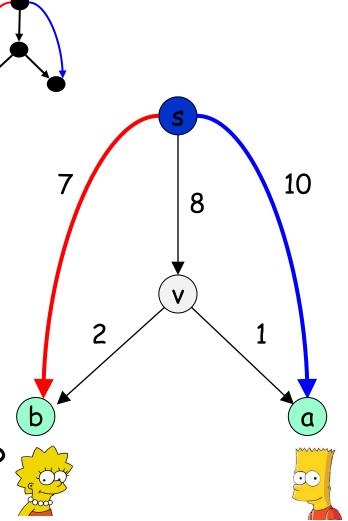
Example: starting from

Cost for 3:10

Cost for :7

No, 7 < 10

, want to change strategy?



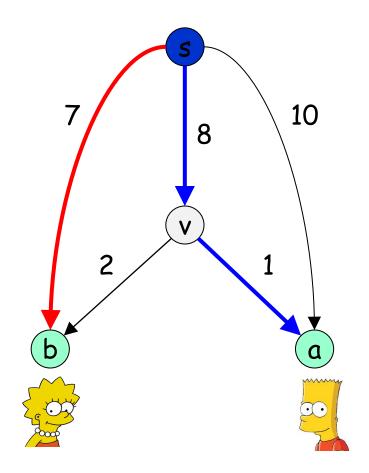
Best response dynamics.

Cost for 3:9

Cost for :7

, want to change strategy?

Yes, 6 < 7



Best response dynamics.

Cost for 3:5

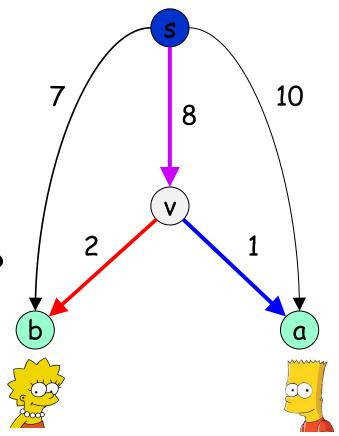
Cost for :6

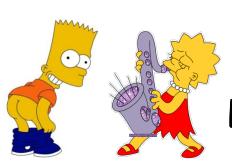
, want to change strategy?

No, 5 < 10

, want to change strategy?

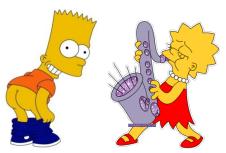
No, 6 < 7





BRD halts, we've reached a stable profile.

Nash Equilibria (NE): a profile of strategies such that no player can benefit from changing to another strategy (assuming the other players stay with their strategies).



BRD halts, we've reached a stable profile.

Interesting questions:

- Does best response dynamics always converge?

Yes! In all network formation games.

Proof: potential functions.

If profile P' is obtained by applying a best-response in profile P, then $\Phi(P') < \Phi(P)$.

Interesting questions:

- Does best response dynamics always converge?

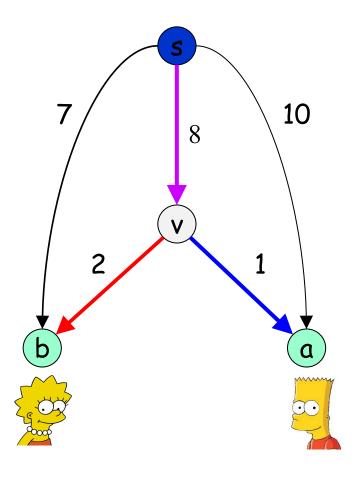
What is "good"?

Social optimum (SO): minimizes the sum of the payments of all players together.

Good: equal (or at least close) to the social optimum.

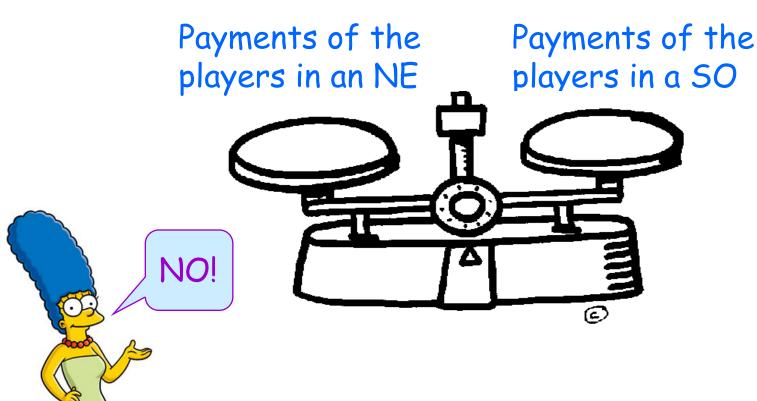
How much do we lose from the absence of a centralized authority?

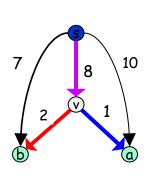
In our example:

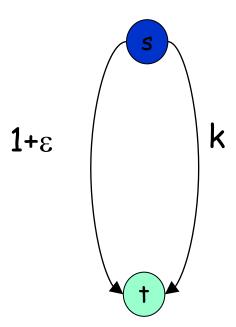


Interesting questions:

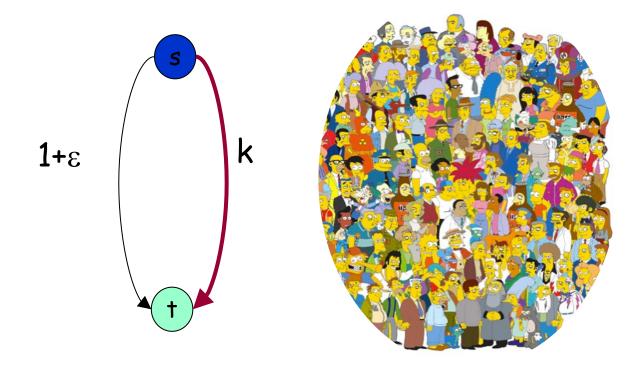
Will we reach a good Nash equilibrium?



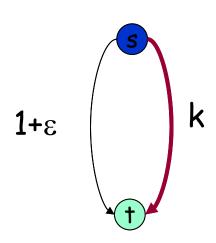




- k players, all want to route from s to t
- All k players start in the channel that costs k.

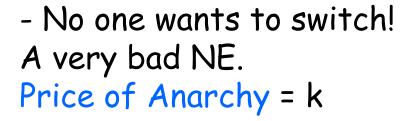


Each player pays $\frac{k}{k}=1$

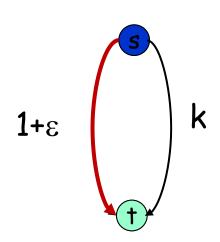


Now I am paying 1.

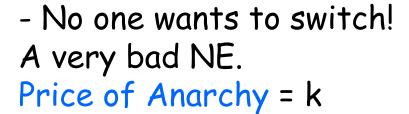
If I switch I would need to pay 1+ε



PoA: worst NE / SO.



Now I am paying 1.
If I switch I would need to pay 1+ε



- But, a good NE does exist.

Does there always exist a good NE?

Does there always exist a good NE?

For every network formation game, there exists a good NE - one whose cost is at most H_k . SO.

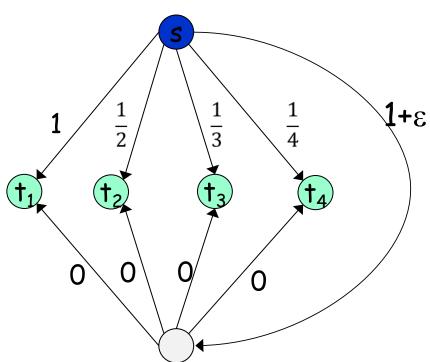
$$H_0 = 0$$
,
 $H_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} \approx \ln k$

Price of stability: best NE / SO.

 H_k is tight...

Does there always exist a good NE?

Four players want to route in the following network:

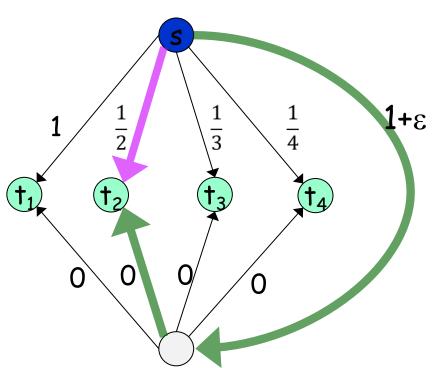


Does there always exist a good NE?

Four players want to route in the following network:

Each player has two possible strategies:

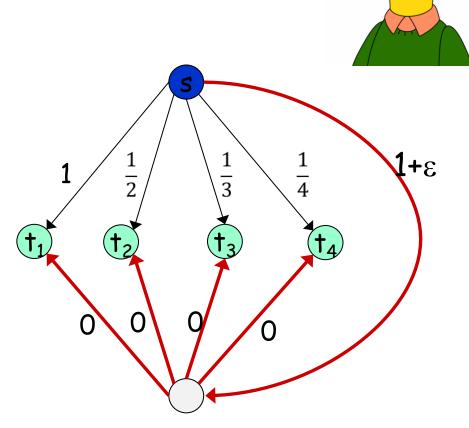
A direct edge or via the vertex at the bottom.



A profile that attains the social optimum:

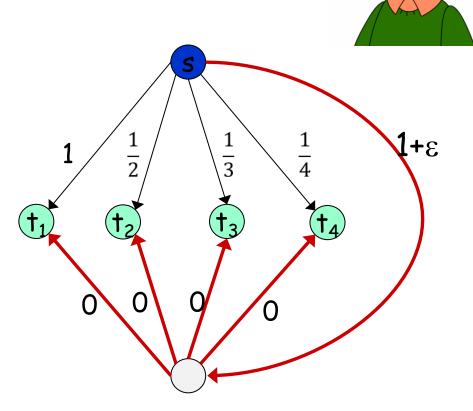
Note: it costs $1+\epsilon$.

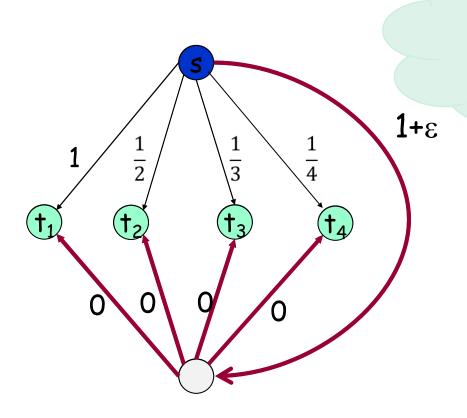
In this profile each player pays $\frac{1}{4}+\epsilon$.



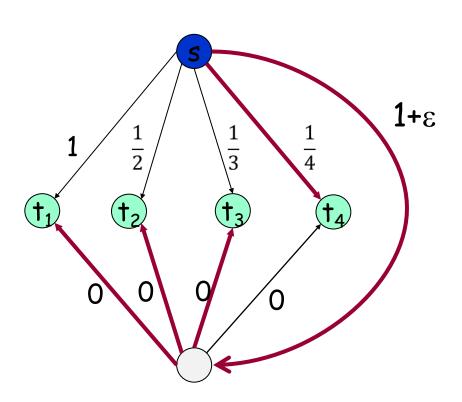
A profile that attains the social optimum:

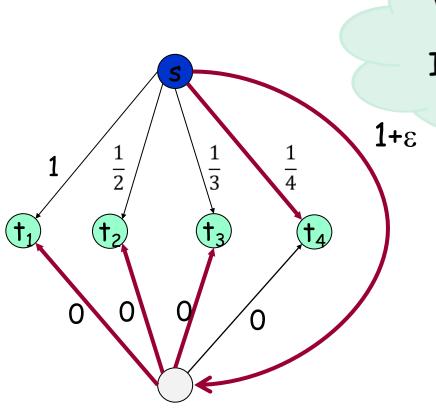
But this is not an NE!



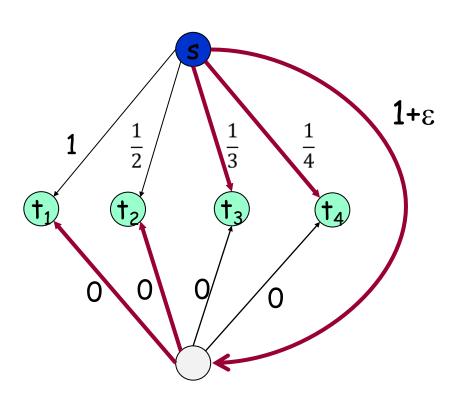


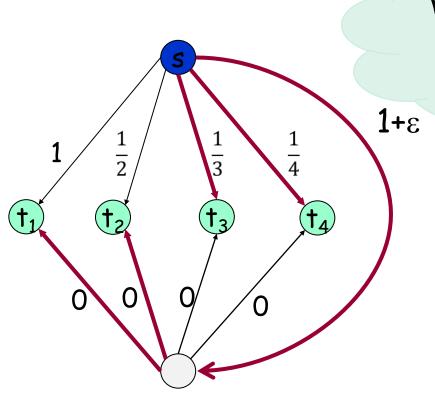
Why do I pay $\frac{1}{4} + \epsilon$ if I can pay exactly $\frac{1}{4}$?



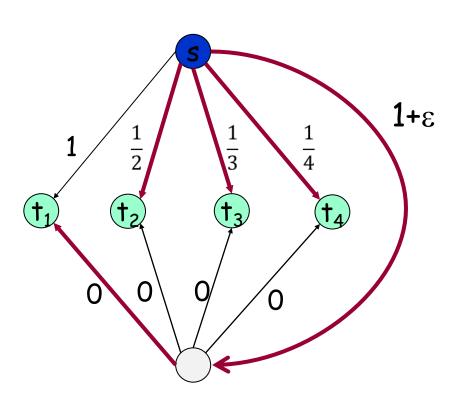


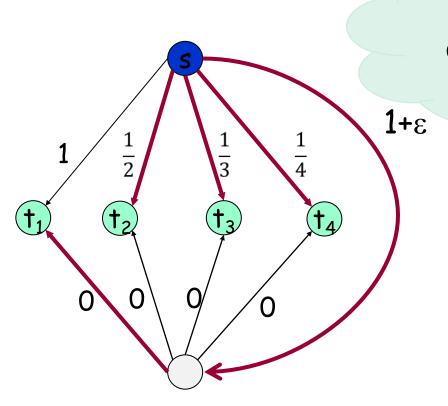
Why do I pay $\frac{1}{3}$ + ϵ if I can pay exactly $\frac{1}{3}$?



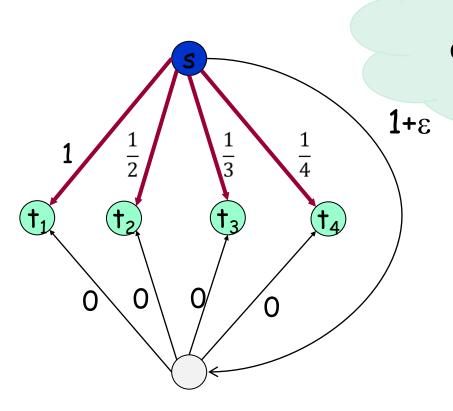


Why do I pay $\frac{1}{2} + \varepsilon$ if I can pay exactly $\frac{1}{2}$?

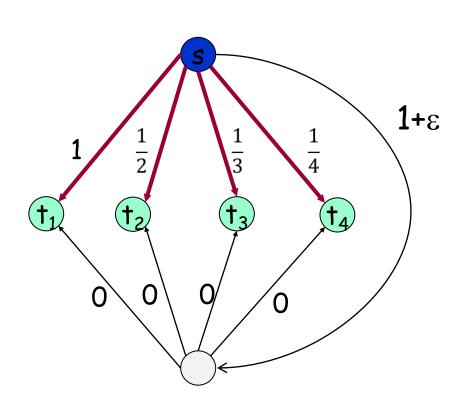




Damn, they left me alone with the $1+\epsilon$...



Damn, they left me alone with the $1+\epsilon$...



The price of the only stable (NE) profile:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

There is no good NE!

So, network formation games:

- Players have reachability objectives.
- Players that share a channel, share its cost.
- Nash Equilibrium (NE): a stable profile in which
 no player has an incentive to change his strategy
 always exists in network formation games.
- Social Optimum (SO): a profile that minimizes the players' payments.
- Price of anarchy: worst NE/SO.
 PoA=k in network formation games.
- Price of stability: best NE /SO. PoS = $H_k \approx log k$ in network formation games.

BTW: [Avni, Kupferman, Tamir, 2013]

- Players may have regular objectives (in a labeled network).
- Strategies: paths that need not be simple.
- Players that share a channel, share its cost proportionally.
- An NE need not exists
- PoS=PoA=k.
- -

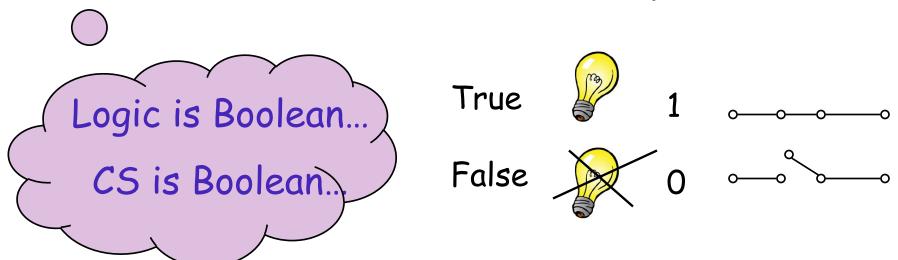
Back to Rational Synthesis

A stable (NE) profile $P=\langle f_0,...,f_k \rangle$:

for every i, if φ_i is not satisfied in P, then φ_i is not satisfied also in P[i \leftarrow f'_i]=<f₀,...f'_i,...,f_k>, for all alternative strategies f'_i for P_i.

The objectives are Boolean!

Notwork formation games: quantitative objectives!



Is satisfaction really Boolean?

ALWAYS(request → EVENTUALLY grant)

Is satisfaction really Boolean?

ALWAYS(request → EVENTUALLY grant)

Behavioral quality: [Almagor, Boker, Kupferman 2014]

The logics LTL[F] and LTL[D]: multi-valued extensions of LTL.

LTL[F]:

The satisfaction value of an LTL[F] formula is in [0,1].

O: "very bad". 1: very good.

F: a set of propositional-quality operators.

A k-ary operator $f:[0,1]^k \rightarrow [0,1]$

Examples: $x \wedge y = \min(x,y)$, $x \vee y = \max(x,y)$, -x = 1-x

Semantics of LTL[F]:

 $[[\pi,\psi]]$: the satisfaction value of ψ in π .

Indeed only finitely many possible values

$$[[\pi, \underset{i \geq 0}{\phi_1} U \phi_2]] = \max_{i \geq 0} \{ \min\{[[\pi^i, \phi_2]], \min_{i \geq j \geq 0} \{ [[\pi^j, \phi_1]] \} \} \}$$

$$\longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \cdots$$

$$\phi_2$$
 0 0 0.3 0 0.6 0 0.8 0

$$\phi_1$$
 0.5 0.5 0.5 0.5 0.7 0.5 0.5

$$[[\pi, \varphi_1 \cup \varphi_2]] = \bigvee \{ \bigwedge \{ [[\pi^i, \varphi_2]], \bigwedge_{i \geq j \geq 0} [[\pi^j, \varphi_1]] \} \}$$

$$[[\pi, \underset{i \geq 0}{\phi_1} U \phi_2]] = \max_{i \geq 0} \{ \min\{[[\pi^i, \phi_2]], \min_{i \geq j \geq 0} \{ [[\pi^j, \phi_1]] \} \} \}$$

$$\phi_2$$
 0 0 0.3 0 0.6 0 0.8 0

$$\phi_1$$
 0.5 0.5 0.5 0.5 0.7 0.5 0.5

$$[[\pi, \varphi_1 \cup \varphi_2]] = \bigvee \{ \bigwedge \{ [[\pi^i, \varphi_2]], \bigwedge_{i \geq j \geq 0} [[\pi^j, \varphi_1]] \} \}$$

Two useful quality operators:

For a parameter λ in [0,1]:

$$[[\pi, \nabla_{\lambda} \varphi]] = \lambda \cdot [[\pi, \varphi]].$$

$$[[\pi, \varphi_1 \oplus_{\lambda} \varphi_2]] = \lambda \cdot [[\pi, \varphi_1]] + (1-\lambda) \cdot [[\pi, \varphi_2]].$$

Prioritize different behaviors

$$\phi_1 \vee \nabla_{3/4} \phi_2$$
:

If φ_1 holds, the satisfaction value is 1.

If only φ_2 holds, the satisfaction value is $\frac{3}{4}$.

If none of them holds, the satisfaction value is 0.

Consider $G(p \rightarrow Xq \vee XXq)$.

LTL[F] variants:

$$G(p \rightarrow Xq \vee \nabla_{\frac{1}{2}} XXq)$$

Two q's: 1

Only the first: 1

Only the second: $\frac{1}{2}$

$$G(p \rightarrow Xq \oplus_{3/4} XXq)$$

Two q's: 1

Only the first: $\frac{3}{4}$

Only the second: $\frac{1}{4}$

Back to Rational Synthesis

```
A stable (NE) profile P=\langle f_0,...,f_k \rangle:
```

for every i, if $[[P,\varphi_i]]=v$, then $[[P',\varphi_i]] \le v$ for all profiles $P'=P[i \leftarrow f'_i]$.

Consider a profile $P=\langle f_0,...,f_k \rangle$.

utility(P) = sum of satisfaction values =

=[[
$$P,\psi$$
]]+[[P,φ_1]]+ ... + [[P,φ_k]].

- SO: max P {utility(P)}.
- Pos: SO/ utility of best NE.
- PoA: SO / utility of worst NE.

Note: in NFG it was dual

What are they in rational synthesis?

Input: objectives ψ and $\varphi_1,...,\varphi_k$.

Cooperative rational synthesis:

Output: a stable profile $\langle f_0,...,f_k \rangle$ that satisfies ψ .

Non-cooperative rational synthesis:

Output: a strategy f_0 such that every stable profile $\langle f_0,...,f_k \rangle$ satisfies ψ .

worst NE!

What are the prices of stability and anarchy in rational synthesis?

Price of Anarchy:

 $P_1,...,P_k$ assign values to $x_1,...,x_k$

$$\varphi_{1},...,\varphi_{k-1}$$
: $\varphi_{i} = \nabla_{\alpha} (x_{i} \wedge \neg x_{k})$

$$\alpha = (1-\varepsilon)/k-1$$

$$\varphi_{k} = \nabla_{\beta}(x_{k} \vee (x_{1} \wedge x_{2} \wedge ... \wedge x_{k-1}))$$

SO: TTT...TF

$$\varphi_{1},...,\varphi_{k-1}$$
: (1- ϵ)/k-1

$$φ_{\mathsf{k}}$$
: ε

utility: 1

Worst NE: FFF ... FT

$$\varphi_1,\ldots,\varphi_{k-1}$$
: 0

$$\varphi_{k}$$
: ε utility: ε

PoA: $SO/worst NE = 1/\epsilon$ -- unbounded!

Price of Anarchy:

 $P_1,...,P_k$ assign values to $x_1,...,x_k$

$$\varphi_1,...,\varphi_{k-1}$$
: $\varphi_i = \nabla_\alpha (x_i \wedge \neg x_k)$

$$\alpha = (1-\varepsilon)/k-1$$

$$\varphi_{k} = \nabla_{\beta}(x_{k} \vee (x_{1} \wedge x_{2} \wedge ... \wedge x_{k-1}))$$

$$\beta$$
= ϵ

SO: TTT...TF

SO is stable --> SO is best NE.

best/worst NE is unbounded.

$$\varphi_1,...,\varphi_{k-1}$$
: $(1-\epsilon)/k-1$

$$\varphi_{\mathsf{k}}$$
: ε

utility: 1

Worst NE: FFF ... FT

Cooperative RS may be unboundedly better than non-cooperative RS!

$$\varphi_1,...,\varphi_{k-1}$$
: 0

$$\varphi_{\mathsf{k}}$$
: ε

utility: ε

PoA: $SO/worst NE = 1/\epsilon$ -- unbounded!

Price of Stability:

 $P_1,...,P_k$ assign values to $x_1,...,x_k$

$$\varphi_{1},...,\varphi_{k-1}: \quad \varphi_{i} = \nabla_{\alpha} \left(x_{1} \wedge x_{2} \wedge ... \wedge x_{k-1} \wedge x_{k} \right) \qquad \alpha = (1-\epsilon)/k-1$$

$$\varphi_{k} = \nabla_{\beta} \left(x_{1} \wedge x_{2} \wedge ... \wedge x_{k-1} \wedge \neg x_{k} \right) \qquad \beta = \epsilon$$

no!

$$\varphi_1,...,\varphi_{k-1}$$
: $(1-\varepsilon)/k-1$ φ_k : 0 utility: $1-\varepsilon$

$$\varphi_1,...,\varphi_{k-1}$$
: 0 φ_k : ε utility: ε

PoS: SO/best NE = $(1-\epsilon)/\epsilon$ -- unbounded!

To Sum Up:

- Synthesis of open systems: winning strategy in a zero-sum game.
- Rationality assumption on the environment. Transition to non-zero-sum game.
- Classical game theory: quantitative utilities. Price of stability, price of anarchy.
- LTL[F]: quantitative specifications.
- Cooperative rational synthesis: PoS, unbounded.
- Non-cooperative rational synthesis: PoA, unbounded.

We did not see:

- Solving rational synthesis: connection with strategy logic.
- Rational verification: does S satisfy ψ in every rational? [Wooldridge, Gutierrez, Harrenstein, Marchioni, Perelli 2016]
- Fixing systems by making them stable.
- Richer settings: incomplete information, probability, other solution concepts.

Thank you