Formal Languages and Automata for
Reward Function Specification
and Efficient Reinforcement Learning

Sheila A. Mcllraith

Department of Computer Science, University of Toronto
Vector Institute for Artificial Intelligence

Schwartz Reisman Institute for Technology and Society

July 29, 2021
Computer Science VECTOR INSTITUT SCHWARTZ
b9 4 UNI\P;ERSITY OF TORONTO -\7\ INSTITUTE | VECTEUR CI FAR E REISWAN
f— TECHNOLOGY

OCIETY))
AND'S Photo credit dreamstime.com

Rodrigo Toro Icarte

Toryn Klassen Richard Valenzano Alberto Camacho

Rodrigo Toro Icarte

Acknowledgements

AN

o2

e S i
Seas S alde N3 y

Andrew Li Pashootan Vaezipoor Maayan Shvo Phillip Christoffersen Xi Yan

Sequential Decision Making

How do we decide how to act?

Sequential Decision Making

How do we decide how to act?

... and what informs this decision making?

Sequential Decision Making

How do we decide how to act?

1 T T

Environment State Agent Actions Effects of Actions Objectives
Behaviour T of the Agent

Partially/Fully observable

Sequential Decision Making

How do we decide how to act?

1 T T

State Agent Actions Objectives
T of the Agent

Partially/Fully observable

T

Perception

Reinforcement Learning (RL)

Action
Environment
Transition Function
Reward Function
Reward
State

Following Sutton and Barto, 2018

Sequential Decision Making

How do we decide how to act?

‘ m: 9 — A ‘
State Agent Actions Objectives
T of the Agent

Partially/Fully observable

T

Perception

Sequential Decision Making

How do we decide how to act?

.S — A
State Agent Actions Objectives
T of the Agent

Partially/Fully observable

T

Perception

How do we advise, instruct, task, ... and impart
knowledge to our Al that learns?

... and how do they use that knowledge to learn?

Reinforcement Learning (RL)

Action
Environment
Transition Function
Reward Function
Reward
State

Following Sutton and Barto, 2018

Q-Learning

Q" (sy,ap) M + a * (ry + v %« max,Q(sir1,a)—Q(st,at))

Q-Learning

Q" (s¢,a¢) +— Q(st,ay) —I—H* (re + v * max,Q(si11,a)—Q(s¢,a))

Q-Learning

Q" (s,a¢) +— Q(s,a¢) + a % —|— v * mar,Q(sia1,a)—Q(st, ar)

Reinforcement Learning (RL)

Action

Environment

Transition Function
Reward Function

Reward R(S) N R
e R(s,a,s’) = R

Following Sutton and Barto, 2018

Challenges to RL

* Reward Specification: It’s hard to define reward functions for complex tasks.

* Sample Efficiency: RL agents might require billions of interactions with the
environment to learn good policies.

Goals and Preferences

e Run the dishwasher when it’s full or when dishes are needed for the next meal.

* Make sure the bath temperature is between 38 — 43 celcius immediately before letting

someone enter the bathtub.

* Do not vacuum while someone in the house is sleeping.

How do we communicate this to our RL agent?

Linear Temporal Logic (LTL)

A compelling logic to express temporal properties of traces.

Syntax
Logic connectives: A, V, —
LTL basic operators: Dy [0 e
= next: O m eventually: $o " true U %,
m weak next: @y m always: [y = O
m until: ¥ Ux m release: Ry = = (= U —x)
Properties

* Interpreted over finite or infintite traces.
e (Can be transformed into automata.

Linear Temporal Logic (LTL)

A compelling logic to express temporal properties of traces.

Syntax

Logic connectives: A, V, —

LTL basic operators: Dy [0 e

m next: Oy m eventually: $o " trueU %,

m weak next: @y m always: [y e O

m until: YUy m release: YRy el = (=1 U —y)
Properties

* Interpreted over finite or infintite traces.
e (Can be transformed into automata.

Remember
this!

Goals and Preferences

* Do not vacuum while someone is sleeping

always[— (vacuum A sleeping)]

How do we communicate this to our RL agent?

Remember Chomsky Hierarchy?

Type 0 — Unrestricted languages Turing machines

Type 1 — Context-Sensitive languages linear-bounded automaton

Type 2 - Context-Free languages push-down automaton

Type 3 — Regular languages finite-state automaton Noam Chomsky

Automata

REWARD MACHINES

The Rest of the Talk

» Reward Machines (RM)

= Exploiting RM Structure in Learning
= Experiments

= Creating Reward Machines

= Recap

Running Example

Symbol Meaning
A Agent
": Furniture
» Coffee Machine
= Mail Room
0 Office
A B, C,D Marked Locations

Task: Visit A, B, C, and D, in order.

51

Reward Function

count = @ # global variable
def get_reward(s):
1f count == @ and state.at(“A”):
count = 1
i1f count == 1 and state.at(“B”):
count = 2
i1f count == 2 and state.at(“C”):
count = 3
i1f count == 3 and state.at(“D”):
count = 0
return 1
return 0

Task: Visit A, B, C, and D, in order.

53

Define a Reward Function using a Reward Machine

count = @ # global variable
def get_reward(s):
1f count == @ and state.at(“A”):
count = 1
1f count == 1 and state.at(“B”):
count = 2 »
1f count == 2 and state.at(“C”):
count = 3
1f count == 3 and state.at(“D”):
count = 0
return 1
return 0

(—C, 0)

Encode reward function in an automata-like structure

using a vocabulary P = {®,X, 0,+,4,B,C,D}

Reward Function Vocabulary

Vocabulary can comprise human-interpretable events/properties realized
via detectors over the environment state, or it can (conceivably) be learned.

Reward Machine

Reward Machine

Reward Machine

Reward Machine

e finite set of states U

Reward Machine

Reward Machine

e finite set of states U

* initial stateug € U

Reward Machine

Reward Machine

* finite set of states U
* initial stateug € U

* set of transitions labelled by:

Reward Machine

Reward Machine

* finite set of states U
* initial stateug € U

* set of transitions labelled by:
= A |logical condition (guards)
= A reward function (or constant)

Conditions are over properties of the current state:

P ={w, X, o0,%4,B,C,D)}

Reward Machine

Reward Machine

* finite set of states U
* initial stateug € U

* set of transitions labelled by:
= A |logical condition (guards)
= A reward function (or constant)

Conditions are over properties of the current state:

P={w X,o0,+A4B,C, D)

A Reward Machine is a Mealy Machine over the input alphabet X = 27, whose
output alphabet is a set of Markovian reward functions.

Reward Machine

Definition 3.1 (reward machine). Given a set of propositional symbols P, a set of (en-
vironment) states S, and a set of actions A, a reward machine (RM) is a tuple Rpss =

(U,ug, F, dy,0,) where U 1s a finite set of states, ug € U 1s an initial state, F' is a finite set of
terminal states (where UNF = (), 6, is the state-transition function, 6, : U x 2P = UUF,
and 0, s the state-reward function, 6, : U = [S x A x S — R].

[Toro Icarte et al., ICML18]
[Camacho et al., JCAI19]

[Toro Icarte et al., forthcoming]

Simple Reward Machine

Definition 3.2 (simple reward machine). Given a set of propositional symbols P, a simple
reward machine is a tuple R = (U, ug, F, éy,06,) where U, up, F, and 6, are defined as in
a standard reward machine, but the state-reward function 6, : U x 2P — R depends on 2P
and returns a number instead of a function.

[Toro Icarte et al., ICML18]
[Camacho et al., IJCAI19]
[Toro Icarte et al., forthcoming]

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Reward Machines in Action

Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

Other Reward Machines

Task: Deliver coffee and mail to the office.

Other Reward Machines

Task: Deliver coffee and mail to the office.

Other Reward Machines

Task: Deliver coffee and mail to the office.

The Rest of the Talk

* Reward Machines (RM)

» Exploiting RM Structure in Learning
* Experiments

* Creating Reward Machines

* Recap

EXPLOITING RM STRUCTURE IN LEARNING

A simple idea ...

Someone has to program the reward function

count = @ # global variable
def get_reward(s):
1f count == @ and state.at(“A”):
count = 1
1f count == 1 and state.at(“B”):
count = 2
1f count == 2 and state.at(“C”):
count = 3
1f count == 3 and state.at(“D”):
count = 0
return 1
return @

Task: Visit A, B, C, and D, in order.

... even when the environment is the real world!

But the Reward Function is a Black Box

Reward Function

(as part of environment)

Task: Visit A, B, C, and D, in order.

But the Reward Function is a Black Box

Reward Function

(as part of environment)

Task: Visit A, B, C, and D, in order.

But the Reward Function is a Black Box

Reward Function

(as part of environment)

Task: Visit A, B, C, and D, in order.

But the Reward Function is a Black Box

Reward Function

(as part of environment)

Task: Visit A, B, C, and D, in order.

Remember
this!

Simple Idea:

- Give the agent access to the reward function
- Exploit reward function structure in learning

Running Example

count = @ # global variable

def get_reward(s):
1f count == @ and state.at(“A”):
count = 1
1f count == 1 and state.at(“B”):
count = 2
1f count == 2 and state.at(“C”):
count = 3
1f count == 3
count = 0
return 1
return @

and state.at(“D”):

The agent can exploit structure in the reward function.

Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)

1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

(—A, 0)

1 (D, 1) @ (A, 0)
(=B, 0)
(45 o>

(=D, 0) 50
(C,O) @ (’)
State
(ﬁC,ON

A Reward Machine may define a non-Markovian reward function.

1. Q-Learning Baseline

Solution: Include RM state as part of agent’s state representation.

Use standard Q-learning on resulting MDP.

2. Option-Based Hierarchical RL (HRL)

Learn one option policy for each proposition mentioned in the RM

(-4, 0) e RMrefersto A, B, C,and D

* Learn policies Ty, g, ¢, and mp

(—~B,0) * Optimize m;, to satisfy i optimally

2. Option-Based Hierarchical RL (HRL)

Simultaneously learn when to use each option policy

3. HRL with RM-Based Pruning (HRL-RM)

Prune irrelevant options using current RM state

3. HRL with RM-Based Pruning (HRL-RM)

Prune irrelevant options using current RM state

Meta-Controller

AN\

Tn P& ¥ X2

HRL Methods Can Find Suboptimal Policies

HRL approaches find “locally” optimal solutions.

HRL Methods Can Find Suboptimal Policies

(ﬁﬁ/\,O)

Optimal solution (y < 1)
= 13 total steps

HRL approaches find “locally” optimal solutions.

HRL Methods Can Find Suboptimal Policies

(=@ A,0)

Learns two options:
1. Getting P
2. Getting to “0”

HRL approaches find “locally” optimal solutions.

Recall: Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options|(HRL)
3. HRL with RM-based pruning|(HRL-RM)

Our approaches:
m) 4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)

Recall: Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
m) 4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)

4. Q-Learning for Reward Machines (QRM)

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)

1. Learn one policy (g-value function) per state in
the Reward Machine.

2. Select actions using the policy of the current
RM state.

3. Reuse experience to update all g-value (=D, 0)
functions on every transition via off-policy

reinforcement learning.
Remember
this!

This is a form of Counterfactual Reasoning

Recall: Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:

4. Q-learning for Reward Machines (QRM)
m) 5. QRM + Reward Shaping for Reward Machine (QRM+RS)

5. QRM + Reward Shaping (QRM + RS)

QRM + RS (our approach)

1. Treat the RM itself as an MDP and perform value iteration over the RM.
2. Apply QRM to the shaped RM

(0 A=k, 1+1)
> 0.0

(,011)
(true, 0+0)
(true, 0+0)

Optimality of QRM and QRM+RS

Theorem: QRM and QRM+RS converge to the optimal policy in the limit.

The Rest of the Talk

* Reward Machines (RM)

* Exploiting RM Structure in Learning
» Experiments

* Creating Reward Machines

* Concluding Remarks

EXPERIMENTS

Test Domains

* Two domains with a discrete action and state-space
= Office domain (4 tasks)
" Craft domain (10 tasks)

* One domain with a continuous state-space
= \Water World domain (10 tasks)

Test in Dis

crete Domains

Tested all five approaches

1. Q-learning over an equivalent MDP (Q-learning)

2. Hierarchical RL based on options (HRL)

3. HRL with RM-based pruning (HRL-RM)

4. Q-learning for Reward Machines (QRM)

5. QRM + Reward Shaping (QRM + RS)
Method Optimality? Decomposition?
Q-Learning \/
HRL v
HRL-RM v
QRM v v
QRM + RS v v

Office World Experiments

Office World

[T T]]_
o)
g
o 10.8
3 Legend:
E* 106 — Q-Learning
3 HRL
2 —— HRL-RM
ey 10.4 — QRM
(O]
N
el 10.2
o)
=

| | | | 0
0 10,000 20,000 30,000 40,000 50,000
Number of training steps

4 tasks, 30 independent trials per task

Office World Experiments

Office World

[T
J Legend:
— Q-Learning
HRL
—— HRL-RM

— QRM

Normalized discounted reward

. | | _ 0
0 10,000 20,000 30,000 40,000 50,000
Number of training steps

4 tasks, 30 independent trials per task

Minecraft World Experiments

Minecraft World

B =11
O
g
o 10.8
9 Legend:
§ - 106 — Q-Learning
3 HRL
-_g — HRL-RM
<[10.4 — QRM
(0]
N
£l 102
S
=

0 2.10° 4-10° 6-10° 8-10° 1-10°
Number of training steps

10 tasks over 10 random maps, 3 independent trials per combination

Tasks from Andreas et al. (ICML 2017)

Minecraft World Experiments

Minecraft World

B 1
O
g \
o ‘ : y 08
? —— Legend:
§ - 106 — Q-Learning
3 HRL
-_g — HRL-RM
<[10.4 — QRM
(0]
N
£ 10.2
S
=

| | | | O
0 2.10° 4-10° 6-10° 8-10° 1-10°
Number of training steps

10 tasks over 10 random maps, 3 independent trials per combination

Tasks from Andreas et al. (ICML 2017)

Function Approximation with QRM
From tabular QRM to Deep QRM

* Replace Q-learning by Double DQN (DDQN) with prioritized
experience replays

Method Optimality? Decomposition?

Q-Learning
HRL
HRL-RM
QRM

QRM + RS

AN N

Water World Experiments

Water World
[T T T]]_
O Q\‘ "@ é ?.;j 10.8
o O 0 I e
3 DHRL
2 —— DHRL-RM
Q % - 10.4 — DQRM
N
el 102
© QQ

L \ \ | _ O
0 5-10° 1-10° 1.5-10% 2-10°
Number of training steps

10 tasks over 10 random maps, 3 independent trials per combination

Water World Experiments

Water World
~ T T T =1
F E
O 9, :
(6 3| 10.8
gel Legend:
L) O CX £l LA UNMCWETY | —bpan
§ DHRL
@ —— DHRL-RM
Q = iRl 104 | — DQRM
i M
Q S e 0.2
“©) 5| 4
. MWW
Q = A an 40
0 5.10° 1-105 15-106 2.10°

Number of training steps

10 tasks over 10 random maps, 3 independent trials per combination

The Rest of the Talk

* Reward Machines (RM)

* Exploiting RM Structure in Learning
 Experiments

» Creating Reward Machines

* Recap

CREATING REWARD MACHINES

Creating Reward Machines

Where do Reward Machines come from?
1. Specify
2. Generate

3. Learn

1. Construct Reward Machine from Formal Languages

Reward Machines serves as a lingua franca and provide a normal form representation
for the reward function that supports reward-function-tailored learning.

Regular Expressions

LTL dialects, LTL;, PLTL, ...
Golog

LDL dialects,LDL;

QRM

Reward shaping

LTL-RE

Future RM-based

algorithms

[Camacho, Toro Icarte, Klassen, Valenzano, M., 1JCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]

1. Construct Reward Machine from Formal Languages

Reward Machines serves as a lingua franca and provide a normal form representation

for the reward function that supports reward-function-tailored learning.
this!

Regular Expressions QRM

LTL dialects, LTL,, PLTL, ...
Golog

LDL dialects,LDL;

Reward shaping

LTL-RE

Future RM-based

algorithms

[Camacho, Toro Icarte, Klassen, Valenzano, M., 1JCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]

2. Generate RM using a Symbolic Planner

\/high—level model to describe abstract actions (options)

\/symbolic planning to generate RMs corresponding to o
high- level partial-order plans e < k @
h-m
v use these abstract solutions to guide an RL agent % h-c y\ 43 ’
h-m

uy: @ us: {get-mail, deliver-mail}

uy: {get-coffee} ug: {get-coffee, get-mail, deliver-coffee}
uy: {get-mail} u7: {get-mail, get-coffee, deliver-mail }
uz: {get-coffee, get-mail} ug: {get-coffee, get-mail, deliver-coffee,
uy: {get-coffee, deliver-coffee} deliver-mail }

[lllanes, Yan, Toro Icarte, M., RLDM19, ICAPS20, KR2ZML@ NeurlPS20]

3. Learn RMs for Partially-Observable RL

A ? A ?

Problem: Find a policy that maximizes the external reward given by a partially observable environment

Assumptions: Agent has a set of high-level binary classifiers/event detectors (e.g., button-pushed, cookies, etc.)

Key Insight: Learn an RM such that its internal state can be effectively used as external memory by the agent to
solve the task.

Approach: Discrete Optimization via Tabu Search

3. Learn RMs for Partially-Observable RL These “toy

problems” cannot be
solved by A3C, PPO,
and ACER with

LSTMs
®
A ? A ?

Problem: Find a policy that maximizes the external reward given by a partially observable environment

Assumptions: Agent has a set of high-level binary classifiers/event detectors (e.g., button-pushed, cookies, etc.)

Key Insight: Learn an RM such that its internal state can be effectively used as external memory by the agent to
solve the task.

Approach: Discrete Optimization via Tabu Search

3. Learn Reward Machines (LRM)

(o/w,0) (

: O>, <O/W, 0> <
@

More human interpretable concept of what the agent is trying to do

[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, NeurlPS 2019]

3. Learn Reward Machines (LRM)

e 2()()
- 150 — 1RM + DQRM
D)
v .- DDQN — A3C = Optimal
? — ACER == PPO
0
0 1-10° 2. 10° 3-10°

Training steps
Good Results!

[Toro Icarte, Waldie, Klassen, Valenzano, Castro, M, NeurlPS 2019]

RECAP

How do we advise, instruct, task, ... and impart
knowledge to Al that learns?

Big Idea: Reward Machines

count = @ # global variable

def get_reward(s):
1f count == @ and state.at(“A”):

count = 1
1f count == 1 and state.at(“B”):

count = 2 »
1f count == 2 and state.at(“C”):

count = 3
1f count == 3 and state.at(“D”):

count = 0

return 1

return 0

Key Insight: Reveal Reward Function to the Agent

Reward Function

(as part of environment)

Key Insight: Reveal Reward Function to the Agent

count = @ # global variable

def get_reward(s):
1f count == @ and state.at(“A”):
count = 1
1f count == 1 and state.at(“B”):
count = 2
1f count == 2 and state.at(“C”):
count = 3
1f count == 3
count = 0
return 1
return @

and state.at(“D”):

Great Results in Discrete Domains

Office World Minecraft World

~] ' 1 B T T 1] 1
O e
@ @
5| los 3| 0.8
3 - Legend:
=18] =18 i — Q-Learning
S 06 5 0.6 HRL
2 2 —— HRL-RM
ol ‘ 04 | 104 | — QRM
(D) (O]
= } N
£l r 10.2 e 10.2
S s
=2 =2

‘ ‘ ‘ -0 ‘ ‘ ‘ ‘ 0
0 10,000 20,000 30,000 40,000 50,000 0 2.10° 4-10° 6-10° 8-10° 1-10°
Number of training steps Number of training steps

QRM outperforms HRL and standard Q-learning in two domains

...and in Continuous Domains

Water World

=1

10.8

(_@ & Cé Legend:
L |06 | — DDON
DHRL
— DHRL-RM
1 0.4 — DQRM

0.2

Normalized discounted reward

Q 0 e AN
0 5.10° 1-10° 1.5-10° 2-10°
Number of training steps

... and is also effective when combined with deep learning

We can construct RMs from a diversity of formal languages ...

Regular Expressions

LTL dialects, LTL;, PLTL, ...
Golog

LDL dialects,LDL;

QRM

Reward shaping

LTL-RE

Future RM-based
algorithms

We can generate them using a Symbolic Planner

Q\ (1) (1),

O

uy: & us: {get-mail, deliver-mail }

uy: {get-coffee} ug: {get-coffee, get-mail, deliver-coffee}
up: {get-mail} u7: {get-mail, get-coffee, deliver-mail }
uz: {get-coffee, get-mail} ug: {get-coffee, get-mail, deliver-coffee,

uy: {get-coffee, deliver-coffee} deliver-mail}

...and they can be learned in partially observable environments to
solve hard problems

Play with the code, read the papers, ...

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, Mcllraith

ICML 2018

Code: https://bitbucket.org/RTorolcarte/qrm

Teaching Multiple Tasks to an RL Agent using LTL

Toro Icarte, Klassen, Valenzano, Mcllraith

AAMAS 2018 & NeurlPS 2018 Workshop (Learning by Instructions)
Code: https://bitbucket.org/RTorolcarte/Ipopl

LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning
Camacho, Toro Icarte, Klassen, Valenzano, Mcllraith
IJCAI 2019

Learning Reward Machines for Partially Observable Reinforcement Learning

Toro Icarte, Waldie, Klassen, Valenzano, Castro, Mcllraith
NeurlPS 2019

Symbolic Plans as High-Level Instructions for Reinforcement Learning
lllanes, Yan, Toro Icarte, Mcllraith
ICAPS 2020/RLDM 2019

https://bitbucket.org/RToroIcarte/qrm
https://bitbucket.org/RToroIcarte/lpopl

Latest Work

Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, Mcllraith

Forthcoming
An update of our original ICML 2018 Reward Machines paper. With QRM replaced by CRM.
Code and paper available at http://www.cs.toronto.edu/~rntoro

LTL2Action: Generalizing LTL Instructions for Multi-Task RL
Vaezipoor, Li, Toro Icarte, Mcllraith

ICML 2021.
RL agent learns the language of LTL and how to follow and generalize instructions for multi-task RL.

Other related work

Advice-Based Exploration in Model-Based Reinforcement Learning.
Toro Icarte, Klassen, Valenzano, Mcllraith
Canadian Al 2018.

Linear temporal logic (LTL) formulas and a heuristic were used to guide exploration during reinforcement learning.

Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)
Camacho, Chen, Sanner, Mcllraith

Extended Abstract: SoCS 2017, RLDM 2017

Full Paper: First Workshop on Goal Specifications for Reinforcement Learning, collocated with
ICML/IJCAI/AAMAS, 2018.

Linear temporal logic (LTL) formulas are used to express non-Markovian reward in fully specified MDPs. LTL is translated to automata
and reward shaping is used over the automata to help solve the MDP.

Learning Interpretable Models in Linear Temporal Logic
Camacho, Mcllraith
ICAPS, 2019

FL-AT: A Formal Language-Automaton Transmogrifier.
Middleton, Klassen, Baier, Mcllraith
ICAPS 2020 Systems Demo

Past work on Planning with Formal Languages & Automata

Non-Deterministic Planning with Temporally Extended Goals: LTL over Finite and Infinite Traces
Camacho, Triantafillou, Muise, Baier and Mcllraith

AAAI 2017

Planning with First-Order Temporally Extended Goals Using Heuristic Search

Baier and Mcllraith AAAI 2006

Planning with Temporally Extended Goals Using Heuristic Search
Baier and Mcllraith, ICAPS 2006

Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners
Baier Fritz and Mcllraith, ICAPS 2007

Beyond Classical Planning: Procedural Control Knowledge and Preferences in State-of-the-Art Planners
Baier Fritz Bienvenu and Mcllraith, AAAI 2008

A Heuristic Search Approach to Planning with Temporally Extended Preference
Baier, Bacchus and Mcllraith Artificial Intelligence Journal, 2009

Specifying and Computing Preferred Plans
Fritz, Bienvenu and Mcllraith, Artificial Intelligence Journal, 2011 (See also KR2006 paper)

Past work on Planning with Formal Languages & Automata

For work on LTL FOND Planning, LTL Synthesis & their relationship
see work by Alberto Camacho

http://www.cs.toronto.edu/~acamacho/publications

Alberto Camacho

Toryn Klassen Richard Valenzano Alberto Camacho

Rodrigo Toro Icarte

Acknowledgements

AN

o2

e S i
Seas S alde N3 y

Andrew Li Pashootan Vaezipoor Maayan Shvo Phillip Christoffersen Xi Yan

