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How do we decide how to act?

Sequential Decision Making
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… and what informs this decision making?

Sequential Decision Making
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How do we advise, instruct, task, … and impart 
knowledge to our AI that learns?



… and how do they use that knowledge to learn?



Reinforcement Learning (RL)

Agent
Environment

Transition Function
Reward Function
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State

Following Sutton and Barto, 2018



Q-Learning

Image credit

Q

new(st, at)  Q(st, at) + ↵ ⇤ (rt + � ⇤ maxaQ(st+1, a)�Q(st, at))
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Reinforcement Learning (RL)

R(s, a, s0) ! R

Agent
Environment

Transi/on Func/on
Reward Func/on

Action

Reward

State
R(s) ! R

Following Su9on and Barto, 2018



Challenges to RL

• Reward Specification: It’s hard to define reward functions for complex tasks.

• Sample Efficiency: RL agents might require billions of interactions with the 
environment to learn good policies.
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Goals and Preferences

• Run the dishwasher when it’s full or when dishes are needed for the next meal.

•Make sure the bath temperature is between 38 – 43 celcius immediately before letting 

someone enter the bathtub.

• Do not vacuum while someone in the house is sleeping.



How do we communicate this to our RL agent?



Linear Temporal Logic (LTL) 
A compelling logic to express temporal proper1es of traces.

Syntax

Proper6es
• Interpreted over finite or infin6te traces.
• Can be transformed into automata.

LTL in a Nutshell

Syntax

Logic connectives: ^,_,¬
LTL basic operators:

next: ⌦'
weak next: ✏'
until:  U�

Other LTL operators:

eventually:  ' def
= trueU'

always: �' def
= ¬ ¬'

release:  R�
def
= ¬(¬ U¬�)

Example: Eventually hold the key, and then have the door open.

 (hold(key) ^⌦ open(door))

Finite and Infinite interpretations

The truth of an LTL formula is interpreted over state traces:

LTL, infinite traces

LTLf , finite traces 1

1cf. Bacchus et al. (1996), De Giacomo et al (2013, 2015)
Camacho et al.: Bridging the Gap Between LTL Synthesis and Automated Planning 5 / 24
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Remember 
this!



Goals and Preferences
• Do not vacuum while someone is sleeping

always[¬ (vacuum ∧ sleeping)]



How do we communicate this to our RL agent?



Remember Chomsky Hierarchy?

finite-state automaton

push-down automaton

linear-bounded automaton

Turing machines

Noam Chomsky



Automata



REWARD MACHINES



The Rest of the Talk

▶ Reward Machines (RM)

§ Exploiting RM Structure in Learning

§ Experiments

§ Creating Reward Machines

§ Recap



Running Example

51

B * * C

* o *

A * * D

Agent
Furniture

Coffee Machine
Mail Room

Office
Marked Locations

*

o
A, B, C, D

Symbol Meaning

Task: Visit A, B, C, and D, in order.



Reward Func,on

53

B * * C

* o *

A * * D

Task: Visit A, B, C, and D, in order.

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0



Encode reward function in an automata-like structure
using a vocabulary   

Define a Reward Func.on using a Reward Machine

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

!"

!#

!$

!%

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

. = { ,      , 1,∗, 3, 4, 5, 6}



Vocabulary can comprise human-interpretable events/properties realized 
via detectors over the environment state, or it can (conceivably) be learned.  

Reward Func8on Vocabulary
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!#

!$

!%

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

Reward Machine
Reward Machine



Reward Machine
Reward Machine
• finite set of states !

"#

"$

"%

"&

¬A, 0

¬B, 0

¬C, 0
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B, 0C, 0

D, 1



Reward Machine
Reward Machine
• finite set of states !
• initial state "# ∈ !

"%

"#

"&

"'

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
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!#

!$

!%

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

Reward Machine
Reward Machine
• finite set of states .
• ini2al state !# ∈ .
• set of transi2ons labelled by:



!"

!#

!$

!%

¬A, )

¬*, )

¬+, )

¬,, )

-, )

*, )+, )

,, .

Reward Machine
• finite set of states /
• ini2al state !# ∈ /
• set of transi2ons labelled by:

§ A logical condi2on (guards)
§ A reward func2on (or constant)

Conditions are over properties of the current state:
1 = { ,      , 4,∗, 6, 7, 8, 9}

Reward Machine



!"

!#

!$

!%

¬A, )

¬B, )

¬C, )

¬D, )

A, )

B, )C, )

D, -

Reward Machine
• finite set of states .
• ini2al state !# ∈ .
• set of transi2ons labelled by:

§ A logical condi2on (guards)
§ A reward func2on (or constant)

Conditions are over properties of the current state:
0 = { ,      , 3,∗, 5, 6, 7, 8}

Reward Machine

A Reward Machine is a Mealy Machine over the input alphabet Σ = 20 , whose              
output alphabet is a set of Markovian reward functions.



Reward Machine

[Toro Icarte et al., ICML18]
[Camacho et al., IJCAI19]
[Toro Icarte et al., forthcoming]



Simple Reward Machine

[Toro Icarte et al., ICML18]
[Camacho et al., IJCAI19]
[Toro Icarte et al., forthcoming]
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State
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Reward Machines in Action



Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

¬ ∧ ¬ ∗ , 0

true, 0

∗, 0

*+ *,

¬o ∧ ¬ ∗, 0

*.

true, 0

o ∧ ¬ ∗, 1∧ ¬ ∗ , 0

*0

∗, 0
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Other Reward Machines

Task: Deliver coffee and mail to the office.
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¬o, 0

true, 0
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, 0

+,

+-
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+/¬ , 0
, 0

, 0

, 0
¬ , 0

+,
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Other Reward Machines

Task: Deliver coffee and mail to the office.
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The Rest of the Talk

• Reward Machines (RM)

▶ Exploiting RM Structure in Learning

• Experiments

• Creating Reward Machines

• Recap



EXPLOITING RM STRUCTURE IN LEARNING



A simple idea …



Someone has to program the reward func3on

B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

… even when the environment is the real world!

Task: Visit A, B, C, and D, in order.



But the Reward Function is a Black Box

B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(state):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Reward Func2on
(as part of environment)

Task: Visit A, B, C, and D, in order.



B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(state):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Task: Visit A, B, C, and D, in order.

Reward Function
(as part of environment)

But the Reward Func3on is a Black Box



B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(state):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Reward Func2on
(as part of environment)state

But the Reward Function is a Black Box

Task: Visit A, B, C, and D, in order.



B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(state):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Reward Func2on
(as part of environment)state

0

But the Reward Func/on is a Black Box

Task: Visit A, B, C, and D, in order.



Simple Idea:  
- Give the agent access to the reward function 
- Exploit reward function structure in learning

Remember 
this!



B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

The agent can exploit structure in the reward func:on.

Running Example



Methods for Exploi0ng RM Structure

Baselines based on exis0ng methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on opAons (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)



1. Q-Learning Baseline

A Reward Machine may define a non-Markovian reward func7on.
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1. Q-Learning Baseline
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B * * C
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Solution: Include RM state as part of agent’s state representation.
Use standard Q-learning on resulting MDP.



2. Option-Based Hierarchical RL (HRL)

Learn one option policy for each proposition mentioned in the RM
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• RM refers to A, B, C, and D
• Learn policies ./, .0, .1, and .2
• Optimize .9, to satisfy : optimally



2. Option-Based Hierarchical RL (HRL)

Simultaneously learn when to use each option policy
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Meta-Controller

./ .0 .1 .2



3. HRL with RM-Based Pruning (HRL-RM)
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Meta-Controller

./ .0 .1 .2

Prune irrelevant options using current RM state



3. HRL with RM-Based Pruning (HRL-RM)
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Prune irrelevant options using current RM state



HRL Methods Can Find Suboptimal Policies

B * * C
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HRL approaches find “locally” optimal solutions.



HRL Methods Can Find Suboptimal Policies

B * * C

* o *

A * * D
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true, 0
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%,
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%-

Optimal solution (. < 1)
§ 13 total steps

10 Steps

3 Steps

HRL approaches find “locally” optimal solutions.



HRL Methods Can Find Suboptimal Policies

B * * C

* o *

A * * D

¬ ∧ , 0

%&

¬o, 0

true, 0

∧ , 0

%,
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%-

Learns two options:
1. Getting 
2. Getting to “o”

18 Steps

HRL approaches find “locally” optimal solutions.

7 Steps



Recall:  Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)



Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)

Recall:  Methods for Exploiting RM Structure



4. Q-Learning for Reward Machines (QRM)
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4. Q-Learning for Reward Machines (QRM)

QRM (our approach) 
1. Learn one policy (q-value function) per state in 

the Reward Machine.
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2. Select actions using the policy of the current 
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4. Q-Learning for Reward Machines (QRM)
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QRM (our approach) 
1. Learn one policy (q-value function) per state in 

the Reward Machine.
2. Select actions using the policy of the current 

RM state.
3. Reuse experience to update all q-value 

functions on every transition via off-policy 
reinforcement learning.

Remember 
this!

This is a form of Counterfactual Reasoning



Recall:  Methods for Exploiting RM Structure

Baselines based on existing methods:
1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)

Our approaches:
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM+RS)



5. QRM + Reward Shaping (QRM + RS) 

QRM + RS  (our approach) 
1. Treat the RM itself as an MDP and perform value iteration over the RM.
2. Apply QRM to the shaped RM



Optimality of QRM and QRM+RS

B * * C

* o *

A * * D
!

Theorem: QRM and QRM+RS converge to the optimal policy in the limit.
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The Rest of the Talk

• Reward Machines (RM)

• Exploiting RM Structure in Learning

▶ Experiments

• Creating Reward Machines

• Concluding Remarks



EXPERIMENTS



Test Domains

• Two domains with a discrete action and state-space
§Office domain (4 tasks)
§Craft domain (10 tasks)

• One domain with a continuous state-space
§Water World domain (10 tasks)



Test in Discrete Domains
Tested all five approaches

1. Q-learning over an equivalent MDP (Q-learning)
2. Hierarchical RL based on options (HRL)
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping (QRM + RS)

Method Optimality? Decomposition?

Q-Learning
HRL
HRL-RM
QRM
QRM + RS



Office World Experiments

4 tasks, 30 independent trials per task
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Minecraft World Experiments

10 tasks over 10 random maps, 3 independent trials per combination
Tasks from Andreas et al. (ICML 2017)

Legend:
Q-Learning
HRL
HRL-RM
QRM
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Minecraft World Experiments

Legend:
Q-Learning
HRL
HRL-RM
QRM
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10 tasks over 10 random maps, 3 independent trials per combination
Tasks from Andreas et al. (ICML 2017)



Func%on Approxima%on with QRM

From tabular QRM to Deep QRM
• Replace Q-learning by Double DQN (DDQN) with prioritized 

experience replays

Method Optimality? Decomposition?

Q-Learning
HRL
HRL-RM
QRM
QRM + RS



Water World Experiments

10 tasks over 10 random maps, 3 independent trials per combination
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10 tasks over 10 random maps, 3 independent trials per combination
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The Rest of the Talk

• Reward Machines (RM)

• Exploiting RM Structure in Learning

• Experiments

▶ Creating Reward Machines

• Recap



CREATING REWARD MACHINES



Crea%ng Reward Machines

Where do Reward Machines come from?

1. Specify

2. Generate

3. Learn



1. Construct Reward Machine from Formal Languages

DFA RM

QRM

Reward shaping

Future RM-based
algorithms

LTL dialects, LTLf, PLTL, … 
Regular Expressions

Golog
LDL dialects,LDLf

LTL-RE

Reward Machines serves as a lingua franca and provide a normal form representation 
for the reward function that supports reward-function-tailored learning.

[Camacho, Toro Icarte, Klassen, Valenzano, M., IJCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]



1. Construct Reward Machine from Formal Languages

DFA RM

QRM

Reward shaping

Future RM-based
algorithms

LTL dialects, LTLf, PLTL, … 
Regular Expressions

Golog
LDL dialects,LDLf

LTL-RE

Reward Machines serves as a lingua franca and provide a normal form representation 
for the reward function that supports reward-function-tailored learning.

[Camacho, Toro Icarte, Klassen, Valenzano, M., IJCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]

Remember 
this!



2. Generate RM using a Symbolic Planner

ühigh-level model to describe abstract ac9ons (op9ons)
üsymbolic planning to generate RMs corresponding to     

high- level par3al-order plans
üuse these abstract solu9ons to guide an RL agent

[Illanes, Yan, Toro Icarte, M., RLDM19, ICAPS20, KR2ML@NeurIPS20]



3. Learn RMs for Par/ally-Observable RL

Problem: Find a policy that maximizes the external reward given by a partially observable environment

Assumptions: Agent has a set of high-level binary classifiers/event detectors (e.g., button-pushed, cookies, etc.)

Key Insight: Learn an RM such that its internal state can be effectively used as external memory by the agent to 
solve the task. 

Approach:  Discrete Optimization via Tabu Search

? ?

?



3. Learn RMs for Partially-Observable RL

Problem: Find a policy that maximizes the external reward given by a partially observable environment

Assumptions: Agent has a set of high-level binary classifiers/event detectors (e.g., button-pushed, cookies, etc.)

Key Insight: Learn an RM such that its internal state can be effectively used as external memory by the agent to 
solve the task. 

Approach:  Discrete Optimization via Tabu Search

? ?

?

These “toy 
problems” cannot be 
solved by A3C, PPO, 

and ACER with 
LSTMs



3. Learn Reward Machines (LRM)

More human interpretable concept of what the agent is trying to do

u0

u1 u2u3

ho/w, 0i

ho/w, 0i ho/w, 0iho/w, 0i

h , 0i

h , 0i;
h , 0i

h , 0i;
h , 0i

h , 1ih , 1i

h , 0ih , 0i

[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, NeurIPS 2019]



3. Learn Reward Machines (LRM)

[Toro Icarte, Waldie, Klassen, Valenzano, Castro, M, NeurIPS 2019]

Good Results!



RECAP



Photo: Javier Pierin (Getty Images)

How do we advise, instruct, task, … and impart 
knowledge to AI that learns?



Big Idea: Reward Machines

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

!"

!#

!$

!%

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1



B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(state):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Reward Function
(as part of environment)

state

0

Key Insight: Reveal Reward Func=on to the Agent



B * * C
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A * * D

count = 0  # global variable

def get_reward(s):
if count == 0 and state.at(“A”):

count = 1
if count == 1 and state.at(“B”):

count = 2
if count == 2 and state.at(“C”):

count = 3
if count == 3 and state.at(“D”):

count = 0
return 1

return 0

Key Insight: Reveal Reward Function to the Agent



QRM outperforms HRL and standard Q-learning in two domains

0 10,000 20,000 30,000 40,000 50,000
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
o
r
m
a
l
i
z
e
d
d
i
s
c
o
u
n
t
e
d
r
e
w
a
r
d

O�ce World

0

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
o
r
m
a
l
i
z
e
d
d
i
s
c
o
u
n
t
e
d
r
e
w
a
r
d

Minecraft World

Legend:
Q-Learning
HRL
HRL-RM
QRM

Great Results in Discrete Domains



… and is also effec-ve when combined with deep learning
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…and in Continuous Domains



We can construct RMs from a diversity of formal languages …

DFA RM

QRM

Reward shaping

Future RM-based
algorithms

LTL dialects, LTLf, PLTL, … 
Regular Expressions

Golog
LDL dialects,LDLf

LTL-RE



We can generate them using a Symbolic Planner



…and they can be learned in partially observable environments to 
solve hard problems
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Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, McIlraith
ICML 2018
Code: https://bitbucket.org/RToroIcarte/qrm

Teaching Multiple Tasks to an RL Agent using LTL
Toro Icarte, Klassen, Valenzano, McIlraith
AAMAS 2018  & NeurIPS 2018 Workshop (Learning by Instructions)
Code: https://bitbucket.org/RToroIcarte/lpopl

LTL and Beyond:  Formal Languages for Reward Function Specification in Reinforcement Learning
Camacho, Toro Icarte, Klassen, Valenzano, McIlraith
IJCAI 2019 

Learning Reward Machines for Partially Observable Reinforcement Learning
Toro Icarte, Waldie, Klassen, Valenzano, Castro, McIlraith 
NeurIPS 2019

Symbolic Plans as High-Level Instructions for Reinforcement Learning
Illanes, Yan, Toro Icarte, McIlraith
ICAPS 2020/RLDM 2019

Play with the code, read the papers, …

https://bitbucket.org/RToroIcarte/qrm
https://bitbucket.org/RToroIcarte/lpopl


Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, McIlraith
Forthcoming
An update of our original ICML 2018 Reward Machines paper. With QRM replaced by CRM. 
Code and paper available at http://www.cs.toronto.edu/~rntoro

LTL2Action: Generalizing LTL Instructions for Multi-Task RL
Vaezipoor, Li, Toro Icarte, McIlraith
ICML 2021.
RL agent learns the language of LTL and how to follow  and generalize instructions for multi-task RL.

Latest Work

Note this!

New



Advice-Based Exploration in Model-Based Reinforcement Learning.
Toro Icarte, Klassen, Valenzano, McIlraith
Canadian AI 2018.
Linear temporal logic (LTL) formulas and a heuristic were used to guide exploration during reinforcement learning.

Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)
Camacho, Chen, Sanner, McIlraith
Extended Abstract:  SoCS 2017, RLDM 2017 
Full Paper:  First Workshop on Goal Specifications for Reinforcement Learning, collocated with 
ICML/IJCAI/AAMAS, 2018.
Linear temporal logic (LTL) formulas are used to express non-Markovian reward in fully specified MDPs. LTL is translated to automata 
and reward shaping is used over the automata to help solve the MDP.

Learning Interpretable Models in Linear Temporal Logic
Camacho, McIlraith
ICAPS, 2019

FL-AT: A Formal Language–Automaton Transmogrifier.
Middleton, Klassen, Baier, McIlraith
ICAPS 2020 Systems Demo

Other related work



Non-Deterministic Planning with Temporally Extended Goals: LTL over Finite and Infinite Traces
Camacho, Triantafillou, Muise, Baier and McIlraith
AAAI 2017
Planning with First-Order Temporally Extended Goals Using Heuristic Search
Baier and McIlraith AAAI 2006
Planning with Temporally Extended Goals Using Heuristic Search
Baier and McIlraith, ICAPS 2006
Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners
Baier Fritz and McIlraith,  ICAPS 2007
Beyond Classical Planning: Procedural Control Knowledge and Preferences in State-of-the-Art Planners
Baier Fritz Bienvenu and McIlraith, AAAI 2008
A Heuristic Search Approach to Planning with Temporally Extended Preference
Baier, Bacchus and McIlraith Artificial Intelligence Journal, 2009

Specifying and Computing Preferred Plans
Fritz, Bienvenu and McIlraith, Artificial Intelligence Journal, 2011 (See also KR2006 paper)

Past work on Planning with Formal Languages & Automata

…



For work on LTL FOND Planning, LTL Synthesis & their relationship
see work by Alberto Camacho

http://www.cs.toronto.edu/~acamacho/publications

Past work on Planning with Formal Languages & Automata

Alberto Camacho
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