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Abstract For games with discontinuous payoffs Simon and Zame (Econometrica
58:861–872, 1990) introduced payoff indeterminacy, in the form of endogenous shar-
ing rules, which are measurable selections of a certain payoff correspondence. Their
main result concerns the existence of a mixed Nash equilibrium and an associated
sharing rule. Its proof is based on a discrete approximation scheme “from within”
the payoff correspondence. Here, we present a new, related closure result for games
with possibly noncompact action spaces, involving a sequence of Nash equilibria.
In contrast to Simon and Zame (Econometrica 58:861–872, 1990), this result can be
used for more involved forms of approximation, because it contains more information
about the endogenous sharing rule. With such added precision, the closure result can
be used for the actual computation of endogenous sharing rules in games with discon-
tinuous payoffs by means of successive continuous interpolations in an approximation
scheme. This is demonstrated for a Bertrand type duopoly game and for a location
game already considered by Simon and Zame. Moreover, the main existence result
of Simon and Zame (Econometrica 58:861–872, 1990) follows in two different ways
from the closure result.
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48 E. J. Balder

1 Introduction

Discontinuous games, with their associated problems regarding the formulation and
existence of appropriate equilibrium notions, form a subject of long-standing interest
in economics. The oldest of these, Bertrand’s duopoly game, dates back to 1883. Such
games are characterized by the fact that they have discontinuities in their payoffs as a
function of player’s actions. For instance, in Bertrand’s duopoly game the firm which
sets the lowest price captures the entire market. Several other examples of discon-
tinuous games can be found in Dasgupta and Maskin (1986a,b). In the face of such
discontinuity, general theorems about the existence of Nash equilibria for such games
would seem to be out of the question. Nevertheless, quite some progress has been
made in this direction. Let us recall in this connection the already mentioned papers
by Dasgupta and Maskin (1986a,b) and the papers by Simon (1987), Lebrun (1996)
and Reny (1999). The former two papers suppose a particular structure of the payoff
discontinuities; this was refined by Simon (1987). These papers use an approximation
by finite games and their associated mixed Nash equilibria. In a far-reaching general-
ization of this work, Reny (1999) showed that the question of finding Nash equilibria
can be transformed by means of his better-reply security condition. In this way, it is
possible to find pure equilibrium existence results as well (this contrasts notably with
the other cited papers). In a different direction, Simon and Zame (1990) introduced a
new approach to the existence of mixed equilibria, based on an upper semicontinuous
payoff correspondence with compact convex values (if the initial payoff function is
discontinuous, then they use the smallest upper semicontinuous and convex-compact-
valued correspondence which has that payoff as its selection). The equilibrium payoff
function, which they call endogenous sharing rule but which we prefer to call by the
more neutral name of resolvent payoff profile, is required to be a measurable selection
of this correspondence. Thus, Simon and Zame restore continuity of the payoff struc-
ture at the price of payoff indeterminacy. As observed by Jackson et al. (2002), the
precise connections between Simon and Zame (1990) and the developments started
by Reny (1999) are as yet not well understood.

The present paper continues the analysis started in Simon and Zame (1990). First,
we consider a sequence of games and associated mixed Nash equilibria, for which we
formulate a closure result. It addresses the following question: if the sequence of mixed
Nash equilibrium profiles converges weakly to a mixed action profile, then is the latter
also a Nash equilibrium for a payoff profile that is closely related to the payoffs in the
sequence? Theorem 1 provides the answer to this question. Unlike Simon and Zame
(1990), where it was enough for payoffs to be measurable selections of the payoff cor-
respondence, it makes precise what has to be understood by “closely” in the preceding
question. Notably, this opens the way to interpolation schemes whereby one interpo-
lates continuously over the points of discontinuity of an original payoff profile. More
precisely, for a sequence of payoff profiles, as considered here and in the Corollary of
Simon and Zame (1990), the approach followed by Simon and Zame works with the
smallest payoff correspondence which is convex-compact-valued, upper semicontinu-
ous and contains all the graphs of the payoff profiles in the sequence. For interpolation
schemes as described above, such a payoff correspondence would simply be too large.
In contrast, this paper shows that a smaller version of the payoff correspondence
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An equilibrium closure result for discontinuous games 49

can be used, replacing Simon and Zame’s use of closures by Kuratowski limes
superior sets (compare formulas (6) and (9) below). Because of its inherent limit
properties, this smaller payoff correspondence can be used for interpolation argu-
ments of the type mentioned above. Apart from this major point of difference with
Simon and Zame (1990), another one is that our closure result works with possibly
noncompact action spaces. To reveal some more details, the key contribution of the
closure result in Theorem 1 is formed by its limit properties (6)–(7) for the endogenous
sharing rule/resolvent payoff profile (i.e., the payoff profile sought in the above ques-
tion). We use Theorem 1 in a systematic way to derive sharing rules for a Bertrand-type
duopoly game and a game considered in Simon and Zame (1990). This is done by
linear interpolation across discontinuities, as sketched above. Moreover, we show that
Theorem 1 can also be used to prove the main existence result of Simon and Zame
(1990) in two different ways. Recently, Jackson et al. (2002) have used endogenous
sharing rules to obtain new existence results for games with incomplete information.
The model which they consider is considerably more complicated than the one stud-
ied here, but in Balder (2004) methods similar to the ones presented here have been
used to obtain a partial generalization of the main result in Jackson et al. (2002). The
main existence result of Balder (2004) also generalizes the main existence result from
Simon and Zame (1990). An earlier account of the results presented here, but in a
somewhat less general form, can be found in a 2001 preprint of the present author
(Balder 2001).

2 Mathematical preliminaries

This section recalls (a) some measure theory, principally weak convergence theory
for measures, for which we use Aliprantis and Border (2006) and Neveu (1965) as
our main references (see also Billingsley 1968) and (b) some basic notions from
Myerson (1991) about games in strategic form. Given a separable metric space X ,
let B(X) stand for the Borel σ -algebra on X . Let Prob(X) be the set of all probabil-
ity measures on (X,B(X)). The weak topology on Prob(X) is the weakest topology
for which the mapping ν �→ ∫

X c dν is continuous for every bounded and contin-
uous function c : X → R; cf. p. 507 of Aliprantis and Border (2006). Since X
itself is separable and metric, the set Prob(X) is separable and metrizable for the
weak topology by Theorem 5.12 of Aliprantis and Border (2006); for instance, the
Prohorov metric (see Billingsley 1968) can serve as a metric on Prob(X). Observe
that every subset X ′ of X inherits the metric from X (and the associated relative topol-
ogy). Moreover, if X ′ ∈ B(X), then its Borel σ -algebra B(X ′) consists precisely of
all sets B ⊂ X ′ with B ∈ B(X). Moreover, Prob(X ′) can be identified with the set
of all ν ∈ Prob(X) such that ν(X ′) = 1, because any ν ∈ Prob(X ′) has a canon-
ical extension B �→ ν(B ∩ X ′) which belongs to Prob(X). The resulting inclusion
Prob(X ′) ⊂ Prob(X) means that Prob(X ′) can be equipped with the relative weak
topology (see Lemma 15.4 of Aliprantis and Border 2006) and this will always be
done tacitly from now on. Because of the metrizability of Prob(X), the weak topol-
ogy can also be described in terms of sequential convergence. Note that a sequence
{νn}n := {νn}n∈N in Prob(X) converges weakly to ν0 if and only if the integrals
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50 E. J. Balder

∫
X c dνn converge to

∫
X c dν0 for every bounded and continuous function c : X → R.

Theorem 5.13 in Aliprantis and Border (2006), which figures as the portmanteau
theorem in Billingsley (1968), provides several alternative but equivalent definitions
of weak (sequential) convergence. As another alternative, as such not included in the
cited references, we state the following result for sequences, which could easily be
reformulated for generalized sequences so as to be consistent with Theorem 5.13 of
Aliprantis and Border (2006).

Proposition 1 Let {νn}n be a sequence in Prob(X) and let ν0 ∈ Prob(X). Then {νn}n

converges weakly to ν0 if and only if lim infn
∫

B q dνn ≥ ∫
B q dν0 for every lower

semicontinuous q : X → R, bounded from below, and for every set B ∈ B(X) whose
boundary ∂ B := cl B\int B is ν0-null.

Proof Necessity of weak convergence obviously follows from taking B = X and
then applying the limes inferior inequality twice, namely to q := c and q := −c.
Here, c : X → R is an arbitrary bounded and continuous function. Next, we prove
sufficiency in two steps.

Step 1: for nonnegative q. It is easy to see that q ′(x) := q(x)1intB(x) defines a
nonnegative lower semicontinuous function q ′ : X → R. So by Theorem 15.5 in
Aliprantis and Border (2006) it follows that lim infn

∫
X q ′ dνn ≥ ∫

X q ′ dν0 (note that
the additional boundedness from above required in Theorem 15.5 in Aliprantis and
Border (2006) can be removed by additional truncation and monotone convergence).
Using 1B ≥ 1intB on the left and ν0(B\intB) = 0 on the right, this gives the desired
inequality.

Step 2: for general q. By boundedness below, there exists γ ∈ R such that q ′′ :=
q + γ is nonnegative. Step 1 applies to q ′′, giving lim infn[∫B q dνn + γ νn(B)] ≥∫

B q dν0 + γ ν0(B). By part 7 of Theorem 15.3 in Aliprantis and Border (2006) we
also have νn(B) → ν0(B). So the desired inequality follows. 	


Next, we discuss (relative) compactness for the weak topology. Recall that a subset
M of Prob(X) is defined to be tight if for every ε > 0 there exists a compact subset Kε

of X such that ν(X\Kε) < ε for every ν ∈ M . Lemma 15.21 in Aliprantis and Border
(2006) guarantees that every tight subset of Prob(X) is relatively compact (whence
also relatively sequentially compact) for the weak topology. Moreover, if the space X
is a Polish space (i.e., separable, metric and complete), then the converse is also true
by Theorem 15.22 in Aliprantis and Border (2006); in Billingsley (1968), the former
result is called Prohorov’s theorem and the latter one is called the converse Prohorov
theorem.

Further, let Y be another separable metric space; then for any set D ⊂ X × Y and
any x ∈ X the section of D at x is defined by Dx := {y ∈ Y : (x, y) ∈ D}. Recall from
section III.2 in Neveu (1965) that a transition probability from X into Y is a function
δ : X �→ Prob(Y ) such that x �→ δ(x)(B) is B(X)-measurable for every B ∈ B(Y ).
Because Y is a separable metric space, it is easy to show that this measurability
property is equivalent to the measurability of the function δ : X �→ Prob(Y ) with
respect to the σ -algebras B(X) on X and B(Prob(Y )) on Prob(Y ). To every function
f : X → Y , measurable with respect to B(X) and B(Y ), there corresponds a unique
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An equilibrium closure result for discontinuous games 51

Dirac transition probability ε f : X �→ Prob(Y ) which is defined by setting ε f (x) :=
point probability measure at f (x) for every x ∈ X . According to the Tonelli–Fubini
theorem for product measures induced by a measure and a transition probability (see
Proposition III.2.1 in Neveu 1965), for a given μ ∈ Prob(X) and a transition proba-
bility δ : X → Prob(Y ) a product probability measure π on (X × Y,B(X) ⊗ B(Y ))

is determined by π(A × B) := ∫
A δ(x)(B)μ(dx) for every A ∈ B(X), B ∈ B(Y ) and

by that same result

∫

X×Y

udπ =
∫

X

⎡

⎣
∫

Y

u(x, y)δ(x)(dy)

⎤

⎦ μ(dx)

holds for every nonnegative andB(X)⊗B(Y )-measurable u : X×Y → R. In particular,
for u :=1E with E ∈ B(X ×Y )=B(X)⊗B(Y ) this gives π(E)=∫

X δ(x)(Ex )μ(dx).
In the special situation with δ := ε f for a measurable function f : X → Y the
above product measure becomes π(A × B) = μ(A ∩ f −1(B)); then the Y -marginal
of π coincides with the usual image of μ under f , because π(X × B) = μ( f −1(B))

holds for every B ∈ B(Y ). In the converse direction, a classical disintegration result
(e.g., see Valadier 1973) states that if π ∈ Prob(X × Y ) is such that its Y -marginal
B �→ π(X×B), which belongs to Prob(Y ), is tight (as defined above), then there exists
a transition probability δ : X → Prob(Y ) such that π(A × B) := ∫

A δ(x)(B)μ(dx)

for every A ∈ B(X), B ∈ B(Y ), where μ ∈ Prob(X) is the X -marginal probabil-
ity A �→ π(A × Y ). In statistics similar results are known as regular conditional
distribution results.

Next, we discuss the supports of weakly convergent sequences of probability mea-
sures and their limits. Recall that the support of any probability measure ν in Prob(X)

is defined by supp ν := ∩{F : F ⊂ X, F closed and ν(F) = 1}; because we work
with a separable metric space X , this definition conforms to Aliprantis and Border
(2006) by their Theorem 12.14. Recall also that the (sequential) limes superior (in the
sense of Kuratowski) of any sequence {An}n of subsets of X is defined as the set of
all limit points of {An}n , i.e., the set of all x ∈ X for which there exists a subsequence
{Ank }k and corresponding points xk in Ank such that xk → x for k → ∞. This set will
be denoted by Lsn An . Since X is a metric space, one has the following representation
for this limes superior:

Lsn An =
∞⋂

m=1

cl
⋃

n≥m

An . (1)

Proposition 2 Let {νn}n in Prob(X) converge weakly to ν0. Then

supp ν0 ⊂ Lsnsupp νn

Proof Fix any m ∈ N and let F := cl ∪n≥m supp νn . Then X\F is open,
so Theorem 15.3, part 6, in Aliprantis and Border (2006) implies ν0(X\F) ≤
lim infn νn(X\F) = 0, where we also use that νn(X\F) = 0 for all n ≥ m. Hence,
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supp ν0 ⊂ F . In view of the above representation of the limes superior, this finishes
the proof. 	

Proposition 3 Let ν ∈ Prob(X) and let f : X → Y be a continuous mapping
into some separable metric space Y . Define π ∈ Prob(X × Y ) by π(A × B) :=
ν(A∩ f −1(B)) for A ∈ B(X), B ∈ B(Y ). Then supp π = {(x, f (x)) : x ∈ supp ν} ⊂
{(x, f (x)) : x ∈ X} =: gph f .

Proof The set F := {(x, f (x)) : x ∈ supp ν} is closed in X ×Y by the continuity of f .
Now observe that π is the product measure induced by ν and the Dirac transition prob-
ability ε f . By the above Tonelli–Fubini theorem this gives

π(F) =
∫

X

ε f (x)(Fx )ν(dx) = ν(supp ν) = 1

because Fx = { f (x)}, so the closed set F contains supp π . To prove the converse, we
note that also the set F ′ := {x ∈ X : (x, f (x)) ∈ supp π} is closed by continuity of f .
Since π(supp π) = 1, it follows again by the Tonelli-Fubini theorem that

1 = π(supp π) =
∫

X

ε f (x)((supp π)x )ν(dx).

So f (x) ∈ (supp π)x for ν-almost every x in X , which is to say that x ∈ F ′ for
ν-almost every x in X . Hence, it follows first that ν(F ′) = 1 and then also that
supp ν ⊂ F ′. By definition of F ′ it now follows that F ⊂ supp π . 	


Finally, we recall some basic game-theoretical notions (e.g., see Aliprantis et al.
2006 or Myerson 1991). Let N be a natural number and let I := {1, . . . , N } be the
set of players. Let X1, . . . , X N be N separable metric spaces. Let X stand for the
Cartesian product 	i∈I Xi . Below we shall also use X−i := 	 j∈I\i X j and related
well-known notations from game theory. Let u1, . . . , uN be N functions from X into
R which are bounded and measurable. By


 := (I, (Xi )i∈I , (ui )i∈I ) (2)

we denote the strategic-form game that is defined by giving each player i ∈ I the
action space Xi and the payoff function ui . A mixed action profile for the above game

 is a vector (βi )i∈I of probability measures βi ∈ Prob(Xi ), i ∈ I . Such a mixed
action profile is defined to be a mixed Nash equilibrium profile for 
 if

∫

X

ui dβ̃ = sup
xi ∈Xi

∫

X−i

ui (xi , x−i )β̃−i (dx−i ) for every i ∈ I

and for ε ≥ 0 it is called a mixed ε-Nash equilibrium profile if for every i ∈ I the
above left side, when ε is added to it, is larger than the right side. Here β̃ and β̃−i
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An equilibrium closure result for discontinuous games 53

stand for the product measures ×i∈I βi := β1 × · · · × βN and × j∈I\iβ j . On the other
hand, a pure Nash equilibrium profile for the above game 
 is a vector (yi )i∈I in X
such that

ui (y) = sup
xi ∈Xi

ui (xi , y−i ) for every i ∈ I ;

this is equivalent to (βi )i∈I being a mixed Nash equilibrium profile for 
, with βi :=
point probability measure at yi .

3 Main result

As in the previous section, let I := {1, . . . , N } be a set of N players. Let S1, . . . , SN

be N separable, metric and complete spaces. Below we shall write S := 	i∈I Si and
the product metric on S is for denoted by dS . Let n ∈ N; the n-th stage game is defined
by


(n) :=
(

I,
(

S(n)
i

)

i∈I
,
(

q(n)
i

)

i∈I

)
.

Its so-called n-th stage action spaces are S(n)
1 , . . . , S(n)

N and its n-th stage payoffs are

the functions q(n)
1 , . . . , q(n)

N : S(n) → R, where S(n) := 	i∈I S(n)
i . We suppose that

S(n)
i ∈ B(Si ) for every i ∈ I,

i.e., S(n)
i is a Borel measurable subset of Si for every i ∈ I . Moreover, for each player

i’s sequence {S(n)
i }n of staged action spaces in Si we assume

Si = Lsn S(n)
i for every i ∈ I. (3)

Recall from Sect. 2 that this means that for every i ∈ I and every si ∈ Si there must exist
a subsequence {S(nk )

i }k of staged action spaces and corresponding actions sk
i ∈ S(nk )

i ,
such that sk

i → si for k → ∞. Furthermore, we suppose that

q(n)
i : S(n) → R is continuous for every i ∈ I. (4)

Let q(n) stand for the payoff profile (i.e., vector function) (q(n)
i )i∈I : S(n) → R

N . For

each player i’s sequence {q(n)
i }n of staged payoffs we suppose that they are uniformly

bounded in the following sense:

Ci := sup
n∈N

sup
s∈S(n)

|q(n)
i (s)| < +∞ for every i ∈ I. (5)
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54 E. J. Balder

Theorem 1 For every n ∈ N let (α
(n)
1 , . . . , α

(n)
N ) be a mixed Nash equilibrium for the

game 
(n). Suppose that for every i ∈ I the sequence {α(n)
i }n converges weakly to

some probability measure βi ∈ Prob(Si ). Then under (3)–(5) there exist N measurable
functions q∗

1 , . . . , q∗
N : S → R, with sups∈S |q∗

i (s)| ≤ Ci for every i ∈ I , such that
(βi )i∈I is a mixed Nash equilibrium profile for the game


∗ := (
I, (Si )i∈I ,

(
q∗

i

)
i∈I

)

and the so-called resolvent payoff profile q∗ := (q∗
i )i∈I : S → R

N has the following
properties:

q∗(s) ∈ co
((

Lsngphq(n)
)

s

)
for every s ∈ S, (6)

q∗(s) ∈ co
((

Lsn

{(
s′, q(n)(s′)

)
: s′ ∈ supp α̃(n)

})

s

)
for β̃-a.e. s ∈ S, (7)

and

lim
n→∞

∫

S(n)

q(n)
i dα̃(n) =

∫

S

q∗
i dβ̃ for every i ∈ I. (8)

Here, α̃(n) := α
(n)
1 × · · · × α

(n)
N ∈ Prob(S(n)) and β̃ := β1 × · · · × βN ∈ Prob(S).

Observe that Theorem 1, which will be proved in Sect. 5, does not contain any explicit
compactness condition. Also, we note that the continuity condition (4) is needed for
(7), but not for (6) or (8). The theorem is an equilibrium closure result in that it shows
the weak limit (βi )i∈I of the sequence {(α(n)

i )i∈I }n to be a Nash equilibrium profile
with respect to some payoff profile q∗ := (q∗

i )i∈I which is tied to the staged payoff
profiles in {q(n)}n via (6)–(8). As such, it shows quite some relationship with lower
closure results in optimal control and economics (see Balder 1984), of which Fatou’s
lemma in several dimensions is a well-known specimen. We observe that it is easy
to extend the scope of Theorem 1 a little further, namely by merely requiring for a
sequence εn → 0 in R+ that each (α

(n)
1 , . . . , α

(n)
N ) be an εn-almost Nash equilibrium

for 
(n).
When the counterpart of (6) is sought in Simon and Zame (1990), it cannot be found

in explicit form. However, it is evident that the results stated there would lead to

q∗(s) ∈ co

((

cl
∞⋃

n=1

gph q(n)

)

s

)

for every s ∈ S, (9)

because the right hand side defines the smallest compact-convex-valued upper semi-
continuous multifunction that has all q(n) as its measurable selectors. It is important
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An equilibrium closure result for discontinuous games 55

to note that this multifunction has larger values than the one defined by the right hand
side of (6).

A special case of Theorem 1 occurs when one deals with pure Nash equilibria.

Corollary 1 For every n ∈ N let s(n) ∈ S(n) be a pure Nash equilibrium for the
game 
(n). Suppose that the sequence {s(n)}n converges to some vector t ∈ S.
Then under (3)–(5) there exist N measurable functions q∗

1 , . . . , q∗
N : S → R, with

sups∈S |q∗
i (s)| ≤ Ci for every i ∈ I , such that t is a pure Nash equilibrium profile for

the game


∗ := (
I, (Si )i∈I ,

(
q∗

i

)
i∈I

)

and the so-called resolvent payoff profile q∗ := (q∗
i )i∈I : S → R

N has the following
properties:

q∗(s) ∈ co
((

Lsngph q(n)
)

s

)
for every s ∈ S, (10)

q∗(t) = lim
n

q(n)
(

s(n)
)

. (11)

Applications of this result will be given in the following section.

4 Applications

As in the previous section, let I := {1, . . . , N } be a set of N players. In this section
we require S1, . . . , SN to be compact metric spaces, except for Example 3 at the end.
As before, we write S := 	i∈I Si , etc.

4.1 The Simon–Zame existence result for endogenous sharing rules

In this section, we show that Theorem 1 implies the main existence result for endog-
enously shared equilibria in the seminal paper of Simon and Zame (1990) in two
different ways: in the first one the staged action spaces are discrete and in the second
one they are continuous. In the results in Simon and Zame (1990) properties (6) and
(7) are absent. See our comments in connection with (9) above. As we shall observe
following our two proofs, this means that the second proof below cannot be given by
the methods in Simon and Zame (1990) alone. Following Simon and Zame (1990), let
Q : S → 2RN

be a multifunction with the following property:

Q is upper semicontinuous on S with nonempty, convex and compact values.

(12)

Because S is compact (see the beginning of this section) the above property guarantees
that

gph Q := {(s, z) : s ∈ S, z ∈ Q(s)} is a compact subset of S × R
N (13)
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56 E. J. Balder

by a result of Berge; see Lemma 17.3 in Aliprantis and Border (2006) and note that
upper semicontinuity is called upper hemicontinuity both there and in Simon and Zame
(1990). We now use Theorem 1 to derive the following existence result of Simon and
Zame (1990) in two different ways.

Theorem 2 There exist N measurable and bounded functions q∗
1 , . . . , q∗

N : S → R

and a mixed action profile (βi )i∈I ∈ 	i∈I Prob(Si ) which is a Nash equilibrium for
the game


∗ := (
I, (Si )i∈I , (q

∗
i )i∈I

)
.

Here the measurable function q∗ := (q∗
i )i∈I : S → R

N is such that q∗(s) ∈ Q(s) for
every s ∈ S.

First proof: discretization of S. Because the product space S is compact and metric,
it is separable. Let {sk}k∈N be a countable dense subset of S (without loss of generality
we may consider only the case where the set S is not finite) and define S(n) := {sk}n

k=1
for each n ∈ N. Then condition (3) holds. Because of (13), the Kunugui–Novikov
theorem (this is Theorem 1 in Brown and Purves 1973) implies that Q has a mea-
surable selection q : S → R

N . Also, by (13) the function q is bounded. Define q(n)

to be the restriction of q to the discrete subset S(n), n ∈ N; then, evidently, q(n) is
continuous on S(n) and condition (5) holds. For n ∈ N, let the n-th stage game 
(n)

be defined as in (2). By Nash’s original existence result, each game 
(n) has a mixed
equilibrium profile α(n) := (α

(n)
i )i∈I , with α

(n)
i ∈ Prob(S(n)

i ) ⊂ Prob(Si ) (recall what
was said about such identification in Sect. 2). By compactness of the spaces Si , the
spaces Prob(Si ) are compact for the weak topology (use Theorem 15.11 in Aliprantis
and Border 2006) and they are also metrizable (recall this from Sect. 2). Thus, there
exists a subsequence {α(nk)}k∈N such that for each i ∈ I the sequence {α(nk )

i }k con-
verges weakly to some probability measure βi ∈ Prob(Si ). By Theorem 1 it now
follows that there exist bounded measurable functions q∗

i : S → R such that (βi )i∈I

is a Nash equilibrium for the game (I, (Si )i∈I , (q∗
i )i∈I ), where q∗ := (q∗

i )i∈I has the
pointwise property (6). In view of (13), the graph gph Q contains the limes superior
set Lsngph q(n). Hence, by (6) and the convexity of the values of Q, as guaranteed in
(12), it follows that q∗(s) belongs to Q(s) for every s ∈ S. So the resolvent payoff
profile q∗ is a measurable selection of Q. 	


Second proof: continuous approximation of Q. This time, we work with S(n) = S
for all n. Assumption (12) allows us to apply an approximate continuous selection
theorem that goes back to von Neumann; see Theorem 1 on p. 84 of Aubin and Cellina
(1984). Hence, there exists a sequence {q(n)}n of continuous functions q(n) : S → R

N

such that

lim
n→∞ sup

s∈S
dist

((
s, q(n)(s)

)
, gph Q

)
= 0,

where distance is defined with respect to the product metric on S×R
N . In view of (13),

it then follows with ease that condition (5) is fulfilled. Moreover, the limes superior set
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Lsngph q(n) is contained in gph Q: indeed, if (sk, zk) → (s̄, z̄) for k → ∞, with zk =
q(nk )(sk) for all k, then the above approximation property gives dist((s̄, z̄), gph Q)=0,
whence (s̄, z̄) ∈ gph Q by (13). Let 
(n), n ∈ N, be defined as in (2), but now with
S(n) := S. By the extension of Nash’s mixed equilibrium existence result of Glicksberg
(1952), each game 
(n) has a mixed equilibrium profile α(n) := (α

(n)
i )i∈I . Just as in

the previous proof, it now follows that there exists a subsequence {α(nk)}k∈N such that
for each i ∈ I the sequence {α(nk)

i }k converges weakly to some βi ∈ Prob(Si ). By
Theorem 1 there exist bounded measurable functions q∗

i : S → R such that (βi )i∈I

is a Nash equilibrium for the game 
∗ := (I, (Si )i∈I , (q∗
i )i∈I ), where q∗ := (q∗

i )i∈I

has property (6). So from the above inclusion Lsngph q(n) ⊂ gph Q we obtain that
q∗(s) ∈ Q(s) for every s ∈ S. 	


To see the importance of the approximation properties (6)–(7), we observe the
following. The first proof above is closely reflected by the original proof in
Simon and Zame (1990). It does not use any limit properties of the sequence {q(n)}n ,
because it has the essential feature gph q(n) ⊂ gph Q (in the abstract we called this
approximation “from within”). In contrast, in the second proof one only has that
gph q(n) approximates gph Q in some sense (i.e., approximation “from without”).
Thus, a limit property such as (6) is essential for such a proof.

Remark 1 If one starts with an arbitrary nonempty-valued multifunction Q̃ : S →
2RN

which only satisfies the following requirement:

⋃

s∈S

Q̃(s) ⊂ R
N is a bounded set,

then by setting Q(s) := co (cl gph Q̃)s one obtains a multifunction Q which meets
condition (12). This requires an application of Corollary 11.63 in Moore (1999). In
particular, for any bounded function p : S → R

N this prescription gives (see Simon
and Zame 1990)

Q(s) := Q p(s) := co (cl gph p)s, s ∈ S, (14)

by setting Q̃(s) := {p(s)}. Of course, then Q(s) = Q p(s) = {p(s)} at any continuity
point s of p.

4.2 Computation of endogenous sharing equilibria

Theorem 1 can also be used in actual computations of equilibria with endogenous shar-
ing rules. Here, we shall use linear interpolation to construct the n-th stage games,
which are still of a continuous nature in order to allow for purification. We give two
examples.

Example 1 The present example concerns the computation of the equilibrium in a
Bertrand duopoly game 
. Such equilibria can, of course, be determined in an ad
hoc fashion, but the present approach offers the attraction of being quite systematic.
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To make our calculations easy, we shall assume linear demand and per-unit production
cost c. More elaborate versions can be produced fairly easily. Let a > c; the profit of
firm i ∈ I := {1, 2} is supposed to be pi (s1, s2) := (si − c)(a − si ) if si < s j and
pi (s1, s2) := 0 if si > s j . Here, j = 2 if i = 1 and j = 1 if i = 2 and si , s j are
the price variables; i.e., s j := s−i . In addition, for obvious reasons the price variables
must satisfy si , s j ≥ 0 and si , s j ≤ a. A discontinuity occurs when si = s j , i.e., when
both firms charge the same price. It is standard in the literature to allocate total demand
evenly in this case, causing profits to be pi (s1, s1) := 1

2 (s1 − c)(a − s1), but we note
that there is no compelling economic reason for such a division of the demand. In any
case, this is irrelevant for the payoff correspondence, since (14) gives here

Q p (s1, s1) := {(λ(s1 − c)(a − s1), (1 − λ)(s1 − c)(a − s1)) : 0 ≤ λ ≤ 1}.

Here λ, the fraction of the total demand that goes to firm 1, forms an additional param-
eter of the model. As follows by what was observed in Remark 1 about the continuity
points of p, we have Q p(s) = {p(s)} in all other points s of S := [0, a]2. We intro-
duce an approximation by setting S(n) := S and defining the continuous function
q(n) : S → R

2 by linear interpolation across the discontinuity on the diagonal, i.e.,

q(n)
i (si , s j ) :=

{
pi (si , s j ) if si ≤ s j − 1

n or si ≥ s j + 1
n

vsi + w if s j − 1
n < si < s j + 1

n

Here v and w are determined by v(s j − 1
n )+w = pi (s j − 1

n , s j ) and v(s j + 1
n )+w =

pi (s j + 1
n , s j ) = 0 (i.e., v = − n

2 (s j − 1
n −c)(a − s j + 1

n ) and w = n
2 (s j − 1

n −c)(a −
s j + 1

n )(s j + 1
n )). It is easy to check that this interpolation scheme has the following

property: if s j − 1
n < si < s j + 1

n then the distance of (si , vsi + w) to gph Q p is
at most 2

n . This determines the n-th stage game 
(n). To find its Nash equilibria, we

may use purification since each q(n)
i (si , s j ) is quasi-concave in the variable si . In pure

actions the best reply correspondence B(n)
i : [0, a] → 2[0,a] for player i in the n-th

approximating game is given by

Bi (s j ) :=

⎧
⎪⎨

⎪⎩

{
si ∈ [0, a] : si ≥ s j + 1

n

}
if s j ≤ c + 1

n{
s j − 1

n

}
if c + 1

n < s j ≤ a+c
2 + 1

n{ a+c
2

}
if s j > a+c

2 + 1
n

The fixed points of this correspondence are easily seen to form the following set S0:
the union of all pairs (s2 + 1

n , s2) with s2 ∈ (c, c + 1
n ] and all pairs (s1, s1 + 1

n ) with

s1 ∈ (c, c + 1
n ]. Evidently, no matter which equilibrium pairs s(n) := (s(n)

1 , s(n)
2 ) of

pure actions we choose at stage n, they always converge to (c, c) for n → ∞. By
Corollary 1 (c, c) is a pure Nash equilibrium for a game 
∗ with a resolvent payoff
profile q∗ : [0, a]2 → R

2 for which q∗(s1, s2) = p(s1, s2) if s1 �= s2 (namely, by
applying (10)) and q∗(c, c) = (0, 0) (by (11)). Together, these tell us the following:
0 = q∗

1 (c, c) ≥ q∗
1 (s1, c) for every s1 ∈ [0, a] and 0 = q∗

2 (c, c) ≥ q∗
2 (c, s2) for every
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s2 ∈ [0, a]. This outcome agrees with the classical one, even though the precise form
of profit sharing when equal prices are chosen was left unspecified.

Example 2 This example, the California–Oregon psychologists’ game, already
appeared in Simon and Zame (1990). It is interesting to contrast the systematic appli-
cation below with the rather heuristic “approximation from within” arguments in both
Simon and Zame (1990) and pp. 147–148 of Myerson (1991). Consider the follow-
ing location game in the spirit of Hotelling (1929). It takes place along a section of
interstate highway 5, which is represented by the interval [0, 4]. The action space
of player 1, the psychologist from California, is S1 := [0, 3] (i.e., the Californian
highway stretch), and for player 2, the psychologist from Oregon, the action space is
S2 := [3, 4], which stands for the Oregon part of the highway. The payoff for player 1
is

p1(s1, s2) :=
{

s1+s2
2 if s1 < s2

2 if s1 = s2 = 3

Player 2 has payoff p2(s1, s2) := 4 − p1(s1, s2). Clearly, these functions are discon-
tinuous at the point (s1, s2) = (3, 3), which corresponds to the California–Oregon
border. In this example the formula (14) gives

Q p(s1, s2) :=
{ {(z1, 4 − z1) : z1 ∈ [2, 3]} if s1 = s2 = 3

{(p1(s1, s2), p2(s1, s2))} otherwise

An n-th stage game 
(n) is obtained by setting S(n) := S = [0, 3] × [3, 4] for all n
and by defining

q(n)
1 (s1, s2) :=

{
( 1

2 − n)s1 + 1
2 + 3n if 3 − 1

n ≤ s1 ≤ 3 and s2 = 3
s1+s2

2 otherwise

for player 1 and q(n)
2 (s1, s2) := 4 − q(n)

1 (s1, s2) for player 2. This describes a stan-

dard linear interpolation of p by q(n) := (q(n)
1 , q(n)

2 ) and it is easy to see that
sups∈S dist((s, q(n)(s)), gph Q p) ≤ 1

n → 0. Each approximating game has continu-
ous and quasi-concave payoff functions, so it has a Nash equilibrium in pure actions.
In fact, standard computation of the best reply correspondence for player 1 gives
B(n)

1 (s2)= {3} if s2 > 3 and B(n)
1 (s2)= {3 − 1

n } if s2 = 3. For player 2 the best reply

correspondence is given by B(n)
2 (s1)= {3}. So the unique pure Nash equilibrium for the

n-th approximating game is s(n) := (s(n)
1 , s(n)

2 )= (3− 1
n , 3), which is also immediately

obvious. Since (s(n)
1 , s(n)

2 ) → (3, 3) and (q(n)
1 (s(n)), q(n)

2 (s(n)))= (3− 1
2n , 1+ 1

2n ) →
(3, 1) for n → ∞, it follows from Corollary 1 that (3, 3) is a pure Nash equilib-
rium profile for a game 
∗ with payoff profile q∗ : [0, 3] × [3, 4] → R

2 for which
q∗(s1, s2)= p(s1, s2) if s1 �= s2 (namely, by applying (10)) and q∗(3, 3)= (3, 1) (by
(11)). Thus, in the single discontinuity point (3, 3) the resolvent payoff profile q∗ pre-
scribes the psychologists to divide their patients according to the ratio 3:1. Of course,
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this could also have been observed in an ad hoc manner from the fact that (s(n)
1 , s(n)

2 )

is a pure Nash equilibrium for the n-th approximating game (or even in a blitz manner
from the fact that (p1, p2) has a single removable discontinuity at (3, 3)), but, again,
we point out that the present interpolation method has the appeal of being systematic.

We conclude this section by applying Theorem 1 to a simple situation with noncom-
pact action spaces, i.e., a situation to which the results in Simon and Zame (1990) do
not apply for another reason than the ones stated before.

Example 3 Consider a two-player game with action spaces S(n)
i := Si := Z+, i = 1, 2.

For n ∈ N we define as follows. Let q(n)
1 (s1, s2) := 1 if s1 ∈ {0, n} and q(n)

1 (s1, s2) := 0

otherwise. Let q(n)
2 (s1, s2) := 0. Let α

(n)
1 ∈ Prob(S1) be the probability measure

with support {0, n}, determined by α
(n)
1 ({0})= 1 − n−1 and α

{n}
1 ({n})= n−1. Also,

let α
(n)
2 be the probability measure ε0 concentrated at 0. Then for i = 1, 2 the

sequence {α(n)
i }n converges weakly to the probability measure βi := ε0. Trivially,

for every n ∈ N the pair (α
(n)
1 , α

(n)
2 ) is a mixed Nash equilibrium for the game


(n) := (1, 2, (S(n)
i )2

i=1, (q
(n)
i )2

i=1). Now

Lsngph q(n) = {(0, s2, 1, 0) : s2 ∈ Z+} ∪ {(s1, s2, 0, 0) : s1, s2 ∈ Z+, s1 �= 0}.

Hence, (6) amounts to q∗(s1, s2)= (0, 0) for s1 �= 0 and q∗(s1, s2)= (1, 0) for s1 = 0.
It is easy to see that (β1, β2)= (ε0, ε0) is indeed a mixed Nash equilibrium profile for
q∗ and that

∫
Z+ q(n)dα̃(n) = (1, 0)= ∫

Z+ q∗dβ̃ for all n ∈ N.

5 Proof of Theorem 1

Let {(q(n), α(n))}n be as in the statement of Theorem 1. We abbreviate by writ-
ing G(n) := {(s, q(n)(s)) : s ∈ supp α̃(n)}. Also, let Z stand for the compact set
	i∈I [−Ci , Ci ] ⊂ R

N , where Ci is as defined in (5). Let us define π(n)(A × B) :=
α̃(n)(A ∩ (q(n))−1(B)) for A ∈ B(S) and B ∈ B(Z); this completely determines the
product probability measure π(n) ∈ Prob(S × Z), because the measurable rectangles
A × B generate B(S × Z). Observe already that supp π(n) = G(n) for every n ∈ N

(apply Proposition 3).

Lemma 1 The sequence {π(n)}n contains a subsequence {π(n′)}n′ which converges
weakly to some limit probability measure π∗ ∈ Prob(S × Z), which is such that

supp π∗ ⊂ L ′ := LsnG(n) ⊂ Lsngphq(n) =: L .

Proof Let us prove that the sequence {π(n)}n is tight (see Sect. 2). First, by Theo-
rem 3.2 of Billingsley (1968) (see Lemma 3.4 of Aliprantis et al. 2006 for a proof in
the style of Aliprantis and Border 2006) the sequence {α̃(n)}n of product probabilities
converges weakly to the product probability β̃. Hence, the sequence {α̃(n)}n is tight
(apply the converse Prohorov theorem, see Sect. 2). Hence, for every ε > 0 there exists
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a compact Kε ⊂ S such that supn α̃(n)(S\Kε) ≤ ε. Define K ′
ε := Kε × Z ; this is a

compact set and by definition of π(n) we have π(n)((S × Z)\K ′
ε) = α̃(n)(S\Kε) ≤ ε.

This proves that {π(n)}n is tight. So the convergence result follows by Lemma 15.21
of Aliprantis and Border (2006), i.e., by Prohorov’s theorem as recalled in Sect. 2.
The final statement follows from Proposition 2. 	


To save on notation, we shall pretend from now on without loss of generality that
the sequence {π(n)}n converges as a whole to some π∗ ∈ Prob(S × Z).

Lemma 2 The probability measure π∗ can be decomposed as follows: there exists a
transition probability δ∗ : S → Prob(Z) such that π∗(A × B) = ∫

A δ∗(s)(B)β̃(ds)
for every A in B(S) and B in B(Z) Moreover, δ∗ can be chosen in such a way that

δ∗(s)(Ls) = 1 for every s ∈ S and δ∗(s)(L ′
s) = 1 for β̃-a.e. s ∈ S.

Proof Step 1: From Lemma 1 and the definition of weak convergence it follows that
β̃ is the S-marginal of π∗ (consider bounded continuous functions c(s, z) on S × Z
which do not depend on the variable z). For π∗ we can now invoke the disintegration
result as recalled in Sect. 2 to obtain a transition probability η∗ : S → Prob(Z) with
π∗(A × B) = ∫

A η∗(s)(B)β̃(ds) for all A and B. Then the above supp π∗ ⊂ L ′ gives
η∗(s)(L ′

s) = 1 for β̃-a.e. s in S, by the same Fubini–Tonelli result as used before (i.e.,
by Proposition III.2.1 in Neveu 1965). Explicitly, this means that there is a β̃-null set
M ⊂ S such that η∗(s)(L ′

s) = 1 for every s ∈ S\M .
Step 2: We finish the proof by modifying η∗ on the null set M . By formula (1), the

set L is closed, so it is certainly a B(S)⊗B(Z)-measurable subset of the Polish space
S × Z . Also, L has nonempty and compact s-sections by (3) and the compactness of
Z . So by the Kunugui–Novikov theorem in Brown and Purves (1973) there exists a
Borel measurable function q̂ : S → Z with q̂(s) ∈ Ls for every s ∈ S. The desired
transition probability δ∗ is now obtained by defining

δ∗(s)(B) :=

⎧
⎪⎨

⎪⎩

η∗(s)(B) if s ∈ S\M

1 if s ∈ M and q̂(s) ∈ B

0 if s ∈ M and q̂(s) �∈ B

Because M is β̃-null, replacing η∗ by δ∗ does not affect the identity established in
step 1 and δ∗(s)(Ls) = 1 holds for every s ∈ S by the construction of δ∗. 	


For s ∈ S we can interpret δ∗(s) as the conditional distribution of the payoff vec-
tor, given that s is the outcome of the players’ actions under the joint distribution
π∗ on action-payoff pairs. In the next lemma we take the corresponding conditional
expectation.

Lemma 3 For every s ∈ S the vector integral q∗∗(s) := ∫
Z z δ∗(s)(dz) ∈ Z defines

an element in co Ls. Moreover, the mapping q∗∗ : S → Z, thus defined, is measurable
and it has the following additional property:

q∗∗(s) ∈ co L ′
s for β̃ -a.e. s in S. (15)
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Proof The set Z is bounded, so for each s ∈ S the existence of the integral q∗∗
i (s) :=∫

Z zi δ
∗(s)(dz) for each i ∈ I is elementary. Moreover, the measurability of each map-

ping s �→ q∗∗
i (s) follows by Proposition III.2.1 in Neveu (1965). By a well-known

property of expectations (see Pfanzagl 1974), it follows directly from Lemma 2 that
q∗∗(s) ∈ co Ls for every s ∈ S and that (15) holds. 	

Lemma 4 a. For every i ∈ I there exists Ni in B(Si ), βi (Ni ) = 0, such that for
every si ∈ Si\Ni

∫

S

q∗∗
i (s)β̃(ds) ≥

∫

S−i

q∗∗
i (si , s−i )β̃−i (ds−i ). (16)

b. limn→∞
∫

S(n) q(n)
i dα̃(n) = ∫

S q∗∗
i dβ̃ for every i ∈ I .

Proof Fix i ∈ I . Let B ∈ B(Si ) be arbitrary. Then, obviously, for every n ∈ N

α
(n)
i (B)

∫

S

q(n)
i dα̃(n) ≥

∫

B×S−i

q(n)
i dα̃(n), (17)

because α(n) is a mixed Nash equilibrium profile with α
(n)
i (S(n)

i ) = 1. We claim that

βi (B)

∫

S

q∗∗
i dβ̃ ≥

∫

B×S−i

q∗∗
i dβ̃. (18)

First, suppose in addition that βi (∂ B)=0. Then also π∗(∂ B × S−i × Z)=βi (∂ B)=0.
The definition of π(n) gives

∫

B×S−i

q(n)
i dα̃(n) =

∫

B×S−i ×Z

zi π(n)(d(s, z))

for every n ∈ N. So by Proposition 1, applied to both (s, z) �→ zi and (s, z) �→ −zi ,
we obtain

lim
n

∫

B×S−i

q(n)
i dα̃(n) =

∫

B×S−i ×Z

zi π∗(d(s, z)).

Observe that

∫

B×S−i ×Z

zi π∗(d(s, z)) =
∫

B×S−i

⎡

⎣
∫

Z

ziδ
∗(s)(dz)

⎤

⎦ β̃(ds) =
∫

B×S−i

q∗∗
i dβ̃,

by Lemmas 2 and 3. Combined with the previous line this already proves part b by
setting B := Si . We also get limn α

(n)
i (B) = βi (B) (apply part 7 of Theorem 15.3 in

123



An equilibrium closure result for discontinuous games 63

Aliprantis and Border (2006) or apply Proposition 1). So (18) follows from (17) for
such special B.

The next step in proving part a consists of proving the validity of (18) for any
closed B ⊂ Si . If B is closed we let Bε be the set of all s ∈ Si whose distance to
B is (strictly) less than ε > 0. The boundaries of the sets Bε, ε > 0, which are all
disjoint, can have positive βi -measure for at most countably many ε. So for all other
ε the set Bε is of the type for which (18) was shown to hold in the previous step. By
taking a countable sequence {εk}k of these, with εk → 0, the claimed inequality (18)
then follows from the fact that the intersection of all Bεk , k ∈ N is the set B (this is
true by the closedness of B). As our final step, we extend the validity of (18) to any
B ∈ B(Si ). The probability measure βi on Si is normal by Theorem 12.5 of Aliprantis
and Border (2006) (note that in Theorem 1.1 of Billingsley (1968) this property is
called regularity). So, since B is Borel, there exists for every ε > 0 a closed subset
Fε of B with βi (B\Fε) < ε. By the above, for each ε > 0 the inequality (18) holds
if we replace B by the closed set Fε ; hence the validity of (18) for B itself follows
by a simple approximation argument. This concludes the proof of the claim above:
we know now that (18) holds for any Borel set B ∈ B(Si ). From this, (16) follows
immediately by standard measure theory. 	

Lemma 5 For every i ∈ I the multifunction s �→ argminz∈Ls

zi has a measurable
selection q̂i : S → Z.

Proof By formula (1) and compactness of Z , the set Ls is a nonempty and compact.
Hence, the set argminz∈Ls

zi is nonempty for every s ∈ S (apply the Weierstrass theo-
rem). Fix i ∈ I and let φi (s) := inf z∈Ls zi . Using compactness of Z , it is standard to
prove that φi is upper semicontinuous on S. Also, by formula (1), the set L is closed
in S × Z . Hence, {(s, z) ∈ L : zi ≤ φi (s)} is closed and clearly its section at s, which
is argminz∈Ls

zi , is compact for every s ∈ S. The stated result therefore follows from
the Kunugui-Novikov measurable selection theorem in Brown and Purves (1973). 	


Final steps of the proof of Theorem 1: construction of a modification of q∗∗. We shall
follow the reasoning in Simon and Zame (1990) to produce a suitable modification
of q∗∗ as defined in Lemma 3. Recall the meaning of the βi -null sets Ni , i ∈ I from
Lemma 4. For each i ∈ I , let q̂i be the measurable selection of s �→ argminz∈Ls

zi

whose existence is guaranteed by Lemma 5. For i ∈ I let Ui ⊂ S be the Borel set of
all s ∈ S for which si ∈ Ni but s j �∈ N j for all j �= i . Let U := ∪k∈I U k . Then U is
evidently β̃-null. We define the Borel measurable and bounded function q∗ : S → Z ,
with q∗(s) ∈ Ls for every s ∈ S (use Lemmas 3 and 5), as follows:

q∗(s) :=
{

q∗∗(s) if s �∈ U ,

q̂ i (s) if s ∈ Ui ⊂ U , i ∈ I

Note that this function is β̃-almost everywhere equal to q∗∗, so by Lemma 3 it has
q∗(s) ∈ (Lsngph G(n))s for β̃-a.e. s in S. This proves (7). Fix any i ∈ I . Because
every U k is a β̃-null set, we have the identity

∫
S q∗

i dβ̃ = ∫
S q∗∗

i dβ̃. Together with
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Lemma 4.b, this proves (8). Moreover, this identity also implies that to prove (6) we
must actually prove

∫

S

q∗∗
i dβ̃ ≥

∫

S−i

q∗
i (si , ·)dβ̃−i =

∫

Usi

q∗
i (si , ·)dβ̃−i +

∫

S−i \Usi

q∗∗
i (si , ·)dβ̃−i . (19)

for any fixed si ∈ Si . Here, Usi denotes the section of U at si , i.e., set of all s−i ∈ S−i

such that (si , s−i ) ∈ U . We distinguish between two cases:
Case 1: si �∈ Ni . In this case

∫
S q∗∗

i dβ̃ ≥ ∫
S−i

q∗∗
i (si , ·)dβ̃−i holds by Lemma 4.

Also, in this case s−i ∈ Usi is equivalent to (si , s−i ) ∈ ∪k �=iU k . So Usi is β̃−i -null,
because β̃−i has each βk, k �= i , as one of its factors. Then (19) follows directly from
the previous inequality.

Case 2: si ∈ Ni . In this case Usi is precisely the set of all s−i ∈ S−i such that
(si , s−i ) ∈ Ui . We note that s−i �∈ Usi , combined with the previous line, means
that there exists j �= i such that s j ∈ N j . Because β̃−i has β j as one of its factors,
this causes S−i\Usi to β̃−i -null. In particular, the second integral on the right in (19)
is zero. By the definition of the resolvent payoff profile q∗ and the above identity
Usi = Ui

si
, the first integral on the right in (19) equals

∫
Ui

si
q̂ i (si , ·)dβ̃−i , which is also

equal to
∫

S−i
q̂ i (si , ·)dβ̃−i by β̃−i (S−i\Ui

si
) = 0, as just demonstrated. So (19) now

follows from q̂i (s) ∈ argminz∈Ls
zi (by Lemma 5) and q∗∗(s) ∈ Ls for all s ∈ S (by

Lemma 3), which imply q̂i
i ≤ q∗∗

i . 	

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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