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Abstract It is pointed out that Corollary 1 in a recent paper by Khan et al. (Int J
Game Theory 34:91–104, 2006), presented there as an extension of the Dvoretzky–
Wald–Wolfowitz theorem, is a special case of Lyapunov’s theorem for Young measures
(Balder in Rend Instit Mat Univ Trieste 31 Suppl. 1:1–69) It is also pointed out that
Theorems 1–4 in Khan et al. (Int J Game Theory 34:91–104, 2006) follow from a
single strong purification per se result that is already contained, as an implementation
of that Lyapunov theorem for Young measures, in the proof of Theorem 2.2.1 in Balder
(J Econ Theory 102:437–470, 2002).

Keywords Equilibrium distribution · Games with a continuum of players · Games
with incomplete information · Games with private information · Large games ·
Lyapunov’s theorem · Nash equilibrium · Purification · Young measures

1 Introduction

A well-known method to establish the existence of pure Nash equilibria for games
with a measure space of players goes by means of the following proof-scheme:

Step 1: establish the existence of a mixed equilibrium.
Step 2: purify the mixed equilibrium, established in Step 1, by some purification

device.
So Step 2 of the scheme concerns the purification of mixed equilibrium profiles,

as opposed to what we shall call purification per se, that is to say, the purification of
general mixed profiles. Nevertheless, for the execution of Step 2 one usually employs
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74 E. J. Balder

a purification device that has much greater generality. In the important situation where
the measure space of players is non-atomic, such devices come in different but closely
related forms, such as Lyapunov’s theorem, Aumann’s identity or the purification the-
orem by Dvoretzky, Wald and Wolfowitz, which extends Lyapunov’s theorem (these
results are recalled in the appendix to this paper—see Theorems A.1, A.2 and A.4).
For instance, the important paper by Schmeidler (1973) uses Aumann’s identity as its
purification device. In Balder (2000, Theorem 5.10) the present author introduced a
purification device that he called Lyapunov’s theorem for Young measures (it is recalled
below in Theorem 2.1). This result stems from Balder (1984, Theorem 1′), a result
that already contains both the purification theorem of Dvoretzky et al. (1950) and
Aumann’s identity [see also (Balder 1985)]. Employing this purification device, the
above two-step proof-scheme was applied in Balder (2002) to obtain Theorem 2.2.1
therein (for the reader’s convenience this result is also recalled in the appendix—see
Theorem A.5). The generality of this pure equilibrium existence result and its com-
panion mixed equilibrium existence result (this is Theorem 2.1.1 of Balder (2002),
which corresponds to Step 1 in the above scheme) is known to be considerable. This is
not only due to a very general choice of topologies, but also due to the fact that Balder
(2002) uses a continuum game model that is in internal–external form. This formal
concept stems from Balder (1995). Games in internal–external form would appear to
be a quite natural extension of the concept of games in strategic form and a large variety
of games with a measure space of players/types is known to be representable in that
form (Balder 1991, 1995, 1996, 1999, 2002); see also Angeloni and Martins-da-Rocha
(2005) for recent discoveries of such representations. Martins-da-Rocha and Topuzu
(2006) have recently extended the scope of the internal–external form model even
further: by introducing artificial payoffs of a generalized Shafer-Sonnenschein vari-
ety (Shafer and Sonnenschein 1975) they have shown that the existence results from
Balder (2002) can be extended to continuum games with non-ordered preferences.

In a recent paper Khan et al. (2006) gave four purification results for games with
finitely many actions and a non-atomic measure space of players (or players’ types).
While their Theorems 1–2 concern purification per se, their Theorems 3–4 concern
the purification of mixed equilibrium profiles as in Step 2 of the above proof-scheme.
In the last line of Khan et al. (2006) its authors express the hope that their results “may
have further application to more general settings”, among which they include Balder
(2002) and its references. The purpose of this paper is to point out that precisely the
contrary is true: when specialized to finite action spaces, certain results in Balder (2002)
already imply those of Khan et al. (2006). More precisely, we show the following:

(i) The principal purification device of Khan et al. (2006), presented as an exten-
sion of the original Dvoretzky–Wald–Wolfowitz theorem (see Theorem A.2 in
the appendix), is a special case of Lyapunov’s theorem for Young measures,
i.e., the purification device used in Balder (2002).

(ii) The implementation of Lyapunov’s theorem for Young measures in a game
context, given in Step 4 on p. 465 of Balder (2002), already constitutes a very
general result on purification per se. It implies the results on strong purification
per se in (Khan et al. 2006, Theorems 1–2) and also improves the purification
results in (Khan et al. 2006, Theorems 3–4).
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Purification in atomless finite-action games 75

In Balder (2002), a paper focusing on existence, the above-mentioned implementation
of Lyapunov’s theorem for Young measures was only concerned with the purification
of mixed equilibrium profiles, namely in Step 4 on (Balder 2002, p. 465). However,
this purification device is so general as to cause Step 4 on (Balder 2002, p. 465) to
apply also to the purification of an arbitrary mixed profile, i.e., to purification per se.
Actually, it turns out that not only this Step 4 in the proof of Theorem 2.2.1 can be
applied to the models considered in Khan et al. (2006), but also that pure equilibrium
existence result itself; cf. Remark 3.2. So in addition this yields pure equilibrium exis-
tence in all four models studied in Khan et al. (2006) [recall that existence is an issue
not addressed at all in Khan et al. (2006)].

The setup of this paper is as follows. In Sect. 2 we recall Lyapunov’s theorem
for Young measures (Theorem 2.1) and show how (Khan et al. 2006, Corollary 1),
the principal tool of Khan et al. (2006), is its direct consequence (the latter result
is recalled in the appendix—see Theorem A.3). In Sect. 3 we state the implementa-
tion of Lyapunov’s theorem for Young measures in the internal–external form game
model, as found in (Balder 2002, p. 465, Step 4), as a separate and very general
result on purification per se. This is Theorem 3.1, which directly leads to Corol-
lary 3.1. Subsequently, in Sect. 4 we adopt the finite action space setting of Khan
et al. (2006) and demonstrate that Theorems 1–4 in Khan et al. (2006) all follow
from Corollary 3.1. We do this by showing that each of the four game-theoretical
models in Khan et al. (2006) can be reformulated as a game in internal–external
form.

Finally, we observe that all the purification devices discussed depend heavily on
Lyapunov’s classical theorem. An interesting development in recent years, following
path-breaking work in Kingman and Robertson (1968), has been the development of
suitable infinite-dimensional versions of Lyapunov’s theorem and concomitant puri-
fication results, based on non-injectivity conditions; see (Balder 2004; Khan and Sun
1996; Loeb and Sun 2006; Podczeck 2003; Podczek 2006; Rustichini and Yannelis
1991; Tourky and Yannelis 2001). For the present paper it is interesting to notice
that some of these cited papers reiterate well-known parts of Young measure theory,
apparently without realizing the connection.

2 Lyapunov’s theorem for Young measures

Let (T, T , µ) be a finite and non-atomic measure space and let S be a metric space
that forms a Borel-measurable subset of a complete separable and metric space (i.e.,
S is a metrizable Suslin space). Let B(S) be the usual Borel σ -algebra on S and let
Prob(S) be the set of all probability measures on (S,B(S)). Recall that the support
supp ν of a probability measure ν ∈ Prob(S) is defined as the intersection of all closed
sets in S of ν-measure 1 (equivalently, supp ν is the complement of the union of all
open ν-null sets).

Recall that a transition probability (also called Young measure) with respect to
(T, T ) and (S,B(S)) is a function δ : T → Prob(S) such that for every B ∈ B(S)
the real-valued function t �→ δ(t)(B) is T -measurable on T ; see (Ash 1972, 2.6
or Neveu 1965, III.2). Let R(T ; S) denote the set of all such transition probabili-
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ties. Clearly, such transition probabilities act as the natural mixed action profiles in a
game-theoretical model (see Sect. 3).

Denote by M(T ; S) the set of all functions f : T → S that are measurable with
respect to (T, T ) and (S,B(S)). Such measurable functions will form the natural pure
action profiles in Sect. 3. For any f ∈ M(T ; S) the corresponding degenerate (or
Dirac) transition probability, denoted by ε f ∈ R(T ; S), is given by ε f (t)(B) := 1
if f (t) ∈ B and ε f (t) := 0 if f (t) �∈ B. As is well-known [see (Ash 1972, 2.6.2
or Neveu 1965, III.2)], together with the “starting measure” µ, any transition prob-
ability δ in R(T ; S) induces a product measure πδ := µ ⊗ δ on the product space
(T × S, T ⊗ B(S)); it is determined by

πδ(E × B) :=
∫

E

δ(t)(B)µ(dt), E ∈ T , B ∈ B(S).

Thus, for any T ⊗ B(S)-measurable function g : T × S → [0,+∞] one can define
the integral expression

Ig(δ) :=
∫

T ×S

g dπδ =
∫

T

⎡
⎣

∫

S

g(t, s)δ(t)(ds)

⎤
⎦µ(dt), (1)

with the usual extension Ig(δ) := Ig+(δ)− Ig−(δ) in case either g+ := max(0, g) or
g− := max(0,−g) is πδ-summable. See (Neveu 1965, III.2) for details about (1). For
a degenerate transition probability δ = ε f , as defined above, (1) gives in particular

Ig(ε f ) =
∫

T

g(t, f (t))µ(dt) =: Jg( f ).

Theorem 2.1 (Lyapunov’s theorem for Young measures (Balder 2000, Theorem
5.10) For d ∈ N let g := (g1, . . . , gd) : T ×S → R

d be T ⊗B(S)-measurable and let
δ ∈ R(T ; S) be such that I|g|(δ) < +∞, with |g(t, s)| := (

∑
j |g j (t, s)|2)1/2. Then

there exists a function f : T → S, measurable with respect to (T, T ) and (S,B(S)),
such that

(i) Ig j (δ) = Jg j ( f ) for j = 1, . . . , d,
(ii) f (t) ∈ supp δ(t) for µ-almost every t in T .

Similar versions of part (i), which is stated in terms of so-called integral function-
als, have already been known for a considerable amount of time; for instance, see
Theorem 3 on (Berliocchi and Lasry 1973, p. 153) or Theorem 1′ on (Balder 1984,
p. 466). It should be pointed out that it is not hard to deduce part (ii) from part (i)
by adding the characteristic function g0 := 1G of the graph G of the multifunc-
tion t �→ supp δ(t) to the collection g1, . . . , gd . See also Remark 2.2. Viewed in
this way, Theorem 2.1 can be said to be just a reformulation of Theorem 1′ in Balder
(1984) [or of (Berliocchi and Lasry, 1973, Theorem 3) if

∑
j g j (t, s) has an additional
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Purification in atomless finite-action games 77

inf-compactness property in the variable s—that property certainly holds when S is a
finite set], provided that the g j (t, ·) are in addition lower semicontinous, as they are
automatically when S is a finite set.

Remark 2.1 By definition, the d identities in (i) of the above Lyapunov theorem for
Young measures mean

∫

T

⎡
⎣

∫

S

g j (t, s)δ(t)(ds)

⎤
⎦µ(dt) =

∫

T

g j (t, f (t))µ(dt), j = 1, . . . , d.

Observe that an apparently more general formulation would have finitely many sets
C1, . . . ,Cl in T , finitely many finite and non-atomic measures µ1, . . . , µm on (T, T )
and the following identities:

∫

Ci

⎡
⎣

∫

S

g j (t, s)δ(t)(ds)

⎤
⎦µk(dt) =

∫
Ci

g j (t, f (t))µk(dt),

(i, j, k) = (1, 1, 1), . . . , (l, d,m).

Such a formulation of part (i) is reminiscent of the original Dvoretzky–Wald–
Wolfowitz purification device. However, observe that this kind of generalization of
Theorem 2.1 is gratuitous, because it is already contained in Theorem 2.1 itself: indeed,
the above formulation follows if we apply Theorem 2.1 to g := (g1,1,1, . . . , gl,d,m),
with gi, j,k(t, s) := 1Ci (t)g j (t, s)φk(t). Here 1Ci is the characteristic function of Ci

and φk := dµk/dµ stands for any fixed version of the Radon–Nikodym derivative of
µk with respect to the sum measure µ := ∑m

k=1 µk , which is also non-atomic.1

Remark 2.2 The above setup is slightly less general than in Balder (2002), where S
is merely a completely regular Suslin space. However, in Balder (2002) an instru-
mental metric ρ on S was introduced, thanks to its compactness conditions (Balder
2002, p. 440) (see also Balder 2000). The ρ-topology is weaker than the original,
completely regular topology [hence, (S, ρ) is metrizable Suslin] and yet it coincides
with the latter on all compact subsets of S. The role played by this metric ρ has been
incorrectly represented in the statement of Lyapunov’s theorem for Young measures
in Balder (2000, 2002): complete regularity of the Suslin space S is enough for its
part (i), but metrizability of S (via a metric such as ρ) is needed for its part (ii). That
is because measurability of G := {(t, s) ∈ T × S : s ∈ supp δ(t)} can only be
ensured if S is metrizable. Indeed, regardless of metrizability of S, the multifunction
t �→ supp δ(t) is measurable in the sense of (Castaing and Valadier 1977, III.10): for
any open O ⊂ S the set {t ∈ T : supp δ(t) ∩ O �= ∅} equals {t ∈ T : δ(t)(O) �= 0},
which is T -measurable. However, to conclude from this that G is measurable with
respect to T ⊗ B(S) requires that S is metrizable (see Castaing and Valadier 1977,
III.13).

1 Actually, any σ -finite measure is equivalent, in the sense of mutual absolute continuity, to a finite measure,
so the above easily extends further to non-atomic measures µk that are σ -finite.
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78 E. J. Balder

The author is indebted to F. Martins-da-Rocha for pointing this out.

When S is a finite set, Theorem 2.1 has the following specialization:

Corollary 2.1 Suppose that the set S is finite. Let g := (g1, . . . , gd) : T × S → R
d

be such that g(·, s) is µ-integrable for every s ∈ S and let δ ∈ R(T ; S). Then there
exists a T -measurable function f : T → S such that

(i) Ig j (δ) = Jg j ( f ) for j = 1, . . . , d,
(ii) f (t) ∈ supp δ(t) = {s ∈ S : δ(t)({s}) > 0} for µ-almost every t in T ,

(iii) µ⊗ δ |S = µ( f −1(·)).
Here µ⊗ δ |S denotes the marginal measure πδ(T × ·), induced by πδ = µ⊗ δ on S.
This corollary follows from Theorem 2.1 by adding the finitely many characteristic
functions gs̄ : (t, s) �→ 1{s̄}(s), with s̄ ∈ S, to the already given finitely many func-
tions g1, . . . , gd , because (1) immediately gives Igs̄ (δ) = µ(T × {s̄}) and Jgs̄ ( f ) =
µ( f −1(s̄)). From this we obtain µ(T × B) = µ( f −1(B)) for every B ⊂ B(S) = 2S

(observe that this is where finiteness of S is used). By Remark 2.1 and Corollary 2.1 it
is evident that Corollary 1 of Khan et al. (2006), claimed to be a result proven for the
first time on (Khan et al. 2006, p. 3), is contained in Theorem 2.1 (see Theorem A.3
in the appendix). Similarly, it can be demonstrated that Theorem 2.1 [and also its pre-
cursor (Balder 1984, Theorem 1′)—see also (Balder 1985)] extends the purification
result of Dvoretzky et al. (1950). In Khan et al. (2006) it is also stated that a first
but unproven version of such a result figures in Theorem 4 of Milgrom and Weber
(1985); however, see our earlier comments regarding the earlier papers (Balder 1984;
Berliocchi and Lasry 1973).

3 A purification result from Balder (2002)

Recall from Sect.1 that Step 2 of our introductory proof-scheme was executed in
(Balder 2002, Step 4, p. 465), in the context of a game in internal–external form,
by implementing the purification device Theorem 2.1 [the latter figures there as
Theorem 4.2.3 in Balder (2002)]. The concept of a game in internal–external form
stems from Balder (1995). For models with a measure space of players it would ap-
pear to be a quite natural development of the classical notion of a strategic form
game. To realize this more keenly, it should be kept in mind that for non-discrete T
the mapping (t, f ) �→ ( f (τ ))τ �=t has very bad measurability properties; see (Balder
2000).

In this section we shall formulate, in a simplified version of the model presented
in Balder (2002), this Step 4 in Balder (2002) in the form of an independent result
about purification per se. Of course, for this we only need to adopt the measurabil-
ity assumptions made in Sect. 2.2 of Balder (2002). That is to say, the topological
assumptions made in Sect. 2.2 of Balder (2002), which serve to establish mixed equi-
librium existence by means of a fixed point argument and which do not intervene in
that Step 4, need not be checked explicitly in the present papers, except for Remark 3.2.
As in Sect. 2, let (T, T , µ) be a finite and non-atomic measure space; here it is the
set of players or players’ types (in the latter case interpretation may differ from what
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Purification in atomless finite-action games 79

is presented below). To stay in touch with Balder (2002), we observe that the model
presented here is a special case of the one considered there, because, in the notation
of (Balder 2002, Assumption 2.2.3), the present paper only uses T̂ := T and T̄ := ∅.
Further, we observe that in this paper all social feasibility aspects of Balder (2002)
have been left out (i.e., trivialized). Observe also that for the purification results in the
present paper the measure space (T, T , µ) does not have to be taken to be separable,
because for purification per se one essentially considers a single (but arbitrary) mixed
action profile; this single profile generates a countably generated sub-σ -algebra of T ,
to which we can apply a trick introduced in (Castaing and Valadier 1977, p. 78)—see
Remark 4.2 in Balder (1999) for the details. Just as in Sect. 2, we suppose that S is a
Borel-measurable subset of a complete separable metric space. In the terminology of
Balder (1995, 2002), S is the action universe. By Remark 2.2.1 (v) of Balder (2002),
we do not need any additional vectorial structure for our action universe S.

For every t ∈ T let St ⊂ S be a non-empty action set such that 	 : t �→ St has a
measurable graph; the latter is denoted by gph 	 := {(t, s) ∈ T × S : s ∈ St }. This
is the measurability part (iii) of Assumption 2.2.3 in Balder (2002). Just as in Balder
(2002), by R	 we denote the set of all δ ∈ R(T ; S) with δ(t)(St ) = 1 for µ-a.e. t
in T and by S	 the set of all f ∈ M(T ; S) with f (t) ∈ St for µ-a.e. t in T . The
set R	 constitutes the collection of all feasible mixed action profiles for our game
model. Likewise, S	 forms the set of all feasible pure action profiles. Observe that
the non-emptiness of S	 (whence of R	) is ensured by the von Neumann–Aumann
measurable selection theorem (Castaing and Valadier 1977, III.22).

Let m ∈ N. For every t ∈ T let Ut : St × R
m → [−∞,+∞] be player t’s payoff

function. Following (Balder 1995), we could also restrict ourselves to a suitably cho-
sen Borel-measurable subset Y ⊂ R

m and consider Ut : St × Y → [−∞,+∞], but
in this section we shall not implement this extension, because it is rather obvious—
see Sects. 4.2 and 4.3 for such implementations. We suppose that for every y ∈ R

m

the function (t, s) → Ut (s, y) is measurable with respect to the trace σ -algebra
(T ⊗ B(S)) ∩ gph 	; note that this is the measurability part (ii) of Assumption 2.2.6
in Balder (2002). We shall say that the payoffs are integrably bounded on gph 	 if
for every y ∈ R

m there exists a µ-integrable ψy : T → R with |Ut (s, y)| ≤ ψy(t)
for all t ∈ T and s ∈ St . This condition is not needed for all results below—it will
be stated explicitly when we need it. Evidently, when the set S is finite and when
St = S for all t , as will be the case in Sect. 4, such integrable boundedness on gph 	
amounts to t �→ Ut (s, y) being µ-integrable for every s ∈ S and y ∈ R

m . Further,
let g1, . . . , gm : gph 	 → R be measurable with respect to (T ⊗ B(S)) ∩ gph 	
and such that for every i = 1, . . . ,m there exists a µ-integrable ψi : T → R

with |gi (t, s)| ≤ ψi (t) for all t ∈ T and s ∈ St ; this is the measurability/inte-
grability part of Assumption 2.2.4 in Balder (2002) and all remaining measurability
assumptions in Balder (2002) hold for obvious or trivial reasons. It is evident that
any (T ⊗ B(S)) ∩ gph 	-measurable function g : gph 	 → R can be extended
automatically to a T ⊗ B(S)-measurable function ĝ : T × S → R by setting

ĝ :=
{

g on gph 	,

0 on (T × S)\gph 	
(2)
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80 E. J. Balder

We define the mixed and pure externality mappings e : R	 → R
m and d : S	 → R

m

by

e(δ) := (
Ig j (δ)

)m
j=1, d( f ) := e(ε f ) = (

Jg j ( f )
)m

j=1. (3)

In this general model player t’s expected payoff under the feasible mixed action profile
δ ∈ R	 is understood to be

∫
St

Ut (s, e(δ))δ(t)(ds); likewise, his/her payoff under the
pure action profile f ∈ S	 is Ut ( f (t), d( f )). In the present paper certain relevant
comments in Balder (2000, 2002) about proper modeling in continuum games come
down to the following. Each fixed player t forms a singleton, so, rather roughly, he/she
can be said to have µ-measure zero. Therefore, under a given profile δ, any deviations
from the assigned mixed action δ(t) cannot influence the vector e(δ) that is used in
this paper, because each component of e(δ) is evaluated as an integral over (T, T , µ).

We shall say that the pure action profile f ∈ S	 is an internal–external-stable
purification of δ ∈ R	 if

(i) d( f ) = e(δ) (external stability),
(ii) f (t) ∈ supp δ(t) for µ-a.e. t in T (internal stability).

This notion received no identifying name in Balder (2002), but it clearly functions
there on p. 465. External stability means that for each player in the non-atomic mea-
sure space T the influence of the totality of his/her opponents (“externality”) does not
change if the mixed action profile δ is changed into ε f . Similarly, internal stability
indicates that any player t’s own action under the pure action profile f can maintain
any desirable level of payoff that is already achieved by his/her own mixed action
under the profile δ. In this model a pure Cournot–Nash equilibrium profile is defined
as a pure action profile f ∈ S	 such that

f (t) ∈ argmaxs∈St
Ut

(
s, d( f )

)
for µ-a.e. t in T . (4)

Also, a mixed Cournot–Nash equilibrium profile is defined to be a mixed action profile
δ ∈ R	 such that

δ(t)
(
argmaxs∈St

Ut
(
s, e(δ)

)) = 1 for µ-a.e. t in T .

See (Balder 1995) for more motivating details. The following properties of internal–
external stable purifications, although elementary, will turn out to be meaningful.

Remark 3.1 Suppose that f ∈ S	 is an internal–external-stable purification of δ ∈
R	 . Then the following hold:

(i) Ut (s, d( f )) = Ut (s, e(δ)) for every t ∈ T and s ∈ St .
(ii) If δ is a mixed Cournot–Nash equilibrium profile, then f is a pure Cournot-Nash

equilibrium profile.
(iii) f can always be selected in such a way that aggregate payoff is conserved:

∫

T

Ut
(

f (t), d( f )
)
µ(dt) =

∫

T

⎡
⎣

∫

S

Ut
(
s, e(δ)

)
δ(t)(ds)

⎤
⎦µ(dt),

123



Purification in atomless finite-action games 81

provided that the payoffs are integrably bounded on gph 	 in the sense defined above.

Here (i), (ii) are immediate and (iii) follows by applying Remark 2.1 to an extension,
in the sense of (2), of the function (t, s) → Ut (s, e(δ)). If so desired, one could also
guarantee additional (iii)—like identities for related functions, as long as there are only
finitely many of them. Thus, for instance, in a proof in (Balder 1995, p. 91) the above
identity is used, but with arctan Ut instead of Ut to remove any needs for integrable
boundedness. Below, in Corollary 3.1, we shall encounter another instance of this.

With these definitions from Balder (1995, 2002) and the additional new terminol-
ogy in place, the following purification result is as contained in Step 4 on (Balder
2002, p. 465).

Theorem 3.1 Every mixed action profile in R	 has an internal–external-stable puri-
fication in S	 .

Even without any consultation of Balder (2002) this is very easy to deduce from The-
orem 2.1: just extend the g j of the game model as in (2) to all of T × S. Then apply
Theorem 2.1 to any δ ∈ R	 ; its part (i) takes care of external stability of the purifi-
cation f ∈ M(T ; S) and its part (ii) ensures feasibility of that f as well as internal
stability of the purification f . The above theorem directly implies the following result;
its part a follows by Remark 3.1 and its subsequent comments, and its part b follows
by invoking Corollary 2.1.

Corollary 3.1 a. Let {C1, . . . ,Cl} be a finite collection in T . To every mixed action
profile δ ∈ R	 there corresponds f ∈ S	 such that

(i) d( f ) = e(δ) and in particular Ut (s, d( f )) = Ut (s, e(δ)) for every t ∈ T and
s ∈ St ,

(ii) f (t) ∈ supp δ(t) for µ-a.e. t in T .
(iii) for i = 1, . . . , l

∫

Ci

Ut
(

f (t), d( f )
)
µ(dt) =

∫

Ci

⎡
⎣

∫

S

Ut
(
s, e(δ)

)
δ(t)(ds)

⎤
⎦µ(dt),

provided that the payoffs are integrably bounded on gph 	,
b. If in part a S is in addition supposed to be a finite set, then f can be chosen
in such a way that, next to (i)–(iii), one also has

(iv) µ⊗ δ |S= µ( f −1(·)).
Remark 3.2 As in part b of the above corollary, suppose that the action universe S is
finite for every t ∈ T . Then, as an additional bonus, Theorem 2.2.1 of Balder (2002),
of which an appropriate simplification has been stated in Theorem A.5 in the appen-
dix, gives that there exists a pure Cournot–Nash equilibrium profile for the above
game, provided that the following continuity condition holds: Ut (s, ·) is continuous
on R

m for every t ∈ T and s ∈ St . Indeed, by the finiteness of S this causes the three
conditions that are stated just before Theorem A.5 to be fulfilled.

123



82 E. J. Balder

4 Applications to four game models in Khan et al. (2006)

In this section we shall show that each of the four finite action game models in Sects. 3–
6 of Khan et al. (2006) can be reformulated in the internal–external form of the previous
section, so that Corollary 3.1 applies to it. It will also be shown that, as a consequence,
Theorems 1–4 in Khan et al. (2006) (or improvements of those results) follow from
Corollary 3.1. Each of the following three subsections deals with such a reformulation;
for the reader’s benefit, the first reformulation is extensive, because it would appear
that it has not been presented before in the literature. The second and third subsec-
tions are shorter, because the pertinent reformulations are more direct and well-known
(Balder 1991, 1995).

4.1 Games with incomplete information in Milgrom–Weber’s sense

We begin by describing a model introduced by Milgrom and Weber (1985), as extended
by the present author Balder (1988) to measurable type spaces. This model is as used
in Sect. 3 of Khan et al. (2006), although our notation is a little different.

Let I be a set of l players 1, . . . , l; each player i has a finite action set Ai and
a measurable space (�i ,Fi ) of types. Let �0 := {ω01, . . . , ω0m} be a finite set of
states of nature (commonly observable). Also, let A be the Cartesian producti∈I Ai .
Since A is finite, it can be represented as A := {a1, . . . , a p}, where each aq is a vec-
tor: aq = (aq

1 , . . . , aq
l ). Likewise, we define � := i∈I�i . This space is equipped

with the product σ -algebra F := ⊗i∈I Fi . Let η be a given probability measure on
(�0 × �,F0 ⊗ F). We denote by η(·;ω0k) the conditional probability on (�,F)
under η, given that the state ω0k ∈ �0 has been realized. Thus, we have η(·;ω0k) :=
η({ω0k}×·)/µ0k , whereµ0k := η({ω0k}×�) is the probability of the stateω0k (we can
suppose without loss of generality that each µ0k is strictly positive or else remove the
corresponding ω0k from the set �0). We suppose that the following conditional inde-
pendence condition from Milgrom and Weber (1985) is met: for every k, 1 ≤ k ≤ m,
the conditional probability η(·;ω0k) is equal to the product µk := ×i∈Iµ

k
i of its mar-

ginal probabilities µk
i := ηi (· × �−i ;ω0k) on the respective type spaces (�i ,Fi ).

Here �−i :=  j∈I, j �=i� j follows the standard abusive notation in game theory that
will be applied frequently. Thus, we are also free to write aq = (aq

i , aq
−i ), etc. We

shall suppose that µk
i is non-atomic for every k, 1 ≤ k ≤ m and i ∈ I .

In this model a mixed strategy for player i ∈ I is a transition probability δi ∈
R(�i ; Ai ); see section 2 for this definition. Of course, then a pure strategy for her/him
is a function fi ∈ M(�i ; Ai ), that is to say, a function measurable with respect to
(�i ,Fi ) and (Ai ,B(Ai )). The vectors in i∈I R(�i ; Ai ) will be called mixed strat-
egy profiles; similarly, i∈I M(�i ; Ai ) is the set of all pure strategy profiles. Let
ui : A×�0 ×�i → R be the payoff function of player i ∈ I ; for every q, 1 ≤ q ≤ p,
and k, 1 ≤ k ≤ m, the function ui (aq , ω0k, ·) is supposed to be Fi -measurable and
integrable with respect to the marginal probability η(�0 × · ×�−i ) = ∑m

k=1 µ0kµ
k
i

on (�i ,Fi ). Thus, for any mixed strategy profile (δ1, . . . , δl) the Bayesian-expected
payoff for player i ∈ I , given by
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Pi (δ1, . . . , δl) :=
m∑

k=1

µ0k

p∑
q=1

∫

�

ui
(
aq , ω0k, ωi

)
δi (ωi )({aq

i }) j∈I, j �=iδ j (ω j )

({aq
j })µk(dω)

=
m∑

k=1

µ0k

p∑
q=1

 j∈I, j �=i
(
µk

j ⊗ δ j
)(
� j × {aq

j }
)

∫
�i

ui
(
aq , ω0k, ωi

)
δi

(
ωi )({aq

i })µk
i (dωi ),

is well-defined.
We shall now reformulate the above Milgrom–Weber type game as a game that

is in internal–external form. To begin with, we set T := ∪i∈I�i (this is the “type
universe”) and we suppose without loss of generality that T is the disjoint union of
the sets �i (or else we should work with �̂i := �i × {i}, i ∈ I ). Thus, for every
t ∈ T there is a unique index i(t) ∈ I with t ∈ �i(t). The σ -algebra T is defined on
T in the obvious way: E ∈ T if and only if E ∩ �i belongs to Fi for every i ∈ I ;
this causes the restriction of (T, T ) to (�i ,Fi ) to be measurable. Also t �→ i(t) is
then T -measurable. For each i ∈ I let µi be the measure on (�i ,Fi ) that is given by
µi := ∑m

k=1 µ0kµ
k
i . To define the measure µ on (T, T ) we concatenate the measures

µi ; more precisely, we set µ(E) := ∑
i∈I µi (E ∩�i ) for any E ∈ T . This defines a

finite non-atomic measure µ.
Further, as our action universe we use S := ∪i∈I Ai ; of course, here it is a finite set.

For t ∈ T we define 	(t) := St := Ai(t) (in other words, St := � j if i(t) = j). This
gives gph 	 = ∪i∈I�i ×Ai . To a mixed strategy profile (δ1, . . . , δl) ini∈I R(�i ; Ai )

there corresponds obviously, by concatenation, an element δ of R	 : namely, we can
define

δ(t) := δi (t) if t ∈ �i , i ∈ I (5)

In a more condensed style, which we shall not follow, this could equivalently be stated
as δ(t) := δi(t)(t), or even as δ := δi(·). Instead, we prefer to denote this concatenated
transition probability by δ = δ1 � · · · � δl . Conversely, because of the above form
of gph 	, it is immediately seen that by restricting an action profile δ ∈ R	 to the
respective subsets �i , one obtains the profile (δ1, . . . , δl), with δi ∈ R(�i ; Ai ) given
by

δi (t) := δ(t) if t ∈ �i (6)

for any i ∈ I . We shall denote the latter by δi := δ |�i . In tandem, (5)–(6) allow us
to identify feasible mixed action profiles (in the sense of Sect. 3) with mixed strat-
egy profiles for the above Milgrom–Weber type game. In a completely similar way
the above considerations allow us to identify feasible pure action profiles with pure
strategy profiles.
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Next, define gi,q,k : gph 	 → R as follows:

gi,q,k(t, s) :=
{

1{aq
i }(s)φk

i (t) if t ∈ �i ,

0 if t ∈ T \�i .

Here φk
i stands for a fixed version of the Radon–Nikodym derivative dµk

i /dµi on�i .
As our mixed and pure externality mappings we choose

e(δ) := (
Ig1,1,1(δ), . . . , Igl,p,m (δ)

)
, d( f ) := e(ε f ) = (Jg1,1,1( f ), . . . , Jgl,p,m ( f )).

By (1) we have

ei,q,k(δ) := Igi,q,k (δ) :=
∫

T

[∫
S

gi,q,k(t, s)δ(t)(ds)

]
µ(dt)

=
∫

�i

δi (ωi )({aq
i })φk

i (ωi )µi (dωi ) = (
µk

i ⊗ δi
)(
�i × {aq

i }).

Therefore, our previous expression for the Bayesian-expected payoff gives

Pi (δ1, . . . , δl) =
m∑

k=1

µ0k

p∑
q=1

 j∈I, j �=i e j,q,k(δ)

∫

�i

ui
(
aq

i , aq
−i , ω0k, ωi

)
δi (ωi )

({aq
i })µk

i (dωi ).

This suggests the following internal–external reformulation of the payoff structure:
for t ∈ T , s ∈ St and (y1,1,1, . . . , yl,p,m) ∈ R

lpm define

Ut (s, y1,1,1, . . . , yl,p,m) :=
m∑

k=1

µ0k

p∑
q=1

 j∈I, j �=i y j,q,kui
(
s, aq

−i , ω0k, t
)
φk

i (t),

where i := i(t), whence t ∈ �i and St = Ai , so the definition makes sense. It is easy
to see that in this way the payoffs are integrably bounded on gph 	 = ∪i�i × Ai (note
that S := ∪i Ai is finite and recall our comment in Sect.3 about integrable bounded-
ness in that special situation). For the above mixed externality mapping we now have
that for every t ∈ T , s ∈ St , with i := i(t),

Ut
(
s, e(δ)

) =
m∑

k=1

µ0k

p∑
q=1

 j∈I, j �=i e j,q,k(δ)ui
(
s, aq

−i , ω0k, t
)
φk

i (t). (7)
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Therefore, it follows that for i = 1, . . . , l

Pi (δ1, . . . , δl) =
∫

�i

[∫
St

Ut
(
s, e(δ)

)
δ(t)(ds)

]
µ(dt), (8)

because the restriction of µ to the integration domain �i equals µi and because the
restriction of δ to�i is δi , with St = Ai for all t ∈ �i . As before, here (5)–(6) connect
(δ1, . . . , δl) on the left with its concatenation δ = δ1 � · · · � δl on the right. We are
now in a position to apply Corollary 3.1, using Ci := �i . By the above substitutions
this gives:

Theorem 4.1 For every mixed strategy profile (δ1, . . . , δl) there exists a pure strategy
profile ( f1, . . . , fl) with the following properties: for every i ∈ I

(i) fi (ωi ) ∈ supp δi (ωi ) for µi -a.e. ωi in �i ,
(ii) (µk

i ⊗ δi )(�i × ·) = µk
i ( f −1

i (·)) for every 1 ≤ k ≤ m and in particular

m∑
k=1

µ0k

p∑
q=1

 j∈I, j �=i
(
µk

j ⊗ δ j
)(
� j × {aq

j }
)
ui

(
ai , aq

−i , ω0k, ωi
)
φk

i (ωi )

=
m∑

k=1

µ0k

p∑
q=1

 j∈I, j �=iµ
k
j

(
f −1

j

({aq
j }

))
ui

(
ai , aq

−i , ω0k, t
)
φk

i (ωi ),

for every ωi ∈ �i and ai ∈ Ai ,
(iii) Pi (δ1, . . . , δl) = Pi (ε f1, . . . , ε fl ).

The following remark shows that (iii) above implies the so-called strong payoff equiv-
alence property in (Khan et al. 2006, Definition 1):

Remark 4.1 Because of (8), Theorem 4.1(ii) implies that for every i ∈ I

Pi
(
δ1, . . . , δi−1, δ

′
i , δi+1, . . . , δl

) = Pi
(
ε f1 , . . . , ε fi−1 , δ

′
i , ε fi+1 , . . . , ε fl

)
for every δ′i ∈ R(�i ; Ai ).

As a consequence, Theorem 4.1 implies Theorem 1 of Khan et al. (2006).

Remark 4.2 Given its proof in (Khan et al. 2006, p. 99–100), Theorem 1 of Khan
et al. (2006) is identical to Theorem 4.1. However, we can go a little further (more
extensions are indicated following this remark). One rather direct extension of the
model in this subsection is obtained by allowing for the following payoffs that are
a little more general: allow, instead of the above ui : A × �0 × �i → R, payoffs
ûi : A ×�0 ×� → R that have the following form

ûi
(
aq , ω0k, ω1, . . . , ωl

) = ui
(
aq , ω0k, ωi

)
 j∈Iχ

k,q
j (ω j ),
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where each function χk,q
i : �i → R+ is µk

i -integrable. To see that this is possible,

just “absorb” the new factors χk,q
i by defining µk,q

i via µk,q
i (E) := ∫

E χ
k,q
i dµk

i and
replace gi,q,k in the above proof by

gi,q,k(t, s) :=
{

1{aq
i }(s)φ

k,q
i (t) if t ∈ �i ,

0 if t ∈ T \�i .

Here φk,q
i (ωi ) := χ

k,q
i (ωi )φ

k
i (ωi ) is a fixed version of the Radon–Nikodym derivative

dµk,q
i /dµi . This leads to an extension of Theorem 4.1. The remaining details are left

to the reader.

Incidentally, it also follows by (8) that any Cournot-Nash equilibrium profile [mixed
or pure] in the sense of Sect. 3 can be identified with a Bayesian–Nash equilibrium strat-
egy profile [mixed or pure] in the present Milgrom–Weber type game (of course, the
vice versa reversal of this statement is also true). As already mentioned in Remark 3.2,
a major advantage of our approach is that, at the same time, we can also provide a pure
equilibrium existence result for the Milgrom–Weber type game, because of the above
reformulation of that game. Such existence is not discussed at all in Theorems 1 and 2
of Khan et al. (2006). By including other features of Theorem 2.2.1 in Balder (2002),
omitted here (e.g., inclusion of social feasibility) we could have pushed these results
(both for purification per se and existence) a little further. As observed in Khan et al.
(2006), a model à la Radner and Rosenthal (1982), as studied in Sect. 4 of Khan et al.
(2006), is a special case of the previous Milgrom–Weber model because it works with
a singleton set �0. For this reason it is evident that Theorem 2 of Khan et al. (2006)
follows from Corollary 3.1 and we shall not explicitly show it.

4.2 Non-atomic games in Schmeidler’s sense

Schmeidler’s model of a continuum game Schmeidler (1973), in the special form
treated in Sect. 5 of Khan et al. (2006), can be described by making some direct sub-
stitutions in the internal–external game model of Sect.3. Our present discussion will
be slightly more general than in Khan et al. (2006), to bring out the strong purification
aspect of an arbitrary mixed strategy (Sects. 5 and 6 in Khan et al. (2006) do not
address purification of arbitrary mixed strategies, as do its Sects. 3 and 4, but merely
purification of mixed equilibrium strategies). Let A be a finite set of actions. Let C ∈ T
be fixed, with µ(C) > 0 (in Khan et al. (2006) one has C = T and µ(T ) = 1). One
should think of C as the set of players who are, in a sense, the only essential players in
the game (i.e., actions chosen by “dummy players” in T \C do not influence any of the
players). For t ∈ T let ut : A×Prob(A) → [−∞,+∞] be player t’s payoff function.
We suppose that t �→ ut (a, ν) is T -measurable for every a ∈ A and ν ∈ Prob(A).
Then

t (δ) :=
∑
a∈A

ut
(
a, (µ⊗ δ)(C × ·)/µ(C))δ(t)({a})
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defines player t’s expected payoff under the mixed action profile δ. Corollary 3.1
implies the following result, which extends Theorem 3 of Khan et al. (2006).

Theorem 4.2 For every mixed strategy profile δ ∈ R(T ; A) there exists a pure strat-
egy profile f ∈ M(T ; A) with the following properties:

(i) µ(C ∩ f −1(·))/µ(C) = (µ⊗ δ)(C × ·)/µ(C) and in particular

ut (a, µ(C ∩ f −1(·))/µ(C)) = ut (a, µ⊗ δ(C × ·)/µ(C))

for every t ∈ T and a ∈ A,
(ii) f (t) ∈ supp δ(t) for µ-a.e. t in T ,

(iii)
∫

C t (δ)µ(dt)=∫
C t (ε f )µ(dt) and

∫
T \Ct (δ)µ(dt)=∫

T \Ct (ε f )µ(dt),
provided that t �→ ut (a, ν) is µ-integrable for every ν ∈ Prob(A).

(iv) for every δ′ ∈ R(C; A) and t ∈ T

t
(
ε f |T \C � δ′

) = t
(
δ |T \C � δ′

)
.

In (iv) we denote concatenations in the way introduced in Sect. 4.1 and (iii) states that
aggregate payoff is conserved by both C and T \C .

We apply Corollary 3.1 by making the following substitutions: we set S := A
and St := A for all t ∈ T . Also, for any ν ∈ Prob(A), we define �(ν) ∈ R

m by
�(ν) := (ν({a1}), . . . , ν({am})). Then Y := �(Prob(A)), the image of Prob(A)
under �, is precisely the unit simplex in R

m and � : Prob(A) → Y is a (continuous)
bijection. We define Ut : A × R

m → [−∞,+∞] by

Ut (a, y) :=
{

ut (a,�−1(y)) if y ∈ Y
0 if y ∈ R

m\Y

For this game the internal–external form obtains by

ut
(
a, (µ⊗ δ)(C × ·)/µ(C)) = Ut

(
a, e(δ)

)
with

e(δ) = �
(
(µ⊗ δ)(C × ·)/µ(C)) = (

Iga (δ)
)

a∈A,

where gā(t, a) := 1C (t)1ā(a)/µ(C). Observe here that Igā (δ) = (µ ⊗ δ)(C ×
{ā})/µ(C), similar to comments following Corollary 2.1.

Theorem 3 in Khan et al. (2006) works with C = T and is only stated for a mixed
equilibrium profile δ; then (i) and (ii) ensure that f is a pure equilibrium profile in our
setting by Remark 3.1(ii). Moreover, we observe that (Khan et al. 2006, Theorem 3)
requires ut (a, ·) to be continuous on Prob(A) for every t ∈ T , so that even more can
be said in that situation, because Remark 3.2 applies: so a pure equilibrium profile
actually exists in this model.

4.3 Non-atomic games in Mas-Colell’s sense

Also Mas-Colell’s model of a non-atomic game Mas-Colell (1984), as studied in
Sect. 6 of Khan et al. (2006) can be reformulated in internal–external form by making
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rather direct substitutions that were already explained in Balder (1991, 1996, 2002).
Actually, we discuss a somewhat more general version of this model.

Let A be a finite action set and let T an arbitrary set of real-valued functions on
A × Prob(A) that forms a Borel-measurable subset of a complete separable metric
space (think of such functions as the payoff functions, which are used here as players’
types; thus they “mask” the players and give them a degree of anonymity). This is
rather more general than Khan et al. (2006). Our condition for T is certainly met if it
is contained in the set C(A × Prob(A)) of all continuous functions on A × Prob(A)
and if T is measurable with respect to the Borel σ -algebra for the supremum norm on
C(A × Prob(A)); the model in (Khan et al. 2006, Sect. 6) is a further specialization
of this situation (it has T = C(A × Prob(A))). Let µ be a non-atomic probability
measure on T , the latter set being equipped with a σ -algebra T that has the following
property: for every a ∈ A and ν ∈ Prob(A) the evaluation functional u �→ u(a, ν) on
T is T -measurable (in particular, this is so in the above-mentioned special situation
with T ⊂ C(A × Prob(A))). A µ-compatible distribution over T × A is a probability
measure τ on T × A such that τ |T = µ. An equilibrium distribution over T × A is a
µ-compatible distribution τ such that τ(Bτ ) = 1, where

Bτ := {
(u, a) ∈ T × A : a ∈ argmaxa′∈Au(a′, τ |A)

}
.

The following facts, which connectµ-compatible distributions with mixed action pro-
files, were observed in Balder (1991, 1996, 2002):

(1) for every µ-compatible [equilibrium] distribution τ there exists δ ∈ R(T ; A),
with τ = µ⊗δ, that is a mixed [equilibrium] action profile in the sense of Sect. 3.

(2) if δ ∈ R(T ; A) is a mixed [equilibrium] action profile in the sense of Sect. 3,
then τ := µ⊗ δ forms a µ-compatible [equilibrium] distribution.

A µ-compatible distribution τ is said to be symmetrizable if it is of the form τ =
µ⊗ ε f for some f ∈ M(T ; A). With these substitutions and this terminology, appli-
cation of Corollary 3.1 immediately gives the following:

Theorem 4.3 For every µ-compatible distribution τ ∈ Prob(T × A), τ = µ ⊗ δ,
with δ ∈ R(T ; A), there exists a symmetrizable µ-compatible distributionµ⊗ ε f , for
f ∈ M(T ; A), with the following properties:

(i) µ( f −1(·))) = τ(T × ·),
(ii) f (t) ∈ supp δ(t) for µ-a.e. t in T .

As a consequence of (i) and (ii), if τ happens to be an equilibrium distribution [this
is a supposition in Theorem 4 of Khan et al. (2006)], then µ⊗ ε f is a symmetrizable
equilibrium distribution—see Remark 3.1(ii).

To see that this result follows by Corollary 3.1, we let Y and� be as in the previous
subsection. We set S := A and St := A for all t ∈ T . Following an idea of Balder
(1991, 1996) and (Balder 2002, Sect. 3.1) we set Ut (a, y) := t (a,�−1(y)) for any
t ∈ T , a ∈ A, y ∈ Y . Clearly, this gives the desired internal–external form

Ut (a, e(δ)) = t (a, µ⊗ δ|A)
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if we set e(δ) := �(µ ⊗ δ|A) = (µ(T × {a}))a∈A, noting that e(δ) = (Iga (δ))a∈A.
Here we use ga : (t, s) �→ 1{a}(s); see Remark 3.2. Note that we work here with
gph 	 = T × A, so we have R	 = R(T ; A) and S	 = M(T ; A). Finally, we
observe that the bonus mentioned in Remark 3.2 applies to the situation considered
in Theorem 4 of Khan et al. (2006): this means that a symmetrizable equilibrium
distribution actually exists there.

Acknowledgments The author is indebted to two anonymous referees for their very helpful and precise
remarks.

A Appendix

In this appendix we recall a number of results that were cited in the main part of this
paper. To begin with, recall that Lyapunov’s classical theorem (Lyapunov 1940) on
the range of a vector measure states the following:

Theorem A.1 (Lyapunov) For k = 1, . . . ,m let µk be a finite non-atomic measure
on (T, T ). Then the range of the vector measure (µk)

m
k=1, that is to say the set

R := {(
µ1(C), . . . , µm(C)

) : C ∈ T
}
,

is a convex, compact subset of R
m.

Dvoretzky et al. (1950) gave the following result.

Theorem A.2 (Dvoretzky, Wald, Wolfowitz) For k = 1, . . . ,m let µk be a finite
non-atomic measure on (T, T ). For j = 1, . . . , d let δ j : T → R+ be such that∑d

j=1 δ j (t) = 1 for every t ∈ T . Then there exists a decomposition {C1, . . . ,Cd} of
T into d disjoint measurable sets such that

∫

T

δ j dµk = µk(C j ) for j = 1, . . . , d and k = 1, . . . ,m.

This result extends Lyapunov’s theorem: observe footnote 1 and note that for any
E, D ∈ T and α ∈ (0, 1) the six functions γ 1D\E , γ 1D∩E , γ 1E\D , with γ = α and
γ = 1 − α form a measurable partition of unity, just as required in Theorem A.2.
From an application of this result it easily follows that α(µk(D))k + (1 −α)(µk(E))k
belongs to the range of the vector measure (µk)k , causing it to be a convex set. The-
orem A.2 also extends the so-called bang-bang principle in optimal control theory
(Hermes and Lasalle 1969, Theorem 8.2). This principle corresponds to the special
case d = 2 and because of (Hermes and Lasalle 1969, Theorem 8.1), this observation
also shows how compactness as in Theorem A.1 is implied by Theorem A.2.

As already explained in the in the main text, Theorem A.2 follows directly from
Theorem 2.1 as follows: (1) set S := {1, . . . , d}, (2) observe that the function t �→
(δ1(t), . . . , δd(t)) can be identified with a transition probability with respect to (T, T )
and (S, 2S) and (3) work with functions g j of the form (t, s) �→ dµk

dµ (t)1s̄(s). The
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resulting function f of Theorem 2.1 then produces the desired decomposition of T by
setting C j := f −1( j).

The extension of Theorem A.2, as given by in (Khan et al. 2006, Corollary 1), is as
follows:

Theorem A.3 For k = 1, . . . ,m let µk be a finite non-atomic probability measure
on (T, T ). Let S be a finite set. Let g := (g1, . . . , gd) : T × S → R

d be T ⊗ 2S-
measurable and let g j (·, s) be µk-integrable for every s ∈ S and j = 1, . . . , d. Also,
let δ be a transition probability with respect to (T, T ) and (S, 2S). Then there exists
a measurable function f : T → S such that for k = 1, . . . ,m

(i)
∫

T [∫S g j (t, s)δ(t)(ds)]µk(dt) = ∫
T g j (t, f (t))µk(dt), j = 1, . . . , d,

(ii) (µk ⊗ δ) |S= µk( f −1(·)),
(iii) f (t) ∈ supp δ(t) = {s ∈ S : δ(t)({s}) > 0}.
As explained in the main text, this result follows directly from Theorem 2.1 (see
Remark 2.1 and Corollary 2.1), in the same way as we showed above for Theorem A.2.

Aumann’s identity for integrals of multifunctions Aumann (1965), which follows
directly from Theorem A.2 by Carathéodory’s theorem and measurable selection
results (the latter largely due to Aumann himself), is as follows:

Theorem A.4 (Aumann) Let µ be a complete and finite non-atomic measure on
(T, T . Let F : T → 2R

d+ be a multifunction whose graph is T ⊗ B(Rd)-measurable.
Then

∫

T

F dµ =
∫

T

F∗ dµ,

where F∗(t) stands for the convex hull of the set F(t) and where for H = F, F∗

∫

T

H dµ :=
⎧⎨
⎩

∫

T

h dµ : h ∈ H

⎫⎬
⎭ ,

with H the set of all µ-integrable functions h : T → R
d+ with h(t) ∈ H(t) for all

t ∈ T .

The original result in Aumann (1965) was stated for the unit interval T cum Lebesgue
structure, but its proof easily extends to the form given here. Moreover, it is well-known
(Castaing and Valadier 1977) that in the above result the completeness condition for
the measure µ can be dropped by redefining H to be the set of all µ-integrable h for
which h(t) ∈ H(t) holds for almost every t ∈ T .

Suppose now that in Sect. 3, in addition to the assumptions already in place there,
the following hold for every t ∈ T :

(i) the set St is compact,
(ii) the function Ut (·, ·) is upper semicontinuous on St × R

m ,
(iii) the function y �→ sups∈St

Ut (s, y) is lower semicontinuous on R
m .
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Suppose also in addition that the measure space (T, T , µ) is separable. Then the
pure equilibrium existence result of (Balder 2002, Theorem 2.2.1), referred to in
Remark 3.2 above, is as follows when it is specialized to the non-atomic case of this
paper (see the observations made at the beginning of Sect. 3).

Theorem A.5 There exists f ∈ S	 that is a pure Cournot–Nash equilibrium profile
in the sense of (4).
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