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Remark: (a) Let x0 ∈ S, with S ⊂ Rn convex.
Then the subgradient ∂χS(x0), used in the above
proof, coincides with the following convex cone (see
Appendix B.3):

NS(x0) := {ξ ∈ Rn : ξt(x− x0) ≤ 0 ∀ x ∈ S}.

Name: the normal cone to S at x0. Hence, one has
−ξ̄ ∈ NS(x0) in Theorem 2.10.

(b) If x0 ∈ int S, then NS(x0) = {0}. So Theo-
rem 2.10 states 0 ∈ ∂f (x̄) if x̄ ∈ int S.

Remark: If in Theorem 2.10 f is additionally dif-
ferentiable, then Theorem 2.10 states:

x̄ ∈ S optimal for (P ) ⇔ −∇f (x̄) ∈ NS(x̄). (1)

Moreover, if x̄ ∈ int S, then it just says:

x̄ ∈ S optimal for (P ) ⇔ ∇f (x̄) = 0.
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Exercise: Given m points x1, . . . , xm in Rn, con-
sider

(P ) inf
x∈Rn

m∑
i=1

|x− xi|2.

Use Theorem 2.10 to determine the optimal solu-
tion.

Exercise: Let S ⊂ Rn be convex. If f : S → R
is differentiable but perhaps non-convex, then ⇒ in
(1) continues to hold. Prove this. Show also that ⇐
may then fail.
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Directional derivatives and the DM-theorem

Definition 2.13: The directional derivative of a
convex function f : Rn → (−∞, +∞] at the point
x0 ∈ domf in the direction d ∈ Rn is defined as

f ′(x0; d) := lim
λ↓0

f (x0 + λd)− f (x0)

λ
.

Proposition 2.14: Let f : Rn → (−∞, +∞] be a
convex function and let x0 be a point in domf . Then
for every direction d ∈ Rn and every λ1, λ2 ∈ R such
that λ2 > λ1 > 0 we have

f (x0 + λ1d)− f (x0)

λ1
≤ f (x0 + λ2d)− f (x0)

λ2

Consequence:

f ′(x0; d) = infλ>0
f (x0 + λd)− f (x0)

λ
.

Hence f ′(x0, d) well-defined (in [−∞, +∞])!

Example (continues Exercise 2.1c) Let f :
Rn → R be given by f (x) := 1 −

√
1− x2 if x ∈

[−1, +1] and by f (x) := +∞ if x < −1 or x > 1.
Then for d = 3

f ′(x0; 3) =

 3f ′(x0) if |x0| < 1
+∞ if x0 = 1 (by f = +∞ on (1,∞))
−∞ if x0 = −1 (by a ”real” limit)
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Theorem 2.15: Let f : Rn → (−∞, +∞] be a
convex function and let x0 be a point in int dom f .
Then

f ′(x0; d) = sup
ξ∈∂f(x0)

ξtd for every d ∈ Rn.

Proof on p. 11 uses Appendix B, but independent
proof also possible.

Theorem 2.17 (Dubovitskii-Milyutin) Let
f1, · · · , fm : Rn → (−∞, +∞] be convex functions
and let x0 be a point in ∩m

i=1int dom fi. Let f :
Rn → (−∞, +∞] be given by

f (x) := max
1≤i≤m

fi(x)

and let I(x0) be the (nonempty) set of all i ∈ {1, · · · , m}
for which fi(x0) = f (x0). Then

∂f (x0) = co ∪i∈I(x0) ∂fi(x0).

Proof of D-M theorem: Write I := I(x0). If ξ ∈
∂fi(x0), i ∈ I , then

∀xf (x) ≥ fi(x) ≥ fi(x0) + ξt(x− x0)

with fi(x0) = f (x0) by i ∈ I . So ξ ∈ ∂f (x0). By
convexity of ∂f (x0) this gives

K := co ∪i∈I ∂fi(x0) ⊂ ∂f (x0).
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Next, we prove ξ 6∈ K ⇒ ξ 6∈ ∂f (x0). By Lemma 2.16
and Exercise 2.18 K is compact, hence closed. By
separation Thm. A.2:

∃d∈Rn,α∈Rξtd > α ≥ max
i∈I

sup
ξ′∈∂fi(x0)

ξ′td = max
i∈I

f ′i(x0; d)

(= holds by Thm. 2.15). Now

f ′(x0; d)
!
= lim

λ↓0
max
i∈I

fi(x0 + λd)− fi(x0)

λ
.

So f ′(x0; d) equals

max
i∈I

lim
λ↓0

fi(x0 + λd)− fi(x0)

λ
= max

i∈I
f ′i(x0; d).

Conclusion: ξtd > f ′(x0; d). Hence ξ 6∈ ∂f (x0).
QED

Example: Let m = 2, n = 1, f1(x) = x, f2(x) =
−x and x0 = 0. Then f (x) = |x|, I(0) = {1, 2} and
the D-M theorem says:

∂f (x0) = co ({1} ∪ {−1}) = [−1, 1],

known already by different reasoning.
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