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Locally Lipschitz functions:

Def. 2.1 f : R" — (—o00,+00] is Lipschitz near
xo € int dom f if

x>0 Vi a/eB;(xp) [f(x) — f(2)] < K|z — 2
where § > 0 is so small that Bj(z) C dom f.

If f is Lipschitz near every point in R”, then f is
called locally Lipschitz (= LL).

From now on: only functions into R, except when
they are convex.

Example 2.2 (i) If f : R" — (—o00, +00] is convex,
then it is LL at every zy € int dom f.

Example 2.2 (i2) If f: R" — R is continuously
differentiable at xy € R", then it is LL at x.



Generalized gradients:

Def. 2.3 (Clarke) Let f : R" — R, zp € R". The
generalized directional derivative of f at xy in the
direction d € R" is defined by

f°(xg; d) := limsup flzo+h+ Ad) = flao + 1) —

h— 0 A
ALO

flxog+h+ M) — f(xg+ h)

= lim sup :
010 heBs(0),1€(0,0) A

Also, the generalized gradient of f at x( is defined
by

Of(xo) = { € R": f(w;d) > ' dVgern}-

Big difference with convex analysis: Def. 2.3 has dif-
ference quotients

flxo+h+Ad) — f(xog+ h)
A

with a variable “base” xy + h!

Ex. 2.4 a. For f(z) := |z| on R one has 9f(0) =
[_17 1]

b. For f(z) := —|z| on R one also has 9f(0) =
(—1,1].




In general, Of(zg) could be empty. However, this is
not so for LL functions:

Thm. 2.5 Let f : R" — R be LL near zyp € R"
with LL constant K. Then

(i1) |€] < K for all £ € Of (zg).
(ii1) Yaern fO(20; d) = SUDgeg pag) €'d.

Lemma 2.6 is key to Thm. 2.5: generalized direc-
tional derivative functions are automatically convex.

Lemma 2.6 In Thm. 2.5 p : d — f°(xg;d) is pos-
itively homogeneous and subadditive (whence con-
vex). Also, |p(d)| < K|d| Vgern.

Note: 9f(xg) := Op(0)! This enables use of convex
analysis.



Generalized gradients in two classical situa-
tions:

Prop. 2.7 If f : R" — R is continuously differen-
tiable at xp € R", then

Of(x9) = {V f(x0)},

Prop. 2.8 If f : R" — R be convex, then for every
xo € R"

Of (x9) = D f (o),

Example 2.4.a illustrates Prop. 2.8.



Generalized gradient calculus:

Calculus rules for generalized gradients retain the
“difficult” parts of the Moreau-Rockafellar theorem
and the Dubovitskii-Milyutin theorem:

Thm. 2.9 Let f,g: R" — R be LL near xy € R".
Then

Voso O(af)(zo) = adf(xo),
O(f + g)(xo) C Of(x0) + Dg(xo).

Thm. 2.10 Let f1,..., f, : R" — R be LL near
xo € R". Define f : R" — R by
flz) = max fi(z)

and let I(xg) := {i: fi(xo) = f(xp)}. Then
Of (xg) C co (Uiel(xo)éfz’(xo)) :



KKT theorems for generalized gradients:
Let S C R" be closed; let distg(x) := infcg |x—2'|.

Thm. 3.1 (“small” KKT) Let f: R" — R be
LL near x € S. If x is a local optimal solution of

(P) inf f(x).
xeS
then
Jrern 0 € Of(Z) + 7
and
N € Upsot Odistg(z) (NCP).

Proof uses that z is also a local optimal solution of
an auxiliary problem

(P xeé?/g(a—;) |f(x) + Kdistg(z)]

with K := LL-constant of f at x. After this, result
follows by Thm. 2.9, because
0 € O(f + Kdists)(z) C f () + Kddists(z).

Compared to “small” KKT thm. in [OSC], above
proof uses “penalty term” K distg instead of xg.

Rem. 3.2 NCP stands for normal cone property:
Upsot Odistg(Z) is called the normal cone to S at
x. If S is additionally convex, then this agrees with
[OSC]. Reason: then distg is convex, so Odistg(T) =
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Jdistg(z). Hence (NCP) implies V,es57'(z — ) < 0,
i.e., obtuse angle property.

Thm. 3.3 (KKT — no equality constraints)

Let f,g1,...,9m : R" = RbeLLnearz € S. If z
is locally optimal for

(P) inf{f(z): gi(x) <0,...,gu(z) <0}
then Haoe{o,l},aeRT,ﬁeRn,(ao,a#(o,O) with
Viu;0:(Z) = 0 (CS)
0 e uo(?f —|— Z uzagz + n (LI)

iel(z

7 € Ut>0t0dlst5( ) (NCP).

Here I(z) = {1 : 1 < i < m,gi(x) = 0}. The
proof is similar to that of the “convex” counterpart in
[OSC] by using that z is also a local optimal solution
of the auxiliary problem

(P) inf max | f(z) — f(Z), max g¢;(z)

resS 1<i<m

and applying “small” KKT Theorem 3.1.

Thm. 3.5 (KKT — general) Let f,g1,...,9m,
hi,...,h, : R" — R be LL near z € S. If 7 is



locally optimal for
(P) inf{f(z): Vigi(z) < 0,Y;h;(z) = 0}

then Elaoe{o,1},EGRT,EERP,ﬁER”,(ﬂo,ﬂ,@)75(0,0,0) with (CS)
and (NCP) holding and the following (LI):

0 € ugdf(x) + Z w;0q;(T) + Zvjah

iel(x

Proof differs from “convex” counterpart in [OSC], by
complications with equality constraints. It uses:

Ekeland’s theorem Let F': S — R be l.s.c. and
bounded below. Let € > 0 and let xy € S be such
that

F(zg) < él”GIEF(l‘) + €

Then there exists . € S such that |xg — Z| < /€
and

F(z) < F(x)++e|lx — 2| for all z € S.
In words: an e-almost minimizer of F' is y/e-close to

an ezact minimizer of a “y/e-penalization” of F.

Application gives: Ve-03z.csnp e with z. a local
optimal solution of

(F) inf [Fi(x) + Velw — ]
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where
F.x) :=max | f(z) — f(Z) + e, mzaxgi(a:), mjax |h;(z)]

By applying “small” KKT theorem, then letting € —
0 and using certain limit arguments, proof of Thm. 3.5
now follows from “small” KK'T Theorem 3.1.

Corollary (KKT, smooth case) Let f, g1, ..., gm,
hi,...,hy, : R" — R be continuously differentiable
in x € R" If z is locally optimal for (P) with

S = R" then Haoe{o,l},aeRiﬁ,@eRp,(ao,a,@);«é(o,o,O) with
(CS) and

0=uVf(T JrZuZVgZ +Zv]Vh

iel(x



