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Locally Lipschitz functions:

Def. 2.1 f : Rn → (−∞,+∞] is Lipschitz near
x0 ∈ int dom f if

∃K≥0 ∀x,x′∈Bδ(x0) |f (x)− f (x′)| ≤ K|x− x′|

where δ > 0 is so small that Bδ(x0) ⊂ dom f .

If f is Lipschitz near every point in Rn, then f is
called locally Lipschitz (= LL).

From now on: only functions into R, except when
they are convex.

Example 2.2 (i) If f : Rn → (−∞,+∞] is convex,
then it is LL at every x0 ∈ int dom f .

Example 2.2 (ii) If f : Rn → R is continuously
differentiable at x0 ∈ Rn, then it is LL at x0.
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Generalized gradients:

Def. 2.3 (Clarke) Let f : Rn → R, x0 ∈ Rn. The
generalized directional derivative of f at x0 in the
direction d ∈ Rn is defined by

f o(x0; d) := lim sup
h→ 0
λ↓0

f (x0 + h + λd)− f (x0 + h)

λ
:=

:= lim
δ↓0

sup
h∈Bδ(0),λ∈(0,δ)

f (x0 + h + λd)− f (x0 + h)

λ
.

Also, the generalized gradient of f at x0 is defined
by

∂̄f (x0) := {ξ ∈ Rn : f o(x0; d) ≥ ξtd∀d∈Rn}.

Big difference with convex analysis: Def. 2.3 has dif-
ference quotients

f (x0 + h + λd)− f (x0 + h)

λ

with a variable “base” x0 + h!

Ex. 2.4 a. For f (x) := |x| on R one has ∂̄f (0) =
[−1, 1].

b. For f (x) := −|x| on R one also has ∂̄f (0) =
[−1, 1].
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In general, ∂̄f (x0) could be empty. However, this is
not so for LL functions:

Thm. 2.5 Let f : Rn → R be LL near x0 ∈ Rn

with LL constant K. Then

(i) ∂̄f (x0) 6= ∅.

(ii) |ξ| ≤ K for all ξ ∈ ∂̄f (x0).

(iii) ∀d∈Rn f
0(x0; d) = supξ∈∂̄f(x0) ξ

td.

Lemma 2.6 is key to Thm. 2.5: generalized direc-
tional derivative functions are automatically convex.

Lemma 2.6 In Thm. 2.5 p : d 7→ f o(x0; d) is pos-
itively homogeneous and subadditive (whence con-
vex). Also, |p(d)| ≤ K|d| ∀d∈Rn.

Note: ∂̄f (x0) := ∂p(0)! This enables use of convex
analysis.
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Generalized gradients in two classical situa-
tions:

Prop. 2.7 If f : Rn → R is continuously differen-
tiable at x0 ∈ Rn, then

∂̄f (x0) = {∇f (x0)},

Prop. 2.8 If f : Rn → R be convex, then for every
x0 ∈ Rn

∂̄f (x0) = ∂f (x0),

Example 2.4.a illustrates Prop. 2.8.
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Generalized gradient calculus:

Calculus rules for generalized gradients retain the
“difficult” parts of the Moreau-Rockafellar theorem
and the Dubovitskii-Milyutin theorem:

Thm. 2.9 Let f, g : Rn → R be LL near x0 ∈ Rn.
Then

∀α>0 ∂̄(αf )(x0) = α∂̄f (x0),

∂̄(f + g)(x0) ⊂ ∂̄f (x0) + ∂̄g(x0).

Thm. 2.10 Let f1, . . . , fm : Rn → R be LL near
x0 ∈ Rn. Define f : Rn → R by

f (x) := max
1≤i≤m

fi(x)

and let I(x0) := {i : fi(x0) = f (x0)}. Then

∂̄f (x0) ⊂ co
(
∪i∈I(x0)∂̄fi(x0)

)
.
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KKT theorems for generalized gradients:

Let S ⊂ Rn be closed; let distS(x) := infx′∈S |x−x′|.

Thm. 3.1 (“small” KKT) Let f : Rn → R be
LL near x̄ ∈ S. If x̄ is a local optimal solution of

(P ) inf
x∈S

f (x).

then
∃η̄∈Rn 0 ∈ ∂̄f (x̄) + η̄

and
η̄ ∈ ∪t>0t ∂̄distS(x̄) (NCP).

Proof uses that x̄ is also a local optimal solution of
an auxiliary problem

(P ′) inf
x∈Bε/2(x̄)

[f (x) + KdistS(x)]

with K := LL-constant of f at x̄. After this, result
follows by Thm. 2.9, because

0 ∈ ∂̄(f + KdistS)(x̄) ⊂ ∂̄f (x̄) + K∂̄distS(x̄).

Compared to “small” KKT thm. in [OSC], above
proof uses “penalty term” KdistS instead of χS.

Rem. 3.2 NCP stands for normal cone property:
∪t>0t ∂̄distS(x̄) is called the normal cone to S at
x̄. If S is additionally convex, then this agrees with
[OSC]. Reason: then distS is convex, so ∂̄distS(x̄) =
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∂distS(x̄). Hence (NCP) implies ∀x∈S η̄t(x− x̄) ≤ 0,
i.e., obtuse angle property.

Thm. 3.3 (KKT – no equality constraints)
Let f, g1, . . . , gm : Rn → R be LL near x̄ ∈ S. If x̄
is locally optimal for

(P ) inf
x∈S
{f (x) : g1(x) ≤ 0, . . . , gm(x) ≤ 0}

then ∃ū0∈{0,1},ū∈Rm+ ,η̄∈Rn,(ū0,ū)6=(0,0) with

∀iūigi(x̄) = 0 (CS)

0 ∈ ū0∂̄f (x̄) +
∑
i∈I(x̄)

ūi∂̄gi(x̄) + η̄ (LI),

η̄ ∈ ∪t>0 t ∂̄distS(x̄) (NCP).

Here I(x̄) := {i : 1 ≤ i ≤ m, gi(x̄) = 0}. The
proof is similar to that of the “convex” counterpart in
[OSC] by using that x̄ is also a local optimal solution
of the auxiliary problem

(P ′) inf
x∈S

max

[
f (x)− f (x̄), max

1≤i≤m
gi(x)

]
and applying “small” KKT Theorem 3.1.

Thm. 3.5 (KKT – general) Let f, g1, . . . , gm,
h1, . . . , hp : Rn → R be LL near x̄ ∈ S. If x̄ is
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locally optimal for

(P ) inf
x∈S
{f (x) : ∀igi(x) ≤ 0,∀jhj(x) = 0}

then ∃ū0∈{0,1},ū∈Rm+ ,v̄∈Rp,η̄∈Rn,(ū0,ū,v̄)6=(0,0,0) with (CS)
and (NCP) holding and the following (LI):

0 ∈ ū0∂̄f (x̄) +
∑
i∈I(x̄)

ūi∂̄gi(x̄) +

m∑
j=1

v̄j∂̄hj(x̄) + η̄,

Proof differs from “convex” counterpart in [OSC], by
complications with equality constraints. It uses:

Ekeland’s theorem Let F : S → R be l.s.c. and
bounded below. Let ε > 0 and let x0 ∈ S be such
that

F (x0) ≤ inf
x∈S

F (x) + ε.

Then there exists x̃ε ∈ S such that |x0 − x̃ε| ≤
√
ε

and

F (x̃) ≤ F (x) +
√
ε|x− x̃ε| for all x ∈ S.

In words: an ε-almost minimizer of F is
√
ε-close to

an exact minimizer of a “
√
ε-penalization” of F .

Application gives: ∀ε>0∃x̃ε∈S∩B√ε(x̄) with x̃ε a local

optimal solution of

(Pε) inf
x∈S

[
Fε(x) +

√
ε|x− x̃ε|

]
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where

Fε(x) := max

[
f (x)− f (x̄) + ε,max

i
gi(x),max

j
|hj(x)|

]
.

By applying “small” KKT theorem, then letting ε→
0 and using certain limit arguments, proof of Thm. 3.5
now follows from “small” KKT Theorem 3.1.

Corollary (KKT, smooth case) Let f, g1, . . . , gm,
h1, . . . , hp : Rn → R be continuously differentiable
in x̄ ∈ Rn. If x̄ is locally optimal for (P ) with
S := Rn then ∃ū0∈{0,1},ū∈Rm+ ,v̄∈Rp,(ū0,ū,v̄)6=(0,0,0) with
(CS) and

0 = ū0∇f (x̄) +
∑
i∈I(x̄)

ūi∇gi(x̄) +

m∑
j=1

v̄j∇hj(x̄).

9


